
Network Working Group V. Jacobson
Request for Comments: 1185 LBL
 R. Braden
 ISI
 L. Zhang
 PARC
 October 1990

 TCP Extension for High-Speed Paths

Status of This Memo

 This memo describes an Experimental Protocol extension to TCP for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "IAB
 Official Protocol Standards" for the standardization state and status
 of this protocol. Distribution of this memo is unlimited.

Summary

 This memo describes a small extension to TCP to support reliable
 operation over very high-speed paths, using sender timestamps
 transmitted using the TCP Echo option proposed in RFC-1072.

1. INTRODUCTION

 TCP uses positive acknowledgments and retransmissions to provide
 reliable end-to-end delivery over a full-duplex virtual circuit
 called a connection [Postel81]. A connection is defined by its two
 end points; each end point is a "socket", i.e., a (host,port) pair.
 To protect against data corruption, TCP uses an end-to-end checksum.
 Duplication and reordering are handled using a fine-grained sequence
 number space, with each octet receiving a distinct sequence number.

 The TCP protocol [Postel81] was designed to operate reliably over
 almost any transmission medium regardless of transmission rate,
 delay, corruption, duplication, or reordering of segments. In
 practice, proper TCP implementations have demonstrated remarkable
 robustness in adapting to a wide range of network characteristics.
 For example, TCP implementations currently adapt to transfer rates in
 the range of 100 bps to 10**7 bps and round-trip delays in the range
 1 ms to 100 seconds.

 However, the introduction of fiber optics is resulting in ever-higher
 transmission speeds, and the fastest paths are moving out of the
 domain for which TCP was originally engineered. This memo and RFC-
 1072 [Jacobson88] propose modest extensions to TCP to extend the

Jacobson, Braden & Zhang [Page 1]

RFC 1185 TCP over High-Speed Paths October 1990

 domain of its application to higher speeds.

 There is no one-line answer to the question: "How fast can TCP go?".
 The issues are reliability and performance, and these depend upon the
 round-trip delay and the maximum time that segments may be queued in
 the Internet, as well as upon the transmission speed. We must think
 through these relationships very carefully if we are to successfully
 extend TCP’s domain.

 TCP performance depends not upon the transfer rate itself, but rather
 upon the product of the transfer rate and the round-trip delay. This
 "bandwidth*delay product" measures the amount of data that would
 "fill the pipe"; it is the buffer space required at sender and
 receiver to obtain maximum throughput on the TCP connection over the
 path. RFC-1072 proposed a set of TCP extensions to improve TCP
 efficiency for "LFNs" (long fat networks), i.e., networks with large
 bandwidth*delay products.

 On the other hand, high transfer rate can threaten TCP reliability by
 violating the assumptions behind the TCP mechanism for duplicate
 detection and sequencing. The present memo specifies a solution for
 this problem, extending TCP reliability to transfer rates well beyond
 the foreseeable upper limit of bandwidth.

 An especially serious kind of error may result from an accidental
 reuse of TCP sequence numbers in data segments. Suppose that an "old
 duplicate segment", e.g., a duplicate data segment that was delayed
 in Internet queues, was delivered to the receiver at the wrong moment
 so that its sequence numbers fell somewhere within the current
 window. There would be no checksum failure to warn of the error, and
 the result could be an undetected corruption of the data. Reception
 of an old duplicate ACK segment at the transmitter could be only
 slightly less serious: it is likely to lock up the connection so that
 no further progress can be made and a RST is required to
 resynchronize the two ends.

 Duplication of sequence numbers might happen in either of two ways:

 (1) Sequence number wrap-around on the current connection

 A TCP sequence number contains 32 bits. At a high enough
 transfer rate, the 32-bit sequence space may be "wrapped"
 (cycled) within the time that a segment may be delayed in
 queues. Section 2 discusses this case and proposes a mechanism
 to reject old duplicates on the current connection.

 (2) Segment from an earlier connection incarnation

Jacobson, Braden & Zhang [Page 2]

RFC 1185 TCP over High-Speed Paths October 1990

 Suppose a connection terminates, either by a proper close
 sequence or due to a host crash, and the same connection (i.e.,
 using the same pair of sockets) is immediately reopened. A
 delayed segment from the terminated connection could fall within
 the current window for the new incarnation and be accepted as
 valid. This case is discussed in Section 3.

 TCP reliability depends upon the existence of a bound on the lifetime
 of a segment: the "Maximum Segment Lifetime" or MSL. An MSL is
 generally required by any reliable transport protocol, since every
 sequence number field must be finite, and therefore any sequence
 number may eventually be reused. In the Internet protocol suite, the
 MSL bound is enforced by an IP-layer mechanism, the "Time-to-Live" or
 TTL field.

