
Network Working Group M. Crispin
Request for Comments: 1176 Washington
Obsoletes: RFC 1064 August 1990

 INTERACTIVE MAIL ACCESS PROTOCOL - VERSION 2

Status of this Memo

 This RFC suggests a method for personal computers and workstations to
 dynamically access mail from a mailbox server ("repository"). It
 obosoletes RFC 1064. This RFC specifies an Experimental Protocol for
 the Internet community. Discussion and suggestions for improvement
 are requested. Please refer to the current edition of the "IAB
 Official Protocol Standards" for the standardization state and status
 of this protocol. Distribution of this memo is unlimited.

Introduction

 The intent of the Interactive Mail Access Protocol, Version 2 (IMAP2)
 is to allow a workstation, personal computer, or similar small
 machine to access electronic mail from a mailbox server. Since the
 distinction between personal computers and workstations is blurring
 over time, it is desirable to have a single solution that addresses
 the need in a general fashion. IMAP2 is the "glue" of a distributed
 electronic mail system consisting of a family of client and server
 implementations on a wide variety of platforms, from small single-
 tasking personal computing engines to complex multi-user timesharing
 systems.

 Although different in many ways from the Post Office Protocols (POP2
 and POP3, hereafter referred to collectively as "POP") described in
 RFC 937 and RFC 1081, IMAP2 may be thought of as a functional
 superset of these. RFC 937 was used as a model for this RFC. There
 was a cognizant reason for this; POP deals with a similar problem,
 albeit with a less comprehensive solution, and it was desirable to
 offer a basis for comparison.

 Like POP, IMAP2 specifies a means of accessing stored mail and not of
 posting mail; this function is handled by a mail transfer protocol
 such as SMTP (RFC 821).

 This protocol assumes a reliable data stream such as provided by TCP
 or any similar protocol. When TCP is used, the IMAP2 server listens
 on port 143.

Crispin [Page 1]

RFC 1176 IMAP2 August 1990

System Model and Philosophy

 Electronic mail is a primary means of communication for the widely
 spread Internet community. The advent of distributed personal
 computers and workstations has forced a significant rethinking of the
 mechanisms employed to manage electronic mail. With mainframes, each
 user tends to receive and process mail at the computer he uses most
 of the time, his "primary host". The first inclination of many users
 when an independent workstation is placed in front of them is to
 begin receiving mail at the workstation, and many vendors have
 implemented facilities to do this. However, this approach has
 several disadvantages:

 (1) Personal computers and many workstations have a software
 design that gives full control of all aspects of the system to the
 user at the console. As a result, background tasks such as
 receiving mail may not run for long periods of time; either
 because the user is asking to use all the machine’s resources, or
 because the user has (perhaps accidentally) manipulated the
 environment in such a way that it prevents mail reception. In
 many personal computers, the operating system is single-tasking
 and this is the only mode of operation. Any of these conditions
 could lead to repeated failed delivery attempts by outside agents.

 (2) The hardware failure of a single machine can keep its user
 "off the air" for a considerable time, since repair of individual
 units may be delayed. Given the growing number of personal
 computers and workstations spread throughout office environments,
 quick repair of such systems is not assured. On the other hand, a
 central mainframe is generally repaired soon after failure.

 (3) Personal computers and workstations are often not backed up
 with as much diligence as a central mainframe, if at all.

 (4) It is more difficult to keep track of mailing addresses when
 each person is associated with a distinct machine. Consider the
 difficulty in keeping track of many postal addresses or phone
 numbers, particularly if there was no single address or phone
 number for an organization through which you could reach any
 person in that organization. Traditionally, electronic mail on
 the ARPANET involved remembering a name and one of several "hosts"
 (machines) whose name reflected the organization in which the
 individual worked. This was suitable at a time when most
 organizations had only one central host. It is less satisfactory
 today unless the concept of a host is changed to refer to an
 organizational entity and not a particular machine.

 (5) It is difficult to keep a multitude of heterogeneous machines

Crispin [Page 2]

RFC 1176 IMAP2 August 1990

 working properly with complex mailing protocols, making it
 difficult to move forward as progress is made in electronic
 communication and as new standards emerge. Each system has to
 worry about receiving incoming mail, routing and delivering
 outgoing mail, formatting, storing, and providing for the
 stability of mailboxes over a variety of possible filing and
 mailing protocols.

 Consequently, while a personal computer or workstation may be viewed
 as an Internet host in the sense that it implements TCP/IP, it should
 not be viewed as the entity that contains the user’s mailbox.
 Instead, a mail server machine ("server", sometimes called a
 "repository") should hold the mailbox, and the personal computer or
 workstation (hereafter referred to as a "client") should access the
 mailbox via mail transactions.

 Because the mail server machine is isolated from direct user
 manipulation, it should achieve high software reliability easily,
 and, as a shared resource, it should also achieve high hardware
 reliability, perhaps through redundancy. The mail server may be
 accessed from arbitrary locations, allowing users to read mail across
 campus, town, or country using commonly available clients.
 Furthermore, the same user may access his mailbox from different
 clients at different times, and multiple users may access the same
 mailbox simultaneously.

 The mail server acts an an interface among users, data storage, and
 other mailers. A mail access protocol retrieves messages, accesss
 and changes properties of messages, and otherwise manages mailboxes.
 This differs from some approaches (e.g., Unix mail via NFS) in that
 the mail access protocol is used for all message manipulations,
 isolating the user and the client from all knowledge of how the data
 storage is used. This means that the mail server can use the data
 storage in whatever way is most efficient to organize the mail in
 that particular environment, without having to worry about storage
 representation compatibility across different machines.

 A mail access protocol further differs in that it transmits
 information only on demand. A well-designed mail access protocol
 requires considerably less network traffic than Unix mail via NFS,
 particularly when the mail file is large. The result is that a mail
 access protocol can scale well to situations of large mailboxes or
 networks with high latency or low speed.

 In defining a mail access protocol, it is important to keep in mind
 that the client and server form a macrosystem, in which it should be
 possible to exploit the strong points of both while compensating for
 each other’s weaknesses. Furthermore, it is desirable to allow for a

Crispin [Page 3]

RFC 1176 IMAP2 August 1990

 growth path beyond the hoary text-only RFC 822 protocol, specifically
 in the area of attachments and multi-media mail, to ease the eventual
 transition to ISO solutions.

