
Network Working Group C. Partridge
Request For Comment: 1022 BBN/NNSC
 G. Trewitt
 Stanford
 October 1987

 THE HIGH-LEVEL ENTITY MANAGEMENT PROTOCOL (HEMP)

STATUS OF THIS MEMO

 An application protocol for managing network entities such as hosts,
 gateways and front-end machines, is presented. This protocol is a
 component of the High-Level Entity Management System (HEMS) described
 in RFC-1021. Readers may want to consult RFC-1021 when reading this
 memo. This memo also assumes a knowledge of the ISO data encoding
 standard, ASN.1. Distribution of this memo is unlimited.

PROTOCOL OVERVIEW

 The High-Level Entity Management Protocol (HEMP) provides an
 encapsulation system and set of services for communications between
 applications and managed entities. HEMP is an application protocol
 which relies on existing transport protocols to deliver HEMP messages
 to their destination(s).

 The protocol is targeted for management interactions between
 applications and entities. The protocol is believed to be suitable
 for both monitoring and control interactions.

 HEMP provides what the authors believe are the three essential
 features of a management protocol: (1) a standard encapsulation
 scheme for all interactions, (2) an authentication facility which can
 be used both to verify messages and limit access to managed systems,
 and (3) the ability to encrypt messages to protect sensitive
 information. These features are discussed in detail in the following
 sections.

PROTOCOL OPERATION

 HEMP is designed to support messages; where a message is an
 arbitrarily long sequence of octets.

 Five types of messages are currently defined: request, event, reply,
 and protocol error, and application error messages. Reply, protocol
 error and application error messages are only sent in reaction to a
 request message, and are referred to collectively as responses.

Partridge & Trewitt [Page 1]

RFC 1022 HEMS Protocol October 1987

 Two types of interaction are envisioned: a message exchange between
 an application and an entity managed by the application, and
 unsolicited messages from an entity to the management centers
 responsible for managing it.

 When an application wants to retrieve information from an entity or
 gives instructions to an entity, it sends a request message to the
 entity. The entity replies with a response, either a reply message
 if the request was valid, or an error message if the request was
 invalid (e.g., failed authentication). It is expected that there
 will only be one response to a request message, although the protocol
 does not preclude multiple responses to a single request.

 Protocol error messages are generated if errors are found when
 processing the HEMP encapsulation of the message. The possible
 protocol error messages are described later in this document. Non-
 HEMP errors (e.g., errors that occur during the processing of the
 contents of the message) are application errors. The existence of
 application error messages does not preclude the possibility that a
 reply will have an error message in it. It is expected that the
 processing agent on the entity may have already started sending a
 reply message before an error in a request message is discovered. As
 a result, application errors found during processing may show up in
 the reply message instead of a separate application error message.

 Note that in certain situations, such as on secure networks,
 returning error messages may be considered undesirable. As a result,
 entities are not required to send error messages, although on
 "friendly" networks the use of error messages is encouraged.

 Event messages are unsolicited notices sent by an entity to an
 address, which is expected to correspond to one or more management
 centers. (Note that a single address may correspond to a multicast
 address, and thus reach multiple hosts.) Event messages are
 typically used to allow entities to alert management centers of
 important changes in their state (for example, when an interface goes
 down or the entity runs out of network buffers).

Partridge & Trewitt [Page 2]

RFC 1022 HEMS Protocol October 1987

STANDARD MESSAGE FORMAT

 Every HEMP message is put in the general form shown in Figure 1.

 +-------------------------------+
 : leader :
 +-------------------------------+
 : encryption section :
 +-------------------------------+
 : reply encryption section :
 +-------------------------------+
 : authentication section :
 +-------------------------------+
 : common header :
 +-------------------------------+
 : data :
 +-------------------------------+

 Figure 1: General Form of HEMP Messages

 Each message has five components: (1) the leader, which is simply the
 ASN.1 tag and message length; (2) the encryption section, which
 provides whatever information the receiver may require to decrypt the
 message; (3) the reply encryption section, in which the requesting
 application may specify the type of encryption to use in the reply;
 (4) the authentication section, which allows the receiver to
 authenticate the message; (5) the common header, which identifies the
 message type, the HEMP version, and the message id; and (6) the data
 section. All four sections following the leader are also ASN.1
 encoded. The ASN.1 format of the message is shown in Figure 2.

 HempMessage ::= [0] IMPLICIT SEQUENCE {
 [0] IMPLICIT EncryptSection OPTIONAL,
 [1] IMPLICIT ReplyEncryptSection OPTIONAL,
 [2] IMPLICIT AuthenticateSection OPTIONAL,
 [3] IMPLICIT CommonHeader,
 [4] IMPLICIT Data }

 Figure 2: ASN.1 Format of HEMP Messages

 The ordering of the sections is significant. The encryption section
 comes first so that all succeeding sections (which may contain
 sensitive information) may be encrypted. The authentication section
 precedes the header so that messages which fail authentication can be
 discarded without header processing.

