
Network Working Group S. Waldbusser
Request for Comments: 4011 Nextbeacon
Category: Standards Track J. Saperia
 JDS Consulting, Inc.
 T. Hongal
 Riverstone Networks, Inc.
 March 2005

 Policy Based Management MIB

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This memo defines a portion of the Management Information Base (MIB)
 for use with network management protocols in TCP/IP-based internets.
 In particular, this MIB defines objects that enable policy-based
 monitoring and management of Simple Network Management Protocol
 (SNMP) infrastructures, a scripting language, and a script execution
 environment.

Table of Contents

 1. The Internet-Standard Management Framework 3
 2. Overview .. 4
 3. Policy-Based Management Architecture 4
 4. Policy-Based Management Execution Environment 10
 4.1. Terminology ... 10
 4.2. Execution Environment - Elements of Procedure 10
 4.3. Element Discovery 11
 4.3.1. Implementation Notes 12
 4.4. Element Filtering 13
 4.4.1. Implementation Notes 13
 4.5. Policy Enforcement 13
 4.5.1. Implementation Notes 14
 5. The PolicyScript Language 14
 5.1. Formal Definition 15

Waldbusser, et al. Standards Track [Page 1]

RFC 4011 Policy Based Management MIB March 2005

 5.2. Variables ... 18
 5.2.1. The Var Class 19
 5.3. PolicyScript QuickStart Guide 23
 5.3.1. Quickstart for C Programmers 25
 5.3.2. Quickstart for Perl Programmers 25
 5.3.3. Quickstart for TCL Programmers 25
 5.3.4. Quickstart for Python Programmers 26
 5.3.5. Quickstart for JavaScript/ECMAScript/JScript
 Programmers 26
 5.4. PolicyScript Script Return Values 26
 6. Index Information for ‘this element’ 27
 7. Library Functions ... 28
 8. Base Function Library 29
 8.1. SNMP Library Functions 29
 8.1.1. SNMP Operations on Non-Local Systems 30
 8.1.2. Form of SNMP Values 32
 8.1.3. Convenience SNMP Functions 34
 8.1.3.1. getVar() 34
 8.1.3.2. exists() 34
 8.1.3.3. setVar() 35
 8.1.3.4. searchColumn() 36
 8.1.3.5. setRowStatus() 38
 8.1.3.6. createRow() 39
 8.1.3.7. counterRate() 42
 8.1.4. General SNMP Functions 44
 8.1.4.1. newPDU() 45
 8.1.4.2. writeVar() 45
 8.1.4.3. readVar() 46
 8.1.4.4. snmpSend() 47
 8.1.4.5. readError() 48
 8.1.4.6. writeBulkParameters() 48
 8.1.5. Constants for SNMP Library Functions 49
 8.2. Policy Library Functions 51
 8.2.1. elementName() 51
 8.2.2. elementAddress() 51
 8.2.3. elementContext() 52
 8.2.4. ec() .. 52
 8.2.5. ev() .. 52
 8.2.6. roleMatch() 52
 8.2.7. Scratchpad Functions 53
 8.2.8. setScratchpad() 55
 8.2.9. getScratchpad() 56
 8.2.10. signalError() 57
 8.2.11. defer() 57
 8.2.12. fail() .. 58
 8.2.13. getParameters() 58
 8.3. Utility Library Functions 59
 8.3.1. regexp() 59

Waldbusser, et al. Standards Track [Page 2]

RFC 4011 Policy Based Management MIB March 2005

 8.3.2. regexpReplace() 60
 8.3.3. oidlen() 60
 8.3.4. oidncmp() 60
 8.3.5. inSubtree() 60
 8.3.6. subid() 61
 8.3.7. subidWrite() 61
 8.3.8. oidSplice() 61
 8.3.9. parseIndex() 62
 8.3.10. stringToDotted() 63
 8.3.11. integer() 64
 8.3.12. string() 64
 8.3.13. type() .. 64
 8.3.14. chr() ... 64
 8.3.15. ord() ... 64
 8.3.16. substr() 65
 8.4. General Functions 65
 9. International String Library 65
 9.1. stringprep() .. 66
 9.1.1. Stringprep Profile 66
 9.2. utf8Strlen() .. 67
 9.3. utf8Chr() ... 68
 9.4. utf8Ord() ... 68
 9.5. utf8Substr() .. 68
 10. Schedule Table .. 69
 11. Definitions ... 70
 12. Relationship to Other MIB Modules 113
 13. Security Considerations 114
 14. IANA Considerations ... 117
 15. Acknowledgements .. 118
 16. References .. 118
 16.1. Normative References 118
 16.2. Informative References 119
 Authors’ Addresses .. 120
 Full Copyright Statement .. 121

1. The Internet-Standard Management Framework

 For a detailed overview of the documents that describe the current
 Internet-Standard Management Framework, please refer to section 7 of
 RFC 3410 [16].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. MIB objects are generally
 accessed through the Simple Network Management Protocol (SNMP).
 Objects in the MIB are defined using the mechanisms defined in the
 Structure of Management Information (SMI). This memo specifies a MIB
 module that is compliant to the SMIv2, which is described in STD 58,
 RFC 2578 [2], STD 58, RFC 2579 [3], and STD 58, RFC 2580 [4].

Waldbusser, et al. Standards Track [Page 3]

RFC 4011 Policy Based Management MIB March 2005

2. Overview

 Large IT organizations have developed management strategies to cope
 with the extraordinarily large scale and complexity of today’s
 networks. In particular, they have tried to configure the network as
 a whole by describing and implementing high-level business policies,
 rather than manage device by device, where orders of magnitude more
 decisions (and mistakes) may be made.

 The following are examples of "business policies":

 - All routers will run code version 6.2.
 - On-site contractors will only be connected to ports that are
 configured with special security restrictions.
 - All voice over cable ports in California must provide free local
 calling.
 - Apply special forwarding to all ports whose customers have paid for
 premium service.

 Each of these policies could represent an action applied to hundreds
 of thousands of variables.

 To automate this practice, customers need software tools that will
 implement business policies across their networks, as well as
 standard protocols that will ensure that policies can be applied to
 all of their devices, regardless of the vendor.

 This practice is called Policy-Based Management. This document
 defines managed objects for the Simple Network Management Protocol
 that are used to distribute policies in a common form throughout the
 network.

3. Policy-Based Management Architecture

 Policy-based management is the practice of applying management
 operations globally on all managed elements that share certain
 attributes.

 Policies are intended to express a notion of:

 if (an element has certain characteristics) then (apply an
 operation to that element)

Waldbusser, et al. Standards Track [Page 4]

RFC 4011 Policy Based Management MIB March 2005

 Policies take the following normal form:

 if (policyCondition) then (policyAction)

 A policyCondition is a script that results in a boolean to determine
 whether an element is a member of a set of elements upon which an
 action is to be performed.

 A policyAction is an operation performed on an element or a set of
 elements.

 These policies are most often executed on or near managed devices
 where the elements live (and thus their characteristics may be easily
 inspected) and where operations on those elements will be performed.

 A management station is responsible for distributing an
 organization’s policies to all the managed devices in the
 infrastructure. The pmPolicyTable provides managed objects for
 representing a policy on a managed device.

 An element is an instance of a physical or logical entity and is
 embodied by a group of related MIB variables, such as all the
 variables for interface 7. This enables policies to be expressed
 more efficiently and concisely. Elements can also model circuits,
 CPUs, queues, processes, systems, etc.

 Conceptually, policies are executed in the following manner:

 for each element for which policyCondition returns true, execute
 policyAction on that element

 For example:

 If (interface is fast ethernet) then (apply full-duplex mode)
 If (interface is access) then (apply security filters)
 If (circuit w/gold service paid for) then (apply special queuing)

 Each unique combination of policy and element is called an execution
 context. Within a particular execution context, the phrase ’this
 element’ is often used to refer to the associated element, as most
 policy operations will be applied to ’this element’. The address of
 ’this element’ contains the object identifier of any attribute of the
 element, the SNMP context the element was discovered in, and the
 address of the system on which the element was discovered.

Waldbusser, et al. Standards Track [Page 5]

RFC 4011 Policy Based Management MIB March 2005

 Policies can manage elements on the same system:

 | |
 | Managed System |
 | |
 | |
 | ------------------ Managed Elements |
 | | | interfaces |
 | | Policy Manager | manages... circuits |
 | | | queues |
 | ------------------ processes |
 | ... |
 | |

 or they can manage elements on other systems:

 | Managed System |
 -------------------------- | Managed Elements |
 | | | interfaces |
 | Management Station or | | circuits |
 | Mid-Level Manager | | ... |
 | | --------------------------
 | ------------------ | manages...
 | | Policy Manager | | --------------------------
 | ------------------ | | Managed System |
 | | | Managed Elements |
 -------------------------- | interfaces |
 | circuits |
 | ... |

 ...

 PolicyConditions have the capability of performing comparison
 operations on SNMP variables, logical expressions, and other
 functions. Many device characteristics are already defined in MIB
 Modules and are easy to include in policyCondition expressions
 (ifType == ethernet, frCircuitCommittedBurst < 128K, etc). However,
 there are important characteristics that aren’t currently in MIB
 objects, and, worse, it is not current practice to store this
 information on managed devices. Therefore, this document defines MIB
 objects for this information. To meet today’s needs there are three
 missing areas: roles, capabilities, and time.

Waldbusser, et al. Standards Track [Page 6]

RFC 4011 Policy Based Management MIB March 2005

 Roles

 A role is an administratively specified characteristic of a managed
 element. As a selector for policies, it determines the applicability
 of the policy to a particular managed element.

 Some examples of roles are political, financial, legal, geographical,
 or architectural characteristics, typically not directly derivable
 from information stored on the managed system. For example, "paid
 for premium service" or "is plugged into a UPS" are examples of
 roles, whereas the "percent utilization of a link" would not be.

 Some types of information one would put into a role include the
 following:

 political - describes the role of a person or group of people, or of
 a service that a group of people uses. Examples:
 executive, sales, outside-contractor, customer.
 If (attached user is executive) then (apply higher bandwidth)
 If (attached user is outside-contractor) then (restrict access)

 financial/legal - describes what financial consideration was
 received. Could also include contractual or legal
 considerations. Examples: paid, gold, free, trial,
 demo, lifeline.
 If (gold service paid for) then (apply special queuing)

 geographical - describes the location of an element. Examples:
 California, Headquarters, insecure conduit.
 If (interface leaves the building) then (apply special security)

 architectural - describes the network architects "intent" for an
 element. Examples: backup, trunk.
 If (interface is backup) then (set ifAdminStatus = down)

 Roles in this model are human-defined strings that can be
 referenced by policy code. The role table in this MIB may be used
 to assign role strings to elements and to view all role string
 assignments. Implementation-specific mechanisms may also be used
 to assign role strings; however, these assignments must be visible
 in the role table. Multiple roles may be assigned to each
 element. Because policy code has access to data in MIB objects
 that represent the current state of the system and (in contrast)
 role strings are more static, it is recommended that role strings
 not duplicate information available in MIB objects. Role strings
 generally should be used to describe information not accessible in
 MIB objects.

Waldbusser, et al. Standards Track [Page 7]

RFC 4011 Policy Based Management MIB March 2005

 Policy scripts may inspect role assignments to make decisions
 based on whether an element has a particular role assigned to it.

 The pmRoleTable allows a management station to learn what roles
 exist on a managed system. The management station may choose not
 to install policies that depend on a role that does not exist on
 any elements in the system. The management station can then
 register for notifications of new roles. Upon receipt of a
 pmNewRoleNotification, it may choose to install new policies that
 make use of that new role.

 Capabilities

 The capabilities table allows a management station to learn what
 capabilities exist on a managed system. The management station
 may choose not to install policies that depend on a capability
 that does not exist on any elements in the system. The management
 station can then register for notifications of new capabilities.
 Upon receipt of a pmNewCapabilityNotification, it may choose to
 install new policies that make use of that new capability.

 Time

 Managers may wish to define policies that are intended to apply
 for certain periods of time. This might mean that a policy is
 installed and is dormant for a period of time, becomes ready, and
 then later goes dormant again. Sometimes these time periods will
 be regular (Monday-Friday 9-5), and sometimes ad hoc. This MIB
 provides a schedule table that can schedule when a policy is ready
 and when it is dormant.

Waldbusser, et al. Standards Track [Page 8]

RFC 4011 Policy Based Management MIB March 2005

 A policy manager contains the following:

 | Policy Manager |
 | |
 | -- |
 | | Agent | |
 | | | |
 | | --------------------------------- | |
 | | | Policy Download and Control | | |
 | | | pmPolicyTable | | |
 | | | pmElementTypeRegTable | | |
 | | | pmSchedTable | | |
 | | --------------------------------- | |
 | | | |
 | | --------------------------------- | |
 | | | Policy Environment Control | | |
 | | | pmRoleTable | | |
 | | | pmCapabilitiesTables | | |
 | | --------------------------------- | |
 | | | |
 | | --------------------------------- | |
 | | | Policy Monitoring | | |
 | | | pmTrackingTables | | |
 | | | pmDebuggingTable | | |
 | | --------------------------------- | |
 | -- |
 | |
 | -------------------------------- |
 | | Execution Environment | |
 | | | |
 | | ----------------------- | |
 | | | Policy Scheduler | | |
 | | ----------------------- | |
 | | ----------------------- | |
 | | | Language | | |
 | | ----------------------- | |
 | | ----------------------- | |
 | | | Function Library | | |
 | | ----------------------- | |
 | -------------------------------- |

Waldbusser, et al. Standards Track [Page 9]

RFC 4011 Policy Based Management MIB March 2005

4. Policy-Based Management Execution Environment

4.1. Terminology

 Active Schedule - A schedule specifies certain times that it will be
 considered active. A schedule is active during those times.

 Valid Policy - A valid policy is a policy that is fully configured
 and enabled to run. A valid policy may run unless it is linked to
 a schedule entry that says the policy is not currently active.

 Ready Policy - A ready policy is a valid policy that either has no
 schedule or is linked to a schedule that is currently active.

 Precedence Group - Multiple policies can be assigned to a precedence
 group with the resulting behavior that for each element, of the
 ready policies that match the condition, only the one with the
 highest precedence value will be active. For example, if there is
 a default bronze policy that applies to any interface and a
 special policy for gold interfaces, the higher precedence of the
 gold policy will ensure that it is run on gold ports and that the
 bronze policy isn’t.

 Active Execution Context - An active execution context is a pairing
 of a ready policy with an element that matches the element type
 filter and the policy condition. If there are multiple policies
 in the precedence group, it is also necessary that no higher
 precedence policy in the group match the policy condition.

 Run-Time Exception (RTE) - A run-time exception is a fatal error
 caused in language or function processing. If, during the
 invocation of a script, a run-time exception occurs, execution of
 that script is immediately terminated. If a policyCondition
 experiences a run-time exception while processing an element, the
 element is not matched by the condition and the associated action
 will not be run on that element. A run-time exception can cause
 an entry to be added to the pmDebuggingTable and will be reflected
 in the pmTrackingPEInfo object.

4.2. Execution Environment - Elements of Procedure

 There are several steps performed in order to execute policies in
 this environment:

 - Element Discovery
 - Element Filtering
 - Policy Enforcement

Waldbusser, et al. Standards Track [Page 10]

RFC 4011 Policy Based Management MIB March 2005

4.3. Element Discovery

 An element is an instance of a physical or logical entity. Examples
 of elements include interfaces, circuits, queues, CPUs, and
 processes. Sometimes various attributes of an entity will be
 described through tables in several standard and proprietary MIB
 Modules. As long as the indexing is consistent between these tables,
 the entity can be modeled as one element. For example, the ifTable
 and the dot3Stats table both contain attributes of interfaces and
 share the same index (ifIndex), therefore they can be modeled as one
 element type.

 The Element Type Registration table allows the manager to learn what
 element types are being managed by the system and to register new
 types, if necessary. An element type is registered by providing the
 OID of an SNMP object (i.e., without the instance). Each SNMP
 instance that exists under that object is a distinct element. The
 index part of the discovered OID will be supplied to policy
 conditions and actions so that this code can inspect and configure
 the element. The agent can determine the index portion of discovered
 OIDs based on the length of the pmElementTypeRegOIDPrefix for the
 portion of the MIB that is being retrieved. For example, if the
 OIDPrefix is ’ifEntry’, which has 9 subids, the index starts on the
 11th subid (skipping the subidentifier for the column; e.g.,
 ifSpeed).

 For each element that is discovered, the policy condition is called
 with the element’s name as an argument to see whether the element is
 a member of the set the policy acts upon.

 Note that agents may automatically configure entries in this table
 for frequently used element types (interfaces, circuits, etc.). In
 particular, it may configure elements for which discovery is
 optimized in one or both of the following ways:

 1. The agent may discover elements by scanning internal data
 structures as opposed to issuing local SNMP requests. It is
 possible to recreate the exact semantics described in this table
 even if local SNMP requests are not issued.

 2. The agent may receive asynchronous notification of new elements
 (for example, "card inserted") and use that information to create
 elements instantly rather than through polling. A similar feature
 might be available for the deletion of elements.

 Note that upon restart, the disposition of agent-installed entries is
 described by the pmPolicyStorageType object.

Waldbusser, et al. Standards Track [Page 11]

RFC 4011 Policy Based Management MIB March 2005

 A special element type "0.0" represents the "system element". "0.0"
 represents the single instance of the system itself and provides an
 execution context for policies to operate on "the system" and on MIB
 objects modeled as scalars. For example, "0.0" gives an execution
 context for policy-based selection of the operating system code
 version (likely modeled as a scalar MIB object). The element type
 "0.0" always exists. As a consequence, no actual discovery will take
 place and the pmElementTypeRegMaxLatency object will have no effect
 for the "0.0" element type. However, if the "0.0" element type is
 not registered in the table, policies will not be executed on the
 "0.0" element.

 If the agent is discovering elements by polling, it should check for
 new elements no less frequently than pmElementTypeRegMaxLatency would
 dictate. When an element is first discovered, all policyConditions
 are run immediately, and policyConditions that match will have the
 associated policyAction run immediately. Subsequently, the
 policyCondition will be run regularly for the element, with no more
 than pmPolicyConditionMaxLatency milliseconds elapsing between each
 invocation. Note that if an implementation has the ability to be
 alerted immediately when a particular type of element is created, it
 is urged to discover that type of element in this fashion rather than
 through polling, resulting in immediate configuration of the
 discovered element.

4.3.1. Implementation Notes

 Note that although the external behavior of this registration process
 is defined in terms of the walking of MIB tables, implementation
 strategies may differ. For example, commonly used element types
 (such as interface) may have purpose-built element discovery
 capability built-in and advertised to managers through an entry in
 the pmElementTypeRegTable.

 Before registering an element type, a manager is responsible for
 inspecting the table to see whether it is already registered (either
 by the agent or by another manager). Note that entries that differ
 only in the last subid (which specifies which object is an entry) are
 effectively duplicates and should be treated as such by the manager.

 The system that implements the Policy-Based Management MIB may not
 have knowledge of the format of object identifiers in other MIB
 Modules. Therefore it is inappropriate for it to check these OIDs
 for errors. It is the responsibility of the management station to
 register well-formed object identifiers. For example, if an extra
 sub-identifier is supplied when the ifTable is registered, no

Waldbusser, et al. Standards Track [Page 12]

RFC 4011 Policy Based Management MIB March 2005

 elements will be discovered. Similarly, if a sub-identifier is
 missing, every element will be discovered numerous times (once per
 column) and none of the element addresses will be well formed.

4.4. Element Filtering

 The first step in executing a policy is to see whether the policy is
 ready to run based on its schedule. If the pmPolicySchedule object
 is equal to zero, there is no schedule defined, and the policy is
 always ready. If the pmPolicySchedule object is non-zero, then the
 policy is ready only if the referenced schedule group contains at
 least one valid schedule entry that is active at the current time.

 If the policy is ready, the next step in executing a policy is to see
 which elements match the policy condition. The policy condition is
 called once for each element and runs to completion. The element’s
 name is the only argument that is passed to the condition code for
 each invocation. No state is remembered within the policy script
 from the previous invocation of ’this element’ or from the previous
 invocation of the policy condition, except for state accessible
 through library functions. Two notable examples of these are the
 scratchpad functions, which explicitly provide for storing state, and
 the SNMP functions, which can store state in local or remote MIB
 objects. If any run-time exception occurs, the condition will
 terminate immediately for ’this element’. If the condition returns
 non-zero, the corresponding policy action will be executed for ’this
 element’.

 If an element matches a condition and it had not matched that
 condition the last time it was checked (or if it is a newly
 discovered element), the associated policyAction will be executed
 immediately. If the element had matched the condition at the last
 check, it will remain in the set of elements whose policyAction will
 be run within the policyActionMaxLatency.

4.4.1. Implementation Notes

 Whether policy conditions are multi-tasked is an implementation-
 dependent matter. Each condition/element combination is conceptually
 its own process and can be scheduled sequentially, or two or more
 could be run simultaneously.

4.5. Policy Enforcement

 For each element that has returned non-zero from the policy
 condition, the corresponding policy action is called. The element’s
 name is the only argument that is passed to the policy action for
 each invocation. Except for state accessible from library functions,

Waldbusser, et al. Standards Track [Page 13]

RFC 4011 Policy Based Management MIB March 2005

 no state is remembered from the policy condition evaluation, or from
 the previous condition/action invocation of ’this element’ or from
 the previous invocation of the policy condition or action on any
 other element. If any run-time exception occurs, the action will
 terminate immediately for ’this element’.

4.5.1. Implementation Notes

 How policy actions are multi-tasked is an implementation-dependent
 matter. Each condition/element combination is conceptually its own
 process and can be scheduled sequentially, or two or more could be
 run simultaneously.

5. The PolicyScript Language

 Policy conditions and policy actions are expressed with the
 PolicyScript language. The PolicyScript language is designed to be a
 small interpreted language that is simple to understand and
 implement; it is designed to be appropriate for writing small scripts
 that make up policy conditions and actions.

 PolicyScript is intended to be familiar to programmers that know one
 of several common languages, including Perl and C. Nominally,
 policyScript is a subset of the C language; however, it was desirable
 to have access to C++’s operator overloading (solely to aid in
 documenting the language). Therefore, PolicyScript is defined
 formally as a subset of the C++ language in which many of the
 operators are overloaded as part of the "var" class. Note, however,
 that a PolicyScript program cannot further overload operators, as the
 syntax to specify overloading is not part of the PolicyScript syntax.
 A subset was used to provide for easy development of low-cost
 interpreters of PolicyScript and to take away language constructs
 that are peculiar to the C/C++ languages. For example, it is
 expected that both C and Perl programmers will understand the
 constructs allowed in PolicyScript.

 Some examples of the C/C++ features that are not available are
 function definitions, pointer variables, structures, enums, typedefs,
 floating point and pre-processor functions (except for comments).

 This language is formally defined as a subset of ISO C++ [10] but
 only allows constructs that may be expressed in the Extended Backus-
 Naur Form (EBNF) documented here. This is because although EBNF
 doesn’t fully specify syntactical rules (it allows constructs that
 are invalid) and doesn’t specify semantic rules, it can successfully
 be used to define the subset of the language that is required for

Waldbusser, et al. Standards Track [Page 14]

RFC 4011 Policy Based Management MIB March 2005

 conformance to this specification. Unless explicitly described
 herein, the meaning of any construct expressed in the EBNF can be
 found by reference to the ISO C++ standard.

 The use of comments and newlines are allowed and encouraged in order
 to promote readability of PolicyScript code. Comments begin with
 ’/*’ and end with ’*/’ or begin with ’//’ and go until the end of the
 line.

 One subset is not expressible in the EBNF syntax: all variables
 within an instance of a PolicyScript script are within the same
 scope. In other words, variables defined in a block delimited with
 ’{’ and ’}’ are not in a separate scope from variables in the
 enclosing block.

 PolicyScript code must be expressed in the ASCII character set.

 In the EBNF used here, terminals are character set members (singly or
 in a sequence) that are enclosed between two single-quote characters
 or described as a phrase between ’<’ and ’>’ characters.
 Nonterminals are a sequence of letters and underscore characters. A
 colon (:) following a nonterminal introduces its definition, a
 production. In a production, a ’|’ character separates alternatives.
 The ’(’ and ’)’ symbols group the enclosed items. The ’[’ and ’]’
 symbols indicate that the enclosed items are optional. A ’?’ symbol
 following an item indicates that the item is optional. A ’*’ symbol
 following an item indicates that the item is repeated zero, one, or
 more times. A ’+’ symbol following an item indicates that the item
 is repeated one or more times. The symbol ’--’ begins a comment that
 ends at the end of the line.

5.1. Formal Definition

 The PolicyScript language follows the syntax and semantics of ISO C++
 [10], but is limited to that which can be expressed in the EBNF
 below.