 Unlike POP, IMAP2 has extensive features for remote searching and
 parsing of messages on the server. A free text search (optionally
 with other searching) can be made in the entire mailbox by the server
 and the results made available to the client without the client
 having to transfer the entire mailbox and searching itself. Since
 remote parsing of a message into a structured (and standard format)
 "envelope" is available, a client can display envelope information
 and implement commands such as REPLY without having any understanding
 of how to parse RFC 822, etc. headers. The effect of this is
 twofold: it further improves the ability to scale well in instances
 where network traffic must be reduced, and it reduces the complexity
 of the client program.

 Additionally, IMAP2 offers several facilities for managing individual
 message state and the mailbox as a whole beyond the simple "delete
 message" functionality of POP. Another benefit of IMAP2 is the use
 of tagged responses to reduce the possibility of synchronization
 errors and the concept of state on the client (a "local cache") that
 the server may update without explicit request by the client. These
 concepts and how they are used are explained under "Implementation
 Discussion" below.

 In spite of this functional richness, IMAP2 is a small protocol.
 Although servers should implement the full set of IMAP2 functions, a
 simple client can be written that uses IMAP2 in much the way as a POP
 client.

 A related protocol to POP and IMAP2 is the DMSP protocol of PCMAIL
 (RFC 1056). IMAP2 differs from DMSP more fundamentally, reflecting a
 differing architecture from PCMAIL. PCMAIL is either an online
 ("interactive mode"), or offline ("batch mode") system with long-term
 shared state. Some POP based systems are also offline; in such
 systems, since there is no long-term shared state POP is little more
 than a download mechanism of the "mail file" to the client. IMAP2-
 based software is primarily an online system in which real-time and
 simultaneous mail access were considered important.

 In PCMAIL, there is a long-term client/server relationship in which
 some mailbox state is preserved on the client. There is a
 registration of clients used by a particular user, and the client
 keeps a set of "descriptors" for each message that summarize the
 message. The server and client synchronize their states when the
 DMSP connection starts up, and, if a client has not accessed the
 server for a while, the client does a complete reset (reload) of its

Crispin [Page 4]

RFC 1176 IMAP2 August 1990

 state from the server.

 In IMAP2-based software, the client/server relationship lasts only
 for the duration of the TCP connection. All mailbox state is
 maintained on the server. There is no registration of clients. The
 function of a descriptor is handled by a structured representation of
 the message "envelope" as noted above. There is no client/server
 synchronization since the client does not remember state between
 IMAP2 connections. This is not a problem since in general the client
 never needs the entire state of the mailbox in a single session,
 therefore there isn’t much overhead in fetching the state information
 that is needed as it is needed.

 There are also some functional differences between IMAP2 and DMSP.
 DMSP has functions for sending messages, printing messages, listing
 mailboxes, and changing passwords; these are done outside IMAP2.
 DMSP has 16 binary flags of which 8 are defined by the system. IMAP2
 has flag names; there are currently 5 defined system flag names and a
 facility for some number (30 in the current implementations) of user
 flag names. IMAP2 has a sophisticated message search facility in the
 server to identify interesting messages based on dates, addresses,
 flag status, or textual contents without compelling the client to
 fetch this data for every message.

 It was felt that maintaining state on the client is advantageous only
 in those cases where the client is only used by a single user, or if
 there is some means on the client to restrict access to another
 user’s data. It can be a serious disadvantage in an environment in
 which multiple users routinely use the same client, the same user
 routinely uses different clients, and where there are no access
 restrictions on the client. It was also observed that most user mail
 access is to a small set of "interesting" messages, which were either
 new mail or mail based on some user-selected criteria. Consequently,
 IMAP2 was designed to easily identify those "interesting" messages so
 that the client could fetch the state of those messages and not those
 that were not "interesting".

The Protocol

 The IMAP2 protocol consists of a sequence of client commands and
 server responses, with server data interspersed between the
 responses. Unlike most Internet protocols, commands and responses
 are tagged. That is, a command begins with a unique identifier
 (typically a short alphanumeric sequence such as a Lisp "gensym"
 function would generate e.g., A0001, A0002, etc.), called a tag. The
 response to this command is given the same tag from the server.
 Additionally, the server may send an arbitrary amount of "unsolicited
 data", which is identified by the special reserved tag of "*". There

Crispin [Page 5]

RFC 1176 IMAP2 August 1990

 is another special reserved tag, "+", discussed below.

 The server must be listening for a connection. When a connection is
 opened the server sends an unsolicited OK response as a greeting
 message and then waits for commands.

 The client opens a connection and waits for the greeting. The client
 must not send any commands until it has received the greeting from
 the server.

 Once the greeting has been received, the client may begin sending
 commands and is not under any obligation to wait for a server
 response to this command before sending another command, within the
 constraints of TCP flow control. When commands are received the
 server acts on them and responds with command responses, often
 interspersed with data. The effect of a command can not be
 considered complete until a command response with a tag matching the
 command is received from the server.

 Although all known IMAP2 servers at the time of this writing process
 commands to completion before processing the next command, it is not
 required that a server do so. However, many commands can affect the
 results of other commands, creating processing-order dependencies
 (or, for SEARCH and FIND, ambiguities about which data is associated
 with which command). All implementations that operate in a non-
 lockstep fashion must recognize such dependencies and defer or
 synchronize execution as necessary. In general, such multi-
 processing is limited to consecutive FETCH commands.

 Generally, the first command from the client is a LOGIN command with
 user name and password arguments to establish identity and access
 authorization, unless this has already been accomplished through
 other means, e.g. Kerberos. Until identity and access authorization
 have been established, no operations other than LOGIN or LOGOUT are
 permitted.

 Once identity and authorization have been established, the client
 must send a SELECT command to access the desired mailbox; no mailbox
 is selected by default. SELECT’s argument is implementation-
 dependent; however the word "INBOX" must be implemented to mean the
 primary or default mailbox for this user, independent of any other
 server semantics. On a successful SELECT, the server will send a
 list of valid flags, number of messages, and number of messages
 arrived since last access for this mailbox as unsolicited data,
 followed by an OK response. The client may terminate access to this
 mailbox and access a different one with another SELECT command.

 The client reads mailbox information with FETCH commands. The actual

Crispin [Page 6]

RFC 1176 IMAP2 August 1990

 data is transmitted via the unsolicited data mechanism (that is,
 FETCH should be viewed as instructing the server to include the
 desired data along with any other data it wishes to transmit to the
 client). There are three major categories of data that may be
 fetched.