Partridge & Trewitt [Page 3]

RFC 1022 HEMS Protocol October 1987

THE ENCRYPTION SECTION

Need For Encryption

 Encryption must be supported in any management scheme. In
 particular, a certain amount of monitoring information is potentially
 sensitive. For example, imagine that an entity maintains a traffic
 matrix, which shows the number of packets it sent to other entities.
 Such a traffic matrix can reveal communications patterns in an
 organization (e.g., a corporation or a government agency).
 Organizations concerned with privacy may wish to employ encryption to
 protect such information. Access control ensures that only people
 entitled to request the data are able to retrieve it, but does not
 protect from eavesdroppers reading the messages. Encryption protects
 against eavesdropping.

 Note that encryption in HEMP does not protect against traffic
 analysis. It is expected that HEMP interactions will have distinct
 signatures such that a party which can observe traffic patterns may
 guess at the sort of interactions being performed, even if the data
 being sent is encrypted. Organizations concerned with security at
 this level should additionally consider link-level encryption.

Format of the Encryption Section

 The encryption section contains any data required to decrypt the
 message. The ASN.1 format of this section is shown in Figure 3.

 EncryptSection :: = IMPLICIT SEQUENCE {
 encryptType INTEGER,
 encryptData ANY
 }

 Figure 3: ASN.1 Format of Encryption Section

 If the section is omitted, then no decryption is required. If the
 section is present, then the encryptType field contains a number
 defining the encryption method in use and encryptData contains
 whatever data, for example a key, which the receiver must have to
 decrypt the remainder of the message using the type of encryption
 specified.

 Currently no encryption types are assigned.

 If the message has been encrypted, data is encrypted starting with
 the first octet after the encryption section.

Partridge & Trewitt [Page 4]

RFC 1022 HEMS Protocol October 1987

THE REPLY ENCRYPTION SECTION

Need for Reply Encryption

 The reasons for encrypting messages have already been discussed.

 The reply encryption section provides the ability for management
 agents to request that responses be encrypted even though the
 requests are not encrypted, or that responses be encrypted using a
 different key or even a different scheme from that used to encrypt
 the request. A good example is a public key encryption system, where
 the requesting application needs to pass its public key to the
 processing agent.

Format of the Reply Encryption Section

 The reply encryption section contains any data required to encrypt
 the reply message. The ASN.1 format of this section is shown in
 Figure 4.

 ReplyEncryptSection :: = IMPLICIT SEQUENCE {
 replyEncryptType INTEGER,
 replyEncryptData ANY
 }

 Figure 4: ASN.1 Format of Reply Encryption Section

 If the section is omitted, then the reply should be encrypted in the
 manner specified by the encryption section. If the section is
 present, then the replyEncryptType field contains a number defining
 the encryption method to use and replyEncryptData contains whatever
 data, for example a key, which the receiver must have to encrypt the
 reply message.

 If the reply encryption section is present, then the reply message
 must contain an appropriate encryption section, which indicates the
 encryption method requested in the reply encryption section is in
 use. The reply message should be encrypted starting with the first
 octet after the encryption section.

 If the reply encryption method requested is not supported by the
 entity, the entity may not send a reply. It may, at the discretion
 of the implementor, send a protocol error message. (See below for
 descriptions of protocol error messages.)

 Currently no encryption types are assigned.

Partridge & Trewitt [Page 5]

RFC 1022 HEMS Protocol October 1987

THE AUTHENTICATION SECTION

Need for Authentication

 It is often useful for an application to be able to confirm either
 that a message is indeed from the entity it claims to have originated
 at, or that the sender of the message is accredited to make a
 monitoring request, or both. An example may be useful here.
 Consider the situation in which an entity sends a event message to a
 monitoring center which indicates that a trunk link is unstable.
 Before the monitoring center personnel take actions to re-route
 traffic around the bad link (or makes a service call to get the link
 fixed), it would be nice to confirm that the event was indeed sent by
 the entity, and not by a prankster. Authentication provides this
 facility by allowing entities to authenticate their event messages.

 Another use of the authentication section is to provide access
 control. Requests demand processing time from the entity. In cases
 where the entity is a critical node, such as a gateway, we would like
 to be able to limit requests to authorized applications. We can use
 the authentication section to provide access control, by only
 allowing specially authenticated applications to request processing
 time.