 The following keywords are reserved words and cannot be used in any
 policy script. This prevents someone from using a common keyword in
 another language as an identifier in a script, thereby confusing the
 meaning of the script. The reserved words are:

 auto, case, char, const, default, do, double, enum, extern, float,
 goto, inline, int, long, register, short, signed, sizeof, static,
 struct, switch, typedef, union, unsigned, void, and volatile.

Waldbusser, et al. Standards Track [Page 15]

RFC 4011 Policy Based Management MIB March 2005

 Any syntax error, use of a reserved keyword, reference to an unknown
 identifier, improper number of function arguments, error in coercing
 an argument to the proper type, exceeding local limitations on string
 length, or exceeding local limitations on the total amount of storage
 used by local variables will cause an RTE.

 PolicyScript permits comments using the comment delimiters, ’/*’ to
 ’*/’, or the start of comment symbol ’//’.

-- Lexical Grammar

 letter: ’_’ | ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’
 | ’g’ | ’h’ | ’i’ | ’j’ | ’k’ | ’l’ | ’m’
 | ’n’ | ’o’ | ’p’ | ’q’ | ’r’ | ’s’ | ’t’
 | ’u’ | ’v’ | ’w’ | ’x’ | ’y’ | ’z’
 | ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’
 | ’G’ | ’H’ | ’I’ | ’J’ | ’K’ | ’L’ | ’M’
 | ’N’ | ’O’ | ’P’ | ’Q’ | ’R’ | ’S’ | ’T’
 | ’U’ | ’V’ | ’W’ | ’X’ | ’Y’ | ’Z’

 digit: ’0’ | ’1’ | ’2’ | ’3’ | ’4’
 | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

 non_zero: ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

 oct_digit: ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’

 hex_digit: digit | ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’
 | ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’

 escape_seq: ’\’’ | ’\"’ | ’\?’ | ’\\’
 | ’\a’ | ’\b’ | ’\f’ | ’\n’
 | ’\r’ | ’\t’ | ’\v’
 | ’\’ oct_digit+ | ’\x’ hex_digit+

 non_quote: Any character in the ASCII character set
 except single quote (’), double quote ("),
 backslash (’\’), or newline.

 c_char: non_quote | ’"’ | escape_seq

 string_literal: ’"’ s_char* ’"’

 s_char: non_quote | ’’’ | escape_seq

 char_constant: ’’’ c_char ’’’

 decimal_constant: non_zero digit*

Waldbusser, et al. Standards Track [Page 16]

RFC 4011 Policy Based Management MIB March 2005

 octal_constant: ’0’ oct_digit*

 hex_constant: (’0x’ | ’0X’) hex_digit+

 integer_constant: decimal_constant | octal_constant | hex_constant

 identifier: letter (letter | digit)*

-- Phrase Structure Grammar

 -- Expressions

 primary_expr: identifier | integer_constant | char_constant
 | string_literal | ’(’ expression ’)’

 postfix_expr: primary_expr
 | identifier ’(’ argument_expression_list? ’)’
 | postfix_expr ’++’
 | postfix_expr ’--’
 | postfix_expr ’[’ expression ’]’

 argument_expression_list:
 assignment_expr
 | argument_expression_list ’,’ assignment_expr

 unary_expr: postfix_expr | unary_op unary_expr

 unary_op: ’+’ | ’-’ | ’˜’ | ’!’ | ’++’ | ’--’

 binary_expr: unary_expr | binary_expr binary_op unary_expr

 binary_op: ’||’ | ’&&’ | ’|’ | ’^’ | ’&’ | ’!=’
 | ’==’ | ’>=’ | ’<=’ | ’>’ | ’<’ | ’>>’
 | ’<<’ | ’-’ | ’+’ | ’%’ | ’/’ | ’*’

 assignment_expr: binary_expr
 | unary_expr assignment_op assignment_expr

 assignment_op: ’=’ | ’*=’ | ’/=’ | ’%=’ | ’+=’ | ’-=’
 | ’<<=’ | ’>>=’ | ’&=’ | ’^=’ | ’|=’

 expression: assignment_expr | expression ’,’ assignment_expr

 -- Declarations

 declaration: ’var’ declarator_list ’;’

Waldbusser, et al. Standards Track [Page 17]

RFC 4011 Policy Based Management MIB March 2005

 declarator_list: init_declarator
 | declarator_list ’,’ init_declarator

 init_declarator: identifier [’=’ assignment_expr]

 -- Statements

 statement: declaration
 | compound_statement
 | expression_statement
 | selection_statement
 | iteration_statement
 | jump_statement

 compound_statement: ’{’ statement* ’}’

 expression_statement: expression? ’;’

 selection_statement:
 ’if’ ’(’ expression ’)’ statement
 | ’if’ ’(’ expression ’)’ statement ’else’ statement

 iteration_statement:
 ’while’ ’(’ expression ’)’ statement
 | ’for’ ’(’ expression? ’;’ expression? ’;’ expression? ’)’
 statement

 jump_statement: ’continue’ ’;’
 | ’break’ ’;’
 | ’return’ expression? ’;’

 -- Root production

 PolicyScript: statement*

5.2. Variables

 To promote shorter scripts and ease in writing them, PolicyScript
 provides a loosely typed data class, "var", that can store both
 integer and string values. The native C++ types (char, int, etc.)
 are thus unnecessary and have not been carried into the subset that
 comprises this language. The semantics of the "var" type are modeled
 after those of ECMAScript[17].

 For example:

 var number = 0, name = "IETF";

Waldbusser, et al. Standards Track [Page 18]

RFC 4011 Policy Based Management MIB March 2005

 This language will be executed in an environment where the following
 typedef is declared. (Note that this typedef will not be visible in
 the policyCondition or policyAction code.)

 typedef ... var;

 Although this declaration is expressed here as a typedef, the
 ’typedef’ keyword itself is not available to be used in PolicyScript
 code.

5.2.1. The Var Class

 A value is an entity that takes on one of two types: string or
 integer.

 The String type is the set of all finite ordered sequences of zero or
 more 8-bit unsigned integer values ("elements"). The string type can
 store textual data as well as binary data sequences. Each element is
 considered to occupy a position within the sequence. These positions
 are indexed with nonnegative integers. The first element (if any) is
 at position 0, the next element (if any) at position 1, and so on.
 The length of a string is the number of elements (i.e., 8-bit values)
 within it. The empty string has length zero and therefore contains
 no elements.

 The integer type is the set of all integer values in the range
 -9223372036854775808 (-2^63) to 18446744073709551615 (2^64-1). If an
 integer operation would cause a (positive) overflow, then the result
 is returned modulo 2^64. If an integer operation would cause a
 (negative) underflow, then the result is undefined. Integer division
 rounds toward zero.

 Prior to initialization, a var object has type String and a length of
 zero.

 The policy script runtime system performs automatic type conversion
 as needed. To clarify the semantics of certain constructs it is
 useful to define a set of conversion operators: ToInteger(),
 ToString(), ToBoolean(), and Type(). These operators are not a part
 of the language; they are defined here to aid the specification of
 the semantics of the language. The conversion operators are
 polymorphic; that is, they can accept a value of any standard type.

Waldbusser, et al. Standards Track [Page 19]

RFC 4011 Policy Based Management MIB March 2005

 ToInteger

 The operator ToInteger converts its argument to a value of type
 Integer according to the following table:

 Integer The result equals the input argument
 (no conversion).
 String See grammar and note below.
 integer_constant The result equals the input argument
 (no conversion).
 string_literal See grammar and note below.
 char_constant See grammar and note below.

 ToInteger Applied to Strings

 ToInteger applied to the String Type string_literal and to
 char_constants applies the following grammar to the input. If the
 grammar cannot interpret the string as an expansion of
 numeric_string, then an RTE is generated. Note that a numeric_string
 that is empty or contains only white space is converted to 0.

 -- EBNF for numeric_string

 numeric_string : white_space* numeric? white_space*

 white_space : <TAB> | <SP> | <NBSP> | <FF> | <VT>
 | <CR> | <LF> | <LS> | <PS> | <USP>

 numeric : signed_decimal | hex_constant | octal_constant |
 enum_decimal

 signed_decimal: [’-’ | ’+’] decimal_constant

 enum_decimal: [letter | digit | ’-’]* ’(’ decimal_constant ’)’

 -- decimal_constant, hex_constant, and octal_constant are defined
 -- in the PolicyScript EBNF described earlier.

 Note that when the enum_decimal form is converted, the sequence of
 characters before the parenthesis and the pair of parenthesis
 themselves are completely ignored, and the decimal_constant inside
 the parenthesis is converted. Thus, "frame-relay(32)" translates to
 the integer 32.

 Although this will make the script more readable than using the
 constant "32", the burden is on the code writer to be accurate, as
 "ethernet-csmacd(32)" and "frame-relay(999)" will also be accepted.

Waldbusser, et al. Standards Track [Page 20]

RFC 4011 Policy Based Management MIB March 2005

 ToString

 The operator ToString converts its argument to a value of type String
 according to the following table:

 Integer Return the string containing the decimal
 representation of the input argument in
 the form of signed_decimal, except that
 no leading ’+’ will be used.
 String Return the input argument (no conversion)
 integer_constant Return the string containing the decimal
 representation of the input argument in the
 form of signed_decimal except that no
 leading ’+’ will be used.
 string_literal Return the input argument (no conversion)
 char_constant Return the string of length one containing
 the value of the input argument.

 ToBoolean

 The operator ToBoolean converts its argument to a value of type
 Integer according to the following table:

 Integer The result is 0 if the argument is 0.
 Otherwise the result is 1.
 String The results is 0 if the argument is the
 empty string. Otherwise the result is 1.
 integer_constant The result is 0 if the argument is 0.
 Otherwise the result is 1.
 string_literal The result is 0 if the argument is the
 empty string. Otherwise the result is 1.
 char_constant The result is 1.

 Operators

 The rules below specify the type conversion rules for the various
 operators.

 A++: A = ToInteger(A); A++;
 A--: A = ToInteger(A); A--;
 ++A: A = ToInteger(A); ++A;
 --A: A = ToInteger(A); --A;
 +A: ToInteger(A);
 -A: -1 * ToInteger(A);
 ˜A: ToInteger(A);
 !A: !ToBoolean(A);
 A * B, A - B, A & B, A ^ B , A | B, A << B, A >> B:
 ToInteger(A) <operator> ToInteger(B)

Waldbusser, et al. Standards Track [Page 21]

RFC 4011 Policy Based Management MIB March 2005

 A / B, A % B:
 if (ToInteger(B) == 0)
 RTE, terminate;
 else
 ToInteger(A) <operator> ToInteger(B)
 A + B:
 if (Type(A) == String || Type(B) == String)
 ToString(A) concatenated with ToString(B)
 else
 A + B
 Compound Assignment (<operator>=):
 Simply follow rules above. Note that type of LHS (Left
 Hand Side) may be changed as a result.

 A < B, A > B, A <= B, A >= B, A == B, A != B:
 if (Type(A) == String && Type(B) == String)
 lexically compare strings with strcmp() logic
 else
 ToInteger(A) <operator> ToInteger(B)
 A && B:
 if (ToBoolean(A))
 ToBoolean(B);
 else
 false;
 A || B:
 if (ToBoolean(A))
 true;

 else
 ToBoolean(B);

 if(A):
 if (ToBoolean(A))
 while(A):
 while(ToBoolean(A))
 for(...; A; ...):
 for(...; ToBoolean(A); ...)

 A[B] as a RHS (Right Hand Side) value:
 if (Type(A) != String
 || ToInteger(B) >= strlen(A))
 RTE, terminate;
 A[ToInteger(B)]
 The contents are returned as a string of length one

 A[B] = C as a LHS value:
 if (Type(A) != String
 || ToInteger(B) >= strlen(A))

Waldbusser, et al. Standards Track [Page 22]

RFC 4011 Policy Based Management MIB March 2005

 RTE, terminate;
 if (strlen(ToString(C)) == 0)
 RTE, terminate
 A[ToInteger(B)] = First octet of ToString(C)

 Note that this is only applicable in a simple assignment.

 For example, in the expression

 "getVar("ifSpeed.1") < 128000"

 getVar always returns a string and ’128000’ is implicitly an integer.
 The rules for ’<’ dictate that if either argument is an integer then
 a ’numeric less than’ is performed on ToInteger(A) and ToInteger(B).

 If "getVar("ifSpeed.1")" returns "64000", the expression can be
 translated to:

 ToInteger("64000") < ToInteger(128000); or,
 64000 < 128000; or,
 True

5.3. PolicyScript QuickStart Guide

 PolicyScript is designed so that programmers fluent in other
 languages can quickly begin to write scripts.

 One way to become familiar with a language is to see it in action.
 The following nonsensical script exercises most of the PolicyScript
 constructs (though it skips some usage options and many arithmetic
 operators).

 var x, index = 7, str = "Hello World", oid = "ifSpeed.";

 x = 0;
 while(x < 10){
 if (str < "Goodbye") /* string comparison */
 continue;
 else
 break;
 x++;
 }
 if (oidlen(oid) == 10)
 oid += "." + index; // append index to oid
 for(x = 0; x < 7; x++){
 str += "a";

Waldbusser, et al. Standards Track [Page 23]

RFC 4011 Policy Based Management MIB March 2005

 var y = 12;
 index = ((x * 7) + y) % 3;
 if (str[6] == ’W’)
 return index;
 }
 return;

 The following examples are more practical:

 For a condition:
 // Return 1 if this is an interface and it is tagged
 // with the role "gold"
 return (inSubtree(elementName(), "ifEntry")
 && roleMatch("gold"))

 A condition/action pair:
 First, register the Host Resources MIB hrSWRunEntry as a new element
 in the pmElementTypeRegTable. This will cause the policy to run for
 every process on the system. The token ’$*’ will be replaced by the
 script interpreter with a process index (see Section 7 for a
 definition of the ’$*’ token).

 The condition:
 // if it’s a process and it’s an application and it’s
 // consumed more than 5 minutes of CPU time
 return (inSubtree(elementName(), "hrSWRunEntry")
 && getVar("hrSWRunType.$*") == 4 // app, not OS or driver
 && getVar("hrSWRunPerfCPU.$*") > 30000) // 300 seconds

 The action:
 // Kill it
 setVar("hrSWRunStatus.$*", 4, Integer); // invalid(4) kills it

 A more substantial action to start an RMON2 host table on interfaces
 that match the condition:

 var pdu, index;

 pdu = newPDU();
 writeVar(pdu, 0, "hlHostControlDataSource.*",
 "ifIndex." + ev(0), Oid);
 writeVar(pdu, 1, "hlHostControlNlMaxDesiredEntries.*", 1000,
 Integer);
 writeVar(pdu, 2, "hlHostControlAlMaxDesiredEntries.*", 1000,
 Integer);
 writeVar(pdu, 3, "hlHostControlOwner.*", "policy", String);

Waldbusser, et al. Standards Track [Page 24]

RFC 4011 Policy Based Management MIB March 2005

 writeVar(pdu, 4, "hlHostControlStatus.*", "active(1)", Integer);
 if (createRow(pdu, 5, 4, 20, 65535, index) == 0
 || index == -1)
 return;

 Because PolicyScript is a least common denominator, it contains
 nothing that would astonish programmers familiar with C, C++, Perl,
 Tcl, JavaScript, or Python. Although a new programmer may attempt to
 use language constructs that aren’t available in PolicyScript, s/he
 should be able to understand any existing PolicyScript and will
 likely know how to use anything that is valid in PolicyScript. The
 lists below quickly enumerate the changes of note for programmers
 coming from some particular languages. These lists won’t describe
 the unavailable constructs, but it is easy to see from the definition
 above what is available.

5.3.1. Quickstart for C Programmers

 - Character constants (i.e., ’c’) are treated as one-character
 strings, not as integers. So operations such as (’M’ - ’A’) or (x
 + ’A’) will not perform as expected.
 - Functions can change the value of arguments even though they are
 not pointers (or called like ’&arg’).
 - All variables are in the same scope.

5.3.2. Quickstart for Perl Programmers

 - Comments are ’/* comment */’ and ’// till end of line’, not ’#’.
 - No need to put a ’$’ in front of variables.
 - Strings are compared with ==, <=, <, etc. (details in Sec. 6.2.1).
 - Strings are concatenated with ’+’ (details in Sec. 6.2.1).
 - No variable substitution in "" strings. ’’ strings are 1 char
 only.
 - Variables must be declared before use (but no type is necessary).
 - All variables are in the same scope.

5.3.3. Quickstart for TCL Programmers

 - Comments are ’/* comment */’ and ’// till end of line’, not ’#’.
 - No need to put a ’$’ in front of variables.
 - Function calls are func-name(arg1, arg2, ...).
 - Square braces [] don’t interpret their contents.
 - Double quotes "" surround a string, but no substitutions are
 performed ("" is like { } in TCL).
 - Statements are terminated by a semicolon (;).
 - Instead of "Set a b", use "b = a;".
 - Strings are concatenated with ’+’ (details in Sec. 6.2.1).
 - All variables are in the same scope.

Waldbusser, et al. Standards Track [Page 25]

RFC 4011 Policy Based Management MIB March 2005

5.3.4. Quickstart for Python Programmers

 - Comments are ’/* comment */’ and ’// till end of line’, not ’#’.
 - Single quotes can be used only for single-character strings (’a’).
 - Indentation doesn’t matter. Braces { } define blocks.
 - Variables must be declared before use (but no type is necessary).
 - The expressions for if and while are always surrounded by
 parenthesis, as in "if (x < 5)".
 - ’for’ syntax is "for(expression; expression; expression)" (see
 EBNF).
 - All variables are in the same scope.

5.3.5. Quickstart for JavaScript/ECMAScript/JScript Programmers

 - Variables must be declared before use.
 - Functions can change the value of arguments.
 - All variables are in the same scope.

5.4. PolicyScript Script Return Values

 A PolicyScript script execution is normally ended by the execution of
 a return statement, or by having the flow of execution reach the end
 of the final statement in the script. A normal script execution
 always returns a Boolean value. If no explicit value is specified in
 the return statement, or if the flow of control proceeds through the
 end of the script, the return value is implicitly zero. If an
 expression is provided with the return statement, the expression is
 evaluated, and the result of the expression is implicitly converted
 with the ToBoolean operator before being returned to the script
 execution environment.

 The return value of a policyCondition script is used to determine
 whether the associated policyAction script is executed. If the
 returned value is zero, the associated policyAction script is not
 executed. If the returned value is one, the associated policyAction
 script will be executed.

 The return value of a policyAction script is ignored.

 An RTE or invocation of the fail() function will cause the return
 value of the script to be set to zero. Note however, that execution
 of the defer() or fail() functions may set the defer attribute so
 that the lower precedence script may be executed. This is
 independent of the return value of the policy script execution.

Waldbusser, et al. Standards Track [Page 26]

RFC 4011 Policy Based Management MIB March 2005

6. Index Information for ’this element’

 PolicyScript code needs a convenient way to get the components of the
 index for ’this element’ so that they can perform SNMP operations on
 it or on related elements.

 Two mechanisms are provided.

 1. For all OID input parameters to all SNMP Library Functions (but
 not OID utility functions), the token "$n" (’$’ followed by an
 integer between 0 and 128) can be used in place of any decimal
 sub-identifier. This token is expanded by the agent at execution
 time to contain the nth subid of the index for the current
 element. For example, if the element is interface 7, and the
 objectIdentifier is "1.3.6.1.2.1.2.2.1.3.$0", it will be expanded
 to "1.3.6.1.2.1.2.2.1.3.7". The special token "$*" is expanded to
 contain all of the subidentifiers of the index of the current
 element, separated by ’.’ characters.

 It is an RTE if a token is specified that is beyond the length of
 the index for the current element.

 Note that the "$n" convention is only active within strings.

 2. The ec() and ev() functions allow access to the components of the
 index for ’this element’. ec() takes no argument and returns the
 number of index components that exist. ev() takes an integer
 argument specifying which component of the index (numbered
 starting at 0) and returns an integer containing the value of the
 n’th subidentifier. Refer to the Library functions section for
 the complete definition of ec() and ev().

 For example, if ’this element’ is frCircuitDLCI.5.57
 (ifIndex = 5, DLCI = 57)
 then ec() returns 2
 ev(0) returns 5
 ev(1) returns 57

 This is helpful when one wishes to address a related element.
 Extending the previous example, to find the port speed of the
 port, the circuit (above) runs over:

 portSpeed = getVar("ifSpeed." + ev(0));

 A script may check the type of ’this element’ by calling the
 elementName() function. Although it is possible to write a script
 that will work with different types of elements, many scripts will

Waldbusser, et al. Standards Track [Page 27]

RFC 4011 Policy Based Management MIB March 2005

 assume a particular element type and will work incorrectly if used
 on different element types.

7. Library Functions

 Library functions are built-in functions available primarily to
 provide access to information on the local system or to manipulate
 this information more efficiently. A group of functions is organized
 into a library, the unit of conformance for function implementation.
 In order to claim conformance to a library, an implementation must
 implement all functions in a library to the specifications of the
 library.

 In order for a management station or a condition or action to
 understand whether a certain library of functions is implemented,
 each library will have a name that it registers in the role table as
 a characteristic of the system element ("0.0") in the default SNMP
 context. Thus, conformance to a library can be tested with the
 roleMatch library function (in the base library) with the call
 roleMatch ("libraryName", "0.0").

 Note that in the descriptions of these functions below, the function
 prototype describes the type of argument expected. Even though
 variables are not declared with a particular type, their contents
 must be appropriate for each function argument. If the type is
 variable, the keyword ’var’ will be used. If only a string is
 appropriate, the keyword ’string’ will be used. If only an integer
 is appropriate, the keyword ’integer’ will be used. If the argument
 is declared as ’string’ or ’integer’ and a value of a different type
 is passed, the argument will be coerced with ToInteger() or
 ToString(). Any failure of this coercion will cause an RTE (in
 particular for ToInteger(), which will fail if its string-valued
 argument is not a well-formed integer).

 In the function prototype, if the ’&’ character precedes the
 identifier for an argument, that argument may be modified by the
 function (e.g., "integer &result, ...)"). Arguments without the ’&’
 character cannot be modified by the function. In a script,
 modifiable arguments don’t have to be preceded by a ’&’. It is an
 RTE if a constant is passed to a modifiable function argument
 (regardless of whether the function actually writes to the argument).

 In the function prototype, the ’[’ and ’]’ characters surround
 arguments that are optional. In PolicyScript code, the optional
 argument may only be included if all optional arguments to the left
 of it are included. The function may place restrictions on when an
 optional argument must, or must not, be included.

Waldbusser, et al. Standards Track [Page 28]

RFC 4011 Policy Based Management MIB March 2005

 In the function prototype, if a type is listed before the name of the
 function, the function returns a value of that type. If no type is
 listed, the function returns no value.

8. Base Function Library

 A standard base library of functions is available to all systems that
 implement this specification. This library is registered with the
 name "pmBaseFunctionLibrary". Although the specification of this
 library is modularized into 4 separate sections, conformance to the
 library requires implementation of all functions in all sections.

 The sections are:

 - SNMP library functions
 - Policy library functions
 - Utility functions
 - Library Functions

8.1. SNMP Library Functions

 Two sets of SNMP Library functions are available with different
 situations in mind:

 - Convenience SNMP Functions

 In an effort to keep simple things simple, these functions are easy
 to use and code that is easy to understand. These functions will
 suffice for the majority of situations, where a single variable is
 referenced and the desired error recovery is simply (and
 immediately) to give up (and move to the next policy-element
 combination). In more complex cases, the General SNMP Functions
 can be used at the cost of several times the code complexity.

 The convenience SNMP functions are getVar, exists, setVar,
 setRowStatus, createRow, counterRate, and searchColumn.

 - General SNMP Functions

 The General SNMP functions allow nearly any legal SNMP Message to
 be generated, including those with multiple varbinds, getNext
 operations, notifications, and messages with explicit addressing or
 security specifications.

 The general SNMP functions are writeVar, readVar, snmpSend,
 readError, and writeBulkParameters.

Waldbusser, et al. Standards Track [Page 29]

RFC 4011 Policy Based Management MIB March 2005

8.1.1. SNMP Operations on Non-Local Systems

 From time to time, a script may have to perform an operation on a
 different SNMP system than that on which ’this element’ resides.
 Scripts may also have to specify the use of alternate security
 parameters. In order to do this, the following optional arguments
 are provided for the SNMP library functions:

 snmp-function(...[, integer mPModel,
 string tDomain, string tAddress,
 integer secModel, string secName,
 integer secLevel, string contextEngineID
])

 For example:

 getVar("sysDescr.0", "", SNMPv3, "transportDomainUdpIpv4",
 "192.168.1.1:161", USM, "joe", NoAuthNoPriv);

 The use of these arguments is denoted in function definitions by the
 keyword ’NonLocalArgs’. The definitions of these arguments are as
 follows:

 ’mPModel’ is the integer value of the SnmpMessageProcessingModel
 to use for this operation.

 ’tDomain’ is a string containing an ASCII dotted-decimal object
 identifier representing the transport domain to use for this
 operation.