 The first category is data that is associated with a message as an
 entity in the mailbox. There are now three such items of data: the
 "internal date", the "RFC 822 size", and the "flags". The internal
 date is the date and time that the message was placed in the mailbox.
 The RFC 822 size is subject to deletion in the future; it is the size
 in bytes of the message, expressed as an RFC 822 text string.
 Current clients only use it as part of a status display line. The
 flags are a list of status flags associated with the message (see
 below). All the first category data can be fetched by using the
 macro-fetch word "FAST"; that is, "FAST" expands to "(FLAGS
 INTERNALDATE RFC822.SIZE)".

 The second category is that data that describes the composition and
 delivery information of a message; that is, information such as the
 message sender, recipient lists, message-ID, subject, etc. This is
 the information that is stored in the message header in RFC 822
 format message and is traditionally called the "envelope". [Note:
 this should not be confused with the SMTP (RFC 821) envelope, which
 is strictly limited to delivery information.] IMAP2 defines a
 structured and unambiguous representation for the envelope that is
 particularly suited for Lisp-based parsers. A client can use the
 envelope for operations such as replying and not worry about RFC 822
 at all. Envelopes are discussed in more detail below. The first two
 categories of data can be fetched together by using the macro-fetch
 word "ALL"; that is, "ALL" expands to "(FLAGS INTERNALDATE
 RFC822.SIZE ENVELOPE)".

 The third category is that data that is intended for direct human
 viewing. The present RFC 822 based IMAP2 defines three such items:
 RFC822.HEADER, RFC822.TEXT, and RFC822 (the latter being the two
 former appended together in a single text string). RFC822.HEADER is
 the "raw", unprocessed RFC 822 format header of the message.
 Fetching "RFC822" is equivalent to fetching the RFC 822
 representation of the message as stored on the mailbox without any
 filtering or processing.

 An intelligent client will "FETCH ALL" for some (or all) of the
 messages in the mailbox for use as a presentation menu, and when the
 user wishes to read a particular message will "FETCH RFC822.TEXT" to
 get the message body. A more primitive client could, of course,
 simply "FETCH RFC822" a‘la POP-type functionality.

Crispin [Page 7]

RFC 1176 IMAP2 August 1990

 The client can alter certain data (currently only the flags) by a
 STORE command. As an example, a message is deleted from a mailbox by
 a STORE command that includes the \DELETED flag as a flag being set.

 Other client operations include copying a message to another mailbox
 (COPY command), permanently removing deleted messages (EXPUNGE
 command), checking for new messages (CHECK command), and searching
 for messages that match certain criteria (SEARCH command).

 The client terminates the session with the LOGOUT command. The
 server returns a "BYE" followed by an "OK".

 A Typical Scenario

 Client Server
 ------ ------
 {Wait for Connection}
 {Open Connection} -->
 <-- * OK IMAP2 Server Ready
 {Wait for command}
 A001 LOGIN Fred Secret -->
 <-- A001 OK User Fred logged in
 {Wait for command}
 A002 SELECT INBOX -->
 <-- * FLAGS (Meeting Notice \Answered
 \Flagged \Deleted \Seen)
 <-- * 19 EXISTS
 <-- * 2 RECENT
 <-- A0002 OK Select complete
 {Wait for command}
 A003 FETCH 1:19 ALL -->
 <-- * 1 Fetch (......)
 ...
 <-- * 18 Fetch (......)
 <-- * 19 Fetch (......)
 <-- A003 OK Fetch complete
 {Wait for command}
 A004 FETCH 8 RFC822.TEXT -->
 <-- * 8 Fetch (RFC822.TEXT {893}
 ...893 characters of text...
 <--)
 <-- A004 OK Fetch complete
 {Wait for command}

Crispin [Page 8]

RFC 1176 IMAP2 August 1990

 A005 STORE 8 +Flags \Deleted -->
 <-- * 8 Store (Flags (\Deleted
 \Seen))
 <-- A005 OK Store complete
 {Wait for command}
 A006 EXPUNGE -->
 <-- * 19 EXISTS
 <-- * 8 EXPUNGE
 <-- * 18 EXISTS
 <-- A006 Expunge complete
 {Wait for command}
 A007 LOGOUT -->
 <-- * BYE IMAP2 server quitting
 <-- A007 OK Logout complete
 {Close Connection} --><-- {Close connection}
 {Go back to start}
Conventions

 The following terms are used in a meta-sense in the syntax
 specification below:

 An ASCII-STRING is a sequence of arbitrary ASCII characters.

 An ATOM is a sequence of ASCII characters delimited by SP or CRLF.

 A CHARACTER is any ASCII character except """", "{", CR, LF, "%",
 or "\".

 A CRLF is an ASCII carriage-return character followed immediately
 by an ASCII linefeed character.

 A NUMBER is a sequence of the ASCII characters that represent
 decimal numerals ("0" through "9"), delimited by SP, CRLF, ",", or
 ":".

 A SP is the ASCII space character.

 A TEXT_LINE is a human-readable sequence of ASCII characters up to
 but not including a terminating CRLF.

 A common field in the IMAP2 protocol is a STRING, which may be an
 ATOM, QUOTED-STRING (a sequence of CHARACTERs inside double-quotes),
 or a LITERAL. A literal consists of an open brace ("{"), a number, a
 close brace ("}"), a CRLF, and then an ASCII-STRING of n characters,
 where n is the value of the number inside the brace. In general, a
 string should be represented as an ATOM or QUOTED-STRING if at all
 possible. The semantics for QUOTED-STRING or LITERAL are checked
 before those for ATOM; therefore an ATOM used in a STRING may only

Crispin [Page 9]

RFC 1176 IMAP2 August 1990

 contain CHARACTERs. Literals are most often sent from the server to
 the client; in the rare case of a client to server literal there is a
 special consideration (see the "+ text" response below).

 Another important field is the SEQUENCE, which identifies a set of
 messages by consecutive numbers from 1 to n where n is the number of
 messages in the mailbox. A sequence may consist of a single number,
 a pair of numbers delimited by colon (equivalent to all numbers
 between those two numbers), or a list of single numbers or number
 pairs. For example, the sequence 2,4:7,9,12:15 is equivalent to
 2,4,5,6,7,9,12,13,14,15 and identifies all those messages.