 Watson’s Delta-T protocol [Watson81] includes network-layer
 mechanisms for precise enforcement of an MSL. In contrast, the IP
 mechanism for MSL enforcement is loosely defined and even more
 loosely implemented in the Internet. Therefore, it is unwise to
 depend upon active enforcement of MSL for TCP connections, and it is
 unrealistic to imagine setting MSL’s smaller than the current values
 (e.g., 120 seconds specified for TCP). The timestamp algorithm
 described in the following section gives a way out of this dilemma
 for high-speed networks.

2. SEQUENCE NUMBER WRAP-AROUND

 2.1 Background

 Avoiding reuse of sequence numbers within the same connection is
 simple in principle: enforce a segment lifetime shorter than the
 time it takes to cycle the sequence space, whose size is
 effectively 2**31.

 More specifically, if the maximum effective bandwidth at which TCP
 is able to transmit over a particular path is B bytes per second,
 then the following constraint must be satisfied for error-free
 operation:

 2**31 / B > MSL (secs) [1]

 The following table shows the value for Twrap = 2**31/B in
 seconds, for some important values of the bandwidth B:

Jacobson, Braden & Zhang [Page 3]

RFC 1185 TCP over High-Speed Paths October 1990

 Network B*8 B Twrap
 bits/sec bytes/sec secs
 _______ _______ ______ ______

 ARPANET 56kbps 7KBps 3*10**5 (˜3.6 days)

 DS1 1.5Mbps 190KBps 10**4 (˜3 hours)

 Ethernet 10Mbps 1.25MBps 1700 (˜30 mins)

 DS3 45Mbps 5.6MBps 380

 FDDI 100Mbps 12.5MBps 170

 Gigabit 1Gbps 125MBps 17

 It is clear why wrap-around of the sequence space was not a
 problem for 56kbps packet switching or even 10Mbps Ethernets. On
 the other hand, at DS3 and FDDI speeds, Twrap is comparable to the
 2 minute MSL assumed by the TCP specification [Postel81]. Moving
 towards gigabit speeds, Twrap becomes too small for reliable
 enforcement by the Internet TTL mechanism.

 The 16-bit window field of TCP limits the effective bandwidth B to
 2**16/RTT, where RTT is the round-trip time in seconds
 [McKenzie89]. If the RTT is large enough, this limits B to a
 value that meets the constraint [1] for a large MSL value. For
 example, consider a transcontinental backbone with an RTT of 60ms
 (set by the laws of physics). With the bandwidth*delay product
 limited to 64KB by the TCP window size, B is then limited to
 1.1MBps, no matter how high the theoretical transfer rate of the
 path. This corresponds to cycling the sequence number space in
 Twrap= 2000 secs, which is safe in today’s Internet.

 Based on this reasoning, an earlier RFC [McKenzie89] has cautioned
 that expanding the TCP window space as proposed in RFC-1072 will
 lead to sequence wrap-around and hence to possible data
 corruption. We believe that this is mis-identifying the culprit,
 which is not the larger window but rather the high bandwidth.

 For example, consider a (very large) FDDI LAN with a diameter
 of 10km. Using the speed of light, we can compute the RTT
 across the ring as (2*10**4)/(3*10**8) = 67 microseconds, and
 the delay*bandwidth product is then 833 bytes. A TCP
 connection across this LAN using a window of only 833 bytes
 will run at the full 100mbps and can wrap the sequence space
 in about 3 minutes, very close to the MSL of TCP. Thus, high

Jacobson, Braden & Zhang [Page 4]

RFC 1185 TCP over High-Speed Paths October 1990

 speed alone can cause a reliability problem with sequence
 number wrap-around, even without extended windows.

 An "obvious" fix for the problem of cycling the sequence space is
 to increase the size of the TCP sequence number field. For
 example, the sequence number field (and also the acknowledgment
 field) could be expanded to 64 bits. However, the proposals for
 making such a change while maintaining compatibility with current
 TCP have tended towards complexity and ugliness.

 This memo proposes a simple solution to the problem, using the TCP
 echo options defined in RFC-1072. Section 2.2 which follows
 describes the original use of these options to carry timestamps in
 order to measure RTT accurately. Section 2.3 proposes a method of
 using these same timestamps to reject old duplicate segments that
 could corrupt an open TCP connection. Section 3 discusses the
 application of this mechanism to avoiding old duplicates from
 previous incarnations.

 2.2 TCP Timestamps

 RFC-1072 defined two TCP options, Echo and Echo Reply. Echo
 carries a 32-bit number, and the receiver of the option must
 return this same value to the source host in an Echo Reply option.

 RFC-1072 furthermore describes the use of these options to contain
 32-bit timestamps, for measuring the RTT. A TCP sending data
 would include Echo options containing the current clock value.
 The receiver would echo these timestamps in returning segments
 (generally, ACK segments). The difference between a timestamp
 from an Echo Reply option and the current time would then measure
 the RTT at the sender.