 ’tAddress’ is a string containing the transport address formatted
 according to the ’tDomain’ argument. The ASCII formats for
 various values of ’tDomain’ are defined by the DISPLAY-HINT for a
 TEXTUAL-CONVENTION that represents an address of that type. The
 DISPLAY-HINTs used are:

 tDomain Source of DISPLAY-HINT [5] [11]
 ------- ----------------------
 transportDomainUdpIpv4 TransportAddressIPv4
 transportDomainUdpIpv6 TransportAddressIPv6
 transportDomainUdpDns TransportAddressDns
 snmpCLNSDomain snmpOSIAddress
 snmpCONSDomain snmpOSIAddress
 snmpDDPDomain snmpNBPAddress
 snmpIPXDomain snmpIPXAddress
 rfc1157Domain snmpUDPAddress
 Other Use DISPLAY-HINT "1x:"

Waldbusser, et al. Standards Track [Page 30]

RFC 4011 Policy Based Management MIB March 2005

 ’secModel’ is the integer value of the SnmpSecurityModel to use
 for this operation.

 ’secName’ is a string value representing the SnmpSecurityName to
 use for this operation.

 ’secLevel’ is the integer value of the SnmpSecurityLevel to use
 for this operation.

 An SNMP operation will be sent to the target system by using
 security parameters retrieved from a local configuration datastore
 based on ’secModel’, ’secName’, and ’secLevel’. It is the
 responsibility of the agent to ensure that sensitive information
 in the local configuration datastore is used on behalf of the
 correct principals, as identified by the security credentials of
 the last entity to modify the pmPolicyAdminStatus for a policy.

 To illustrate how this must be configured, consider an example in
 which ’joe’ installs a policy on ’PMAgent’ that will periodically
 configure objects on ’TargetAgent’ with the credentials of
 ’Operator’. The following conditions must be true for this policy
 to execute with the proper privileges:

 - ’Operator’s security credentials for TargetAgent must be
 installed in PMAgent’s local configuration datastore (e.g.,
 usmUserTable [6]) indexed by TargetAgent’s engineID and
 ’Operator’.
 - VACM [9] must be configured on PMAgent so that ’joe’ has access
 to the above entry in the appropriate MIB for the local
 configuration datastore (e.g., usmUserTable).
 - ’joe’ must be the last user to modify the pmPolicyAdminStatus
 object for the policy.

 See the Security Considerations section for more information.

 For convenience, constants for ’mPModel’, ’secModel’, and
 ’secLevel’ are defined in the "Constants" section below.

 ’contextEngineID’ is a string representing the contextEngineID of
 the SNMP entity targeted by this operation. It is encoded as a
 pair of hex digits (upper- and lowercase are valid) for each octet
 of the contextEngineID. If ’tDomain’ and ’tAddress’ are provided
 but ’contextEngineID’ is not, then the operation will be directed
 to the SNMP entity reachable at ’tDomain’ and ’tAddress’.

 In order for PolicyScript code to use any of these arguments, all
 optional arguments to the left must be included. ’mPModel’,
 ’tDomain’, ’tAddress’, ’secModel’, ’secName’, and ’secLevel’ must

Waldbusser, et al. Standards Track [Page 31]

RFC 4011 Policy Based Management MIB March 2005

 be used as a group; if one is specified, they must all be.
 ’contextEngineID’ may only be specified if all others are
 specified.

 Note that a function that uses NonLocalArgs must provide a
 parameter for the contextName that will be required when the
 NonLocalArgs are present. Many functions will have the following
 logic:

 ContextName NonLocalArgs
 Supplied Supplied

 No No Addressed to default context on
 local system.
 Yes No Addressed to named context on
 local system.
 Yes Yes Addressed to named context on
 potentially remote system.
 No Yes Not allowed.

8.1.2. Form of SNMP Values

 Many of the library functions have input or output parameters that
 may be one of the many SMI data types. The actual type is not
 encoded in the value but is specified elsewhere, possibly by nature
 of the situation in which it is used. The exact usage for input and
 output is as follows:

 Any Integer value
 (INTEGER, Integer32, Counter32, Counter64, Gauge32, Unsigned32,
 TimeTicks, Counter64):

 On input:
 An Integer or a String that can be successfully coerced to an
 Integer with the ToInteger() operator. It is an RTE if a
 string is passed that cannot be converted by ToInteger() into
 an integer.

 A string of the form

 enum_decimal: [letter | digit | ’-’]* ’(’ decimal_constant
 ’)’

 will also be accepted. In this case the sequence of characters
 before the parentheses and the parentheses themselves are
 completely ignored, and the decimal_constant inside the
 parentheses is converted. Thus, "frame-relay(32)" translates
 to the integer 32.

Waldbusser, et al. Standards Track [Page 32]

RFC 4011 Policy Based Management MIB March 2005

 On output:
 An Integer containing the returned value.

 Octet String
 On input:
 Either a String or an Integer. If an Integer, it will be
 coerced to a String with the ToString() function. This string
 will be used as an unencoded representation of the octet string
 value.

 On output:
 A String containing the unencoded value of the octet string.

 Object Identifier
 On input and on output:
 A String containing a decimal ASCII encoded object identifier
 of the following form:

 oid: subid [’.’ subid]* [’.’]
 subid: ’0’ | decimal_constant

 It is an RTE if an Object Identifier argument is not in the form
 above. Note that a trailing ’.’ is acceptable and will simply be
 ignored. (Note, however, that a trailing dot could cause a
 strncmp() comparison of two otherwise-identical OIDs to fail;
 instead, use oidncmp().)

 Note that ASCII descriptors (e.g., "ifIndex") are never used in
 these encodings "over the wire". They are never returned from
 library functions; nor are they ever accepted by them. NMS user
 interfaces are encouraged to allow humans to view object
 identifiers with ASCII descriptors, but they must translate those
 descriptors to dotted-decimal format before sending them in MIB
 objects to policy agents.

 Null
 On input:
 The input is ignored.

 On output:
 A zero length string.

Waldbusser, et al. Standards Track [Page 33]

RFC 4011 Policy Based Management MIB March 2005

8.1.3. Convenience SNMP Functions

8.1.3.1. getVar()

 The getVar() function is used to retrieve the value of an SNMP MIB
 object instance.

 string getVar(string oid [, string contextName, NonLocalArgs])

 ’oid’ is a string containing an ASCII dotted-decimal
 representation of an object identifier (e.g.,
 "1.3.6.1.2.1.1.1.0").

 The optional ’contextName’ argument contains the SNMP context
 on which to operate. If ’contextName’ is not present, the
 contextName of ’this element’ will be used. If ’contextName’
 is the zero-length string, the default context is used.

 The optional ’NonLocalArgs’ provide addressing and security
 information to perform an SNMP operation on a system different
 from that of ’this element’.

 It is an RTE if the queried object identifier value does not
 exist.

 This function returns a string containing the returned value,
 encoded according to the returned type. Note that no actual
 SNMP PDU has to be generated and parsed when the policy MIB
 agent resides on the same system as the managed elements.

 It is recommended that NMS user interfaces display and allow
 input of MIB object names by their descriptor values, followed
 by the index in dotted-decimal form (e.g., "ifType.7").

8.1.3.2. exists()

 The exists() function is used to verify the existence of an SNMP MIB
 object instance.

 integer exists(string oid [, string contextName, NonLocalArgs])

 ’oid’ is a string containing an ASCII dotted-decimal
 representation of an object identifier (e.g.,
 "1.3.6.1.2.1.1.1.0").

Waldbusser, et al. Standards Track [Page 34]

RFC 4011 Policy Based Management MIB March 2005

 The optional ’contextName’ argument contains the SNMP context
 on which to operate. If ’contextName’ is not present, the
 contextName of ’this element’ will be used. If ’contextName’
 is the zero-length string, the default context is used.

 The optional ’NonLocalArgs’ provide addressing and security
 information to perform an SNMP operation on a system different
 from that of ’this element’.

 This function returns the value 1 if the SNMP instance exists
 and 0 if it doesn’t exist. Note that no actual SNMP PDU has to
 be generated and parsed when the policy MIB agent resides on
 the same system as the managed elements.

 It is recommended that NMS user interfaces display and allow
 input of MIB object names by their descriptor values, followed
 by the index in dotted-decimal form (e.g., "ifType.7").

8.1.3.3. setVar()

 The setVar() function is used to set a MIB object instance to a
 certain value. The setVar() function is only valid in policyActions.

 setVar(string oid, var value, integer type
 [, string contextName, NonLocalArgs])

 ’oid’ is a string containing an ASCII dotted-decimal
 representation of an object identifier (e.g.,
 "1.3.6.1.2.1.1.1.0").

 ’value’ is a string encoded in the format appropriate to the
 ’type’ parameter. The agent will set the variable specified by
 ’oid’ to the value specified by ’value’.

 ’type’ will be the type of the ’value’ parameter and will be
 set to one of the values for DataType Constants.

 The optional ’contextName’ argument contains the SNMP context
 on which to operate. If ’contextName’ is not present, the
 contextName of ’this element’ will be used. If ’contextName’
 is the zero length string, the default context is used.

 The optional ’NonLocalArgs’ provide addressing and security
 information to perform an SNMP operation on a system different
 from that of ’this element’. Note that no actual SNMP PDU has
 to be generated and parsed when the policy MIB agent resides on
 the same system as the managed elements.

Waldbusser, et al. Standards Track [Page 35]

RFC 4011 Policy Based Management MIB March 2005

 It is an RTE if the set encounters any error.

 It is recommended that NMS user interfaces display and allow
 input of MIB object names by their descriptor values, followed
 by the index in dotted-decimal form (e.g., "ifType.7").

8.1.3.4. searchColumn()

 integer searchColumn(string columnoid, string &oid,
 string pattern, integer mode
 [, string contextName, NonLocalArgs])

 searchColumn performs an SNMP walk on a portion of the MIB
 searching for objects with values equal to the ’pattern’
 parameter.

 ’columnoid’ constrains the search to those variables that share
 the same OID prefix (i.e., those that are beneath it in the OID
 tree).

 A getnext request will be sent requesting the object identifier
 ’oid’. If ’oid’ is an empty string, the value of ’columnoid’
 will be sent.

 The value returned in each response packet will be transformed
 to a string representation of the value of the returned
 variable. The string representation of the value will be
 formed by putting the value in the form dictated by the "Form
 of SNMP Values" rules, and then by performing the ToString()
 function on this value, forming ’SearchString’.

 The ’mode’ value controls what type of match to perform on this
 ’SearchString’ value. There are 6 possibilities for mode:

 Mode Search Action
 ExactMatch Case sensitive exact match of ’pattern’
 and ’SearchString’.
 ExactCaseMatch Case insensitive exact match of ’pattern’
 and ’SearchString’.
 SubstringMatch Case sensitive substring match, finding
 ’pattern’ in ’SearchString’.
 SubstringCaseMatch Case insensitive substring match, finding
 ’pattern’ in ’SearchString’.
 RegexpMatch Case sensitive regular expression match,
 searching ’SearchString’ for the regular
 expression given in ’pattern’.

Waldbusser, et al. Standards Track [Page 36]

RFC 4011 Policy Based Management MIB March 2005

 RegexpCaseMatch Case insensitive regular expression match,
 searching ’SearchString’ for the regular
 expression given in ’pattern’.

 Constants for the values of ’mode’ are defined in the
 ’Constants’ section below.

 searchColumn uses the POSIX extended regular expressions
 defined in POSIX 1003.2.

 The optional ’contextName’ argument contains the SNMP context
 on which to operate. If ’contextName’ is not present, the
 contextName of ’this element’ will be used. If ’contextName’
 is the zero-length string, the default context is used.

 The optional ’NonLocalArgs’ provide addressing and security
 information to perform SNMP operations on a system different
 from that of ’this element’.

 If a match is found, ’oid’ is set to the OID of the matched
 value, and 1 is returned. If the search traverses beyond
 columnoid or returns an error without finding a match, zero is
 returned, and ’oid’ isn’t modified.

 To find the first match, the caller should set ’oid’ to the
 empty string. To find additional matches, subsequent calls to
 searchColumn should have ’oid’ set to the OID of the last
 match, an operation that searchColumn performs automatically.

 For example:
 To find an ethernet interface
 oid = "";
 searchColumn("ifType", oid, "6", 0);

 This sends a getnext request for ifType and continues to walk
 the tree until a value matching 6 is found or a variable
 returns that is not in the ’ifType’ subtree.

 To find the next ethernet interface, assuming that interface 3
 was discovered to be the first:

 oid = "ifType.3";
 searchColumn("ifType", oid, "6", 0);

Waldbusser, et al. Standards Track [Page 37]

RFC 4011 Policy Based Management MIB March 2005

 In a loop to determine all the ethernet interfaces, this looks
 as follows:

 oid = "";
 while(searchColumn("ifType", oid, "6", 0)){
 /* Do something with oid */
 }

 Note that in the preceding examples, "ifType" is used as a
 notational convenience, and the actual code downloaded to the
 policy MIB agent must use the string "1.3.6.1.2.1.2.2.1.3" as
 there may be no MIB compiler (or MIB file) available on the
 policy MIB agent.

 Note that if the value of ’columnoid’ is too short and thus
 references too much of the object identifier tree (e.g.,
 "1.3.6"), ’columnoid’ could end up searching a huge number of
 variables (if the value was "1.3.6", it would search ALL
 variables on the agent). It is the responsibility of the
 caller to make sure that ’columnoid’ is set appropriately.

8.1.3.5. setRowStatus()

 integer setRowStatus(string oid, integer maxTries
 [, integer freeOnException , integer seed
 , string contextName, NonLocalArgs])

 setRowStatus is used to automate the process of finding an
 unused row in a read-create table that uses RowStatus whose
 index contains an arbitrary integer component for uniqueness.

 ’oid’ is a string containing an ASCII dotted-decimal
 representation of an object identifier, with one of the subids
 replaced with a ’*’ character (e.g.,
 "1.3.6.1.3.1.99.1.2.1.9.*"). ’oid’ must reference an
 ’instance’ of the RowStatus object, and the ’*’ must replace
 any integer index item that may be set to some random value.

 setRowStatus will come up with a number for the selected index
 item and will attempt to create the instance with the
 createAndWait state. If the attempt fails, it will retry with
 a different random index value. It will attempt this no more
 than ’maxTries’ times.

 If the optional ’freeOnException’ argument is present and equal
 to 1, the agent will free this row by setting RowStatus to
 ’destroy’ if, later in the same script invocation, this script

Waldbusser, et al. Standards Track [Page 38]

RFC 4011 Policy Based Management MIB March 2005

 dies with a run-time exception or by a call to fail(). Note
 that this does not apply to exceptions experienced in
 subsequent invocations of the script.

 If the optional ’seed’ argument is present, the initial index
 will be set to ’seed’. Otherwise it will be random. ’seed’
 may not be present if the ’freeOnException’ argument is not
 present.

 The optional ’contextName’ argument contains the SNMP context
 on which to operate. If ’contextName’ is not present, the
 contextName of ’this element’ will be used. If ’contextName’
 is the zero-length string, the default context is used.

 The optional ’NonLocalArgs’ provide addressing and security
 information to perform an SNMP operation on a system different
 from that of ’this element’.

 setRowStatus returns the successful integer value for the
 index. If it is unsuccessful after ’maxTries’, or if zero or
 more than one ’*’ is in OID, -1 will be returned.

 The createRow function (below) can also be used when adding
 rows to tables. Although createRow has more functionality,
 setRowStatus may be preferable in certain situations (for
 example, to have the opportunity to inspect default values
 created by the agent).

8.1.3.6. createRow()

 integer createRow(integer reqPDU, integer reqNumVarbinds,
 integer statusColumn, integer maxTries,
 integer indexRange,
 integer &respPDU, integer &respNumVarbinds,
 integer &index
 [, integer freeOnException, string contextName,
 NonLocalArgs])

 createRow is used to automate the process of creating a row in
 a read-create table whose index contains an arbitrary integer
 component for uniqueness. In particular, it encapsulates the
 algorithm behind either the createAndWait or createAndGo
 mechanism and the algorithm for finding an unused row in the
 table. createRow is not useful for creating rows in tables
 whose indexes don’t contain an arbitrary integer component.

 createRow will perform the operation by sending ’reqPDU’ and
 returning the results in ’respPDU’. Both ’reqPDU’ and

Waldbusser, et al. Standards Track [Page 39]

RFC 4011 Policy Based Management MIB March 2005

 ’respPDU’ must previously have been allocated with newPDU.
 ’reqPDU’ and ’respPDU’ may both contain the same PDU handle, in
 which case the ’reqPDU’ is sent and then replaced with the
 contents of the received PDU.

 ’reqNumVarbinds’ is an integer greater than zero that specifies
 which varbinds in the PDU will be used in this operation. The
 first ’reqNumVarbinds’ in the PDU are used. Each such varbind
 must be of a special form in which the object name must have
 one of its subids replaced with a ’*’ character (e.g.,
 "1.3.6.1.3.1.99.1.2.1.9.*"). The subid selected to be replaced
 will be an integer index item that may be set to some random
 value. The same subid should be selected in each varbind in
 the PDU.

 ’respNumVarbinds’ will be modified to contain the number of
 varbinds received in the last response PDU.

 ’statusColumn’ identifies which varbind in ’pdu’ should be
 treated as the RowStatus column, where 0 identifies the 1st
 varbind.

 createRow will come up with a random integer index value and
 will substitute that value in place of the ’*’ subid in each
 varbind. It will then set the value of the RowStatus column to
 select the ’createAndGo’ mechanism and execute the set. If the
 attempt fails due to the unavailability of the ’createAndGo’
 mechanism, it will retry with the ’createAndWait’ mechanism
 selected. If the attempt fails because the chosen index value
 is already in use, the operation will be retried with a
 different random index value. It will continue to retry
 different index values until it succeeds, until it has made
 ’maxTries’ attempts, or until it encounters an error. The
 value of ’maxTries’ should be chosen to be high enough to
 minimize the chance that as the table fills up an attempt to
 create a new entry will ’collide’ too often and fail.

 All random index values must be between 1 and ’indexRange’,
 inclusive. This is so that values are not attempted for an
 index that fall outside of that index’s restricted range (e.g.,
 1..65535).

 If the optional ’freeOnException’ argument is present and equal
 to 1, the agent will free this row by setting RowStatus to
 ’destroy’ if, later in the same script invocation, this script
 dies with a run-time exception or by a call to fail(). Note
 that this does not apply to exceptions experienced in
 subsequent invocations of the script.

Waldbusser, et al. Standards Track [Page 40]

RFC 4011 Policy Based Management MIB March 2005

 The optional ’contextName’ argument contains the SNMP context
 on which to operate. If ’contextName’ is not present, the
 contextName of ’this element’ will be used. If ’contextName’
 is the zero-length string, the default context is used.

 The optional ’NonLocalArgs’ provide addressing and security
 information to perform an SNMP operation on a system different
 from that of ’this element’.

 Note that no actual SNMP PDU has to be generated and parsed
 when the policy MIB agent resides on the same system as the
 managed elements. If no PDU is generated, the agent must
 correctly simulate the behavior of the SNMP Response PDU,
 particularly in case of an error.

 This function returns zero unless an error occurs, in which
 case it returns the proper SNMP Error Constant. If an error
 occurred, respPDU will contain the last response PDU as
 received from the agent unless no response PDU was received, in
 which case respNumVarbinds will be 0. In any event, readError
 may be called on the PDU to determine error information for the
 transaction.

 The ’index’ parameter returns the chosen index. If successful,
 ’index’ will be set to the successful integer index. If no
 SNMP error occurs but the operation does not succeed due to the
 following reasons, ’index’ will be set to -1:

 1) Unsuccessful after ’maxTries’.
 2) An object name had no ’*’ in it.
 3) An object name had more than one ’*’ in it.

 For example, createRow() might be used as follows:

 var index, pdu = newPDU(), nVars = 0;

 writeVar(pdu, nVars++, "hlHostControlDataSource.*",
 "ifIndex." + ev(0), Oid);
 writeVar(pdu, nVars++, "hlHostControlNlMaxDesiredEntries.*",
 1000, Integer);
 writeVar(pdu, nVars++, "hlHostControlAlMaxDesiredEntries.*",
 1000, Integer);
 writeVar(pdu, nVars++, "hlHostControlOwner.*", "policy",
 String);
 writeVar(pdu, nVars++, "hlHostControlStatus.*", "active(1)",
 Integer);
 if (createRow(pdu, nVars, 4, 20, 65535,
 pdu, nVars, index) != 0

Waldbusser, et al. Standards Track [Page 41]

RFC 4011 Policy Based Management MIB March 2005

 || index == -1)
 return;
 // index now contains index of new row

8.1.3.7. counterRate()

 When a policy wishes to make a decision based on the rate of a
 counter, it faces a couple of problems:

 1. It may have to run every X minutes but have to make decisions on
 rates calculated over at least Y minutes, where Y > X. This would
 require the complexity of managing a queue of old counter values.

 2. The policy script has no control over exactly when it will run.

 The counterRate() function is designed to surmount these problems
 easily.

 integer counterRate(string oid, integer minInterval
 [, integer 64bit,
 string discOid, integer discMethod,
 string contextName, NonLocalArgs])

 ’counterRate’ retrieves the variable specified by oid once per
 invocation. It keeps track of timestamped values retrieved on
 previous invocations by this execution context so that it can
 calculate a rate over a period longer than that since the last
 invocation.

 ’oid’ is the object identifier of the counter value that will
 be retrieved. The most recent previously saved value of the
 same object identifier that is at least ’minInterval’ seconds
 old will be subtracted from the newly retrieved value, yielding
 a delta. If ’minInterval’ is zero, this delta will be
 returned. Otherwise, this delta will be divided by the number
 of seconds elapsed between the two retrievals, and the
 integer-valued result will be returned (rounding down when
 necessary).

 If there was no previously saved retrieval older than
 ’minInterval’ seconds, then -1 will be returned. It is an RTE
 if the query returns noSuchName, noSuchInstance, or
 noSuchObject or an object that is not of type Counter32 or
 Counter64.

Waldbusser, et al. Standards Track [Page 42]

RFC 4011 Policy Based Management MIB March 2005

 The delta calculation will allow for 32-bit counter semantics
 if it encounters rollover between the two retrievals, unless
 the optional argument ’64bit’ is present and equal to 1, in
 which case it will allow for 64-bit counter semantics.

 ’discOid’ and ’discMethod’ may only be present together.
 ’discOid’ contains an object identifier of a discontinuity
 indicator value that will be retrieved simultaneously with each
 counter value:

 1. If ’discMethod’ is equal to 1 and the discontinuity
 indicator is less than the last one retrieved, then a
 discontinuity is indicated.
 2. If ’discMethod’ is equal to 2 and the discontinuity
 indicated is different from the last one retrieved, then
 a discontinuity is indicated.

 If this value indicates a discontinuity, this counter value
 (and its timestamp) will be stored, but all previously stored
 counter values will be invalidated and -1 will be returned.

 The implementation will have to store a number of timestamped
 counter values. The implementation must keep all values that
 are newer than minInterval seconds, plus the newest value that
 is older than minInterval seconds. Other than this one value
 that is older than minInterval seconds, the implementation
 should discard any older values.

 For example:
 Policy that executes every 60 seconds:
 rate = counterRate("ifInOctets.$*", 300);
 if (rate > 1000000)
 ...

 Another example, with a discontinuity indicator:

 Policy that executes every 60 seconds:
 rate = counterRate("ifInOctets.$*", 300, 0,
 "sysUpTime.0", 1);
 if (rate > 1000000)
 ...

 Another example, with zero minInterval:
 Policy that executes every 60 seconds:
 delta = counterRate("ifInErrors.$*", 0);
 if (delta > 100)
 ...

Waldbusser, et al. Standards Track [Page 43]

RFC 4011 Policy Based Management MIB March 2005

 The optional ’contextName’ argument contains the SNMP context
 on which to operate. If ’contextName’ is not present, the
 contextName of ’this element’ will be used. If ’contextName’
 is the zero-length string, the default context is used.

8.1.4. General SNMP Functions

 It is desirable that a general SNMP interface have the ability to
 perform SNMP operations on multiple variables at once and that it
 allow multiple varbind lists to exist at once. The newPdu, readVar,
 and writeVar functions exist to provide these facilities in a
 language without pointers, arrays, and memory allocators.

 newPDU is called to allocate a PDU and return an integer handle to
 it. As PDUs are automatically freed when the script exits and can be
 reused during execution, there is no freePDU().

 readVar and writeVar access a variable length varbind list for a PDU.
 The PDU handle and the index of the variable within that PDU are
 specified in every readVar and writeVar operation. Once a PDU has
 been fully specified by one or more calls to writeVar, it is passed
 to snmpSend (by referencing the PDU handle) and the number of
 varbinds to be included in the operation. When a response is
 returned, the contents of the response are returned in another PDU
 and may be read by one or more calls to readVar. Error information
 may be read from the PDU with the readError function. Because
 GetBulk PDUs send additional information in the SNMP header, the
 writeBulkParameters function is provided to configure these
 parameters.