Definitions of Commands and Responses

 Summary of Commands and Responses

 Commands || Responses
 -------- || -------
 tag NOOP || tag OK text
 tag LOGIN user password || tag NO text
 tag LOGOUT || tag BAD text
 tag SELECT mailbox || * number message_data
 tag BBOARD bulletin_board || * FLAGS flag_list
 tag FIND MAILBOXES pattern || * SEARCH sequence
 tag FIND BBOARDS pattern || * BBOARD string
 tag CHECK || * MAILBOX string
 tag EXPUNGE || * BYE text
 tag COPY sequence mailbox || * OK text
 tag FETCH sequence data || * NO text
 tag STORE sequence data value || * BAD text
 tag SEARCH search_program || + text

Commands

 tag NOOP

 The NOOP command returns an OK to the client. By itself, it does
 nothing, but certain things may happen as side effects. For
 example, server implementations that implicitly check the mailbox
 for new mail may do so as a result of this command. The primary
 use of this command is to for the client to see if the server is
 still alive (and notify the server that the client is still alive,
 for those servers that have inactivity autologout timers).

 tag LOGIN user password

 The LOGIN command identifies the user to the server and carries
 the password authenticating this user. This information is used

Crispin [Page 10]

RFC 1176 IMAP2 August 1990

 by the server to control access to the mailboxes.

 EXAMPLE: A001 LOGIN SMITH SESAME
 logs in as user SMITH with password SESAME.

 tag LOGOUT

 The LOGOUT command informs the server that the client is done with
 the session. The server should send an unsolicited BYE response
 before the (tagged) OK response, and then close the network
 connection.

 tag SELECT mailbox

 The SELECT command selects a particular mailbox. The server must
 check that the user is permitted read access to this mailbox.
 Before returning an OK to the client, the server must send the
 following unsolicited data to the client:
 FLAGS mailbox’s defined flags
 <n> EXISTS the number of messages in the mailbox
 <n> RECENT the number of new messages in the mailbox
 in order to define the initial state of the mailbox at the client.

 Multiple SELECT commands are permitted in a session, in which case
 the previous mailbox is automatically deselected when a new SELECT
 is made.

 The default mailbox for the SELECT command is INBOX, which is a
 special name reserved to mean "the primary mailbox for this user
 on this server". The format of other mailbox names is operating
 system dependent (as of this writing, it reflects the filename
 path of the mailbox file on the current servers).

 It is customary, although not required, for the text of an OK
 response to the SELECT command to begin with either "[READ-ONLY]"
 or "[READ-WRITE]" to show the mailbox’s access status.

 EXAMPLE: A002 SELECT INBOX
 selects the default mailbox.

 tag BBOARD bulletin_board

 The BBOARD command is equivalent to SELECT, and returns the same
 output. However, it differs from SELECT in that its argument is a
 shared mailbox (bulletin board) name instead of an ordinary
 mailbox. The format of a bulletin name is implementation
 specific, although it is strongly encouraged to use something that
 resembles a name in a generic sense and not a file or mailbox name

Crispin [Page 11]

RFC 1176 IMAP2 August 1990

 on the particular system. There is no requirement that a bulletin
 board name be a mailbox name or a file name (in particular, Unix
 netnews has a completely different namespace from mailbox or file
 names).

 Support for BBOARD is optional.

 tag FIND MAILBOXES pattern

 The FIND MAILBOXES command accepts as an argument a pattern
 (including wildcards) that specifies some set of mailbox names
 that are usable by the SELECT command. The format of mailboxes is
 implementation dependent. The special mailbox name INBOX is not
 included in the output.

 Two wildcard characters are defined; "*" specifies any number
 (including zero) characters may match at this position and "%"
 specifies a single character may match at this position. For
 example, FOO*BAR will match FOOBAR, FOOD.ON.THE.BAR and FOO.BAR,
 whereas FOO%BAR will match only FOO.BAR. "*" will match all
 mailboxes.

 The FIND MAILBOXES command will return some set of unsolicited
 MAILBOX replies that have as their value a single mailbox name.

 EXAMPLE: A002 FIND MAILBOXES *
 * MAILBOX FOOBAR
 * MAILBOX GENERAL
 A002 FIND completed

 Although the use of explicit file or path names for mailboxes is
 discouraged by this standard, it may be unavoidable. It is
 important that the value returned in the MAILBOX unsolicited reply
 be usable in the SELECT command without remembering any path
 specification that may have been used in the FIND MAILBOXES
 pattern.

 Support for FIND MAILBOXES is optional. If a client’s attempt
 returns BAD as a response then the client can make no assumptions
 about what mailboxes exist on the server other than INBOX.

 tag FIND BBOARDS pattern

 The FIND BBOARDS command accepts as an argument a pattern that
 specifies some set of bulletin board names that are usable by the
 BBOARD command. Wildcards are permitted as in FIND MAILBOXES.

 The FIND BBOARDS command will return some set of unsolicited

Crispin [Page 12]

RFC 1176 IMAP2 August 1990

 BBOARD replies that have as their value a single bulletin board
 name.

 EXAMPLE: A002 FIND BBOARDS *
 * BBOARD FOOBAR
 * BBOARD GENERAL
 A002 FIND completed

 Support for FIND BBOARDS is optional. If a client’s attempt
 returns BAD as a response then the client can make no assumptions
 about what bulletin boards exist on the server, or that they exist
 at all.

 tag CHECK

 The CHECK command forces a check for new messages and a rescan of
 the mailbox for internal change for those implementations that
 allow multiple simultaneous read/write access to the same mailbox.
 It is recommend that periodic implicit checks for new mail be done
 by servers as well. The server should send unsolicited EXISTS and
 RECENT responses with the current status before returning an OK to
 the client.

 tag EXPUNGE

 The EXPUNGE command permanently removes all messages with the
 \DELETED flag set in its flags from the mailbox. Before returning
 an OK to the client, for each message that is removed, an
 unsolicited EXPUNGE response is sent. The message number for each
 successive message in the mailbox is immediately decremented by 1;
 this means that if the last 5 messages in a 9-message mail file
 are expunged you will receive 5 unsolicited EXPUNGE responses for
 message 5. To ensure mailbox integrity and server/client
 synchronization, it is recommended that the server do an implicit
 check before commencing the expunge and again when the expunge is
 completed. Furthermore, if the server allows multiple
 simultaneous access to the same mail file the server must lock the
 mail file for exclusive access while an expunge is taking place.