 This mechanism was designed to solve the following problem: almost
 all TCP implementations base their RTT measurements on a sample of
 only one packet per window. If we look at RTT estimation as a
 signal processing problem (which it is), a data signal at some
 frequency (the packet rate) is being sampled at a lower frequency
 (the window rate). Unfortunately, this lower sampling frequency
 violates Nyquist’s criteria and may introduce "aliasing" artifacts
 into the estimated RTT [Hamming77].

 A good RTT estimator with a conservative retransmission timeout
 calculation can tolerate the aliasing when the sampling frequency
 is "close" to the data frequency. For example, with a window of
 8 packets, the sample rate is 1/8 the data frequency -- less than
 an order of magnitude different. However, when the window is tens
 or hundreds of packets, the RTT estimator may be seriously in

Jacobson, Braden & Zhang [Page 5]

RFC 1185 TCP over High-Speed Paths October 1990

 error, resulting in spurious retransmissions.

 A solution to the aliasing problem that actually simplifies the
 sender substantially (since the RTT code is typically the single
 biggest protocol cost for TCP) is as follows: the will sender
 place a timestamp in each segment and the receiver will reflect
 these timestamps back in ACK segments. Then a single subtract
 gives the sender an accurate RTT measurement for every ACK segment
 (which will correspond to every other data segment, with a
 sensible receiver). RFC-1072 defined a timestamp echo option for
 this purpose.

 It is vitally important to use the timestamp echo option with big
 windows; otherwise, the door is opened to some dangerous
 instabilities due to aliasing. Furthermore, the option is
 probably useful for all TCP’s, since it simplifies the sender.

 2.3 Avoiding Old Duplicate Segments

 Timestamps carried from sender to receiver in TCP Echo options can
 also be used to prevent data corruption caused by sequence number
 wrap-around, as this section describes.

 2.3.1 Basic Algorithm

 Assume that every received TCP segment contains a timestamp.
 The basic idea is that a segment received with a timestamp that
 is earlier than the timestamp of the most recently accepted
 segment can be discarded as an old duplicate. More
 specifically, the following processing is to be performed on
 normal incoming segments:

 R1) If the timestamp in the arriving segment timestamp is less
 than the timestamp of the most recently received in-
 sequence segment, treat the arriving segment as not
 acceptable:

 If SEG.LEN > 0, send an acknowledgement in reply as
 specified in RFC-793 page 69, and drop the segment;
 otherwise, just silently drop the segment.*

*Sending an ACK segment in reply is not strictly necessary, since the
case can only arise when a later in-order segment has already been
received. However, for consistency and simplicity, we suggest
treating a timestamp failure the same way TCP treats any other
unacceptable segment.

Jacobson, Braden & Zhang [Page 6]

RFC 1185 TCP over High-Speed Paths October 1990

 R2) If the segment is outside the window, reject it (normal
 TCP processing)

 R3) If an arriving segment is in-sequence (i.e, at the left
 window edge), accept it normally and record its timestamp.

 R4) Otherwise, treat the segment as a normal in-window, out-
 of-sequence TCP segment (e.g., queue it for later delivery
 to the user).

 Steps R2-R4 are the normal TCP processing steps specified by
 RFC-793, except that in R3 the latest timestamp is set from
 each in-sequence segment that is accepted. Thus, the latest
 timestamp recorded at the receiver corresponds to the left edge
 of the window and only advances when the left edge moves
 [Jacobson88].

 It is important to note that the timestamp is checked only when
 a segment first arrives at the receiver, regardless of whether
 it is in-sequence or is queued. Consider the following
 example.

 Suppose the segment sequence: A.1, B.1, C.1, ..., Z.1 has
 been sent, where the letter indicates the sequence number
 and the digit represents the timestamp. Suppose also that
 segment B.1 has been lost. The highest in-sequence
 timestamp is 1 (from A.1), so C.1, ..., Z.1 are considered
 acceptable and are queued. When B is retransmitted as
 segment B.2 (using the latest timestamp), it fills the
 hole and causes all the segments through Z to be
 acknowledged and passed to the user. The timestamps of
 the queued segments are *not* inspected again at this
 time, since they have already been accepted. When B.2 is
 accepted, the receivers’s current timestamp is set to 2.

 This rule is vital to allow reasonable performance under loss.
 A full window of data is in transit at all times, and after a
 loss a full window less one packet will show up out-of-sequence
 to be queued at the receiver (e.g., up to ˜2**30 bytes of
 data); the timestamp option must not result in discarding this
 data.

 In certain unlikely circumstances, the algorithm of rules R1-R4
 could lead to discarding some segments unnecessarily, as shown
 in the following example:

 Suppose again that segments: A.1, B.1, C.1, ..., Z.1 have

Jacobson, Braden & Zhang [Page 7]

RFC 1185 TCP over High-Speed Paths October 1990

 been sent in sequence and that segment B.1 has been lost.
 Furthermore, suppose delivery of some of C.1, ... Z.1 is
 delayed until AFTER the retransmission B.2 arrives at the
 receiver. These delayed segments will be discarded
 unnecessarily when they do arrive, since their timestamps
 are now out of date.