 Varbinds in this data store are created automatically whenever they
 are written by any writeVar or snmpSend operation.

 For example:
 var pdu = newPDU();
 var nVars = 0, oid, type, value;

 writeVar(pdu, nVars++, "sysDescr.0", "", Null);
 writeVar(pdu, nVars++, "sysOID.0", "", Null);
 writeVar(pdu, nVars++, "ifNumber.0", "", Null);
 if (snmpSend(pdu, nVars, Get, pdu, nVars))
 return;
 readVar(pdu, 0, oid, value, type);
 readVar(pdu, 1, oid, value, type);
 readVar(pdu, 2, oid, value, type);
 ...

Waldbusser, et al. Standards Track [Page 44]

RFC 4011 Policy Based Management MIB March 2005

 or,
 var pdu = newPDU();
 var nVars = 0, oid1, oid2;

 writeVar(pdu, nVars++, "ifIndex", "", Null);
 writeVar(pdu, nVars++, "ifType", "", Null);
 while(!done){
 if (snmpSend(pdu, nVars, Getnext, pdu, nVars))
 continue;
 readVar(pdu, 0, oid1, value, type);
 readVar(pdu, 1, oid2, value, type);
 /* leave OIDs alone, now PDU #0 is set up for next step
 in table walk. */
 if (oidncmp(oid1, "ifIndex", oidlen("ifIndex")))
 done = 0;
 ...
 }

 Note that in the preceding examples, descriptors such as ifType and
 sysDescr are used in object identifiers solely as a notational
 convenience. The actual code downloaded to the policy MIB agent must
 use a dotted decimal notation only, as there may be no MIB compiler
 (or MIB file) available on the policy MIB agent.

 To conform to this specification, implementations must allow each
 policy script invocation to allocate at least 5 PDUs with at least 64
 varbinds per list. It is suggested that implementations limit the
 total number of PDUs per invocation to protect other script
 invocations from a malfunctioning script (e.g., a script that calls
 newPDU() in a loop).

8.1.4.1. newPDU()

 integer newPDU()

 newPDU will allocate a new PDU and return a handle to the PDU.
 If no PDU could be allocated, -1 will be returned. The PDU’s
 initial values of nonRepeaters and maxRepetitions will be zero.

8.1.4.2. writeVar()

 writeVar(integer pdu, integer varBindIndex,
 string oid, var value, integer type)

 writeVar will store ’oid’, ’value’, and ’type’ in the specified
 varbind.

 ’pdu’ is the handle to a PDU allocated by newPDU().

Waldbusser, et al. Standards Track [Page 45]

RFC 4011 Policy Based Management MIB March 2005

 ’varBindIndex’ is a non-negative integer that identifies the
 varbind within the specified PDU modified by this call. The
 first varbind is number 0.

 ’oid’ is a string containing an ASCII dotted-decimal
 representation of an object identifier (e.g.,
 "1.3.6.1.2.1.1.1.0").

 ’value’ is the value to be stored, of a type appropriate to the
 ’type’ parameter.

 ’type’ will be the type of the value parameter and will be set
 to one of the values for DataType Constants.

 It is an RTE if any of the parameters don’t conform to the
 rules above.

8.1.4.3. readVar()

 readVar(integer pdu, integer varBindIndex, string &oid,
 var &value, integer &type)

 readVar will retrieve the oid, the value, and its type from the
 specified varbind.

 ’pdu’ is the handle to a PDU allocated by newPDU().

 ’varBindIndex’ is a non-negative integer that identifies the
 varbind within the specified PDU read by this call. The first
 varbind is number 0.

 The object identifier value of the referenced varbind will be
 copied into the ’oid’ parameter, formatted in an ASCII dotted-
 decimal representation (e.g., "1.3.6.1.2.1.1.1.0").

 ’value’ is the value retrieved, of a type appropriate to the
 ’type’ parameter.

 ’type’ is the type of the value parameter and will be set to
 one of the values for DataType Constants.

 It is an RTE if ’pdu’ doesn’t reference a valid PDU or
 ’varBindIndex’ doesn’t reference a valid varbind.

Waldbusser, et al. Standards Track [Page 46]

RFC 4011 Policy Based Management MIB March 2005

8.1.4.4. snmpSend()

 integer snmpSend(integer reqPDU, integer reqNumVarbinds,
 integer opcode,
 integer &respPDU, integer &respNumVarbinds,
 [, string contextName , NonLocalArgs])

 snmpSend will perform an SNMP operation by sending ’reqPDU’ and
 returning the results in ’respPDU’. Both ’reqPDU’ and
 ’respPDU’ must previously have been allocated with newPDU.
 ’reqPDU’ and ’respPDU’ may both contain the same PDU handle, in
 which case the ’reqPDU’ is sent and then replaced with the
 contents of the received PDU. If the opcode specifies a Trap
 or V2trap, ’respPDU’ will not be modified.

 ’reqNumVarbinds’ is an integer greater than zero that specifies
 which varbinds in the PDU will be used in this operation. The
 first ’reqNumVarbinds’ in the PDU are used. ’respNumVarbinds’
 will be modified to contain the number of varbinds received in
 the response PDU, which, in the case of GetBulk or an error,
 may be substantially different from reqNumVarbinds.

 ’opcode’ is the type of SNMP operation to perform and must be
 one of the values for SNMP Operation Constants listed in the
 ’Constants’ section below.

 The optional ’contextName’ argument contains the SNMP context
 on which to operate. If ’contextName’ is not present, the
 contextName of ’this element’ will be used. If ’contextName’
 is the zero-length string, the default context is used.

 Note that no actual SNMP PDU has to be generated and parsed
 when the policy MIB agent resides on the same system as the
 managed elements. If no PDU is generated, the agent must
 correctly simulate the behavior of the SNMP Response PDU,
 particularly in case of an error.

 This function returns zero unless an error occurs, in which
 case it returns the proper SNMP Error Constant. If an error
 occurred, respPDU will contain the response PDU as received
 from the agent, unless no response PDU was received, in which
 case respNumVarbinds will be 0. In any event, readError may be
 called on the PDU to determine error information for the
 transaction.

 If an SNMP Version 1 trap is requested (the opcode is Trap(4)),
 then SNMP Version 2 trap parameters are supplied and converted
 according to the rules of RFC 3584 [8], section 3.2. The first

Waldbusser, et al. Standards Track [Page 47]

RFC 4011 Policy Based Management MIB March 2005

 variable binding must be sysUpTime.0, and the second must be
 snmpTrapOID.0, as per RFC 3416 [7], section 4.2.6. Subsequent
 variable bindings are copied to the SNMP Version 1 trap PDU in
 the usual fashion.

8.1.4.5. readError()

 readError(integer pdu, integer numVarbinds, integer &errorStatus,
 integer &errorIndex, integer &hasException)

 Returns the error information in a PDU.

 ’errorStatus’ contains the error-status field from the response
 PDU or a local error constant if the error was generated
 locally. If no error was experienced or no PDU was ever copied
 into this PDU, this value will be 0.

 ’errorIndex’ contains the error-index field from the response
 PDU. If no PDU was ever copied into this PDU, this value will
 be 0.

 ’hasException’ will be 1 if any of the first ’numVarbinds’
 varbinds in the PDU contain an exception (Nosuchobject,
 Nosuchinstance, Endofmibview); otherwise it will be 0.

 It is an RTE if ’pdu’ does not reference a valid PDU or if
 ’numVarbinds’ references varbinds that aren’t valid.

8.1.4.6. writeBulkParameters()

 writeBulkParameters(integer pdu, integer nonRepeaters,
 integer maxRepetitions)

 Modifies the parameters in a PDU in any subsequent GetBulk
 operation sent by the PDU. ’nonRepeaters’ will be copied into
 the PDU’s non-repeaters field, and ’maxRepetitions’ into the
 max-repetitions field.

 This function may be called before or after writeVar is called
 to add varbinds to the PDU, but it must be called before the
 PDU is sent; otherwise, it will have no effect. A new PDU is
 initialized with nonRepeaters set to zero and maxRepetitions
 set to zero. If a Bulk PDU is sent before writeBulkParameters
 is called, these default values will be used. If
 writeBulkParameters is called to modify a PDU, it is acceptable
 if this PDU is later sent as a type other than bulk. The
 writeBulkParameters call will only affect subsequent sends of
 Bulk PDUs. If a PDU is used to receive the contents of a

Waldbusser, et al. Standards Track [Page 48]

RFC 4011 Policy Based Management MIB March 2005

 response, the values of nonRepeaters and maxRepetitions are
 never modified.

8.1.5. Constants for SNMP Library Functions

 The following constants are defined for use with all SNMP Library
 Functions. Policy code will be executed in an environment where the
 following constants are declared. (Note that the constant
 declarations below will not be visible in the policyCondition or
 policyAction code.) These constants are reserved words and cannot be
 used for any variable or function name.

 Although these declarations are expressed here as C ’const’s, the
 ’const’ construct itself is not available to be used in policy code.

 // Datatype Constants

 // From RFC 2578 [2]
 const integer Integer = 2;
 const integer Integer32 = 2;
 const integer String = 4;
 const integer Bits = 4;
 const integer Null = 5;
 const integer Oid = 6;
 const integer IpAddress = 64;
 const integer Counter32 = 65;
 const integer Gauge32 = 66;
 const integer Unsigned32 = 66;
 const integer TimeTicks = 67;
 const integer Opaque = 68;
 const integer Counter64 = 70;

 // SNMP Exceptions from RFC 3416 [7]
 const integer NoSuchObject = 128;
 const integer NoSuchInstance = 129;
 const integer EndOfMibView = 130;

 // SNMP Error Constants from RFC 3416 [7]
 const integer NoError = 0;
 const integer TooBig = 1;
 const integer NoSuchName = 2;
 const integer BadValue = 3;
 const integer ReadOnly = 4;
 const integer GenErr = 5;
 const integer NoAccess = 6;
 const integer WrongType = 7;
 const integer WrongLength = 8;
 const integer WrongEncoding = 9;

Waldbusser, et al. Standards Track [Page 49]

RFC 4011 Policy Based Management MIB March 2005

 const integer WrongValue = 10;
 const integer NoCreation = 11;
 const integer InconsistentValue = 12;
 const integer ResourceUnavailable = 13;
 const integer CommitFailed = 14;
 const integer UndoFailed = 15;
 const integer AuthorizationError = 16;
 const integer NotWritable = 17;
 const integer InconsistentName = 18;

 // "Local" Errors
 // These are also possible choices for errorStatus returns
 // For example: unknown PDU, maxVarbinds is bigger than number
 // written with writeVar, unknown opcode, etc.
 const integer BadParameter = 1000;

 // Request would have created a PDU larger than local limitations
 const integer TooLong = 1001;

 // A response to the request was received but errors were encountered
 // when parsing it.
 const integer ParseError = 1002;

 // Local system has complained of an authentication failure
 const integer AuthFailure = 1003;

 // No valid response was received in a timely fashion
 const integer TimedOut = 1004;

 // General local failure including lack of resources
 const integer GeneralFailure = 1005;

 // SNMP Operation Constants from RFC 3416 [7]
 const integer Get = 0;
 const integer Getnext = 1;
 const integer Set = 3;
 const integer Trap = 4;
 const integer Getbulk = 5;
 const integer Inform = 6;
 const integer V2trap = 7;

 // Constants from RFC 3411 [1] for SnmpMessageProcessingModel
 const integer SNMPv1 = 0;
 const integer SNMPv2c = 1;
 const integer SNMPv3 = 3;

Waldbusser, et al. Standards Track [Page 50]

RFC 4011 Policy Based Management MIB March 2005

 // Constants from RFC 3411 [1] for SnmpSecurityModel
 const integer SNMPv1 = 1;
 const integer SNMPv2c = 2;
 const integer USM = 3;

 // SnmpSecurityLevel Constants from RFC 3411 [1]
 const integer NoAuthNoPriv = 1;
 const integer AuthNoPriv = 2;
 const integer AuthPriv = 3;

 // Constants for use with searchColumn
 const integer ExactMatch = 0;
 const integer ExactCaseMatch = 1;
 const integer SubstringMatch = 2;
 const integer SubstringCaseMatch = 3;
 const integer RegexpMatch = 4;
 const integer RegexpCaseMatch = 5;

8.2. Policy Library Functions

 Policy Library Functions provide access to information specifically
 related to the execution of policies.

8.2.1. elementName()

 The elementName() function is used to determine what the current
 element is and can be used to provide information about the type of
 element and how it is indexed.

 string elementName()

 elementName returns a string containing an ASCII dotted-decimal
 representation of an object identifier (e.g.,
 1.3.6.1.2.1.1.1.0). This object identifier identifies an
 instance of a MIB object that is an attribute of ’this
 element’.

8.2.2. elementAddress()

 elementAddress(&tDomain, &tAddress)

 elementAddress finds a domain/address pair that can be used to
 access ’this element’ and returns the values in ’tDomain’ and
 ’tAddress’.

Waldbusser, et al. Standards Track [Page 51]

RFC 4011 Policy Based Management MIB March 2005

8.2.3. elementContext()

 string elementContext()

 elementContext() returns a string containing the SNMP
 contextName of ’this element’.

8.2.4. ec()

 The ec() (element count) and ev() (element value) functions provide
 convenient access to the components of the index for ’this element’.
 Typical uses will be in creating the index to other, related
 elements.

 integer ec()

 ec() returns an integer count of the number of index
 subidentifiers that exist in the index for ’this element’.

8.2.5. ev()

 integer ev(integer n)

 ev() returns the value of the nth subidentifier in the index
 for ’this element’. The first subidentifier is indexed at 0.
 It is an RTE if n specifies a subidentifier beyond the last
 subidentifier.

8.2.6. roleMatch()

 The roleMatch() function is used to check whether an element has been
 assigned a particular role.

 integer roleMatch(string roleString [, string element,
 string contextName, string contextEngineID])

 ’roleString’ is a string. The optional argument ’element’
 contains the OID name of an element, defaulting to the current
 element if ’element’ is not supplied. If roleString exactly
 matches (content and length) any role assigned to the specified
 element, the function returns 1. If no roles match, the
 function returns 0.

 The optional ’contextName’ argument contains the SNMP context
 on which to operate. If ’contextName’ is not present, the
 contextName of ’this element’ will be used. If ’contextName’
 is the zero-length string, the default context is used.

Waldbusser, et al. Standards Track [Page 52]

RFC 4011 Policy Based Management MIB March 2005

 ’contextEngineID’ contains the contextEngineID of the remote
 system on which ’element’ resides. It is encoded as a pair of
 hex digits (upper- and lowercase are valid) for each octet of
 the contextEngineID. If ’contextEngineID’ is not present, the
 contextEngineID of ’this element’ will be used.
 ’contextEngineID’ may only be present if the ’element’ and
 ’context’ arguments are present.

8.2.7. Scratchpad Functions

 Every maxLatency time period, every policy runs once for each
 element. When the setScratchpad function executes, it stores a value
 named by a string that can be retrieved with getScratchpad() even
 after this policy execution code exits. This allows sharing of data
 between a condition and an action, two conditions executing on
 different elements, or even different policies altogether.

 The value of ’scope’ controls which policy/element combinations can
 retrieve this ’varName’/’value’ pair. The following are options for
 ’scope’:

 Global
 The ’varName’/’value’ combination will be available in the
 condition or action of any policy while it is executing on any
 element. Note that any information placed here will be visible
 to all other scripts on this system regardless of their
 authority. Sensitive information should not be placed in
 global scratchpad variables.

 Policy
 The ’varName’/’value’ combination will be available in any
 future execution of the condition or action of the current
 policy (regardless of what element the policy is executing on).
 If a policy is ever deleted, or if its condition or action code
 is modified, all values in its ’Policy’ scope will be deleted.

 PolicyElement
 The ’varName’/’value’ combination will be available in future
 executions of the condition or action of the current policy,
 but only when the policy is executing on the current element.
 If a policy is ever deleted, or if its condition or action code
 is modified, all values in its ’PolicyElement’ scope will be
 deleted. The agent may also periodically delete values in a
 ’PolicyElement’ scope if the corresponding element does not
 exist (in other words, if an element disappears for a period
 and reappears, values in its ’PolicyElement’ scope may or may
 not be deleted).

Waldbusser, et al. Standards Track [Page 53]

RFC 4011 Policy Based Management MIB March 2005

 setScratchpad’s ’storageType’ argument allows the script to control
 the lifetime of a variable stored in the scratchpad. If the
 storageType is equal to the constant ’volatile’, then this variable
 must be deleted on a reboot. If it is equal to ’nonVolatile’, then
 this variable should be stored in non-volatile storage, where it will
 be available after a reboot. If the ’storageType’ argument is not
 present, the variable will be volatile and will be erased on reboot.

 If the optional ’freeOnException’ argument is present and equal to 1,
 the agent will free this variable if, later in the same script
 invocation, this script dies with a run-time exception or by a call
 to fail(). (Note that this does not apply to exceptions experienced
 in subsequent invocations of the script.)

 Note that there may be implementation-specific limits on the number
 of scratchpad variables that can be allocated. The limit of unique
 scratchpad variables may be different for each scope or storageType.
 It is suggested that implementations limit the total number of
 scratchpad variables per script to protect other scripts from a
 malfunctioning script. In addition, compliant implementations must
 support at least 50 Global variables, 5 Policy variables per policy,
 and 5 PolicyElement variables per policy-element pair.

 Scratchpad Usage Examples

 Policy Element Action
 A ifIndex.1 setScratchpad(Global, "foo", "55")
 A ifIndex.1 getScratchpad(Global, "foo", val) --> 55
 A ifIndex.2 getScratchpad(Global, "foo", val) --> 55
 B ifIndex.2 getScratchpad(Global, "foo", val) --> 55
 B ifIndex.2 setScratchpad(Global, "foo", "16")
 A ifIndex.1 getScratchpad(Global, "foo", val) --> 16

 Policy Element Action
 A ifIndex.1 setScratchpad(Policy, "bar", "75")
 A ifIndex.1 getScratchpad(Policy, "bar", val) --> 75
 A ifIndex.2 getScratchpad(Policy, "bar", val) --> 75
 B ifIndex.1 getScratchpad(Policy, "bar", val) not found
 B ifIndex.1 setScratchpad(Policy, "bar", "20")
 A ifIndex.2 getScratchpad(Policy, "bar", val) --> 75
 B ifIndex.2 getScratchpad(Policy, "bar", val) --> 20

 Policy Element Action
 A ifIndex.1 setScratchpad(PolicyElement, "baz", "43")
 A ifIndex.1 getScratchpad(PolicyElement, "baz", val) --> 43
 A ifIndex.2 getScratchpad(PolicyElement, "baz", val) not found
 B ifIndex.1 getScratchpad(PolicyElement, "baz", val) not found
 A ifIndex.2 setScratchpad(PolicyElement, "baz", "54")

Waldbusser, et al. Standards Track [Page 54]

RFC 4011 Policy Based Management MIB March 2005

 B ifIndex.1 setScratchpad(PolicyElement, "baz", "65")
 A ifIndex.1 getScratchpad(PolicyElement, "baz", val) --> 43
 A ifIndex.2 getScratchpad(PolicyElement, "baz", val) --> 54
 B ifIndex.1 getScratchpad(PolicyElement, "baz", val) --> 65

 Policy Element Action
 A ifIndex.1 setScratchpad(PolicyElement, "foo", "11")
 A ifIndex.1 setScratchpad(Global, "foo", "22")
 A ifIndex.1 getScratchpad(PolicyElement, "foo", val) --> 11
 A ifIndex.1 getScratchpad(Global, "foo", val) --> 22

 Constants

 The following constants are defined for use with the scratchpad
 functions. Policy code will be executed in an environment where the
 following constants are declared. (Note that these constant
 declarations will not be visible in the policyCondition or
 policyAction MIB objects.)

 Although these declarations are expressed here as C ’const’s, the
 ’const’ construct itself is not available to be used inside of policy
 code.

 // Scratchpad Constants

 // Values of scope
 const integer Global = 0;
 const integer Policy = 1;
 const integer PolicyElement = 2;

 // Values of storageType
 const integer Volatile = 0;
 const integer NonVolatile = 1;

8.2.8. setScratchpad()

 setScratchpad(integer scope, string varName [, string value,
 integer storageType, integer freeOnException])

 The setScratchpad function stores a value that can be retrieved
 even after this policy execution code exits.

 The value of ’scope’ controls which policy/element combinations
 can retrieve this ’varName’/’value’ pair. The options for
 ’scope’ are Global, Policy, and PolicyElement.

Waldbusser, et al. Standards Track [Page 55]

RFC 4011 Policy Based Management MIB March 2005

 ’varName’ is a string used to identify the value. Subsequent
 retrievals of the same ’varName’ in the proper scope will
 return the value stored. Note that the namespace for ’varName’
 is distinct for each scope. ’varName’ is case sensitive.

 ’value’ is a string containing the value to be stored.
 ToString(value) is called on ’value’ to convert it to a string
 before storage.

 If the ’value’ argument is missing, the ’varName’ in scope
 ’scope’ will be deleted if it exists.

 If the optional ’storageType’ argument is present and is equal
 to the constant ’Volatile’, then this variable must be deleted
 on a reboot. If it is equal to ’NonVolatile’, then this
 variable should be stored in non-volatile storage, where it
 will be available after a reboot. If the ’storageType’
 argument is not present, the variable will be volatile and will
 be erased on reboot. ’storageType’ may not be present if the
 ’value’ argument is not present. If the variable already
 existed, its previous storageType is updated according to the
 current ’storageType’ argument.

 If the optional ’freeOnException’ argument is present and equal
 to 1, the agent will free this variable if, later in the same
 script invocation, this script dies with a run-time exception
 or by a call to fail(). (Note that this does not apply to
 exceptions experienced in subsequent invocations of the
 script.)

8.2.9. getScratchpad()

 integer getScratchpad(integer scope, string varName,
 string &value)

 The getScratchpad function allows the retrieval of values that
 were stored previously in this execution context or in other
 execution contexts. The value of ’scope’ controls which
 execution contexts can pass a value to this execution context.
 The options for ’scope’ are Global, Policy, and PolicyElement.

 ’varName’ is a string used to identify the value. Subsequent
 retrievals of the same ’varName’ in the proper scope will
 return the value stored. Note that the namespace for varName
 is distinct for each scope. As a result, getScratchpad cannot
 force access to a variable in an inaccessible scope; it can
 only retrieve variables by referencing the proper scope in
 which they were set. ’varName’ is case sensitive.

Waldbusser, et al. Standards Track [Page 56]

RFC 4011 Policy Based Management MIB March 2005

 On successful return, ’value’ will be set to the value that was
 previously stored; otherwise, ’value’ will not be modified.

 This function returns 1 if a value was previously stored and 0
 otherwise.

8.2.10. signalError()

 The signalError() function is used by the script to indicate to a
 management station that it is experiencing abnormal behavior.
 signalError() turns on the conditionUserSignal(3) or
 actionUserSignal(5) bit in the associated pmTrackingPEInfo object
 (subsequent calls to signalError() have no additional effect). This
 bit is initially cleared at the beginning of each execution. If,
 upon a subsequent execution, the script finishes without calling
 signalError, the bit will be cleared.

 signalError()

 The signalException function takes no arguments and returns no
 value.

8.2.11. defer()

 Precedence groups enforce the rule that for each element, of the
 ready policies that match the condition, only the one with the
 highest precedence value will be active. Unfortunately, once the
 winning policy has been selected and the action begins running,
 situations can occur in which the policy script determines that it
 cannot complete its task. In many such cases, it is desirable that
 the next runner-up ready policy be executed. In the previous
 example, it would be desirable that at least bronze behavior be
 configured if gold is appropriate but gold isn’t possible.

 When a policy defers, it exits, and the ready, condition-matching
 policy with the next-highest precedence is immediately run. Because
 this might also defer, the execution environment must remember where
 it is in the precedence chain so that it can continue going down the
 chain until an action completes without deferring, or until no
 policies are left in the precedence group. Once a policy finishes
 successfully, the next iteration will begin at the top of the
 precedence chain.

 There are two ways to defer. A script can exit by calling fail() and
 specify that it should defer immediately. Alternately, a script can
 instruct the execution environment to defer automatically in the
 event of a run-time exception.

Waldbusser, et al. Standards Track [Page 57]

RFC 4011 Policy Based Management MIB March 2005

 defer(integer deferOnRTE)

 The defer function changes the run-time exception behavior of a
 script. By default, a script will not defer when it encounters
 an RTE. If defer(1) is called, the exit behavior is changed so
 that the script will defer when it is terminated due to an RTE.
 If defer(0) is called, the script is reset to its default
 behavior and will not defer.

 Note that calling defer doesn’t cause the script to exit.
 Defer only changes the default behavior if an RTE occurs later
 in this invocation.

8.2.12. fail()

 fail(integer defer, integer free [, string message])

 The fail function causes the script to optionally perform
 certain functions and then exit.