 It should also be noted that, in certain cases, the encryption method
 may also implicitly authenticate a message. In such situations, the
 authentication section should still be present, but uses a type code
 which indicates that authentication was provided by the encryption
 method.

Format of the Authentication Section

 The authentication section contains any data required to allow the
 receiver to authenticate the message. The ASN.1 format of this
 section is shown in Figure 5.

 AuthenticateSection :: = IMPLICIT SEQUENCE {
 authenticateType INTEGER,
 authenticateData ANY
 }

 Figure 5: ASN.1 Format of Authentication Section

 If the section is omitted, then the message is not authenticated. If
 the section is present, then the authenticateType defines the type of
 authentication used and the authenticateData contains the
 authenticating data.

Partridge & Trewitt [Page 6]

RFC 1022 HEMS Protocol October 1987

 This memo defines two types of authentication, a password scheme and
 authentication by encryption method. For the password scheme, the
 AuthenticateSection has the form shown in Figure 6.

 AuthenticateSection :: = IMPLICIT SEQUENCE {
 authenticateType INTEGER { password(1) },
 authenticateData OCTETSTRING
 }

 Figure 6: ASN.1 Format of Password Authentication Section

 The authenticateType is 1, and the password is an octet string of any
 length. The system is used to validate requests to an entity. Upon
 receiving a request, an entity checks the password against an entity
 specific password which has been assigned to the entity. If the
 passwords match, the request is accepted for processing. The scheme
 is a slightly more powerful password scheme than that currently used
 for monitoring on the Internet.

 For authentication by encryption, the AuthenticateSection has the
 format shown in Figure 7.

 AuthenticateSection :: = IMPLICIT SEQUENCE {
 authenticateType INTEGER { encryption(2) },
 authenticateData NULL
 }

 Figure 7: ASN.1 Format of Encryption Authentication Section

 This section simply indicates that authentication was implicit in the
 encryption method. Recipients of such messages should confirm that
 the encryption method does indeed provide authentication.

 No other authentication types are currently defined.

 If a message fails authentication, it should be discarded. If the
 type of authentication used on the message is unknown or the section
 is omitted, the message may be discarded or processed at the
 discretion of the implementation. It is recommended that requests
 with unknown authentication types be logged as potential intrusions,
 but not processed.

THE COMMON HEADER

 The common header contains generic information about the message such
 as the protocol version number and the type of request. The ASN.1
 format of the common header is shown in Figure 8.

Partridge & Trewitt [Page 7]

RFC 1022 HEMS Protocol October 1987

 CommonHeader ::= IMPLICIT SEQUENCE {
 link IMPLICIT INTEGER,
 messageType IMPLICIT INTEGER,
 messageId IMPLICIT INTEGER,
 resourceId ANY
 }

 Figure 8: ASN.1 Format of Common Header

 The link indicates which version of HEMS is in use.

 The messageType is a value indicating whether the message is a
 request (0), reply (1), event (2), protocol error (3) or application
 error (4) message.

 The messageId is a unique bit identifier, which is set in the request
 message, and echoed in the response. It allows applications to match
 responses to their corresponding request. Applications should choose
 messageIds such that a substantial period of time elapses before a
 messageId is re-used by a particular application (even across machine
 crashes).

 Event messages also use the messageId field to indicate the number of
 the current event message. By comparing messageId fields from events
 lost, event values may be detected. The event messageId should be
 reset to 0 on every reboot, and by convention, the event message with
 messageId of 0 should always be a "reboot" event. (Facilities should
 be provided in the event message definition to allow entities which
 are capable of storing messageIds across reboots to send the highest
 messageId reached before the reboot.)

 The resourceId is defined for ISO compatibility and corresponds to
 the resource ID used by the Common Management Information Protocol to
 identify the relevant ISO resource.

DATA SECTION

 The data section contains the message specific data. The format of
 the data section is shown in Figure 9.

 Data ::= ANY

 Figure 9: ASN.1 Format of Data Section

 The contents of the data section is application specific and, with
 the exception of protocol error messages, is outside the scope of
 this memo.

Partridge & Trewitt [Page 8]

RFC 1022 HEMS Protocol October 1987

TRANSPORT PROTOCOL

 There has been considerable debate about the proper transport
 protocol to use under HEMP. Part of the problem is that HEMP is
 being used for two different types of interactions: request-response
 exchanges and event messages. Request-response interactions may
 involve arbitrary amounts of data being sent in both directions, and
 is believed to require a reliable transport mechanism. Event
 messages are typically small and need not be reliably delivered.

 Public opinion seems to lean towards running HEMP over a transaction
 protocol (see RFC-955 for a general discussion). Unfortunately, the
 community is still experimenting with transaction protocols, and many
 groups would like to be able to implement HEMP now. Accordingly,
 this memo defines two transport protocols for use with HEMP.