 EXPUNGE is not allowed if the user does not have write access to
 this mailbox.

 tag COPY sequence mailbox

 The COPY command copies the specified message(s) to the specified
 destination mailbox. If the destination mailbox does not exist,
 the server should create it. Before returning an OK to the
 client, the server should return an unsolicited <n> COPY response

Crispin [Page 13]

RFC 1176 IMAP2 August 1990

 for each message copied. A copy should set the \SEEN flag for all
 messages that were successfully copied (provided, of course, that
 the user has write access to this mailbox).

 EXAMPLE: A003 COPY 2:4 MEETING
 copies messages 2, 3, and 4 to mailbox "MEETING".

 COPY is not allowed if the user does not have write access to the
 destination mailbox.

 tag FETCH sequence data

 The FETCH command retrieves data associated with a message in the
 mailbox. The data items to be fetched may be either a single atom
 or an S-expression list. The currently defined data items that
 can be fetched are:

 ALL Macro equivalent to:
 (FLAGS INTERNALDATE RFC822.SIZE ENVELOPE)

 ENVELOPE The envelope of the message. The envelope is
 computed by the server by parsing the RFC 822
 header into the component parts, defaulting
 various fields as necessary.

 FAST Macro equivalent to:
 (FLAGS INTERNALDATE RFC822.SIZE)

 FLAGS The flags that are set for this message.
 This may include the following system flags:

 \RECENT Message arrived since the
 previous time this mailbox
 was read
 \SEEN Message has been read
 \ANSWERED Message has been answered
 \FLAGGED Message is "flagged" for
 urgent/special attention
 \DELETED Message is "deleted" for
 removal by later EXPUNGE

 INTERNALDATE The date and time the message was written to
 the mailbox.

Crispin [Page 14]

RFC 1176 IMAP2 August 1990

 RFC822 The message in RFC 822 format. The \SEEN
 flag is implicitly set; if this causes the
 flags to change they should be included as
 part of the fetch results. This is the
 concatenation of RFC822.HEADER and RFC822.TEXT.

 RFC822.HEADER The "raw" RFC 822 format header of the message
 as stored on the server.

 RFC822.SIZE The number of characters in the message as
 expressed in RFC 822 format.

 RFC822.TEXT The text body of the message, omitting the
 RFC 822 header. The \SEEN flag is implicitly
 set as with RFC822 above.

 EXAMPLES:

 A003 FETCH 2:4 ALL
 fetches the flags, internal date, RFC 822 size, and envelope
 for messages 2, 3, and 4.

 A004 FETCH 3 RFC822
 fetches the RFC 822 representation for message 3.

 A005 FETCH 4 (FLAGS RFC822.HEADER)
 fetches the flags and RFC 822 format header for message 4.

 Note: An attempt to FETCH already-transmitted data may have no
 result. See the Implementation Discussion below.

 tag STORE sequence data value

 The STORE command alters data associated with a message in the
 mailbox. The currently defined data items that can be stored are:

 FLAGS Replace the flags for the message with the
 argument (in flag list format).

 +FLAGS Add the flags in the argument to the
 message’s flag list.

 -FLAGS Remove the flags in the argument from the
 message’s flag list.

 STORE is not allowed if the user does not have write access to
 this mailbox.

Crispin [Page 15]

RFC 1176 IMAP2 August 1990

 EXAMPLE: A003 STORE 2:4 +FLAGS (\DELETED)
 marks messages 2, 3, and 4 for deletion.

 tag SEARCH search_criteria

 The SEARCH command searches the mailbox for messages that match
 the given set of criteria. The unsolicited SEARCH <1#number>
 response from the server is a list of messages that express the
 intersection (AND function) of all the messages which match that
 criteria. For example,
 A003 SEARCH DELETED FROM "SMITH" SINCE 1-OCT-87
 returns the message numbers for all deleted messages from Smith
 that were placed in the mail file since October 1, 1987.

 In all search criteria which use strings, a message matches the
 criteria if the string is a case-independent substring of that
 field. The currently defined criteria are:

 ALL All messages in the mailbox; the default
 initial criterion for ANDing.

 ANSWERED Messages with the \ANSWERED flag set.

 BCC string Messages which contain the specified string
 in the envelope’s BCC field.

 BEFORE date Messages whose internal date is earlier than
 the specified date.

 BODY string Messages which contain the specified string
 in the body of the message.

 CC string Messages which contain the specified string
 in the envelope’s CC field.

 DELETED Messages with the \DELETED flag set.

 FLAGGED Messages with the \FLAGGED flag set.

 FROM string Messages which contain the specified string
 in the envelope’s FROM field.

 KEYWORD flag Messages with the specified flag set.

 NEW Messages which have the \RECENT flag set but
 not the \SEEN flag. This is functionally
 equivalent to "RECENT UNSEEN".

Crispin [Page 16]

RFC 1176 IMAP2 August 1990

 OLD Messages which do not have the \RECENT flag
 set.

 ON date Messages whose internal date is the same as
 the specified date.

 RECENT Messages which have the \RECENT flag set.

 SEEN Messages which have the \SEEN flag set.

 SINCE date Messages whose internal date is later than
 the specified date.

 SUBJECT string Messages which contain the specified string
 in the envelope’s SUBJECT field.

 TEXT string Messages which contain the specified string.

 TO string Messages which contain the specified string in
 the envelope’s TO field.

 UNANSWERED Messages which do not have the \ANSWERED flag
 set.

 UNDELETED Messages which do not have the \DELETED flag
 set.

 UNFLAGGED Messages which do not have the \FLAGGED flag
 set.

 UNKEYWORD flag Messages which do not have the specified flag
 set.

 UNSEEN Messages which do not have the \SEEN flag set.

Crispin [Page 17]

RFC 1176 IMAP2 August 1990

Responses

 tag OK text

 This response identifies successful completion of the command with
 that tag. The text is a line of human-readable text that may be
 useful in a protocol telemetry log for debugging purposes.

 tag NO text

 This response identifies unsuccessful completion of the command
 with that tag. The text is a line of human-readable text that
 probably should be displayed to the user in an error report by the
 client.

 tag BAD text

 This response identifies faulty protocol received from the client;
 The text is a line of human-readable text that should be recorded
 in any telemetry as part of a bug report to the maintainer of the
 client.

 * number message_data

 This response occurs as a result of several different commands.
 The message_data is one of the following:

 EXISTS The specified number of messages exists in the mailbox.