 If ’defer’ is 1, this script will defer to the next lower
 precedence ready policy in the same precedence group whose
 condition matches. If ’defer’ isn’t 1, it will not defer.
 Note that if a condition defers, it is functionally equivalent
 to the condition returning false.

 If ’free’ is 1, certain registered resources will be freed.
 If, earlier in this script invocation, any rows were created by
 createRow with the ’freeOnException’ option, the execution
 environment will set the RowStatus of each row to ’destroy’ to
 delete the row. Further, if earlier in this script invocation
 any scratchpad variables were created or modified with the
 ’freeOnException’ option, they will be deleted.

 If the optional ’message’ argument is present, it will be
 logged to the debugging table if pmPolicyDebugging is turned on
 for this policy.

 This function does not return. Instead, the script will
 terminate.

8.2.13. getParameters()

 From time to time, policy scripts may be parameterized so that they
 are supplied with one or more parameters (e.g., site-specific
 constants). These parameters may be installed in the
 pmPolicyParameters object and are accessible to the script via the
 getParameters() function. If it is necessary for multiple parameters

Waldbusser, et al. Standards Track [Page 58]

RFC 4011 Policy Based Management MIB March 2005

 to be passed to the script, the script can choose whatever
 encoding/delimiting mechanism is most appropriate so that the
 multiple parameters can be stored in the associated instance of
 pmPolicyParameters.

 string getParameters()

 The getParameters function takes no arguments. It returns a
 string containing the value of the pmPolicyParameters object
 for the running policy.

 For example, if a policy is to apply to "slow speed interfaces" and
 the cutoff point for slow speed should be parameterized, the policy
 filter should be:

 getVar("ifSpeed.$*") == getParameters()

 In this example, one can store the string "128000" in the policy’s
 pmPolicyParameters object to cause this policy to act on all 128 Kbps
 interfaces.

8.3. Utility Library Functions

 Utility Library Functions are provided to enable more efficient
 policy scripts.

8.3.1. regexp()

 integer regexp(string pattern, string str,
 integer case [, string &match])

 regexp searches ’str’ for matches to the regular expression
 given in ‘pattern‘. regexp uses the POSIX extended regular
 expressions defined in POSIX 1003.2.

 If ‘case‘ is 0, the search will be case insensitive; otherwise,
 it will be case sensitive.

 If a match is found, 1 is returned, otherwise 0 is returned.

 If the optional argument ’match’ is provided and a match is
 found, ’match’ will be replaced with the text of the first
 substring of ’str’ that matches ’pattern’. If no match is
 found, it will be unchanged.

Waldbusser, et al. Standards Track [Page 59]

RFC 4011 Policy Based Management MIB March 2005

8.3.2. regexpReplace()

 string regexpReplace(string pattern, string replacement,
 string str, integer case)

 regexpReplace searches ’str’ for matches to the regular
 expression given in ’pattern’, replacing each occurrence of
 matched text with ’replacement’. regexpReplace uses the POSIX
 extended regular expressions defined in POSIX 1003.2.

 If ‘case‘ is 0, the search will be case insensitive; otherwise,
 it will be case sensitive.

 The modified string is returned (it would be the same as the
 original string if no matches were found).

8.3.3. oidlen()

 integer oidlen(string oid)

 oidlen returns the number of subidentifiers in ’oid’. ’oid’ is
 a string containing an ASCII dotted-decimal representation of
 an object identifier (e.g., "1.3.6.1.2.1.1.1.0").

8.3.4. oidncmp()

 integer oidncmp(string oid1, string oid2, integer n)

 Arguments ’oid1’ and ’oid2’ are strings containing ASCII
 dotted-decimal representations of object identifiers (e.g.,
 "1.3.6.1.2.1.1.1.0").

 oidcmp compares not more than n subidentifiers of ’oid1’ and
 ’oid2’ and returns -1 if ’oid1’ is less than ’oid2’, 0 if they
 are equal, and 1 if ’oid1’ is greater than ’oid2’.

8.3.5. inSubtree()

 integer inSubtree(string oid, string prefix)

 Arguments ’oid’ and ’prefix’ are strings containing ASCII
 dotted-decimal representations of object identifiers (e.g.,
 "1.3.6.1.2.1.1.1.0").

 inSubtree returns 1 if every subidentifier in ’prefix’ equals
 the corresponding subidentifier in ’oid’, otherwise it returns
 0. The is equivalent to oidncmp(oid1, prefix, oidlen(prefix))

Waldbusser, et al. Standards Track [Page 60]

RFC 4011 Policy Based Management MIB March 2005

 is provided because this is an idiom and because it avoids
 evaluating ’prefix’ twice if it is an expression.

8.3.6. subid()

 integer subid(string oid, integer n)

 subid returns the value of the nth (starting at zero)
 subidentifier of ’oid’. ’oid’ is a string containing an ASCII
 dotted-decimal representation of an object identifier (e.g.,
 "1.3.6.1.2.1.1.1.0").

 If n specifies a subidentifier beyond the length of ’oid’, a
 value of -1 is returned.

8.3.7. subidWrite()

 integer subidWrite(string oid, integer n, integer subid)

 subidWrite sets the value of the nth (starting at zero)
 subidentifier of ’oid’ to ’subid’. ’oid’ is a string
 containing an ASCII dotted-decimal representation of an object
 identifier (e.g., "1.3.6.1.2.1.1.1.0").

 If n specifies a subidentifier beyond the length of ’oid’, a
 value of -1 is returned. Note that appending subidentifiers
 can be accomplished with the string concatenation ’+’ operator.
 If no error occurs, zero is returned.

8.3.8. oidSplice()

 string oidSplice(string oid1, integer offset, integer len, string
 oid2)

 oidSplice returns an OID formed by replacing ’len’
 subidentifiers in ’oid1’ with all of the subidentifiers from
 ’oid2’, starting at ’offset’ in ’oid1’ (the first subidentifier
 is at offset 0). The OID length will be extended, if
 necessary, if ’offset’ + ’len’ extends beyond the end of
 ’oid1’. If ’offset’ is larger than the length of oid1, then an
 RTE will occur.

 The resulting OID is returned.

 For example:
 oidSplice("1.3.6.1.2.1", 5, 1, "7") => "1.3.6.1.2.7"
 oidSplice("1.3.6.1.2.1", 4, 2, "7.7") => "1.3.6.1.7.7"
 oidSplice("1.3.6.1.2.1", 4, 3, "7.7.7") => "1.3.6.1.7.7.7"

Waldbusser, et al. Standards Track [Page 61]

RFC 4011 Policy Based Management MIB March 2005

8.3.9. parseIndex()

 ParseIndex is provided to make it easy to pull index values from OIDs
 into variables.

 var parseIndex(string oid, integer &index, integer type,
 integer len)

 parseIndex pulls values from the instance identification
 portion of ’oid’, encoded as per Section 7.7, "Mapping of the
 INDEX Clause", of the SMIv2 [2].

 ’oid’ is the OID to be parsed.

 ’index’ describes which subid to begin parsing at. ’index’
 will be modified to indicate the subid after the last one
 parsed (even if this points past the last subid). The first
 subid is index 0. If any error occurs, ’index’ will be set to
 -1 on return. If the input index is less than 0 or refers past
 the end of the OID, ’index’ will be set to -1 on return and the
 function will return 0.

 If ’type’ is Integer, ’len’ will not be consulted. The return
 value is the integer value of the next subid.

 If ’type’ is String and ’len’ is greater than zero, ’len’
 subids will be parsed. For each subid parsed, the chr() value
 of the subid will be appended to the returned string. If any
 subid is greater than 255, ’index’ will be set to -1 on return,
 and an empty string will be returned. If there are fewer than
 ’len’ subids left in ’oid’, ’index’ will be set to -1 on
 return, but a string will be returned containing a character
 for each subid that was left.

 If ’type’ is String and ’len’ is zero, the next subid will be
 parsed to find N, the length of the string. Then, that many
 subids will be parsed. For each subid parsed, the chr() value
 of the subid will be appended to the returned string. If any
 subid is greater than 255, ’index’ will be set to -1 on return,
 and an empty string will be returned. If there are fewer than
 N subids left in ’oid’, ’index’ will be set to -1 on return,
 but a string will be returned containing a character for each
 subid that was left.

 If ’type’ is String and ’len’ is -1, subids will be parsed
 until the end of ’oid’. For each subid parsed, the chr() value
 of the subid will be appended to the returned string. If any

Waldbusser, et al. Standards Track [Page 62]

RFC 4011 Policy Based Management MIB March 2005

 subid is greater than 255, ’index’ will be set to -1 on return,
 and an empty string will be returned.

 If ’type’ is Oid and ’len’ is greater than zero, ’len’ subids
 will be parsed. For each subid parsed, the decimal-encoded
 value of the subid will be appended to the returned string,
 with a ’.’ character appended between each output subid, but
 not after the last subid. If there are fewer than ’len’ subids
 left in ’oid’, ’index’ will be set to -1 on return, but a
 string will be returned containing an encoding for each subid
 that was left.

 If ’type’ is Oid and ’len’ is zero, the next subid will be
 parsed to find N, the number of subids to parse. For each
 subid parsed, the decimal-encoded value of the subid will be
 appended to the returned string, with a ’.’ character appended
 between each output subid but not after the last subid. If
 there are fewer than N subids left in ’oid’, ’index’ will be
 set to -1 on return, but a string will be returned containing
 an encoding for each subid that was left.

 If ’type’ is Oid and ’len’ is -1, subids will be parsed until
 the end of ’oid’. For each subid parsed, the decimal-encoded
 value of the subid will be appended to the returned string,
 with a ’.’ character appended between each output subid, but
 not after the last subid.

 For example, to decode the index component of an instance of the
 ipForward table:

 oid = "ipForwardIfIndex.0.0.0.0.13.0.192.168.1.1";
 index = 11;
 dest = parseIndex(oid, index, String, 4);
 proto = parseIndex(oid, index, Integer, 0);
 policy = parseIndex(oid, index, Integer, 0);
 nextHop = parseIndex(oid, index, String, 4);
 // proto and policy now contain integer values
 // dest and nextHop now contain 4 byte IP addresses. Use
 // stringToDotted to get them to dotted decimal notation:
 // e.g.: stringToDotted(nextHop) => "192.168.1.1"

8.3.10. stringToDotted()

 stringToDotted() is provided to encode strings suitable for the index
 portion of an OID or to convert the binary encoding of an IP address
 to a dotted-decimal encoding.

Waldbusser, et al. Standards Track [Page 63]

RFC 4011 Policy Based Management MIB March 2005

 string stringToDotted(string value)

 If ’value’ is the zero-length string, the zero-length string is
 returned.

 The decimal encoding of the first byte of ’value’ is appended
 to the output string. Then, for each additional byte in
 ’value’, a ’.’ is appended to the output string, followed by
 the decimal encoding of the additional byte.

8.3.11. integer()

 integer integer(var input)

 integer converts ’input’ into an integer by using the rules
 specified for ToInteger(), returning the integer-typed results.

8.3.12. string()

 string string(var input)

 string converts ’input’ into a string by using the rules
 specified for ToString(), returning the string-typed results.

8.3.13. type()

 string type(var variable)

 type returns the type of its argument as either the string
 ’String’ or the string ’Integer’.

8.3.14. chr()

 string chr(integer char)

 Returns a one-character string containing the character
 specified by the ASCII code contained in ’char’.

8.3.15. ord()

 integer ord(string str)

 Returns the ASCII value of the first character of ’str’. This
 function complements chr().

Waldbusser, et al. Standards Track [Page 64]

RFC 4011 Policy Based Management MIB March 2005

8.3.16. substr()

 string substr(string &str, integer offset
 [, integer len, string replacement])

 Extracts a substring out of ’str’ and returns it. The first
 octet is at offset 0. If the offset is negative, the returned
 string starts that far from the end of ’str’. If ’len’ is
 positive, the returned string contains up to ’len’ octets, up
 to the end of the string. If ’len’ is omitted, the returned
 string includes everything to the end of ’str’. If ’len’ is
 negative, abs(len) octets are left off the end of the string.

 If a substring is specified that is partly outside the string,
 the part within the string is returned. If the substring is
 totally outside the string, a zero-length string is produced.

 If the optional ’replacement’ argument is included, ’str’ is
 modified. ’offset’ and ’len’ act as above to select a range of
 octets in ’str’. These octets are replaced with octets from
 ’replacement’. If the replacement string is shorter or longer
 than the number of octets selected, ’str’ will shrink or grow,
 respectively. If ’replacement’ is included, the ’len’ argument
 must also be included.

 Note that to replace everything from offset to the end of the
 string, substr() should be called as follows:

 substr(str, offset, strlen(str) - offset, replacement)

8.4. General Functions

 The following POSIX standard library functions are provided:

 strncmp()
 strncasecmp()
 strlen()
 random()
 sprintf()
 sscanf()

9. International String Library

 This library is optional for systems that wish to have support for
 collating (sorting) and verifying equality of international strings
 in a manner that will be least surprising to humans. International

Waldbusser, et al. Standards Track [Page 65]

RFC 4011 Policy Based Management MIB March 2005

 strings are encoded in the UTF-8 transformation format described in
 [14]. This library is registered with the name
 "pmInternationalStringLibrary".

 When verifying equality of international strings in the Unicode
 character set, it is recommended to normalize the strings with the
 stringprep() function before checking for equality.

 When attempting to sort international strings in the Unicode
 character set, normalization should also be performed, but note that
 the result is highly context dependent and hard to implement
 correctly. Just ordering by Unicode Codepoint Value is in many cases
 not what the end user expects. See Unicode technical note 9 for more
 information about sorting.

9.1. stringprep()

 integer stringprep(string utf8Input, string &utf8Output)

 Performs the Stringprep [13] transformation for appropriate
 comparison of internationalized strings. The transformation is
 performed on ’utf8Input’; if the transformation finishes
 without error, the resulting string is written to utf8Output.
 The stringprep profile used is specified below in Section 9.
 If it is successful, the function returns 1.

 If the stringprep transformation encounters an error, 0 is
 returned, and the utf8Output parameter remains unchanged.

 For example, to compare UTF8 strings ’one’ and ’two’:

 if (stringprep(one, a) && stringprep(two, b)){
 if (a == b){
 // strings are identical
 } else {
 // strings are different
 }
 } else {
 // strings couldn’t be transformed for comparison
 }

 See Stringprep [13] for more information.

9.1.1. Stringprep Profile

 The Stringprep specification [13] describes a framework for preparing
 Unicode text strings in order to increase the likelihood that string
 input and string comparison work in ways that make sense for typical

Waldbusser, et al. Standards Track [Page 66]

RFC 4011 Policy Based Management MIB March 2005

 users throughout the world. Specifications that specify stringprep
 (as this one does) are required to fully specify stringprep’s
 processing options by documenting a stringprep profile.

 This profile defines the following, as required by Stringprep:

 - The intended applicability of the profile: internationalized
 network management information.

 - The character repertoire that is the input and output to
 stringprep: Unicode 3.2, as defined in Stringprep [13], Appendix
 A.1.

 - The mapping tables used: Table B.1 from Stringprep [13].

 - Any additional mapping tables specific to the profile: None.

 - The Unicode normalization used: Form KC, as described in Stringprep
 [13].

 - The characters that are prohibited as output: As specified in the
 following tables from Stringprep [13]:

 Table C.2
 Table C.3
 Table C.4
 Table C.5
 Table C.6
 Table C.7
 Table C.8
 Table C.9

 - Bidirectional character handling: not performed.

 - Any additional characters that are prohibited as output: None.

9.2. utf8Strlen()

 integer utf8Strlen(string str)

 Returns the number of UTF-8 characters in ’str’, which may be
 less than the number of octets in ’str’ if one or more
 characters are multi-byte characters.

Waldbusser, et al. Standards Track [Page 67]

RFC 4011 Policy Based Management MIB March 2005

9.3. utf8Chr()

 string utf8Chr(integer utf8)

 Returns a one-character string containing the character
 specified by the UTF-8 code contained in ’utf8’. Although it
 contains only 1 UTF-8 character, the resulting string may be
 more than 1 octet in length.

9.4. utf8Ord()

 integer utf8Ord(string str)

 Returns the UTF-8 code-point value of the first character of
 ’str’. Note that the first UTF-8 character in ’str’ may be
 more than 1 octet in length. This function complements chr().

9.5. utf8Substr()

 string utf8Substr(string &str, integer offset
 [, integer len, string replacement])

 Extracts a substring out of ’str’ and returns it, keeping track
 of UTF-8 character boundaries and using them, instead of
 octets, as the basis for offset and length calculations. The
 first character is at offset 0. If offset is negative, the
 returned string starts that far from the end of ’str’. If
 ’len’ is positive, the returned string contains up to ’len’
 characters, up to the end of the string. If ’len’ is omitted,
 the returned string includes everything to the end of ’str’.
 If ’len’ is negative, abs(len) characters are left off the end
 of the string.

 If you specify a substring that is partly outside the string,
 the part within the string is returned. If the substring is
 totally outside the string, a zero-length string is produced.

 If the optional ’replacement’ argument is included, ’str’ is
 modified. ’offset’ and ’len’ act as above to select a range of
 characters in ’str’. These characters are replaced with
 characters from ’replacement’. If the replacement string is
 shorter or longer than the number of characters selected, ’str’
 will shrink or grow, respectively. If ’replacement’ is
 included, the ’len’ argument must also be included.

Waldbusser, et al. Standards Track [Page 68]

RFC 4011 Policy Based Management MIB March 2005

 Note that to replace everything from offset to the end of the
 string, substr() should be called as follows:

 substr(str, offset, strlen(str) - offset, replacement)

10. Schedule Table

 This table is an adapted form of the policyTimePeriodCondition class
 defined in the Policy Core Information Model, RFC 3060 [18]. Some of
 the objects describing a schedule are expressed in formats defined in
 the iCalendar specification [15].

 The policy schedule table allows control over when a valid policy
 will be ready, based on the date and time.

 A policy’s pmPolicySchedule variable refers to a group of one or more
 schedules in the schedule table. At any given time, if any of these
 schedules are active, the policy will be ready (assuming that it is
 enabled and thus valid), and its conditions and actions will be
 executed, as appropriate. At times when none of these schedules are
 active, the policy will not be ready and will have no effect. A
 policy will always be ready if its pmPolicySchedule variable is 0.
 If a policy has a non-zero pmPolicySchedule that doesn’t refer to a
 group that includes an active schedule, then the policy will not be
 ready, even if this is due to a misconfiguration of the
 pmPolicySchedule object or the pmSchedTable.

 A policy that is controlled by a schedule group immediately executes
 its policy condition (and conditionally the policyAction) when the
 schedule group becomes active, periodically re-executing these
 scripts as appropriate until the schedule group becomes inactive
 (i.e., all schedules are inactive).

 An individual schedule item is active at those times that match all
 the variables that define the schedule: pmSchedTimePeriod,
 pmSchedMonth, pmSchedDay, pmSchedWeekDay, and pmSchedTimeOfDay. It
 is possible to specify multiple values for each schedule item. This
 provides a mechanism for defining complex schedules. For example, a
 schedule that is active the entire workday each weekday could be
 defined.

 Months, days, and weekdays are specified by using the objects
 pmSchedMonth, pmSchedDay, and pmSchedWeekDay of type BITS. Setting
 multiple bits in these objects causes an OR operation. For example,
 setting the bits monday(1) and friday(5) in pmSchedWeekDay restricts
 the schedule to Mondays and Fridays.

Waldbusser, et al. Standards Track [Page 69]

RFC 4011 Policy Based Management MIB March 2005

 The matched times for pmSchedTimePeriod, pmSchedMonth, pmSchedDay
 pmSchedWeekDay, and pmSchedTimeOfDay are ANDed together to determine
 the time periods when the schedule will be active; in other words,
 the schedule is only active for those times when ALL of these
 schedule attributes match. For example, a schedule with an overall
 validity range of January 1, 2000, through December 31, 2000; a month
 mask that selects March and April; a day-of-the-week mask that
 selects Fridays; and a time-of-day range of 0800 through 1600 would
 represent the following time periods:

 Friday, March 5, 2000, from 0800 through 1600
 Friday, March 12, 2000, from 0800 through 1600
 Friday, March 19, 2000, from 0800 through 1600
 Friday, March 26, 2000, from 0800 through 1600
 Friday, April 2, 2000, from 0800 through 1600
 Friday, April 9, 2000, from 0800 through 1600
 Friday, April 16, 2000, from 0800 through 1600
 Friday, April 23, 2000, from 0800 through 1600
 Friday, April 30, 2000, from 0800 through 1600

 Wildcarding of schedule attributes of type BITS is achieved by
 setting all bits to one.

 It is possible to define schedules that will never cause a policy to
 be activated. For example, one can define a schedule that should be
 active on February 31st.

11. Definitions

POLICY-BASED-MANAGEMENT-MIB DEFINITIONS ::= BEGIN
IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
 Counter32, Gauge32, Unsigned32,
 mib-2 FROM SNMPv2-SMI
 RowStatus, RowPointer, TEXTUAL-CONVENTION,
 DateAndTime, StorageType FROM SNMPv2-TC
 MODULE-COMPLIANCE, OBJECT-GROUP,
 NOTIFICATION-GROUP FROM SNMPv2-CONF
 SnmpAdminString FROM SNMP-FRAMEWORK-MIB;

-- Policy-Based Management MIB

pmMib MODULE-IDENTITY
 LAST-UPDATED "200502070000Z" -- February 7, 2005
 ORGANIZATION "IETF SNMP Configuration Working Group"
 CONTACT-INFO
 "

Waldbusser, et al. Standards Track [Page 70]

RFC 4011 Policy Based Management MIB March 2005

 Steve Waldbusser
 Phone: +1-650-948-6500
 Fax: +1-650-745-0671
 Email: waldbusser@nextbeacon.com

 Jon Saperia (WG Co-chair)
 JDS Consulting, Inc.
 84 Kettell Plain Road.
 Stow MA 01775
 USA
 Phone: +1-978-461-0249
 Fax: +1-617-249-0874
 Email: saperia@jdscons.com

 Thippanna Hongal
 Riverstone Networks, Inc.
 5200 Great America Parkway
 Santa Clara, CA, 95054
 USA

 Phone: +1-408-878-6562
 Fax: +1-408-878-6501
 Email: hongal@riverstonenet.com

 David Partain (WG Co-chair)
 Postal: Ericsson AB
 P.O. Box 1248
 SE-581 12 Linkoping
 Sweden
 Tel: +46 13 28 41 44
 E-mail: David.Partain@ericsson.com

 Any questions or comments about this document can also be
 directed to the working group at snmpconf@snmp.com."
 DESCRIPTION
 "The MIB module for policy-based configuration of SNMP
 infrastructures.

 Copyright (C) The Internet Society (2005). This version of
 this MIB module is part of RFC 4011; see the RFC itself for
 full legal notices."

 REVISION "200502070000Z" -- February 7, 2005
 DESCRIPTION
 "The original version of this MIB, published as RFC4011."
 ::= { mib-2 124 }

Waldbusser, et al. Standards Track [Page 71]

RFC 4011 Policy Based Management MIB March 2005

PmUTF8String ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "An octet string containing information typically in
 human-readable form.

 To facilitate internationalization, this
 information is represented by using the ISO/IEC
 IS 10646-1 character set, encoded as an octet
 string using the UTF-8 transformation format
 described in RFC 3629.

 As additional code points are added by
 amendments to the 10646 standard from time
 to time, implementations must be prepared to
 encounter any code point from 0x00000000 to
 0x10FFFF. Byte sequences that do not
 correspond to the valid UTF-8 encoding of a
 code point or that are outside this range are
 prohibited.

 The use of control codes should be avoided.

 When it is necessary to represent a newline,
 the control code sequence CR LF should be used.

 For code points not directly supported by user
 interface hardware or software, an alternative
 means of entry and display, such as hexadecimal,
 may be provided.

 For information encoded in 7-bit US-ASCII,
 the UTF-8 encoding is identical to the
 US-ASCII encoding.

 UTF-8 may require multiple bytes to represent a
 single character/code point; thus, the length
 of this object in octets may be different from
 the number of characters encoded. Similarly,
 size constraints refer to the number of encoded
 octets, not the number of characters represented
 by an encoding.

 Note that when this TC is used for an object
 used or envisioned to be used as an index, then
 a SIZE restriction MUST be specified so that the
 number of sub-identifiers for any object instance
 does not exceed the limit of 128, as defined by

Waldbusser, et al. Standards Track [Page 72]

RFC 4011 Policy Based Management MIB March 2005

 RFC 3416.