 This case is very unlikely to occur. If the retransmission was
 triggered by a timeout, some of the segments C.1, ... Z.1 must
 have been delayed longer than the RTO time. This is presumably
 an unlikely event, or there would be many spurious timeouts and
 retransmissions. If B’s retransmission was triggered by the
 "fast retransmit" algorithm, i.e., by duplicate ACK’s, then the
 queued segments that caused these ACK’s must have been received
 already.

 Even if a segment was delayed past the RTO, the selective
 acknowledgment (SACK) facility of RFC-1072 will cause the
 delayed packets to be retransmitted at the same time as B.2,
 avoiding an extra RTT and therefore causing a very small
 performance penalty.

 We know of no case with a significant probability of occurrence
 in which timestamps will cause performance degradation by
 unnecessarily discarding segments.

 2.3.2 Header Prediction

 "Header prediction" [Jacobson90] is a high-performance
 transport protocol implementation technique that is is most
 important for high-speed links. This technique optimizes the
 code for the most common case: receiving a segment correctly
 and in order. Using header prediction, the receiver asks the
 question, "Is this segment the next in sequence?" This
 question can be answered in fewer machine instructions than the
 question, "Is this segment within the window?"

 Adding header prediction to our timestamp procedure leads to
 the following sequence for processing an arriving TCP segment:

 H1) Check timestamp (same as step R1 above)

 H2) Do header prediction: if segment is next in sequence and
 if there are no special conditions requiring additional
 processing, accept the segment, record its timestamp, and
 skip H3.

 H3) Process the segment normally, as specified in RFC-793.

Jacobson, Braden & Zhang [Page 8]

RFC 1185 TCP over High-Speed Paths October 1990

 This includes dropping segments that are outside the
 window and possibly sending acknowledgments, and queueing
 in-window, out-of-sequence segments.

 However, the timestamp check in step H1 is very unlikely to
 fail, and it is a relatively expensive operation since it
 requires interval arithmetic on a finite field. To perform
 this check on every single segment seems like poor
 implementation engineering, defeating the purpose of header
 prediction. Therefore, we suggest that an implementor
 interchange H1 and H2, i.e., perform header prediction FIRST,
 performing H1 and H3 only if header prediction fails. We
 believe that this change might gain 5-10% in performance on
 high-speed networks.

 This reordering does raise a theoretical hazard: a segment from
 2**32 bytes in the past may arrive at exactly the wrong time
 and be accepted mistakenly by the header-prediction step. We
 make the following argument to show that the probability of
 this failure is negligible.

 If all segments are equally likely to show up as old
 duplicates, then the probability of an old duplicate
 exactly matching the left window edge is the maximum
 segment size (MSS) divided by the size of the sequence
 space. This ratio must be less than 2**-16, since MSS
 must be < 2**16; for example, it will be (2**12)/(2**32) =
 2**-20 for an FDDI link. However, the older a segment is,
 the less likely it is to be retained in the Internet, and
 under any reasonable model of segment lifetime the
 probability of an old duplicate exactly at the left window
 edge must be much smaller than 2**16.

 The 16 bit TCP checksum also allows a basic unreliability
 of one part in 2**16. A protocol mechanism whose
 reliability exceeds the reliability of the TCP checksum
 should be considered "good enough", i.e., it won’t
 contribute significantly to the overall error rate. We
 therefore believe we can ignore the problem of an old
 duplicate being accepted by doing header prediction before
 checking the timestamp.

 2.3.3 Timestamp Frequency

 It is important to understand that the receiver algorithm for
 timestamps does not involve clock synchronization with the
 sender. The sender’s clock is used to stamp the segments, and
 the sender uses this fact to measure RTT’s. However, the

Jacobson, Braden & Zhang [Page 9]

RFC 1185 TCP over High-Speed Paths October 1990

 receiver treats the timestamp as simply a monotone-increasing
 serial number, without any necessary connection to its clock.
 From the receiver’s viewpoint, the timestamp is acting as a
 logical extension of the high-order bits of the sequence
 number.

 However, the receiver algorithm dpes place some requirements on
 the frequency of the timestamp "clock":

 (a) Timestamp clock must not be "too slow".

 It must tick at least once for each 2**31 bytes sent. In
 fact, in order to be useful to the sender for round trip
 timing, the clock should tick at least once per window’s
 worth of data, and even with the RFC-1072 window
 extension, 2**31 bytes must be at least two windows.