 RECENT The specified number of messages have arrived since the
 previous time this mailbox was read.

 EXPUNGE The specified message number has been permanently
 removed from the mailbox, and the next message in the
 mailbox (if any) becomes that message number.

 STORE data
 Obsolete and functionally equivalent to FETCH.

 FETCH data
 This is the principle means by which data about a
 message is returned to the client. The data is in a
 Lisp-like S-expression property list form. The current
 properties are:

 ENVELOPE An S-expression format list that describes the
 envelope of a message. The envelope is computed
 by the server by parsing the RFC 822 header into

Crispin [Page 18]

RFC 1176 IMAP2 August 1990

 the component parts, defaulting various fields
 as necessary.

 The fields of the envelope are in the following
 order: date, subject, from, sender, reply-to, to,
 cc, bcc, in-reply-to, and message-id. The date,
 subject, in-reply-to, and message-id fields are
 strings. The from, sender, reply-to, to, cc,
 and bcc fields are lists of addresses.

 An address is an S-expression format list that
 describes an electronic mail address. The fields
 of an address are in the following order:
 personal name, source-route (a.k.a. the
 at-domain-list in SMTP), mailbox name, and
 host name.

 Any field of an envelope or address that is
 not applicable is presented as the atom NIL.
 Note that the server must default the reply-to
 and sender fields from the from field; a client is
 not expected to know to do this.

 FLAGS An S-expression format list of flags that are set
 for this message. This may include the following
 system flags:

 \RECENT Message arrived since the
 previous time this mailbox
 was read
 \SEEN Message has been read
 \ANSWERED Message has been answered
 \FLAGGED Message is "flagged" for
 urgent/special attention
 \DELETED Message is "deleted" for
 removal by later EXPUNGE

 INTERNALDATE A string containing the date and time the
 message was written to the mailbox.

 RFC822 A string expressing the message in RFC 822
 format.

 RFC822.HEADER A string expressing the RFC 822 format
 header of the message

 RFC822.SIZE A number indicating the number of
 characters in the message as expressed

Crispin [Page 19]

RFC 1176 IMAP2 August 1990

 in RFC 822 format.

 RFC822.TEXT A string expressing the text body of the
 message, omitting the RFC 822 header.

 * FLAGS flag_list

 This response occurs as a result of a SELECT command. The flag
 list are the list of flags (at a minimum, the system-defined
 flags) that are applicable for this mailbox. Flags other than the
 system flags are a function of the server implementation.

 * SEARCH number(s)

 This response occurs as a result of a SEARCH command. The
 number(s) refer to those messages that match the search criteria.
 Each number is delimited by a space, e.g., "SEARCH 2 3 6".

 * BBOARD string

 This response occurs as a result of a FIND BBOARDS command. The
 string is a bulletin board name that matches the pattern in the
 command.

 * MAILBOX string

 This response occurs as a result of a FIND MAILBOXES command. The
 string is a mailbox name that matches the pattern in the command.

 * BYE text

 This response identifies that the server is about to close the
 connection. The text is a line of human-readable text that should
 be displayed to the user in a status report by the client. This
 may be sent as part of a normal logout sequence, or as a panic
 shutdown announcement by the server. It is also used by some
 servers as an announcement of an inactivity autologout.

 * OK text

 This response identifies normal operation on the server. No
 special action by the client is called for, however, the text
 should be displayed to the user in some fashion. This is
 currently only used by servers at startup as a greeting message to
 show they are ready to accept the first command.

Crispin [Page 20]

RFC 1176 IMAP2 August 1990

 * NO text

 This response identifies a warning from the server that does not
 affect the overall results of any particular request. The text is
 a line of human-readable text that should be presented to the user
 as a warning of improper operation.

 * BAD text

 This response identifies a serious error at the server; it may
 also indicate faulty protocol from the client in which a tag could
 not be parsed. The text is a line of human-readable text that
 should be presented to the user as a serious or possibly fatal
 error. It should also be recorded in any telemetry as part of a
 bug report to the maintainer of the client and server.

 + text

 This response identifies that the server is ready to accept the
 text of a literal from the client. Normally, a command from the
 client is a single text line. If the server detects an error in
 the command, it can simply discard the remainder of the line. It
 cannot do this for commands that contain literals, since a literal
 can be an arbitrarily long amount of text, and the server may not
 even be expecting a literal. This mechanism is provided so the
 client knows not to send a literal until the server expects it,
 preserving client/server synchronization.

 In practice, this condition is rarely encountered. In the current
 protocol, the only client command likely to contain a literal is
 the LOGIN command. Consider a server that validates the user
 before checking the password. If the password contains "funny"
 characters and hence is sent as a literal, then if the user is
 invalid an error would occur before the password is parsed.

 No such synchronization protection is provided for literals sent
 from the server to the client, for performance reasons. Any
 synchronization problems in this direction would be caused by a
 bug in the client or server.

Crispin [Page 21]

RFC 1176 IMAP2 August 1990

Sample IMAP2 session

 The following is a transcript of an IMAP2 session. Server output is
 identified by "S:" and client output by "U:". In cases where lines
 are too long to fit within the boundaries of this document, the line
 is continued on the next line.