 Note that the size of PmUTF8String object is
 measured in octets, not characters."
 SYNTAX OCTET STRING (SIZE (0..65535))

-- The policy table

pmPolicyTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PmPolicyEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The policy table. A policy is a pairing of a
 policyCondition and a policyAction that is used to apply the
 action to a selected set of elements."
 ::= { pmMib 1 }

pmPolicyEntry OBJECT-TYPE
 SYNTAX PmPolicyEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry in the policy table representing one policy."
 INDEX { pmPolicyAdminGroup, pmPolicyIndex }
 ::= { pmPolicyTable 1 }

PmPolicyEntry ::= SEQUENCE {
 pmPolicyAdminGroup PmUTF8String,
 pmPolicyIndex Unsigned32,
 pmPolicyPrecedenceGroup PmUTF8String,
 pmPolicyPrecedence Unsigned32,
 pmPolicySchedule Unsigned32,
 pmPolicyElementTypeFilter PmUTF8String,
 pmPolicyConditionScriptIndex Unsigned32,
 pmPolicyActionScriptIndex Unsigned32,
 pmPolicyParameters OCTET STRING,
 pmPolicyConditionMaxLatency Unsigned32,
 pmPolicyActionMaxLatency Unsigned32,
 pmPolicyMaxIterations Unsigned32,
 pmPolicyDescription PmUTF8String,
 pmPolicyMatches Gauge32,
 pmPolicyAbnormalTerminations Gauge32,
 pmPolicyExecutionErrors Counter32,
 pmPolicyDebugging INTEGER,
 pmPolicyAdminStatus INTEGER,
 pmPolicyStorageType StorageType,
 pmPolicyRowStatus RowStatus

Waldbusser, et al. Standards Track [Page 73]

RFC 4011 Policy Based Management MIB March 2005

}

pmPolicyAdminGroup OBJECT-TYPE
 SYNTAX PmUTF8String (SIZE(0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An administratively assigned string that can be used to group
 policies for convenience, for readability, or to simplify
 configuration of access control.

 The value of this string does not affect policy processing in
 any way. If grouping is not desired or necessary, this object
 may be set to a zero-length string."
 ::= { pmPolicyEntry 1 }

pmPolicyIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A unique index for this policy entry, unique among all
 policies regardless of administrative group."
 ::= { pmPolicyEntry 2 }

pmPolicyPrecedenceGroup OBJECT-TYPE
 SYNTAX PmUTF8String (SIZE (0..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "An administratively assigned string that is used to group
 policies. For each element, only one policy in the same
 precedence group may be active on that element. If multiple
 policies would be active on an element (because their
 conditions return non-zero), the execution environment will
 only allow the policy with the highest value of
 pmPolicyPrecedence to be active.

 All values of this object must have been successfully
 transformed by Stringprep RFC 3454. Management stations
 must perform this translation and must only set this object to
 string values that have been transformed."
 ::= { pmPolicyEntry 3 }

pmPolicyPrecedence OBJECT-TYPE
 SYNTAX Unsigned32 (0..65535)
 MAX-ACCESS read-create
 STATUS current

Waldbusser, et al. Standards Track [Page 74]

RFC 4011 Policy Based Management MIB March 2005

 DESCRIPTION
 "If, while checking to see which policy conditions match an
 element, 2 or more ready policies in the same precedence group
 match the same element, the pmPolicyPrecedence object provides
 the rule to arbitrate which single policy will be active on
 ’this element’. Of policies in the same precedence group, only
 the ready and matching policy with the highest precedence
 value (e.g., 2 is higher than 1) will have its policy action
 periodically executed on ’this element’.

 When a policy is active on an element but the condition ceases
 to match the element, its action (if currently running) will
 be allowed to finish and then the condition-matching ready
 policy with the next-highest precedence will immediately
 become active (and have its action run immediately). If the
 condition of a higher-precedence ready policy suddenly begins
 matching an element, the previously-active policy’s action (if
 currently running) will be allowed to finish and then the
 higher precedence policy will immediately become active. Its
 action will run immediately, and any lower-precedence matching
 policy will not be active anymore.

 In the case where multiple ready policies share the highest
 value, it is an implementation-dependent matter as to which
 single policy action will be chosen.

 Note that if it is necessary to take certain actions after a
 policy is no longer active on an element, these actions should
 be included in a lower-precedence policy that is in the same
 precedence group."
 ::= { pmPolicyEntry 4 }

pmPolicySchedule OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This policy will be ready if any of the associated schedule
 entries are active.

 If the value of this object is 0, this policy is always
 ready.

 If the value of this object is non-zero but doesn’t
 refer to a schedule group that includes an active schedule,
 then the policy will not be ready, even if this is due to a
 misconfiguration of this object or the pmSchedTable."
 ::= { pmPolicyEntry 5 }

Waldbusser, et al. Standards Track [Page 75]

RFC 4011 Policy Based Management MIB March 2005

pmPolicyElementTypeFilter OBJECT-TYPE
 SYNTAX PmUTF8String (SIZE (0..128))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object specifies the element types for which this policy
 can be executed.

 The format of this object will be a sequence of
 pmElementTypeRegOIDPrefix values, encoded in the following
 BNF form:

 elementTypeFilter: oid [’;’ oid]*
 oid: subid [’.’ subid]*
 subid: ’0’ | decimal_constant

 For example, to register for the policy to be run on all
 interface elements, the ’ifEntry’ element type will be
 registered as ’1.3.6.1.2.1.2.2.1’.

 If a value is included that does not represent a registered
 pmElementTypeRegOIDPrefix, then that value will be ignored."
 ::= { pmPolicyEntry 6 }

pmPolicyConditionScriptIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A pointer to the row or rows in the pmPolicyCodeTable that
 contain the condition code for this policy. When a policy
 entry is created, a pmPolicyCodeIndex value unused by this
 policy’s adminGroup will be assigned to this object.

 A policy condition is one or more PolicyScript statements
 that result(s) in a boolean value that represents whether
 an element is a member of a set of elements upon which an
 action is to be performed. If a policy is ready and the
 condition returns true for an element of a proper element
 type, and if no higher-precedence policy should be active,
 then the policy is active on that element.

 Condition evaluation stops immediately when any run-time
 exception is detected, and the policyAction is not executed.

 The policyCondition is evaluated for various elements. Any
 element for which the policyCondition returns any nonzero value
 will match the condition and will have the associated

Waldbusser, et al. Standards Track [Page 76]

RFC 4011 Policy Based Management MIB March 2005

 policyAction executed on that element unless a
 higher-precedence policy in the same precedence group also
 matches ’this element’.

 If the condition object is empty (contains no code) or
 otherwise does not return a value, the element will not be
 matched.

 When this condition is executed, if SNMP requests are made to
 the local system and secModel/secName/secLevel aren’t
 specified, access to objects is under the security
 credentials of the requester who most recently modified the
 associated pmPolicyAdminStatus object. If SNMP requests are
 made in which secModel/secName/secLevel are specified, then
 the specified credentials are retrieved from the local
 configuration datastore only if VACM is configured to
 allow access to the requester who most recently modified the
 associated pmPolicyAdminStatus object. See the Security
 Considerations section for more information."
 ::= { pmPolicyEntry 7 }

pmPolicyActionScriptIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A pointer to the row or rows in the pmPolicyCodeTable that
 contain the action code for this policy. When a policy entry
 is created, a pmPolicyCodeIndex value unused by this policy’s
 adminGroup will be assigned to this object.

 A PolicyAction is an operation performed on a
 set of elements for which the policy is active.

 Action evaluation stops immediately when any run-time
 exception is detected.

 When this condition is executed, if SNMP requests are made to
 the local system and secModel/secName/secLevel aren’t
 specified, access to objects is under the security
 credentials of the requester who most recently modified the
 associated pmPolicyAdminStatus object. If SNMP requests are
 made in which secModel/secName/secLevel are specified, then
 the specified credentials are retrieved from the local
 configuration datastore only if VACM is configured to
 allow access to the requester who most recently modified the
 associated pmPolicyAdminStatus object. See the Security
 Considerations section for more information."

Waldbusser, et al. Standards Track [Page 77]

RFC 4011 Policy Based Management MIB March 2005

 ::= { pmPolicyEntry 8 }

pmPolicyParameters OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (0..65535))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "From time to time, policy scripts may seek one or more
 parameters (e.g., site-specific constants). These parameters
 may be installed with the script in this object and are
 accessible to the script via the getParameters() function. If
 it is necessary for multiple parameters to be passed to the
 script, the script can choose whatever encoding/delimiting
 mechanism is most appropriate."
 ::= { pmPolicyEntry 9 }

pmPolicyConditionMaxLatency OBJECT-TYPE
 SYNTAX Unsigned32 (0..2147483647)
 UNITS "milliseconds"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Every element under the control of this agent is
 re-checked periodically to see whether it is under control
 of this policy by re-running the condition for this policy.
 This object lets the manager control the maximum amount of
 time that may pass before an element is re-checked.

 In other words, in any given interval of this duration, all
 elements must be re-checked. Note that how the policy agent
 schedules the checking of various elements within this
 interval is an implementation-dependent matter.
 Implementations may wish to re-run a condition more
 quickly if they note a change to the role strings for an
 element."
 ::= { pmPolicyEntry 10 }

pmPolicyActionMaxLatency OBJECT-TYPE
 SYNTAX Unsigned32 (0..2147483647)
 UNITS "milliseconds"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Every element that matches this policy’s condition and is
 therefore under control of this policy will have this policy’s
 action executed periodically to ensure that the element
 remains in the state dictated by the policy.
 This object lets the manager control the maximum amount of

Waldbusser, et al. Standards Track [Page 78]

RFC 4011 Policy Based Management MIB March 2005

 time that may pass before an element has the action run on
 it.

 In other words, in any given interval of this duration, all
 elements under control of this policy must have the action run
 on them. Note that how the policy agent schedules the policy
 action on various elements within this interval is an
 implementation-dependent matter."
 ::= { pmPolicyEntry 11 }

pmPolicyMaxIterations OBJECT-TYPE
 SYNTAX Unsigned32
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "If a condition or action script iterates in loops too many
 times in one invocation, the execution environment may
 consider it in an infinite loop or otherwise not acting
 as intended and may be terminated by the execution
 environment. The execution environment will count the
 cumulative number of times all ’for’ or ’while’ loops iterated
 and will apply a threshold to determine when to terminate the
 script. What threshold the execution environment uses is an
 implementation-dependent manner, but the value of
 this object SHOULD be the basis for choosing the threshold for
 each script. The value of this object represents a
 policy-specific threshold and can be tuned for policies of
 varying workloads. If this value is zero, no
 threshold will be enforced except for any
 implementation-dependent maximum. Regardless of this value,
 the agent is allowed to terminate any script invocation that
 exceeds a local CPU or memory limitation.

 Note that the condition and action invocations are tracked
 separately."
 ::= { pmPolicyEntry 12 }

pmPolicyDescription OBJECT-TYPE
 SYNTAX PmUTF8String
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A description of this rule and its significance, typically
 provided by a human."
 ::= { pmPolicyEntry 13 }

pmPolicyMatches OBJECT-TYPE
 SYNTAX Gauge32

Waldbusser, et al. Standards Track [Page 79]

RFC 4011 Policy Based Management MIB March 2005

 UNITS "elements"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of elements that, in their most recent execution
 of the associated condition, were matched by the condition."
 ::= { pmPolicyEntry 14 }

pmPolicyAbnormalTerminations OBJECT-TYPE
 SYNTAX Gauge32
 UNITS "elements"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of elements that, in their most recent execution
 of the associated condition or action, have experienced a
 run-time exception and terminated abnormally. Note that if a
 policy was experiencing a run-time exception while processing
 a particular element but runs normally on a subsequent
 invocation, this number can decline."
 ::= { pmPolicyEntry 15 }

pmPolicyExecutionErrors OBJECT-TYPE
 SYNTAX Counter32
 UNITS "errors"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The total number of times that execution of this policy’s
 condition or action has been terminated due to run-time
 exceptions."
 ::= { pmPolicyEntry 16 }

pmPolicyDebugging OBJECT-TYPE
 SYNTAX INTEGER {
 off(1),
 on(2)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of debugging for this policy. If this is turned
 on(2), log entries will be created in the pmDebuggingTable
 for each run-time exception that is experienced by this
 policy."
 DEFVAL { off }
 ::= { pmPolicyEntry 17 }

Waldbusser, et al. Standards Track [Page 80]

RFC 4011 Policy Based Management MIB March 2005

pmPolicyAdminStatus OBJECT-TYPE
 SYNTAX INTEGER {
 disabled(1),
 enabled(2),
 enabledAutoRemove(3)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The administrative status of this policy.

 The policy will be valid only if the associated
 pmPolicyRowStatus is set to active(1) and this object is set
 to enabled(2) or enabledAutoRemove(3).

 If this object is set to enabledAutoRemove(3), the next time
 the associated schedule moves from the active state to the
 inactive state, this policy will immediately be deleted,
 including any associated entries in the pmPolicyCodeTable.

 The following related objects may not be changed unless this
 object is set to disabled(1):
 pmPolicyPrecedenceGroup, pmPolicyPrecedence,
 pmPolicySchedule, pmPolicyElementTypeFilter,
 pmPolicyConditionScriptIndex, pmPolicyActionScriptIndex,
 pmPolicyParameters, and any pmPolicyCodeTable row
 referenced by this policy.
 In order to change any of these parameters, the policy must
 be moved to the disabled(1) state, changed, and then
 re-enabled.

 When this policy moves to either enabled state from the
 disabled state, any cached values of policy condition must be
 erased, and any Policy or PolicyElement scratchpad values for
 this policy should be removed. Policy execution will begin by
 testing the policy condition on all appropriate elements."
 ::= { pmPolicyEntry 18 }

pmPolicyStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object defines whether this policy and any associated
 entries in the pmPolicyCodeTable are kept in volatile storage
 and lost upon reboot or if this row is backed up by
 non-volatile or permanent storage.

Waldbusser, et al. Standards Track [Page 81]

RFC 4011 Policy Based Management MIB March 2005

 If the value of this object is ’permanent’, the values for
 the associated pmPolicyAdminStatus object must remain
 writable."
 ::= { pmPolicyEntry 19 }

pmPolicyRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The row status of this pmPolicyEntry.

 The status may not be set to active if any of the related
 entries in the pmPolicyCode table do not have a status of
 active or if any of the objects in this row are not set to
 valid values. Only the following objects may be modified
 while in the active state:
 pmPolicyParameters
 pmPolicyConditionMaxLatency
 pmPolicyActionMaxLatency
 pmPolicyDebugging
 pmPolicyAdminStatus

 If this row is deleted, any associated entries in the
 pmPolicyCodeTable will be deleted as well."
 ::= { pmPolicyEntry 20 }

-- Policy Code Table

pmPolicyCodeTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PmPolicyCodeEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The pmPolicyCodeTable stores the code for policy conditions and
 actions.

 An example of the relationships between the code table and the
 policy table follows:

 pmPolicyTable
 AdminGroup Index ConditionScriptIndex ActionScriptIndex
 A ’’ 1 1 2
 B ’oper’ 1 1 2
 C ’oper’ 2 3 4

 pmPolicyCodeTable
 AdminGroup ScriptIndex Segment Note

Waldbusser, et al. Standards Track [Page 82]

RFC 4011 Policy Based Management MIB March 2005

 ’’ 1 1 Filter for policy A
 ’’ 2 1 Action for policy A
 ’oper’ 1 1 Filter for policy B
 ’oper’ 2 1 Action 1/2 for policy B
 ’oper’ 2 2 Action 2/2 for policy B
 ’oper’ 3 1 Filter for policy C
 ’oper’ 4 1 Action for policy C

 In this example, there are 3 policies: 1 in the ’’ adminGroup,
 and 2 in the ’oper’ adminGroup. Policy A has been assigned
 script indexes 1 and 2 (these script indexes are assigned out of
 a separate pool per adminGroup), with 1 code segment each for
 the filter and the action. Policy B has been assigned script
 indexes 1 and 2 (out of the pool for the ’oper’ adminGroup).
 While the filter has 1 segment, the action is longer and is
 loaded into 2 segments. Finally, Policy C has been assigned
 script indexes 3 and 4, with 1 code segment each for the filter
 and the action."
 ::= { pmMib 2 }

pmPolicyCodeEntry OBJECT-TYPE
 SYNTAX PmPolicyCodeEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry in the policy code table representing one code
 segment. Entries that share a common AdminGroup/ScriptIndex
 pair make up a single script. Valid values of ScriptIndex are
 retrieved from pmPolicyConditionScriptIndex and
 pmPolicyActionScriptIndex after a pmPolicyEntry is
 created. Segments of code can then be written to this table
 with the learned ScriptIndex values.

 The StorageType of this entry is determined by the value of
 the associated pmPolicyStorageType.

 The pmPolicyAdminGroup element of the index represents the
 administrative group of the policy of which this code entry is
 a part."
 INDEX { pmPolicyAdminGroup, pmPolicyCodeScriptIndex,
 pmPolicyCodeSegment }
 ::= { pmPolicyCodeTable 1 }

PmPolicyCodeEntry ::= SEQUENCE {
 pmPolicyCodeScriptIndex Unsigned32,
 pmPolicyCodeSegment Unsigned32,
 pmPolicyCodeText PmUTF8String,
 pmPolicyCodeStatus RowStatus

Waldbusser, et al. Standards Track [Page 83]

RFC 4011 Policy Based Management MIB March 2005

}

pmPolicyCodeScriptIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A unique index for each policy condition or action. The code
 for each such condition or action may be composed of multiple
 entries in this table if the code cannot fit in one entry.
 Values of pmPolicyCodeScriptIndex may not be used unless
 they have previously been assigned in the
 pmPolicyConditionScriptIndex or pmPolicyActionScriptIndex
 objects."
 ::= { pmPolicyCodeEntry 1 }

pmPolicyCodeSegment OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A unique index for each segment of a policy condition or
 action.

 When a policy condition or action spans multiple entries in
 this table, the code of that policy starts from the
 lowest-numbered segment and continues with increasing segment
 values until it ends with the highest-numbered segment."
 ::= { pmPolicyCodeEntry 2 }

pmPolicyCodeText OBJECT-TYPE
 SYNTAX PmUTF8String (SIZE (1..1024))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A segment of policy code (condition or action). Lengthy
 Policy conditions or actions may be stored in multiple
 segments in this table that share the same value of
 pmPolicyCodeScriptIndex. When multiple segments are used, it
 is recommended that each segment be as large as is practical.

 Entries in this table are associated with policies by values
 of the pmPolicyConditionScriptIndex and
 pmPolicyActionScriptIndex objects. If the status of the
 related policy is active, then this object may not be
 modified."
 ::= { pmPolicyCodeEntry 3 }

Waldbusser, et al. Standards Track [Page 84]

RFC 4011 Policy Based Management MIB March 2005

pmPolicyCodeStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this code entry.

 Entries in this table are associated with policies by values
 of the pmPolicyConditionScriptIndex and
 pmPolicyActionScriptIndex objects. If the status of the
 related policy is active, then this object can not be
 modified (i.e., deleted or set to notInService), nor may new
 entries be created.

 If the status of this object is active, no objects in this
 row may be modified."
 ::= { pmPolicyCodeEntry 4 }

-- Element Type Registration Table

pmElementTypeRegTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PmElementTypeRegEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A registration table for element types managed by this
 system.

 The Element Type Registration table allows the manager to
 learn what element types are being managed by the system and
 to register new types, if necessary. An element type is
 registered by providing the OID of an SNMP object (i.e.,
 without the instance). Each SNMP instance that exists under
 that object is a distinct element. The index of the element is
 the index part of the discovered OID. This index will be
 supplied to policy conditions and actions so that this code
 can inspect and configure the element.

 For example, this table might contain the following entries.
 The first three are agent-installed, and the 4th was
 downloaded by a management station:

 OIDPrefix MaxLatency Description StorageType
 ifEntry 100 mS interfaces - builtin readOnly
 0.0 100 mS system element - builtin readOnly
 frCircuitEntry 100 mS FR Circuits - builtin readOnly
 hrSWRunEntry 60 sec Running Processes volatile

Waldbusser, et al. Standards Track [Page 85]

RFC 4011 Policy Based Management MIB March 2005

 Note that agents may automatically configure elements in this
 table for frequently used element types (interfaces, circuits,
 etc.). In particular, it may configure elements for whom
 discovery is optimized in one or both of the following ways:

 1. The agent may discover elements by scanning internal data
 structures as opposed to issuing local SNMP requests. It is
 possible to recreate the exact semantics described in this
 table even if local SNMP requests are not issued.

 2. The agent may receive asynchronous notification of new
 elements (for example, ’card inserted’) and use that
 information to instantly create elements rather than
 through polling. A similar feature might be available for
 the deletion of elements.

 Note that the disposition of agent-installed entries is
 described by the pmPolicyStorageType object."
 ::= { pmMib 3 }

pmElementTypeRegEntry OBJECT-TYPE
 SYNTAX PmElementTypeRegEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A registration of an element type.

 Note that some values of this table’s index may result in an
 instance name that exceeds a length of 128 sub-identifiers,
 which exceeds the maximum for the SNMP protocol.
 Implementations should take care to avoid such values."
 INDEX { pmElementTypeRegOIDPrefix }
 ::= { pmElementTypeRegTable 1 }

PmElementTypeRegEntry ::= SEQUENCE {
 pmElementTypeRegOIDPrefix OBJECT IDENTIFIER,
 pmElementTypeRegMaxLatency Unsigned32,
 pmElementTypeRegDescription PmUTF8String,
 pmElementTypeRegStorageType StorageType,
 pmElementTypeRegRowStatus RowStatus
}

pmElementTypeRegOIDPrefix OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This OBJECT IDENTIFIER value identifies a table in which all

Waldbusser, et al. Standards Track [Page 86]

RFC 4011 Policy Based Management MIB March 2005

 elements of this type will be found. Every row in the
 referenced table will be treated as an element for the
 period of time that it remains in the table. The agent will
 then execute policy conditions and actions as appropriate on
 each of these elements.

 This object identifier value is specified down to the ’entry’
 component (e.g., ifEntry) of the identifier.

 The index of each discovered row will be passed to each
 invocation of the policy condition and policy action.

 The actual mechanism by which instances are discovered is
 implementation dependent. Periodic walks of the table to
 discover the rows in the table is one such mechanism. This
 mechanism has the advantage that it can be performed by an
 agent with no knowledge of the names, syntax, or semantics
 of the MIB objects in the table. This mechanism also serves as
 the reference design. Other implementation-dependent
 mechanisms may be implemented that are more efficient (perhaps
 because they are hard coded) or that don’t require polling.
 These mechanisms must discover the same elements as would the
 table-walking reference design.

 This object can contain a OBJECT IDENTIFIER, ’0.0’.
 ’0.0’ represents the single instance of the system
 itself and provides an execution context for policies to
 operate on the ’system element’ and on MIB objects
 modeled as scalars. For example, ’0.0’ gives an execution
 context for policy-based selection of the operating system
 code version (likely modeled as a scalar MIB object). The
 element type ’0.0’ always exists; as a consequence, no actual
 discovery will take place, and the pmElementTypeRegMaxLatency
 object will have no effect for the ’0.0’ element
 type. However, if the ’0.0’ element type is not registered in
 the table, policies will not be executed on the ’0.0’ element.

 When a policy is invoked on behalf of a ’0.0’ entry in this
 table, the element name will be ’0.0’, and there is no index
 of ’this element’ (in other words, it has zero length).

 As this object is used in the index for the
 pmElementTypeRegTable, users of this table should be careful
 not to create entries that would result in instance names with
 more than 128 sub-identifiers."
 ::= { pmElementTypeRegEntry 2 }

Waldbusser, et al. Standards Track [Page 87]

RFC 4011 Policy Based Management MIB March 2005

pmElementTypeRegMaxLatency OBJECT-TYPE
 SYNTAX Unsigned32
 UNITS "milliseconds"
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The PM agent is responsible for discovering new elements of
 types that are registered. This object lets the manager
 control the maximum amount of time that may pass between the
 time an element is created and when it is discovered.

 In other words, in any given interval of this duration, all
 new elements must be discovered. Note that how the policy
 agent schedules the checking of various elements within this
 interval is an implementation-dependent matter."
 ::= { pmElementTypeRegEntry 3 }

pmElementTypeRegDescription OBJECT-TYPE
 SYNTAX PmUTF8String (SIZE (0..64))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A descriptive label for this registered type."
 ::= { pmElementTypeRegEntry 4 }

pmElementTypeRegStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object defines whether this row is kept
 in volatile storage and lost upon reboot or
 backed up by non-volatile or permanent storage.

 If the value of this object is ’permanent’, no values in the
 associated row have to be writable."
 ::= { pmElementTypeRegEntry 5 }

pmElementTypeRegRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this registration entry.

 If the value of this object is active, no objects in this row
 may be modified."
 ::= { pmElementTypeRegEntry 6 }

Waldbusser, et al. Standards Track [Page 88]

RFC 4011 Policy Based Management MIB March 2005

-- Role Table

pmRoleTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PmRoleEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The pmRoleTable is a read-create table that organizes role
 strings sorted by element. This table is used to create and
 modify role strings and their associations, as well as to allow
 a management station to learn about the existence of roles and
 their associations.

 It is the responsibility of the agent to keep track of any
 re-indexing of the underlying SNMP elements and to continue to
 associate role strings with the element with which they were
 initially configured.