 To make this more quantitative, any clock faster than 1
 tick/sec will reject old duplicate segments for link
 speeds of ˜2 Gbps; a 1ms clock will work up to link
 speeds of 2 Tbps (10**12 bps!).

 (b) Timestamp clock must not be "too fast".

 Its cycling time must be greater than MSL seconds. Since
 the clock (timestamp) is 32 bits and the worst-case MSL is
 255 seconds, the maximum acceptable clock frequency is one
 tick every 59 ns.

 However, since the sender is using the timestamp for RTT
 calculations, the timestamp doesn’t need to have much more
 resolution than the granularity of the retransmit timer,
 e.g., tens or hundreds of milliseconds.

 Thus, both limits are easily satisfied with a reasonable clock
 rate in the range 1-100ms per tick.

 Using the timestamp option relaxes the requirements on MSL for
 avoiding sequence number wrap-around. For example, with a 1 ms
 timestamp clock, the 32-bit timestamp will wrap its sign bit in
 25 days. Thus, it will reject old duplicates on the same
 connection as long as MSL is 25 days or less. This appears to
 be a very safe figure. If the timestamp has 10 ms resolution,
 the MSL requirement is boosted to 250 days. An MSL of 25 days
 or longer can probably be assumed by the gateway system without
 requiring precise MSL enforcement by the TTL value in the IP
 layer.

Jacobson, Braden & Zhang [Page 10]

RFC 1185 TCP over High-Speed Paths October 1990

3. DUPLICATES FROM EARLIER INCARNATIONS OF CONNECTION

 We turn now to the second potential cause of old duplicate packet
 errors: packets from an earlier incarnation of the same connection.
 The appendix contains a review the mechanisms currently included in
 TCP to handle this problem. These mechanisms depend upon the
 enforcement of a maximum segment lifetime (MSL) by the Internet
 layer.

 The MSL required to prevent failures due to an earlier connection
 incarnation does not depend (directly) upon the transfer rate.
 However, the timestamp option used as described in Section 2 can
 provide additional security against old duplicates from earlier
 connections. Furthermore, we will see that with the universal use of
 the timestamp option, enforcement of a maximum segment lifetime would
 no longer be required for reliable TCP operation.

 There are two cases to be considered (see the appendix for more
 explanation): (1) a system crashing (and losing connection state)
 and restarting, and (2) the same connection being closed and reopened
 without a loss of host state. These will be described in the
 following two sections.

 3.1 System Crash with Loss of State

 TCP’s quiet time of one MSL upon system startup handles the loss
 of connection state in a system crash/restart. For an
 explanation, see for example "When to Keep Quiet" in the TCP
 protocol specification [Postel81]. The MSL that is required here
 does not depend upon the transfer speed. The current TCP MSL of 2
 minutes seems acceptable as an operational compromise, as many
 host systems take this long to boot after a crash.

 However, the timestamp option may be used to ease the MSL
 requirements (or to provide additional security against data
 corruption). If timestamps are being used and if the timestamp
 clock can be guaranteed to be monotonic over a system
 crash/restart, i.e., if the first value of the sender’s timestamp
 clock after a crash/restart can be guaranteed to be greater than
 the last value before the restart, then a quiet time will be
 unnecessary.

 To dispense totally with the quiet time would seem to require that
 the host clock be synchronized to a time source that is stable
 over the crash/restart period, with an accuracy of one timestamp
 clock tick or better. Fortunately, we can back off from this
 strict requirement. Suppose that the clock is always re-
 synchronized to within N timestamp clock ticks and that booting

Jacobson, Braden & Zhang [Page 11]

RFC 1185 TCP over High-Speed Paths October 1990

 (extended with a quiet time, if necessary) takes more than N
 ticks. This will guarantee monotonicity of the timestamps, which
 can then be used to reject old duplicates even without an enforced
 MSL.

 3.2 Closing and Reopening a Connection

 When a TCP connection is closed, a delay of 2*MSL in TIME-WAIT
 state ties up the socket pair for 4 minutes (see Section 3.5 of
 [Postel81]. Applications built upon TCP that close one connection
 and open a new one (e.g., an FTP data transfer connection using
 Stream mode) must choose a new socket pair each time. This delay
 serves two different purposes:

 (a) Implement the full-duplex reliable close handshake of TCP.

 The proper time to delay the final close step is not really
 related to the MSL; it depends instead upon the RTO for the
 FIN segments and therefore upon the RTT of the path.*
 Although there is no formal upper-bound on RTT, common
 network engineering practice makes an RTT greater than 1
 minute very unlikely. Thus, the 4 minute delay in TIME-WAIT
 state works satisfactorily to provide a reliable full-duplex
 TCP close. Note again that this is independent of MSL
 enforcement and network speed.

 The TIME-WAIT state could cause an indirect performance
 problem if an application needed to repeatedly close one
 connection and open another at a very high frequency, since
 the number of available TCP ports on a host is less than
 2**16. However, high network speeds are not the major
 contributor to this problem; the RTT is the limiting factor
 in how quickly connections can be opened and closed.
 Therefore, this problem will no worse at high transfer
 speeds.