 S: * OK SUMEX-AIM.Stanford.EDU Interim Mail Access Protocol II Service
 6.1(349) at Thu, 9 Jun 88 14:58:30 PDT
 U: a001 login crispin secret
 S: a002 OK User CRISPIN logged in at Thu, 9 Jun 88 14:58:42 PDT, job 76
 U: a002 select inbox
 S: * FLAGS (Bugs SF Party Skating Meeting Flames Request AI Question
 Note \XXXX \YYYY \Answered \Flagged \Deleted \Seen)
 S: * 16 EXISTS
 S: * 0 RECENT
 S: a002 OK Select complete
 U: a003 fetch 16 all
 S: * 16 Fetch (Flags (\Seen) InternalDate " 9-Jun-88 12:55:44 PDT"
 RFC822.Size 637 Envelope ("Sat, 4 Jun 88 13:27:11 PDT"
 "INFO-MAC Mail Message" (("Larry Fagan" NIL "FAGAN"
 "SUMEX-AIM.Stanford.EDU")) (("Larry Fagan" NIL "FAGAN"
 "SUMEX-AIM.Stanford.EDU")) (("Larry Fagan" NIL "FAGAN"
 "SUMEX-AIM.Stanford.EDU")) ((NIL NIL "rindflEISCH"
 "SUMEX-AIM.Stanford.EDU")) NIL NIL NIL
 "<12403828905.13.FAGAN@SUMEX-AIM.Stanford.EDU>"))
 S: a003 OK Fetch completed
 U: a004 fetch 16 rfc822
 S: * 16 Fetch (RFC822 {637}
 S: Mail-From: RINDFLEISCH created at 9-Jun-88 12:55:43
 S: Mail-From: FAGAN created at 4-Jun-88 13:27:12
 S: Date: Sat, 4 Jun 88 13:27:11 PDT
 S: From: Larry Fagan <FAGAN@SUMEX-AIM.Stanford.EDU>
 S: To: rindflEISCH@SUMEX-AIM.Stanford.EDU
 S: Subject: INFO-MAC Mail Message
 S: Message-ID: <12403828905.13.FAGAN@SUMEX-AIM.Stanford.EDU>
 S: ReSent-Date: Thu, 9 Jun 88 12:55:43 PDT
 S: ReSent-From: TC Rindfleisch <Rindfleisch@SUMEX-AIM.Stanford.EDU>
 S: ReSent-To: Yeager@SUMEX-AIM.Stanford.EDU,
 Crispin@SUMEX-AIM.Stanford.EDU
 S: ReSent-Message-ID:
 <12405133897.80.RINDFLEISCH@SUMEX-AIM.Stanford.EDU>
 S:
 S: The file is <info-mac>usenetv4-55.arc ...
 S: Larry
 S: -------
 S:)
 S: a004 OK Fetch completed

Crispin [Page 22]

RFC 1176 IMAP2 August 1990

 U: a005 logout
 S: * BYE DEC-20 IMAP II server terminating connection
 S: a005 OK SUMEX-AIM.Stanford.EDU Interim Mail Access Protocol
 Service logout

Crispin [Page 23]

RFC 1176 IMAP2 August 1990

Implementation Discussion

 There are several advantages to the scheme of tags and unsolicited
 responses. First, the infamous synchronization problems of SMTP and
 similar protocols do not happen with tagged commands; a command is
 not considered satisfied until a response with the same tag is seen.
 Tagging allows an arbitrary amount of other responses ("unsolicited"
 data) to be sent by the server with no possibility of the client
 losing synchronization. Compare this with the problems that FTP or
 SMTP clients have with continuation, partial completion, and
 commentary reply codes.

 Another advantage is that a non-lockstep client implementation is
 possible. The client could send a command, and entrust the handling
 of the server responses to a different process that would signal the
 client when the tagged response comes in. Under certain
 circumstances, the client may have more than one command outstanding.

 It was observed that synchronization problems can occur with literals
 if the literal is not recognized as such. Fortunately, the cases in
 which this can happen are rare; a mechanism (the special "+" tag
 response) was introduced to handle those few cases. The proper way
 to address this problem is probably to move towards a record-oriented
 architecture instead of the text stream model provided by TCP.

 An IMAP2 client must maintain a local cache of data from the mailbox.
 This cache is an incomplete model of the mailbox, and at startup is
 empty. A listener processes all unsolicited data, and updates the
 cache based on this data. If a tagged response arrives, the listener
 unblocks the process that sent the tagged request.

 Unsolicited data needs some discussion. Unlike most protocols, in
 which the server merely does the client’s bidding, an IMAP2 server
 has a semi-autonomous role. By sending "unsolicited data", the
 server is in effect sending a command to the client -- to update or
 extend the client’s cache with new information from the server. In
 other words, a "fetch" command is merely a request to the server to
 ensure that the client’s cache has the most up-to-date version of the
 requested information. A server acknowledgement to the "fetch" is a
 statement that all the requested data has been sent.

 Although no current server does this, a server is not obliged by the
 protocol to send data that it has already sent and is unchanged. An
 exception to this is the actual message text fetching operations
 (RFC822, RFC822.HEADER, and RFC822.TEXT), owing to the possibly
 excessive resource consumption of maintaining this data in a cache.
 It can not be assumed that a FETCH will transmit any data; only that
 an OK to the FETCH means that the client’s cache has the most up-to-

Crispin [Page 24]

RFC 1176 IMAP2 August 1990

 date information.

 When a mailbox is selected, the initial unsolicited data from the
 server arrives. The first piece of data is the number of messages.
 By sending a new EXISTS unsolicited data message the server causes
 the client to resize its cache (this is how newly arrived mail is
 handled). If the client attempts to access information from the
 cache, it will encounter empty spots that will trigger "fetch"
 requests. The request would be sent, some unsolicited data including
 the answer to the fetch will flow back, and then the "fetch" response
 will unblock the client.

 People familiar with demand-paged virtual memory operating system
 design will recognize this model as being similar to page-fault
 handling on a demand-paged system.

Crispin [Page 25]

RFC 1176 IMAP2 August 1990

Formal Syntax

 The following syntax specification uses the augmented Backus-Naur
 Form (BNF) notation as specified in RFC 822 with one exception; the
 delimiter used with the "#" construct is a single space (SP) and not
 a comma.

 address ::= "(" addr_name SP addr_adl SP addr_mailbox SP
 addr_host ")"

 addr_adl ::= nil / string

 addr_host ::= nil / string

 addr_mailbox ::= nil / string

 addr_name ::= nil / string

 bboard ::= "BBOARD" SP string

 check ::= "CHECK"

 copy ::= "COPY" SP sequence SP mailbox

 data ::= ("FLAGS" SP flag_list / "SEARCH" SP 1#number /
 "BYE" SP text_line / "OK" SP text_line /
 "NO" SP text_line / "BAD" SP text_line)

 date ::= string in form "dd-mmm-yy hh:mm:ss-zzz"

 envelope ::= "(" env_date SP env_subject SP env_from SP
 env_sender SP env_reply-to SP env_to SP
 env_cc SP env_bcc SP env_in-reply-to SP
 env_message-id ")"

 env_bcc ::= nil / "(" 1*address ")"

 env_cc ::= nil / "(" 1*address ")"

 env_date ::= string

 env_from ::= nil / "(" 1*address ")"

 env_in-reply-to ::= nil / string

 env_message-id ::= nil / string

 env_reply-to ::= nil / "(" 1*address ")"

Crispin [Page 26]