 Policy MIB agents that have elements in multiple local SNMP
 contexts have to allow some roles to be assigned to elements
 in particular contexts. This is particularly true when some
 elements have the same names in different contexts and the
 context is required to disambiguate them. In those situations,
 a value for the pmRoleContextName may be provided. When a
 pmRoleContextName value is not provided, the assignment is to
 the element in the default context.

 Policy MIB agents that discover elements on other systems and
 execute policies on their behalf need to have access to role
 information for these remote elements. In such situations,
 role assignments for other systems can be stored in this table
 by providing values for the pmRoleContextEngineID parameters.

 For example:
 Example:
 element role context ctxEngineID #comment
 ifindex.1 gold local, default context
 ifindex.2 gold local, default context
 repeaterid.1 foo rptr1 local, rptr1 context
 repeaterid.1 bar rptr2 local, rptr2 context
 ifindex.1 gold ’’ A different system
 ifindex.1 gold ’’ B different system

 The agent must store role string associations in non-volatile
 storage."
 ::= { pmMib 4 }

Waldbusser, et al. Standards Track [Page 89]

RFC 4011 Policy Based Management MIB March 2005

pmRoleEntry OBJECT-TYPE
 SYNTAX PmRoleEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A role string entry associates a role string with an
 individual element.

 Note that some combinations of index values may result in an
 instance name that exceeds a length of 128 sub-identifiers,
 which exceeds the maximum for the SNMP
 protocol. Implementations should take care to avoid such
 combinations."
 INDEX { pmRoleElement, pmRoleContextName,
 pmRoleContextEngineID, pmRoleString }
 ::= { pmRoleTable 1 }

PmRoleEntry ::= SEQUENCE {
 pmRoleElement RowPointer,
 pmRoleContextName SnmpAdminString,
 pmRoleContextEngineID OCTET STRING,
 pmRoleString PmUTF8String,
 pmRoleStatus RowStatus
}

pmRoleElement OBJECT-TYPE
 SYNTAX RowPointer
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The element with which this role string is associated.

 For example, if the element is interface 3, then this object
 will contain the OID for ’ifIndex.3’.

 If the agent assigns new indexes in the MIB table to
 represent the same underlying element (re-indexing), the
 agent will modify this value to contain the new index for the
 underlying element.

 As this object is used in the index for the pmRoleTable,
 users of this table should be careful not to create entries
 that would result in instance names with more than 128
 sub-identifiers."
 ::= { pmRoleEntry 1 }

Waldbusser, et al. Standards Track [Page 90]

RFC 4011 Policy Based Management MIB March 2005

pmRoleContextName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "If the associated element is not in the default SNMP context
 for the target system, this object is used to identify the
 context. If the element is in the default context, this object
 is equal to the empty string."
 ::= { pmRoleEntry 2 }

pmRoleContextEngineID OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (0 | 5..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "If the associated element is on a remote system, this object
 is used to identify the remote system. This object contains
 the contextEngineID of the system for which this role string
 assignment is valid. If the element is on the local system
 this object will be the empty string."
 ::= { pmRoleEntry 3 }

pmRoleString OBJECT-TYPE
 SYNTAX PmUTF8String (SIZE (0..64))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The role string that is associated with an element through
 this table. All role strings must have been successfully
 transformed by Stringprep RFC 3454. Management stations
 must perform this translation and must only set this object
 to string values that have been transformed.

 A role string is an administratively specified characteristic
 of a managed element (for example, an interface). It is a
 selector for policy rules, that determines the applicability of
 the rule to a particular managed element."
 ::= { pmRoleEntry 4 }

pmRoleStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this role string.

Waldbusser, et al. Standards Track [Page 91]

RFC 4011 Policy Based Management MIB March 2005

 If the value of this object is active, no object in this row
 may be modified."
 ::= { pmRoleEntry 5 }

-- Capabilities table

pmCapabilitiesTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PmCapabilitiesEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The pmCapabilitiesTable contains a description of
 the inherent capabilities of the system so that
 management stations can learn of an agent’s capabilities and
 differentially install policies based on the capabilities.

 Capabilities are expressed at the system level. There can be
 variation in how capabilities are realized from one vendor or
 model to the next. Management systems should consider these
 differences before selecting which policy to install in a
 system."
 ::= { pmMib 5 }

pmCapabilitiesEntry OBJECT-TYPE
 SYNTAX PmCapabilitiesEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A capabilities entry holds an OID indicating support for a
 particular capability. Capabilities may include hardware and
 software functions and the implementation of MIB
 Modules. The semantics of the OID are defined in the
 description of pmCapabilitiesType.

 Entries appear in this table if any element in the system has
 a specific capability. A capability should appear in this
 table only once, regardless of the number of elements in the
 system with that capability. An entry is removed from this
 table when the last element in the system that has the
 capability is removed. In some cases, capabilities are
 dynamic and exist only in software. This table should have an
 entry for the capability even if there are no current
 instances. Examples include systems with database or WEB
 services. While the system has the ability to create new
 databases or WEB services, the entry should exist. In these
 cases, the ability to create these services could come from
 other processes that are running in the system, even though
 there are no currently open databases or WEB servers running.

Waldbusser, et al. Standards Track [Page 92]

RFC 4011 Policy Based Management MIB March 2005

 Capabilities may include the implementation of MIB Modules
 but need not be limited to those that represent MIB Modules
 with one or more configurable objects. It may also be
 valuable to include entries for capabilities that do not
 include configuration objects, as that information, in
 combination with other entries in this table, might be used
 by the management software to determine whether to
 install a policy.

 Vendor software may also add entries in this table to express
 capabilities from their private branch.

 Note that some values of this table’s index may result in an
 instance name that exceeds a length of 128 sub-identifiers,
 which exceeds the maximum for the SNMP
 protocol. Implementations should take care to avoid such
 values."
 INDEX { pmCapabilitiesType }
 ::= { pmCapabilitiesTable 1 }

PmCapabilitiesEntry ::= SEQUENCE {
 pmCapabilitiesType OBJECT IDENTIFIER
}

pmCapabilitiesType OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "There are three types of OIDs that may be present in the
 pmCapabilitiesType object:

 1) The OID of a MODULE-COMPLIANCE macro that represents the
 highest level of compliance realized by the agent for that
 MIB Module. For example, an agent that implements the OSPF
 MIB Module at the highest level of compliance would have the
 value of ’1.3.6.1.2.1.14.15.2’ in the pmCapabilitiesType
 object. For software that realizes standard MIB
 Modules that do not have compliance statements, the base OID
 of the MIB Module should be used instead. If the OSPF MIB
 Module had not been created with a compliance statement, then
 the correct value of the pmCapabilitiesType would be
 ’1.3.6.1.2.1.14’. In the cases where multiple compliance
 statements in a MIB Module are supported by the agent, and
 where one compliance statement does not by definition include
 the other, each of the compliance OIDs would have entries in
 this table.

Waldbusser, et al. Standards Track [Page 93]

RFC 4011 Policy Based Management MIB March 2005

 MIB Documents can contain more than one MIB Module. In the
 case of OSPF, there is a second MIB Module
 that describes notifications for the OSPF Version 2 Protocol.
 If the agent also realizes these functions, an entry will
 also exist for those capabilities in this table.

 2) Vendors should install OIDs in this table that represent
 vendor-specific capabilities. These capabilities can be
 expressed just as those described above for MIB Modules on
 the standards track. In addition, vendors may install any
 OID they desire from their registered branch. The OIDs may be
 at any level of granularity, from the root of their entire
 branch to an instance of a single OID. There is no
 restriction on the number of registrations they may make,
 though care should be taken to avoid unnecessary entries.

 3) OIDs that represent one capability or a collection of
 capabilities that could be any collection of MIB Objects or
 hardware or software functions may be created in working
 groups and registered in a MIB Module. Other entities (e.g.,
 vendors) may also make registrations. Software will register
 these standard capability OIDs, as well as vendor specific
 OIDs.

 If the OID for a known capability is not present in the
 table, then it should be assumed that the capability is not
 implemented.

 As this object is used in the index for the
 pmCapabilitiesTable, users of this table should be careful
 not to create entries that would result in instance names
 with more than 128 sub-identifiers."
 ::= { pmCapabilitiesEntry 1 }

-- Capabilities override table

pmCapabilitiesOverrideTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PmCapabilitiesOverrideEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The pmCapabilitiesOverrideTable allows management stations
 to override pmCapabilitiesTable entries that have been
 registered by the agent. This facility can be used to avoid
 situations in which managers in the network send policies to
 a system that has advertised a capability in the
 pmCapabilitiesTable but that should not be installed on this
 particular system. One example could be newly deployed

Waldbusser, et al. Standards Track [Page 94]

RFC 4011 Policy Based Management MIB March 2005

 equipment that is still in a trial state in a trial state or
 resources reserved for some other administrative reason.
 This table can also be used to override entries in the
 pmCapabilitiesTable through the use of the
 pmCapabilitiesOverrideState object. Capabilities can also be
 declared available in this table that were not registered in
 the pmCapabilitiesTable. A management application can make
 an entry in this table for any valid OID and declare the
 capability available by setting the
 pmCapabilitiesOverrideState for that row to valid(1)."
 ::= { pmMib 6 }

pmCapabilitiesOverrideEntry OBJECT-TYPE
 SYNTAX PmCapabilitiesOverrideEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry in this table indicates whether a particular
 capability is valid or invalid.

 Note that some values of this table’s index may result in an
 instance name that exceeds a length of 128 sub-identifiers,
 which exceeds the maximum for the SNMP
 protocol. Implementations should take care to avoid such
 values."
 INDEX { pmCapabilitiesOverrideType }
 ::= { pmCapabilitiesOverrideTable 1 }

PmCapabilitiesOverrideEntry ::= SEQUENCE {
 pmCapabilitiesOverrideType OBJECT IDENTIFIER,
 pmCapabilitiesOverrideState INTEGER,
 pmCapabilitiesOverrideRowStatus RowStatus
}

pmCapabilitiesOverrideType OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This is the OID of the capability that is declared valid or
 invalid by the pmCapabilitiesOverrideState value for this
 row. Any valid OID, as described in the pmCapabilitiesTable,
 is permitted in the pmCapabilitiesOverrideType object. This
 means that capabilities can be expressed at any level, from a
 specific instance of an object to a table or entire module.
 There are no restrictions on whether these objects are from
 standards track MIB documents or in the private branch of the
 MIB.

Waldbusser, et al. Standards Track [Page 95]

RFC 4011 Policy Based Management MIB March 2005

 If an entry exists in this table for which there is a
 corresponding entry in the pmCapabilitiesTable, then this entry
 shall have precedence over the entry in the
 pmCapabilitiesTable. All entries in this table must be
 preserved across reboots.

 As this object is used in the index for the
 pmCapabilitiesOverrideTable, users of this table should be
 careful not to create entries that would result in instance
 names with more than 128 sub-identifiers."
 ::= { pmCapabilitiesOverrideEntry 1 }

pmCapabilitiesOverrideState OBJECT-TYPE
 SYNTAX INTEGER {
 invalid(1),
 valid(2)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A pmCapabilitiesOverrideState of invalid indicates that
 management software should not send policies to this system
 for the capability identified in the
 pmCapabilitiesOverrideType for this row of the table. This
 behavior is the same whether the capability represented by
 the pmCapabilitiesOverrideType exists only in this table
 (that is, it was installed by an external management
 application) or exists in this table as well as the
 pmCapabilitiesTable. This would be the case when a manager
 wanted to disable a capability that the native management
 system found and registered in the pmCapabilitiesTable.

 An entry in this table that has a pmCapabilitiesOverrideState
 of valid should be treated as though it appeared in the
 pmCapabilitiesTable. If the entry also exists in the
 pmCapabilitiesTable in the pmCapabilitiesType object, and if
 the value of this object is valid, then the system shall
 operate as though this entry did not exist and policy
 installations and executions will continue in a normal
 fashion."
 ::= { pmCapabilitiesOverrideEntry 2 }

pmCapabilitiesOverrideRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The row status of this pmCapabilitiesOverrideEntry.

Waldbusser, et al. Standards Track [Page 96]

RFC 4011 Policy Based Management MIB March 2005

 If the value of this object is active, no object in this row
 may be modified."
 ::= { pmCapabilitiesOverrideEntry 3 }

-- The Schedule Group

pmSchedLocalTime OBJECT-TYPE
 SYNTAX DateAndTime (SIZE (11))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The local time used by the scheduler. Schedules that
 refer to calendar time will use the local time indicated
 by this object. An implementation MUST return all 11 bytes
 of the DateAndTime textual-convention so that a manager
 may retrieve the offset from GMT time."
 ::= { pmMib 7 }

--
-- The schedule table that controls the scheduler.
--

pmSchedTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PmSchedEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table defines schedules for policies."
 ::= { pmMib 8 }

pmSchedEntry OBJECT-TYPE
 SYNTAX PmSchedEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry describing a particular schedule.

 Unless noted otherwise, writable objects of this row can be
 modified independently of the current value of pmSchedRowStatus,
 pmSchedAdminStatus and pmSchedOperStatus. In particular, it
 is legal to modify pmSchedWeekDay, pmSchedMonth, and
 pmSchedDay when pmSchedRowStatus is active."
 INDEX { pmSchedIndex }
 ::= { pmSchedTable 1 }

Waldbusser, et al. Standards Track [Page 97]

RFC 4011 Policy Based Management MIB March 2005

PmSchedEntry ::= SEQUENCE {
 pmSchedIndex Unsigned32,
 pmSchedGroupIndex Unsigned32,
 pmSchedDescr PmUTF8String,
 pmSchedTimePeriod PmUTF8String,
 pmSchedMonth BITS,
 pmSchedDay BITS,
 pmSchedWeekDay BITS,
 pmSchedTimeOfDay PmUTF8String,
 pmSchedLocalOrUtc INTEGER,
 pmSchedStorageType StorageType,
 pmSchedRowStatus RowStatus
}

pmSchedIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The locally unique, administratively assigned index for this
 scheduling entry."
 ::= { pmSchedEntry 1 }

pmSchedGroupIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The locally unique, administratively assigned index for the
 schedule group this scheduling entry belongs to.

 To assign multiple schedule entries to the same group, the
 pmSchedGroupIndex of each entry in the group will be set to
 the same value. This pmSchedGroupIndex value must be equal to
 the pmSchedIndex of one of the entries in the group. If the
 entry whose pmSchedIndex equals the pmSchedGroupIndex
 for the group is deleted, the agent will assign a new
 pmSchedGroupIndex to all remaining members of the group.

 If an entry is not a member of a group, its pmSchedGroupIndex
 must be assigned to the value of its pmSchedIndex.

 Policies that are controlled by a group of schedule entries
 are active when any schedule in the group is active."
 ::= { pmSchedEntry 2 }

Waldbusser, et al. Standards Track [Page 98]

RFC 4011 Policy Based Management MIB March 2005

pmSchedDescr OBJECT-TYPE
 SYNTAX PmUTF8String
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The human-readable description of the purpose of this
 scheduling entry."
 DEFVAL { ’’H }
 ::= { pmSchedEntry 3 }

pmSchedTimePeriod OBJECT-TYPE
 SYNTAX PmUTF8String (SIZE (0..31))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The overall range of calendar dates and times over which this
 schedule is active. It is stored in a slightly extended version
 of the format for a ’period-explicit’ defined in RFC 2445.
 This format is expressed as a string representing the
 starting date and time, in which the character ’T’ indicates
 the beginning of the time portion, followed by the solidus
 character, ’/’, followed by a similar string representing an
 end date and time. The start of the period MUST be before the
 end of the period. Date-Time values are expressed as
 substrings of the form ’yyyymmddThhmmss’. For example:

 20000101T080000/20000131T130000

 January 1, 2000, 0800 through January 31, 2000, 1PM

 The ’Date with UTC time’ format defined in RFC 2445 in which
 the Date-Time string ends with the character ’Z’ is not
 allowed.

 This ’period-explicit’ format is also extended to allow two
 special cases in which one of the Date-Time strings is
 replaced with a special string defined in RFC 2445:

 1. If the first Date-Time value is replaced with the string
 ’THISANDPRIOR’, then the value indicates that the schedule
 is active at any time prior to the Date-Time that appears
 after the ’/’.

 2. If the second Date-Time is replaced with the string
 ’THISANDFUTURE’, then the value indicates that the schedule
 is active at any time after the Date-Time that appears
 before the ’/’.

Waldbusser, et al. Standards Track [Page 99]

RFC 4011 Policy Based Management MIB March 2005

 Note that although RFC 2445 defines these two strings, they are
 not specified for use in the ’period-explicit’ format. The use
 of these strings represents an extension to the
 ’period-explicit’ format."
 ::= { pmSchedEntry 4 }

pmSchedMonth OBJECT-TYPE
 SYNTAX BITS {
 january(0),
 february(1),
 march(2),
 april(3),
 may(4),
 june(5),
 july(6),
 august(7),
 september(8),
 october(9),
 november(10),
 december(11)
 }

 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Within the overall time period specified in the
 pmSchedTimePeriod object, the value of this object specifies
 the specific months within that time period when the schedule
 is active. Setting all bits will cause the schedule to act
 independently of the month."
 DEFVAL { { january, february, march, april, may, june, july,
 august, september, october, november, december } }
 ::= { pmSchedEntry 5 }

pmSchedDay OBJECT-TYPE
 SYNTAX BITS {
 d1(0), d2(1), d3(2), d4(3), d5(4),
 d6(5), d7(6), d8(7), d9(8), d10(9),
 d11(10), d12(11), d13(12), d14(13), d15(14),
 d16(15), d17(16), d18(17), d19(18), d20(19),
 d21(20), d22(21), d23(22), d24(23), d25(24),
 d26(25), d27(26), d28(27), d29(28), d30(29),
 d31(30),
 r1(31), r2(32), r3(33), r4(34), r5(35),
 r6(36), r7(37), r8(38), r9(39), r10(40),
 r11(41), r12(42), r13(43), r14(44), r15(45),
 r16(46), r17(47), r18(48), r19(49), r20(50),
 r21(51), r22(52), r23(53), r24(54), r25(55),

Waldbusser, et al. Standards Track [Page 100]

RFC 4011 Policy Based Management MIB March 2005

 r26(56), r27(57), r28(58), r29(59), r30(60),
 r31(61)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Within the overall time period specified in the
 pmSchedTimePeriod object, the value of this object specifies
 the specific days of the month within that time period when
 the schedule is active.

 There are two sets of bits one can use to define the day
 within a month:

 Enumerations starting with the letter ’d’ indicate a
 day in a month relative to the first day of a month.
 The first day of the month can therefore be specified
 by setting the bit d1(0), and d31(30) means the last
 day of a month with 31 days.

 Enumerations starting with the letter ’r’ indicate a
 day in a month in reverse order, relative to the last
 day of a month. The last day in the month can therefore
 be specified by setting the bit r1(31), and r31(61) means
 the first day of a month with 31 days.

 Setting multiple bits will include several days in the set
 of possible days for this schedule. Setting all bits starting
 with the letter ’d’ or all bits starting with the letter ’r’
 will cause the schedule to act independently of the day of the
 month."
 DEFVAL { { d1, d2, d3, d4, d5, d6, d7, d8, d9, d10,
 d11, d12, d13, d14, d15, d16, d17, d18, d19, d20,
 d21, d22, d23, d24, d25, d26, d27, d28, d29, d30,
 d31, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10,
 r11, r12, r13, r14, r15, r16, r17, r18, r19, r20,
 r21, r22, r23, r24, r25, r26, r27, r28, r29, r30,
 r31 } }
 ::= { pmSchedEntry 6 }

pmSchedWeekDay OBJECT-TYPE
 SYNTAX BITS {
 sunday(0),
 monday(1),
 tuesday(2),
 wednesday(3),
 thursday(4),
 friday(5),

Waldbusser, et al. Standards Track [Page 101]

RFC 4011 Policy Based Management MIB March 2005

 saturday(6)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Within the overall time period specified in the
 pmSchedTimePeriod object, the value of this object specifies
 the specific days of the week within that time period when
 the schedule is active. Setting all bits will cause the
 schedule to act independently of the day of the week."
 DEFVAL { { sunday, monday, tuesday, wednesday, thursday,
 friday, saturday } }
 ::= { pmSchedEntry 7 }

pmSchedTimeOfDay OBJECT-TYPE
 SYNTAX PmUTF8String (SIZE (0..15))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION

 "Within the overall time period specified in the
 pmSchedTimePeriod object, the value of this object specifies
 the range of times in a day when the schedule is active.

 This value is stored in a format based on the RFC 2445 format
 for ’time’: The character ’T’ followed by a ’time’ string,
 followed by the solidus character, ’/’, followed by the
 character ’T’, followed by a second time string. The first time
 indicates the beginning of the range, and the second time
 indicates the end. Thus, this value takes the following
 form:

 ’Thhmmss/Thhmmss’.

 The second substring always identifies a later time than the
 first substring. To allow for ranges that span midnight,
 however, the value of the second string may be smaller than
 the value of the first substring. Thus, ’T080000/T210000’
 identifies the range from 0800 until 2100, whereas
 ’T210000/T080000’ identifies the range from 2100 until 0800 of
 the following day.

 When a range spans midnight, by definition it includes parts
 of two successive days. When one of these days is also
 selected by either the MonthOfYearMask, DayOfMonthMask, and/or
 DayOfWeekMask, but the other day is not, then the policy is
 active only during the portion of the range that falls on the
 selected day. For example, if the range extends from 2100

Waldbusser, et al. Standards Track [Page 102]

RFC 4011 Policy Based Management MIB March 2005

 until 0800, and the day of week mask selects Monday and
 Tuesday, then the policy is active during the following three
 intervals:

 From midnight Sunday until 0800 Monday
 From 2100 Monday until 0800 Tuesday
 From 2100 Tuesday until 23:59:59 Tuesday

 Setting this value to ’T000000/T235959’ will cause the
 schedule to act independently of the time of day."
 DEFVAL { ’543030303030302F54323335393539’H } -- T000000/T235959
 ::= { pmSchedEntry 8 }

pmSchedLocalOrUtc OBJECT-TYPE
 SYNTAX INTEGER {
 localTime(1),
 utcTime(2)
 }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object indicates whether the times represented in the
 TimePeriod object and in the various Mask objects represent
 local times or UTC times."
 DEFVAL { utcTime }
 ::= { pmSchedEntry 9 }

pmSchedStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "This object defines whether this schedule entry is kept
 in volatile storage and lost upon reboot or
 backed up by non-volatile or permanent storage.

 Conceptual rows having the value ’permanent’ must allow write
 access to the columnar objects pmSchedDescr, pmSchedWeekDay,
 pmSchedMonth, and pmSchedDay.

 If the value of this object is ’permanent’, no values in the
 associated row have to be writable."
 DEFVAL { volatile }
 ::= { pmSchedEntry 10 }

Waldbusser, et al. Standards Track [Page 103]

RFC 4011 Policy Based Management MIB March 2005

pmSchedRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this schedule entry.

 If the value of this object is active, no object in this row
 may be modified."
 ::= { pmSchedEntry 11 }

-- Policy Tracking

-- The "policy to element" (PE) table and the "element to policy" (EP)
-- table track the status of execution contexts grouped by policy and
-- element respectively.

pmTrackingPETable OBJECT-TYPE
 SYNTAX SEQUENCE OF PmTrackingPEEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The pmTrackingPETable describes what elements
 are active (under control of) a policy. This table is indexed
 in order to optimize retrieval of the entire status for a
 given policy."
 ::= { pmMib 9 }

pmTrackingPEEntry OBJECT-TYPE
 SYNTAX PmTrackingPEEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry in the pmTrackingPETable. The pmPolicyIndex in
 the index specifies the policy tracked by this entry.

 Note that some combinations of index values may result in an
 instance name that exceeds a length of 128 sub-identifiers,
 which exceeds the maximum for the SNMP
 protocol. Implementations should take care to avoid such
 combinations."
 INDEX { pmPolicyIndex, pmTrackingPEElement,
 pmTrackingPEContextName, pmTrackingPEContextEngineID }
 ::= { pmTrackingPETable 1 }

Waldbusser, et al. Standards Track [Page 104]

RFC 4011 Policy Based Management MIB March 2005

PmTrackingPEEntry ::= SEQUENCE {
 pmTrackingPEElement RowPointer,
 pmTrackingPEContextName SnmpAdminString,
 pmTrackingPEContextEngineID OCTET STRING,
 pmTrackingPEInfo BITS
}

pmTrackingPEElement OBJECT-TYPE
 SYNTAX RowPointer
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The element that is acted upon by the associated policy.