 (b) Allow old duplicate segements to expire.

 Suppose that a host keeps a cache of the last timestamp
 received from each remote host. This can be used to reject
 old duplicate segments from earlier incarnations of the

*Note: It could be argued that the side that is sending a FIN knows
what degree of reliability it needs, and therefore it should be able
to determine the length of the TIME-WAIT delay for the FIN’s
recipient. This could be accomplished with an appropriate TCP option
in FIN segments.

Jacobson, Braden & Zhang [Page 12]

RFC 1185 TCP over High-Speed Paths October 1990

 connection, if the timestamp clock can be guaranteed to have
 ticked at least once since the old conennection was open.
 This requires that the TIME-WAIT delay plus the RTT together
 must be at least one tick of the sender’s timestamp clock.

 Note that this is a variant on the mechanism proposed by
 Garlick, Rom, and Postel (see the appendix), which required
 each host to maintain connection records containing the
 highest sequence numbers on every connection. Using
 timestamps instead, it is only necessary to keep one quantity
 per remote host, regardless of the number of simultaneous
 connections to that host.

 We conclude that if all hosts used the TCP timestamp algorithm
 described in Section 2, enforcement of a maximum segment lifetime
 would be unnecessary and the quiet time at system startup could be
 shortened or removed. In any case, the timestamp mechanism can
 provide additional security against old duplicates from earlier
 connection incarnations. However, a 4 minute TIME-WAIT delay
 (unrelated to MSL enforcement or network speed) must be retained
 to provide the reliable close handshake of TCP.

4. CONCLUSIONS

 We have presented a mechanism, based upon the TCP timestamp echo
 option of RFC-1072, that will allow very high TCP transfer rates
 without reliability problems due to old duplicate segments on the
 same connection. This mechanism also provides additional security
 against intrusion of old duplicates from earlier incarnations of the
 same connection. If the timestamp mechanism were used by all hosts,
 the quiet time at system startup could be eliminated and enforcement
 of a maximum segment lifetime (MSL) would no longer be necessary.

REFERENCES

 [Cerf76] Cerf, V., "TCP Resynchronization", Tech Note #79, Digital
 Systems Lab, Stanford, January 1976.

 [Dalal74] Dalal, Y., "More on Selecting Sequence Numbers", INWG
 Protocol Note #4, October 1974.

 [Garlick77] Garlick, L., R. Rom, and J. Postel, "Issues in Reliable
 Host-to-Host Protocols", Proc. Second Berkeley Workshop on
 Distributed Data Management and Computer Networks, May 1977.

 [Hamming77] Hamming, R., "Digital Filters", ISBN 0-13-212571-4,
 Prentice Hall, Englewood Cliffs, N.J., 1977.

Jacobson, Braden & Zhang [Page 13]

RFC 1185 TCP over High-Speed Paths October 1990

 [Jacobson88] Jacobson, V., and R. Braden, "TCP Extensions for
 Long-Delay Paths", RFC 1072, LBL and USC/Information Sciences
 Institute, October 1988.

 [Jacobson90] Jacobson, V., "4BSD Header Prediction", ACM Computer
 Communication Review, April 1990.

 [McKenzie89] McKenzie, A., "A Problem with the TCP Big Window
 Option", RFC 1110, BBN STC, August 1989.

 [Postel81] Postel, J., "Transmission Control Protocol", RFC 793,
 DARPA, September 1981.

 [Tomlinson74] Tomlinson, R., "Selecting Sequence Numbers", INWG
 Protocol Note #2, September 1974.

 [Watson81] Watson, R., "Timer-based Mechanisms in Reliable
 Transport Protocol Connection Management", Computer Networks,
 Vol. 5, 1981.

Jacobson, Braden & Zhang [Page 14]

RFC 1185 TCP over High-Speed Paths October 1990

APPENDIX -- Protection against Old Duplicates in TCP

 During the development of TCP, a great deal of effort was devoted to
 the problem of protecting a TCP connection from segments left from
 earlier incarnations of the same connection. Several different
 mechanisms were proposed for this purpose [Tomlinson74] [Dalal74]
 [Cerf76] [Garlick77].

 The connection parameters that are required in this discussion are:

 Tc = Connection duration in seconds.

 Nc = Total number of bytes sent on connection.

 B = Effective bandwidth of connection = Nc/Tc.

 Tomlinson proposed a scheme with two parts: a clock-driven selection
 of ISN (Initial Sequence Number) for a connection, and a
 resynchronization procedure [Tomlinson74]. The clock-driven scheme
 chooses:

 ISN = (integer(R*t)) mod 2**32 [2]

 where t is the current time relative to an arbitrary origin, and R is
 a constant. R was intended to be chosen so that ISN will advance
 faster than sequence numbers will be used up on the connection.
 However, at high speeds this will not be true; the consequences of
 this will be discussed below.