 Groups interested in using an implementation of HEMP and the HEMS in
 the near future should use a combination of the Transmission Control
 Protocol (TCP) and the User Datagram Protocol (UDP) under HEMP. TCP
 should be used for all request-response interactions and UDP should
 be used to send event messages. Using UDP to support the request-
 response interactions is strongly discouraged.

 More forward looking groups are encouraged to implement HEMP over a
 transaction protocol, in particular, experiments are planned with the
 Versatile Message Transaction Protocol (VMTP).

PROTOCOL ERROR MESSAGES

 Protocol error messages are so closely tied to the definition of HEMP
 that it made sense to define the contents of the data section for
 protocol error messages in this memo, even though the data section is
 generally considered application specific.

 The data section of all protocol error messages has the same format,
 which is shown in Figure 10. This format has been chosen to agree
 with the error message format and ASN.1 type used for language
 processing errors in RFC-1024, and the error codes have been chosen
 such that they do not overlap.

 ProtocolError ::= [APPLICATION 0] implicit sequence {
 protoErrorCode INTEGER,
 protoErrorOffset INTEGER,
 protoErrorDescribed IA5String,
 }

 Figure 10: Data Section For Protocol Error Messages

Partridge & Trewitt [Page 9]

RFC 1022 HEMS Protocol October 1987

 The protoErrorCode is a number which specifies the particular type of
 error encountered. The defined codes are:

 0 - reserved <not used>

 1 - ASN.1 format error. Some error has been encountered
 in parsing the message. Examples of such an error are an
 unknown type or a violation of the ASN.1 syntax.

 2 - Wrong HEMP version number. The version number in
 the common header is invalid. Note that this may
 be an indication of possible network intrusion and
 should be logged at sites concerned with security.

 3 - Authentication error. Authentication has failed.
 This error code is defined for completeness, but
 implementations are *strongly* discouraged from using
 it. Returning authentication failure information may
 aid intruders in cracking the authentication system.
 It is recommended taht authentication errors be logged
 as possible security problems.

 4 - ReplyEncryption type not supported. The entity
 does not support the encryption method requested in the
 ReplyEncryption section.

 5 - Decryption failed. The entity could not decrypt the
 encrypted message. Note that this means that the
 entity could not read the CommonHeader to find the
 messageId for the reply. In this case, the messageId
 field should be set to 0.

 6 - Application Failed. Some application failure made it
 impossible to process the message.

 The protoErrorOffset is the number of the octet in which the error
 was discovered. The first octet in the message is octet number 0.

 The protoErrorDescribed field is a string which describes the
 particular error. This description is expected to give a more
 detailed description of the particular error encountered.

APPENDIX OF TYPES

 This section lists all ASN.1 types defined in this document.

Partridge & Trewitt [Page 10]

RFC 1022 HEMS Protocol October 1987

 HEMP Types

 HempMessage ::= [0] IMPLICIT SEQUENCE {
 [0] IMPLICIT EncryptSection OPTIONAL,
 [1] IMPLICIT ReplyEncryptSection OPTIONAL,
 [2] IMPLICIT AuthenticateSection OPTIONAL,
 [3] IMPLICIT CommonHeader,
 [4] IMPLICIT Data }

 EncryptSection :: = IMPLICIT SEQUENCE {
 encryptType INTEGER,
 encryptData ANY
 }

 ReplyEncryptSection :: = IMPLICIT SEQUENCE {
 replyEncryptType INTEGER,
 replyEncryptData ANY
 }

 AuthenticateSection :: = IMPLICIT SEQUENCE {
 authenticateType INTEGER,
 authenticateData ANY
 }

 CommonHeader ::= IMPLICIT SEQUENCE {
 link IMPLICIT INTEGER,
 messageType IMPLICIT INTEGER {
 request(0), reply(1), event(2),
 protocol error (3), application error(4)
 }
 messageId IMPLICIT INTEGER,
 resourceId ANY
 }

 Data ::= ANY

Protocol Error Types

 ProtocolError ::= [APPLICATION 0] implicit sequence {
 protoErrorCode INTEGER,
 protoErrorOffset INTEGER,
 protoErrorDescribed OCTETSTRING
 }

Partridge & Trewitt [Page 11]

RFC 1022 HEMS Protocol October 1987

REFERENCES

 ISO Standard ASN.1 (Abstract Syntax Notation 1). It comes in two
 parts:
 International Standard 8824 -- Specification (meaning, notation)
 International Standard 8825 -- Encoding Rules (representation)

 The current VMTP specification is available from David Cheriton of
 Stanford University.

Partridge & Trewitt [Page 12]