 As this object is used in the index for the
 pmTrackingPETable, users of this table should be careful not
 to create entries that would result in instance names with
 more than 128 sub-identifiers."
 ::= { pmTrackingPEEntry 1 }

pmTrackingPEContextName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "If the associated element is not in the default SNMP context
 for the target system, this object is used to identify the
 context. If the element is in the default context, this object
 is equal to the empty string."
 ::= { pmTrackingPEEntry 2 }

pmTrackingPEContextEngineID OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (0 | 5..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "If the associated element is on a remote system, this object
 is used to identify the remote system. This object contains
 the contextEngineID of the system on which the associated
 element resides. If the element is on the local system,
 this object will be the empty string."
 ::= { pmTrackingPEEntry 3 }

pmTrackingPEInfo OBJECT-TYPE
 SYNTAX BITS {
 actionSkippedDueToPrecedence(0),
 conditionRunTimeException(1),
 conditionUserSignal(2),

Waldbusser, et al. Standards Track [Page 105]

RFC 4011 Policy Based Management MIB March 2005

 actionRunTimeException(3),
 actionUserSignal(4)
 }
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object returns information about the previous policy
 script executions.

 If the actionSkippedDueToPrecedence(1) bit is set, the last
 execution of the associated policy condition returned non-zero,
 but the action is not active, because it was trumped by a
 matching policy condition in the same precedence group with a
 higher precedence value.

 If the conditionRunTimeException(2) bit is set, the last
 execution of the associated policy condition encountered a
 run-time exception and aborted.

 If the conditionUserSignal(3) bit is set, the last
 execution of the associated policy condition called the
 signalError() function.

 If the actionRunTimeException(4) bit is set, the last
 execution of the associated policy action encountered a
 run-time exception and aborted.

 If the actionUserSignal(5) bit is set, the last
 execution of the associated policy action called the
 signalError() function.

 Entries will only exist in this table of one or more bits are
 set. In particular, if an entry does not exist for a
 particular policy/element combination, it can be assumed that
 the policy’s condition did not match ’this element’."
 ::= { pmTrackingPEEntry 4 }

-- Element to Policy Table

pmTrackingEPTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PmTrackingEPEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The pmTrackingEPTable describes what policies
 are controlling an element. This table is indexed in
 order to optimize retrieval of the status of all policies
 active for a given element."

Waldbusser, et al. Standards Track [Page 106]

RFC 4011 Policy Based Management MIB March 2005

 ::= { pmMib 10 }

pmTrackingEPEntry OBJECT-TYPE
 SYNTAX PmTrackingEPEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry in the pmTrackingEPTable. Entries exist for all
 element/policy combinations for which the policy’s condition
 matches and only if the schedule for the policy is active.

 The pmPolicyIndex in the index specifies the policy
 tracked by this entry.

 Note that some combinations of index values may result in an
 instance name that exceeds a length of 128 sub-identifiers,
 which exceeds the maximum for the SNMP protocol.
 Implementations should take care to avoid such combinations."
 INDEX { pmTrackingEPElement, pmTrackingEPContextName,
 pmTrackingEPContextEngineID, pmPolicyIndex }
 ::= { pmTrackingEPTable 1 }

PmTrackingEPEntry ::= SEQUENCE {
 pmTrackingEPElement RowPointer,
 pmTrackingEPContextName SnmpAdminString,
 pmTrackingEPContextEngineID OCTET STRING,
 pmTrackingEPStatus INTEGER
}

pmTrackingEPElement OBJECT-TYPE
 SYNTAX RowPointer
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The element acted upon by the associated policy.

 As this object is used in the index for the
 pmTrackingEPTable, users of this table should be careful
 not to create entries that would result in instance names
 with more than 128 sub-identifiers."
 ::= { pmTrackingEPEntry 1 }

pmTrackingEPContextName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "If the associated element is not in the default SNMP context

Waldbusser, et al. Standards Track [Page 107]

RFC 4011 Policy Based Management MIB March 2005

 for the target system, this object is used to identify the
 context. If the element is in the default context, this object
 is equal to the empty string."
 ::= { pmTrackingEPEntry 2 }

pmTrackingEPContextEngineID OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (0 | 5..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "If the associated element is on a remote system, this object
 is used to identify the remote system. This object contains
 the contextEngineID of the system on which the associated
 element resides. If the element is on the local system,
 this object will be the empty string."
 ::= { pmTrackingEPEntry 3 }

pmTrackingEPStatus OBJECT-TYPE
 SYNTAX INTEGER {
 on(1),
 forceOff(2)
 }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "This entry will only exist if the calendar for the policy is
 active and if the associated policyCondition returned 1 for
 ’this element’.

 A policy can be forcibly disabled on a particular element
 by setting this value to forceOff(2). The agent should then
 act as though the policyCondition failed for ’this element’.
 The forceOff(2) state will persist (even across reboots) until
 this value is set to on(1) by a management request. The
 forceOff(2) state may be set even if the entry does not
 previously exist so that future policy invocations can be
 avoided.

 Unless forcibly disabled, if this entry exists, its value
 will be on(1)."
 ::= { pmTrackingEPEntry 4 }

-- Policy Debugging Table

pmDebuggingTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PmDebuggingEntry
 MAX-ACCESS not-accessible
 STATUS current

Waldbusser, et al. Standards Track [Page 108]

RFC 4011 Policy Based Management MIB March 2005

 DESCRIPTION
 "Policies that have debugging turned on will generate a log
 entry in the policy debugging table for every runtime
 exception that occurs in either the condition or action
 code.

 The pmDebuggingTable logs debugging messages when
 policies experience run-time exceptions in either the condition
 or action code and the associated pmPolicyDebugging object
 has been turned on.

 The maximum number of debugging entries that will be stored
 and the maximum length of time an entry will be kept are an
 implementation-dependent manner. If entries must
 be discarded to make room for new entries, the oldest entries
 must be discarded first.

 If the system restarts, all debugging entries may be deleted."
 ::= { pmMib 11 }

pmDebuggingEntry OBJECT-TYPE
 SYNTAX PmDebuggingEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry in the pmDebuggingTable. The pmPolicyIndex in the
 index specifies the policy that encountered the exception
 that led to this log entry.

 Note that some combinations of index values may result in an
 instance name that exceeds a length of 128 sub-identifiers,
 which exceeds the maximum for the SNMP protocol.
 Implementations should take care to avoid such combinations."
 INDEX { pmPolicyIndex, pmDebuggingElement,
 pmDebuggingContextName, pmDebuggingContextEngineID,
 pmDebuggingLogIndex }
 ::= { pmDebuggingTable 1 }

PmDebuggingEntry ::= SEQUENCE {
 pmDebuggingElement RowPointer,
 pmDebuggingContextName SnmpAdminString,
 pmDebuggingContextEngineID OCTET STRING,
 pmDebuggingLogIndex Unsigned32,
 pmDebuggingMessage PmUTF8String
}

Waldbusser, et al. Standards Track [Page 109]

RFC 4011 Policy Based Management MIB March 2005

pmDebuggingElement OBJECT-TYPE
 SYNTAX RowPointer
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The element the policy was executing on when it encountered
 the error that led to this log entry.

 For example, if the element is interface 3, then this object
 will contain the OID for ’ifIndex.3’.

 As this object is used in the index for the
 pmDebuggingTable, users of this table should be careful
 not to create entries that would result in instance names
 with more than 128 sub-identifiers."
 ::= { pmDebuggingEntry 1 }

pmDebuggingContextName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE (0..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "If the associated element is not in the default SNMP context
 for the target system, this object is used to identify the
 context. If the element is in the default context, this object
 is equal to the empty string."
 ::= { pmDebuggingEntry 2 }

pmDebuggingContextEngineID OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (0 | 5..32))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "If the associated element is on a remote system, this object
 is used to identify the remote system. This object contains
 the contextEngineID of the system on which the associated
 element resides. If the element is on the local system,
 this object will be the empty string."
 ::= { pmDebuggingEntry 3 }

pmDebuggingLogIndex OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A unique index for this log entry among other log entries
 for this policy/element combination."
 ::= { pmDebuggingEntry 4 }

Waldbusser, et al. Standards Track [Page 110]

RFC 4011 Policy Based Management MIB March 2005

pmDebuggingMessage OBJECT-TYPE
 SYNTAX PmUTF8String (SIZE (0..128))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "An error message generated by the policy execution
 environment. It is recommended that this message include the
 time of day when the message was generated, if known."
 ::= { pmDebuggingEntry 5 }

-- Notifications

pmNotifications OBJECT IDENTIFIER ::= { pmMib 0 }

pmNewRoleNotification NOTIFICATION-TYPE
 OBJECTS { pmRoleStatus }
 STATUS current
 DESCRIPTION
 "The pmNewRoleNotification is sent when an agent is configured
 with its first instance of a previously unused role string
 (not every time a new element is given a particular role).

 An instance of the pmRoleStatus object is sent containing
 the new roleString in its index. In the event that two or
 more elements are given the same role simultaneously, it is an
 implementation-dependent matter as to which pmRoleTable
 instance will be included in the notification."
 ::= { pmNotifications 1 }

pmNewCapabilityNotification NOTIFICATION-TYPE
 OBJECTS { pmCapabilitiesType }
 STATUS current
 DESCRIPTION
 "The pmNewCapabilityNotification is sent when an agent
 gains a new capability that did not previously exist in any
 element on the system (not every time an element gains a
 particular capability).

 An instance of the pmCapabilitiesType object is sent containing
 the identity of the new capability. In the event that two or
 more elements gain the same capability simultaneously, it is an
 implementation-dependent matter as to which pmCapabilitiesType
 instance will be included in the notification."
 ::= { pmNotifications 2 }

pmAbnormalTermNotification NOTIFICATION-TYPE
 OBJECTS { pmTrackingPEInfo }
 STATUS current

Waldbusser, et al. Standards Track [Page 111]

RFC 4011 Policy Based Management MIB March 2005

 DESCRIPTION
 "The pmAbnormalTermNotification is sent when a policy’s
 pmPolicyAbnormalTerminations gauge value changes from zero to
 any value greater than zero and no such notification has been
 sent for that policy in the last 5 minutes.

 The notification contains an instance of the pmTrackingPEInfo
 object where the pmPolicyIndex component of the index
 identifies the associated policy and the rest of the index
 identifies an element on which the policy failed."
 ::= { pmNotifications 3 }

-- Compliance Statements

 pmConformance OBJECT IDENTIFIER ::= { pmMib 12 }
 pmCompliances OBJECT IDENTIFIER ::= { pmConformance 1 }
 pmGroups OBJECT IDENTIFIER ::= { pmConformance 2 }

pmCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "Describes the requirements for conformance to
 the Policy-Based Management MIB"
 MODULE -- this module
 MANDATORY-GROUPS { pmPolicyManagementGroup, pmSchedGroup,
 pmNotificationGroup }
 ::= { pmCompliances 1 }

pmPolicyManagementGroup OBJECT-GROUP
 OBJECTS { pmPolicyPrecedenceGroup, pmPolicyPrecedence,
 pmPolicySchedule, pmPolicyElementTypeFilter,
 pmPolicyConditionScriptIndex, pmPolicyActionScriptIndex,
 pmPolicyParameters,
 pmPolicyConditionMaxLatency, pmPolicyActionMaxLatency,
 pmPolicyMaxIterations,
 pmPolicyDescription, pmPolicyMatches,
 pmPolicyAbnormalTerminations,
 pmPolicyExecutionErrors, pmPolicyDebugging,
 pmPolicyStorageType, pmPolicyAdminStatus,
 pmPolicyRowStatus, pmPolicyCodeText, pmPolicyCodeStatus,
 pmElementTypeRegMaxLatency, pmElementTypeRegDescription,
 pmElementTypeRegStorageType, pmElementTypeRegRowStatus,
 pmRoleStatus,
 pmCapabilitiesType, pmCapabilitiesOverrideState,
 pmCapabilitiesOverrideRowStatus,
 pmTrackingPEInfo,
 pmTrackingEPStatus,
 pmDebuggingMessage }

Waldbusser, et al. Standards Track [Page 112]

RFC 4011 Policy Based Management MIB March 2005

 STATUS current
 DESCRIPTION
 "Objects that allow for the creation and management of
 configuration policies."
 ::= { pmGroups 1 }

pmSchedGroup OBJECT-GROUP
 OBJECTS { pmSchedLocalTime, pmSchedGroupIndex,
 pmSchedDescr, pmSchedTimePeriod,
 pmSchedMonth, pmSchedDay, pmSchedWeekDay,
 pmSchedTimeOfDay, pmSchedLocalOrUtc, pmSchedStorageType,
 pmSchedRowStatus
 }
 STATUS current
 DESCRIPTION
 "Objects that allow for the scheduling of policies."
 ::= { pmGroups 2 }

pmNotificationGroup NOTIFICATION-GROUP
 NOTIFICATIONS { pmNewRoleNotification,
 pmNewCapabilityNotification,
 pmAbnormalTermNotification }
 STATUS current
 DESCRIPTION
 "Notifications sent by an Policy MIB agent."
 ::= { pmGroups 3 }

pmBaseFunctionLibrary OBJECT IDENTIFIER ::= { pmGroups 4 }

END

12. Relationship to Other MIB Modules

 When policy-based management is used specifically for (policy-based)
 configuration, the "Configuring Networks and Devices With SNMP" RFC
 3512 [19] document describes configuration management practices,
 terminology, and an example of a MIB Module that may be helpful to
 those developing and using this technology.

 The Policy MIB accesses system instrumentation for the purposes of
 policy evaluation, control, notification, monitoring, and error
 reporting. This information is available to managers in the form of
 MIB objects. Information about system configuration is modified by
 the Policy MIB through MIB objects defined in other MIB Modules.

 Details about the operational or configuration details of a system
 are retrieved by the manager via access to the specific MIB objects
 available in a network element. As such, the Policy MIB can use any

Waldbusser, et al. Standards Track [Page 113]

RFC 4011 Policy Based Management MIB March 2005

 standard or vendor-defined object that exists on a managed system.
 In particular, the Policy MIB may access standard or vendor specific
 objects that are instance-specific such as BGP timeout parameters and
 specific interface counters.

13. Security Considerations

 This MIB contains no objects for which read access would disclose
 sensitive information.

 There are a number of management objects defined in this MIB that
 have a MAX-ACCESS clause of read-write and/or read-create. Such
 objects may be considered sensitive or vulnerable in some network
 environments. The support for SET operations in a non-secure
 environment without proper protection can have a negative effect on
 network operations.

 With the exception of pmPolicyDescription, pmPolicyDebugging,
 pmElementTypeRegDescription, and pmSchedDescr, EVERY read-create and
 read-write object in this MIB should be considered sensitive because
 if an unauthorized user could manipulate these objects, s/he could
 cause the Policy MIB system to use the stored credentials of an
 authorized user to perform unauthorized and potentially harmful
 operations.

 There are no read-only objects in this MIB that contain sensitive
 information.

 SNMP versions prior to SNMPv3 did not include adequate security.
 Even if the network itself is secure (for example by using IPSec),
 even then, there is no control as to who on the secure network is
 allowed to access and GET/SET (read/change/create/delete) the objects
 in this MIB module.

 It is RECOMMENDED that implementers consider the security features as
 provided by the SNMPv3 framework (see [16], section 8), including
 full support for the SNMPv3 cryptographic mechanisms (for
 authentication and privacy).

 Further, deployment of SNMP versions prior to SNMPv3 is NOT
 RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to
 enable cryptographic security. It is then a customer/operator
 responsibility to ensure that the SNMP entity giving access to an
 instance of this MIB module is properly configured to give access to
 the objects only to those principals (users) that have legitimate
 rights to indeed GET or SET (change/create/delete) them.

Waldbusser, et al. Standards Track [Page 114]

RFC 4011 Policy Based Management MIB March 2005

 An implementation must ensure that access control rules are applied
 when SNMP operations are performed in policy scripts. To ensure
 this, an implementation must record and maintain the security
 credentials of the last entity to modify each policy’s
 pmPolicyAdminStatus object. The credentials to store are the
 securityModel, securityName, and securityLevel and will be used as
 input parameters for isAccessAllowed from the Architecture for
 Describing SNMP Management Frameworks [1]. This mechanism was first
 introduced in the DISMAN-SCHEDULE-MIB [12].

 SNMP requests made when secModel, secName, and secLevel are specified
 use credentials stored in the local configuration datastore. Access
 to these credentials depends on the security credentials of the last
 entity to modify the policy’s pmPolicyAdminStatus object. To
 determine whether the credentials can be accessed, the
 isAccessAllowed abstract service interface defined in RFC 3411 [1] is
 called:

 statusInformation = -- success or errorIndication
 isAccessAllowed(

 IN securityModel -- Security Model used
 IN securityName -- principal who wants to access
 IN securityLevel -- Level of Security used
 IN viewType -- write
 IN contextName -- context containing variableName
 IN variableName -- OID for an object in the proper
 -- LCD entry
)

 The securityModel, securityName, and securityLevel parameters are
 set to the values that were recorded when the policy was modified.
 The viewType is set to write, and the contextName and variableName
 are set to select any read-create object in the appropriate LCD
 entry.

 Proper configuration of VACM requires that write access to an LCD
 entry not be given to entities that aren’t authorized to use the
 credentials therein.

 Access control for SNMP requests made to the local system where
 secModel, secName, and secLevel aren’t specified depends on the
 security credentials of the last entity to modify the policy’s
 pmPolicyAdminStatus object. To determine whether the operation
 should succeed, the isAccessAllowed abstract service interface
 defined in RFC 3411 [1] is called:

Waldbusser, et al. Standards Track [Page 115]

RFC 4011 Policy Based Management MIB March 2005

 statusInformation = -- success or errorIndication
 isAccessAllowed(
 IN securityModel -- Security Model in use
 IN securityName -- principal who wants to access
 IN securityLevel -- Level of Security
 IN viewType -- read, write, or notify view
 IN contextName -- context as specified
 IN variableName -- OID for the managed object
)

 The securityModel, securityName, and securityLevel parameters are
 set to the values that were recorded when the policy was modified.
 The viewType, contextName, and variableName parameters are set as
 appropriate for the requested SNMP operation.

 Unless all users who have write access to the pmPolicyTable and
 pmPolicyCodeTable have equivalent access to the managed system,
 policy scripts could be used by a user to gain the privileges of
 another user. Therefore, when policy users have different access,
 access control should be applied so that a user’s policies cannot be
 modified by another user. To make this more convenient, a user can
 place all of his or her policies in the same pmPolicyAdminGroup so
 that a single access control view can apply to all of them.

 Some policies may be designed to ensure the security of a network.
 If these policies have not been installed pending the appearance of a
 role or capability, some delay will occur in their activation
 policies when the role or capability appears because a responsible
 manager must notice the change and install the policy. This delay
 may expose the device or the network to unacceptable security
 vulnerabilities during this delay. If the role or capability appears
 during a time of network stress or when the management station is
 unavailable, this delay could be extensive, further increasing the
 exposure. It is recommended that management stations install any
 security-related policies that might ever be needed on a particular
 managed device, even if a nonexistent role or capability suggests
 that it is not needed at a given time.

 This MIB allows the delegation of access rights so that a user
 ("Joe") can instruct a Policy MIB agent to execute remote operations
 on his behalf that are authorized by keys stored by "Joe" into the
 usmUserTable. Care needs to be taken to ensure that unauthorized
 users are unable to configure their policies to use Joe’s keys.
 Although there are theoretically many ways to configure SNMP
 security, users are advised to follow the most straightforward way
 outlined below to minimize complexity and the resulting opportunity
 for errors.

Waldbusser, et al. Standards Track [Page 116]

RFC 4011 Policy Based Management MIB March 2005

 Assume that Joe has credentials that give him authority to manage
 agents A, B, and C, as well as the Policy MIB agent "P". Joe will
 store credentials for Joe@A, Joe@B, and Joe@C in the usmUserTable
 of the Policy MIB agent. Then the following VACM configuration
 will be used:

 VACM securityToGroupTable
 A single entry mapping user Joe@P to group JoesGroup

 VACM accessTable
 A single entry mapping group JoesGroup to write view JoesView

 VACM viewTreeFamilyTable
 ViewName Subtree Type
 JoesView points to Joe@A in usmUserTable included
 JoesView points to Joe@B in usmUserTable included
 JoesView points to Joe@C in usmUserTable included

 In the preceding examples, the notation Joe@A represents the entry
 indexed by usmUserEngineID and usmUserName, where the SnmpEngineID
 is that of system A and the usmUserName is "Joe".

14. IANA Considerations

 This is a profile of stringprep. It has been registered by the IANA
 in the stringprep profile registry located at:

 http://www.iana.org/assignments/stringprep-profiles

 Name of this profile:
 Policy MIB Stringprep.

 RFC in which the profile is defined:
 This document.

 Indicator whether this is the newest version of the profile:

 This is the first version of Policy MIB Stringprep.

Waldbusser, et al. Standards Track [Page 117]

RFC 4011 Policy Based Management MIB March 2005

15. Acknowledgements

 The authors gratefully acknowledge the significant contributions to
 this work made by Jeff Case, Patrik Falstrom, Joel Halpern, Pablo
 Halpern, Bob Moore, Steve Moulton, David Partain, and Walter Weiss.

 This MIB uses a security delegation mechanism that was first
 introduced in the DISMAN-SCHEDULE-MIB [12]. The Schedule table of
 this MIB borrows heavily from the PolicyTimePeriodCondition of the
 Policy Core Information Model (PCIM) [18] and from the DISMAN-
 SCHEDULE-MIB [12].

16. References

16.1. Normative References

 [1] Harrington, D., Presuhn, R., and B. Wijnen, "An Architecture for
 Describing Simple Network Management Protocol (SNMP) Management
 Frameworks", STD 62, RFC 3411, December 2002.

 [2] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Structure of
 Management Information Version 2 (SMIv2)", STD 58, RFC 2578,
 April 1999.

 [3] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Textual
 Conventions for SMIv2", STD 58, RFC 2579, April 1999.

 [4] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Conformance
 Statements for SMIv2", STD 58, RFC 2580, April 1999.

 [5] Presuhn, R., "Transport Mappings for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3417, December 2002.

 [6] Blumenthal, U. and B. Wijnen, "User-based Security Model (USM)
 for version 3 of the Simple Network Management Protocol
 (SNMPv3)", STD 62, RFC 3414, December 2002.

 [7] Presuhn, R., "Version 2 of the Protocol Operations for the
 Simple Network Management Protocol (SNMP)", STD 62, RFC 3416,
 December 2002.

 [8] Frye, R., Levi, D., Routhier, S., and B. Wijnen, "Coexistence
 between Version 1, Version 2, and Version 3 of the Internet-
 standard Network Management Framework", BCP 74, RFC 3584, August
 2003.

Waldbusser, et al. Standards Track [Page 118]

RFC 4011 Policy Based Management MIB March 2005

 [9] Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based Access
 Control Model (VACM) for the Simple Network Management Protocol
 (SNMP)", STD 62, RFC 3415, December 2002.

 [10] International Standards Organization, "Information Technology -
 Programming Languages - C++", ISO/IEC 14882-1998

 [11] Daniele, M. and J. Schoenwaelder, "Textual Conventions for
 Transport Addresses", RFC 3419, December 2002.

 [12] Levi, D. and J. Schoenwaelder, "Definitions of Managed Objects
 for Scheduling Management Operations", RFC 3231, January 2002.

 [13] Hoffman, P. and M. Blanchet, "Preparation of Internationalized
 Strings ("stringprep")", RFC 3454, December 2002.

 [14] Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD
 63, RFC 3629, November 2003.

 [15] Dawson, F. and D. Stenerson, "Internet Calendaring and
 Scheduling Core Object Specification (iCalendar)", RFC 2445,
 November 1998.

16.2. Informative References

 [16] Case, J., Mundy, R., Partain, D., and B. Stewart, "Introduction
 and Applicability Statements for Internet-Standard Management
 Framework", RFC 3410, December 2002.

 [17] ECMA, "ECMAScript Language Specification", ECMA-262, December
 1999

 [18] Moore, B., Ellesson, E., Strassner, J., and A. Westerinen,
 "Policy Core Information Model -- Version 1 Specification", RFC
 3060, February 2001.

 [19] MacFaden, M., Partain, D., Saperia, J., and W. Tackabury,
 "Configuring Networks and Devices with Simple Network Management
 Protocol (SNMP)", RFC 3512, April 2003.

Waldbusser, et al. Standards Track [Page 119]

RFC 4011 Policy Based Management MIB March 2005

Author’s Addresses

 Steve Waldbusser

 Phone: +1-650-948-6500
 Fax: +1-650-745-0671
 EMail: waldbusser@nextbeacon.com

 Jon Saperia (WG Co-chair)
 JDS Consulting, Inc.
 84 Kettell Plain Road.
 Stow MA 01775
 USA

 Phone: +1-978-461--0249
 Fax: +1-617-249-0874
 EMail: saperia@jdscons.com

 Thippanna Hongal
 Riverstone Networks, Inc.
 5200 Great America Parkway
 Santa Clara, CA, 95054
 USA

 Phone: +1-408-878-6562
 Fax: +1-408-878-6501
 EMail: hongal@riverstonenet.com

Waldbusser, et al. Standards Track [Page 120]

RFC 4011 Policy Based Management MIB March 2005

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Waldbusser, et al. Standards Track [Page 121]