 The clock-driven choice of ISN in formula [2] guarantees freedom from
 old duplicates matching a reopened connection if the original
 connection was "short-lived" and "slow". By "short-lived", we mean a
 connection that stayed open for a time Tc less than the time to cycle
 the ISN, i.e., Tc < 2**32/R seconds. By "slow", we mean that the
 effective transfer rate B is less than R.

 This is illustrated in Figure 1, where sequence numbers are plotted
 against time. The asterisks show the ISN lines from formula [2],
 while the circles represent the trajectories of several short-lived
 incarnations of the same connection, each terminating at the "x".

 Note: allowing rapid reuse of connections was believed to be an
 important goal during the early TCP development. This
 requirement was driven by the hope that TCP would serve as a
 basis for user-level transaction protocols as well as
 connection-oriented protocols. The paradigm discussed was the
 "Christmas Tree" or "Kamikazee" segment that contained SYN and
 FIN bits as well as data. Enthusiasm for this was somewhat

Jacobson, Braden & Zhang [Page 15]

RFC 1185 TCP over High-Speed Paths October 1990

 dampened when it was observed that the 3-way SYN handshake and
 the FIN handshake mean that 5 packets are required for a minimum
 exchange. Furthermore, the TIME-WAIT state delay implies that
 the same connection really cannot be reopened immediately. No
 further work has been done in this area, although existing
 applications (especially SMTP) often generate very short TCP
 sessions. The reuse problem is generally avoided by using a
 different port pair for each connection.

 |- 2**32 ISN ISN
 | * *
 | * *
 | * *
 | *x *
 | o *
 ^ | * *
 | | * x *
 | * o *
 S | *o *
 e | o *
 q | * *
 | * *
 # | * x *
 | *o *
 |o_______________*____________
 ^ Time -->
 4.55hrs

 Figure 1. Clock-Driven ISN avoiding duplication on
 short-Lived, slow connections.

 However, clock-driven ISN selection does not protect against old
 duplicate packets for a long-lived or fast connection: the
 connection may close (or crash) just as the ISN has cycled around and
 reached the same value again. If the connection is then reopened, a
 datagram still in transit from the old connection may fall into the
 current window. This is illustrated by Figure 2 for a slow, long-
 lived connection, and by Figures 3 and 4 for fast connections. In
 each case, the point "x" marks the place at which the original
 connection closes or crashes. The arrow in Figure 2 illustrates an
 old duplicate segment. Figure 3 shows a connection whose total byte
 count Nc < 2**32, while Figure 4 concerns Nc >= 2**32.

 To prevent the duplication illustrated in Figure 2, Tomlinson
 proposed to "resynchronize" the connection sequence numbers if they

Jacobson, Braden & Zhang [Page 16]

RFC 1185 TCP over High-Speed Paths October 1990

 came within an MSL of the ISN. Resynchronization might take the form
 of a delay (point "y") or the choice of a new sequence number (point
 "z").

 |- 2**32 ISN ISN
 | * *
 | * *
 | * *
 | * *
 | * *
 ^ | * *
 | | * *
 | * *
 S | * *
 e | * x* y
 q | * o *
 | * o *z
 # | *o *
 | * *
 |*_________________*____________
 ^ Time -->
 4.55hrs

 Figure 2. Resynchronization to Avoid Duplication
 on Slow, Long-Lived Connection

 |- 2**32 ISN ISN
 | * *
 | x o * *
 | * *
 | o-->o* *
 | * *
 ^ | o o *
 | | * *
 | o * *
 S | * *
 e | o * *
 q | * *
 | o* *
 # | * *
 | o *
 |*_________________*____________
 ^ Time -->
 4.55hrs

 Figure 3. Duplication on Fast Connection: Nc < 2**32 bytes

Jacobson, Braden & Zhang [Page 17]

RFC 1185 TCP over High-Speed Paths October 1990

 |- 2**32 ISN ISN
 | o * *
 | x * *
 | * *
 | o * *
 | o *
 ^ | * *
 | | o * *
 | * o *
 S | * *
 e | o * *
 q | * o *
 | * *
 # | o *
 | * o *
 |*_________________*____________
 ^ Time -->
 4.55hrs

 Figure 4. Duplication on Fast Connection: Nc > 2**32 bytes

 In summary, Figures 1-4 illustrated four possible failure modes for
 old duplicate packets from an earlier incarnation. We will call
 these four modes F1 , F2, F3, and F4:

 F1: B < R, Tc < 4.55 hrs. (Figure 1)

 F2: B < R, Tc >= 4.55 hrs. (Figure 2)

 F3: B >= R, Nc < 2**32 (Figure 3)

 F4: B >= R, Nc >= 2**32 (Figure 4)

 Another limitation of clock-driven ISN selection should be mentioned.
 Tomlinson assumed that the current time t in formula [2] is obtained
 from a clock that is persistent over a system crash. For his scheme
 to work correctly, the clock must be restarted with an accuracy of
 1/R seconds (e.g, 4 microseconds in the case of TCP). While this may
 be possible for some hosts and some crashes, in most cases there will
 be an uncertainty in the clock after a crash that ranges from a
 second to several minutes.