RFC 1176 IMAP2 August 1990

 env_sender ::= nil / "(" 1*address ")"

 env_subject ::= nil / string

 env_to ::= nil / "(" 1*address ")"

 expunge ::= "EXPUNGE"

 fetch ::= "FETCH" SP sequence SP ("ALL" / "FAST" /
 fetch_att / "(" 1#fetch_att ")")

 fetch_att ::= "ENVELOPE" / "FLAGS" / "INTERNALDATE" /
 "RFC822" / "RFC822.HEADER" / "RFC822.SIZE" /
 "RFC822.TEXT"

 find ::= "FIND" SP find_option SP string

 find_option ::= "MAILBOXES" / "BBOARDS"

 flag_list ::= ATOM / "(" 1#ATOM ")"

 literal ::= "{" NUMBER "}" CRLF ASCII-STRING

 login ::= "LOGIN" SP userid SP password

 logout ::= "LOGOUT"

 mailbox ::= "INBOX" / string

 msg_copy ::= "COPY"

 msg_data ::= (msg_exists / msg_recent / msg_expunge /
 msg_fetch / msg_copy)

 msg_exists ::= "EXISTS"

 msg_expunge ::= "EXPUNGE"

 msg_fetch ::= ("FETCH" / "STORE") SP "(" 1#("ENVELOPE" SP
 envelope / "FLAGS" SP "(" 1#(recent_flag
 flag_list) ")" / "INTERNALDATE" SP date /
 "RFC822" SP string / "RFC822.HEADER" SP string /
 "RFC822.SIZE" SP NUMBER / "RFC822.TEXT" SP
 string) ")"

 msg_recent ::= "RECENT"

 msg_num ::= NUMBER

Crispin [Page 27]

RFC 1176 IMAP2 August 1990

 nil ::= "NIL"

 noop ::= "NOOP"

 password ::= string

 recent_flag ::= "\RECENT"

 ready ::= "+" SP text_line

 request ::= tag SP (noop / login / logout / select / check /
 expunge / copy / fetch / store / search / find /
 bboard) CRLF

 response ::= tag SP ("OK" / "NO" / "BAD") SP text_line CRLF

 search ::= "SEARCH" SP 1#("ALL" / "ANSWERED" /
 "BCC" SP string / "BEFORE" SP string /
 "BODY" SP string / "CC" SP string / "DELETED" /
 "FLAGGED" / "KEYWORD" SP atom / "NEW" / "OLD" /
 "ON" SP string / "RECENT" / "SEEN" /
 "SINCE" SP string / "TEXT" SP string /
 "TO" SP string / "UNANSWERED" / "UNDELETED" /
 "UNFLAGGED" / "UNKEYWORD" / "UNSEEN")

 select ::= "SELECT" SP mailbox

 sequence ::= NUMBER / (NUMBER "," sequence) / (NUMBER ":"
 sequence)

 store ::= "STORE" SP sequence SP store_att

 store_att ::= ("+FLAGS" SP flag_list / "-FLAGS" SP flag_list /
 "FLAGS" SP flag_list)

 string ::= atom / """" 1*character """" / literal

 system_flags ::= "\ANSWERED" SP "\FLAGGED" SP "\DELETED" SP
 "\SEEN"

 tag ::= atom

 unsolicited ::= "*" SP (msg_num SP msg_data / data) CRLF

 userid ::= string

Crispin [Page 28]

RFC 1176 IMAP2 August 1990

Implementation Status

 This information is current as of this writing.

 The University of Washington has developed an electronic mail client
 library called the "C-Client". It provides complete IMAP2, SMTP, and
 local mailbox (both /usr/spool/mail and mail.txt formats) services in
 a well-defined way to a user interface main program. Using the C-
 Client, the University of Washington has created an operational
 client for BSD Unix and two operational clients (one basic, one
 advanced) for the NeXT.

 Stanford University/SUMEX has developed operational IMAP2 clients for
 Xerox Lisp machines, Texas Instruments Explorers, and the Apple
 Macintosh. The core of the Macintosh client is an early version of
 the C-Client. SUMEX has also developed IMAP2 servers for TOPS-20 and
 BSD Unix.

 All of the above software is in production use, with enthusiastic
 local user communities. Active development continues on the
 Macintosh and C-Client based clients and the BSD Unix server. This
 software is freely available from the University of Washington and
 SUMEX.

 IMAP2 software exists for other platforms; for example Nippon
 Telephone and Telegraph (NTT) has developed an operational IMAP2
 client for the NTT ELIS. Several organizations are working on a PC
 client.

 IMAP2 can be used to access mailboxes at very remote sites, where
 echo delays and frequent outages make TELNET and running a local mail
 reader intolerable. For example, from a desktop workstation on the
 University of Washington local network the author routinely uses
 IMAP2 to read and manage mailboxes on various University of
 Washington local servers, at two systems at Stanford University, at a
 Milnet site, and at a site in Tokyo, Japan.

 This specification does not make any formal definition of size
 restrictions, but the DEC-20 server has the following limitations:

 . length of a mailbox: 7,077,888 characters
 . maximum number of messages: 18,432 messages
 . length of a command line: 10,000 characters
 . length of the local host name: 64 characters
 . length of a "short" argument: 39 characters
 . length of a "long" argument: 491,520 characters
 . maximum amount of data output in a single fetch:
 655,360 characters

Crispin [Page 29]

RFC 1176 IMAP2 August 1990

 To date, nobody has run up against any of these limitations, many of
 which are substantially larger than most current user mail reading
 programs.

Acknowledgements

 Bill Yeager and Rich Acuff both contributed invaluable suggestions in
 the evolution of IMAP2 from the original IMAP. James Rice pointed
 out several ambiguities in the previous IMAP2 specification and
 otherwise would not allow me to leave bad enough along. Laurence
 Lundblade reviewed a draft of this version and made several helpful
 suggestions.

 Many dedicated individuals have worked on IMAP2 software, including:
 Mark Crispin, Frank Gilmurray, Christopher Lane, Hiroshi Okuno,
 Christopher Schmidt, and Bill Yeager.

 Any mistakes, flaws, or sins of omission in this IMAP2 protocol
 specification are, however, strictly my own; and the mention of any
 name above does not imply an endorsement.

Security Considerations

 Security issues are not discussed in this memo.

Author’s Address

 Mark R. Crispin
 Panda Programming
 6158 Lariat Loop NE
 Bainbridge Island, WA 98110-2020

 Phone: (206) 842-2385

 EMail: mrc@Tomobiki-Cho.CAC.Washington.EDU

Crispin [Page 30]