 As a result of this random clock offset after system
 reinitialization, there is a possibility that old segments sent
 before the crash may fall into the window of a new connection
 incarnation. The solution to this problem that was adopted in the

Jacobson, Braden & Zhang [Page 18]

RFC 1185 TCP over High-Speed Paths October 1990

 final TCP spec is a "quiet time" of MSL seconds when the system is
 initialized [Postel81, p. 28]. No TCP connection can be opened until
 the expiration of this quiet time.

 A different approach was suggested by Garlick, Rom, and Postel
 [Garlick77]. Rather than using clock-driven ISN selection, they
 proposed to maintain connection records containing the last ISN used
 on every connection. To immediately open a new incarnation of a
 connection, the ISN is taken to be greater than the last sequence
 number of the previous incarnation, so that the new incarnation will
 have unique sequence numbers. To handle a system crash, they
 proposed a quiet time, i.e., a delay at system startup time to allow
 old duplicates to expire. Note that the connection records need be
 kept only for MSL seconds; after that, no collision is possible, and
 a new connection can start with sequence number zero.

 The scheme finally adopted for TCP combines features of both these
 proposals. TCP uses three mechanisms:

 (A) ISN selection is clock-driven to handle short-lived connections.
 The parameter R = 250KBps, so that the ISN value cycles in
 2**32/R = 4.55 hours.

 (B) (One end of) a closed connection is left in a "busy" state,
 known as "TIME-WAIT" state, for a time of 2*MSL. TIME-WAIT
 state handles the proper close of a long-lived connection
 without resynchronization. It also allows reliable completion
 of the full-duplex close handshake.

 (C) There is a quiet time of one MSL at system startup. This
 handles a crash of a long-lived connection and avoids time
 resynchronization problems in (A).

 Notice that (B) and (C) together are logically sufficient to prevent
 accidental reuse of sequence numbers from a different incarnation,
 for any of the failure modes F1-F4. (A) is not logically necessary
 since the close delay (B) makes it impossible to reopen the same TCP
 connection immediately. However, the use of (A) does give additional
 assurance in a common case, perhaps compensating for a host that has
 set its TIME-WAIT state delay too short.

 Some TCP implementations have permitted a connection in the TIME-WAIT
 state to be reopened immediately by the other side, thus short-
 circuiting mechanism (B). Specifically, a new SYN for the same
 socket pair is accepted when the earlier incarnation is still in
 TIME-WAIT state. Old duplicates in one direction can be avoided by
 choosing the ISN to be the next unused sequence number from the
 preceding connection (i.e., FIN+1); this is essentially an

Jacobson, Braden & Zhang [Page 19]

RFC 1185 TCP over High-Speed Paths October 1990

 application of the scheme of Garlick, Rom, and Postel, using the
 connection block in TIME-WAIT state as the connection record.

 However, the connection is still vulnerable to old duplicates in the
 other direction. Mechanism (A) prevents trouble in mode F1, but
 failures can arise in F2, F3, or F4; of these, F2, on short, fast
 connections, is the most dangerous.

 Finally, we note TCP will operate reliably without any MSL-based
 mechanisms in the following restricted domain:

 * Total data sent is less then 2**32 octets, and

 * Effective sustained rate less than 250KBps, and

 * Connection duration less than 4.55 hours.

 At the present time, the great majority of current TCP usage falls
 into this restricted domain. The third component, connection
 duration, is the most commonly violated.

Security Considerations

 Security issues are not discussed in this memo.

Authors’ Addresses

 Van Jacobson
 University of California
 Lawrence Berkeley Laboratory
 Mail Stop 46A
 Berkeley, CA 94720

 Phone: (415) 486-6411
 EMail: van@CSAM.LBL.GOV

 Bob Braden
 University of Southern California
 Information Sciences Institute
 4676 Admiralty Way
 Marina del Rey, CA 90292

 Phone: (213) 822-1511
 EMail: Braden@ISI.EDU

Jacobson, Braden & Zhang [Page 20]

RFC 1185 TCP over High-Speed Paths October 1990

 Lixia Zhang
 XEROX Palo Alto Research Center
 3333 Coyote Hill Road
 Palo Alto, CA 94304

 Phone: (415) 494-4415
 EMail: lixia@PARC.XEROX.COM

Jacobson, Braden & Zhang [Page 21]

