
Network Working Group T. Hardie
Request for Comments: 5222 Qualcomm, Inc.
Category: Standards Track A. Newton
 American Registry for Internet Numbers
 H. Schulzrinne
 Columbia University
 H. Tschofenig
 Nokia Siemens Networks
 August 2008

 LoST: A Location-to-Service Translation Protocol

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 This document describes an XML-based protocol for mapping service
 identifiers and geodetic or civic location information to service
 contact URIs. In particular, it can be used to determine the
 location-appropriate Public Safety Answering Point (PSAP) for
 emergency services.

Table of Contents

1. Introduction .. 3
2. Terminology and Requirements Notation 4
3. Overview of Protocol Usage 5
4. LoST Servers and Their Resolution 6
5. The <mapping> Element .. 7
 5.1. The Mapping Data Source: ’source’, ’sourceId’, and
 ’lastUpdated’ Attributes 7
 5.2. Mapping Validity: The ’expires’ Attribute 8
 5.3. Describing the Service with the <displayName> Element 8
 5.4. The Mapped Service: The <service> Element 8
 5.5. Defining the Service Region with the <serviceBoundary>
 Element .. 9
 5.6. Service Boundaries by Reference: The
 <serviceBoundaryReference> Element 9
 5.7. The Service Number: The <serviceNumber> Element 10
 5.8. Service URLs: The <uri> Element 10

Hardie, et al. Standards Track [Page 1]

RFC 5222 LoST August 2008

6. Path of a Request: The <path> Element 10
7. Identifying the Location Element Used for Mapping:
 <locationUsed> ... 11
8. Mapping a Location and Service to URLs: <findService> 11
 8.1. Overview ... 11
 8.2. Examples ... 11
 8.2.1. Example Using Geodetic Coordinates 11
 8.2.2. Civic Address Mapping Example 13
 8.3. Components of the <findService> Request 15
 8.3.1. The <location> Element 15
 8.3.2. Identifying the Service: The <service> Element 16
 8.3.3. Recursion and Iteration 16
 8.3.4. Service Boundary 16
 8.3.5. Requesting Civic Location Validation 16
 8.4. Components of the Mapping Response
 <findServiceResponse> 18
 8.4.1. Overview ... 18
 8.4.2. Civic Address Validation: The <locationValidation>
 Element ... 19
9. Retrieving the Service Boundary via <getServiceBoundary> 19
10. List Services: <listServices> 21
11. List Services By Location: <listServicesByLocation> 22
12. Location Profiles ... 24
 12.1. Location Profile Usage 25
 12.2. Two-Dimensional Geodetic Profile 30
 12.3. Basic Civic Profile 31
13. Errors, Warnings, and Redirects 32
 13.1. Errors ... 32
 13.2. Warnings ... 34
 13.3. Redirects ... 36
14. LoST Transport: HTTP ... 36
15. Relax NG Schema ... 37
16. Internationalization Considerations 44
17. IANA Considerations ... 44
 17.1. U-NAPTR Registrations 44
 17.2. Content-Type Registration for ’application/lost+xml’ 44
 17.3. LoST Relax NG Schema Registration 46
 17.4. LoST Namespace Registration 46
 17.5. LoST Location Profile Registry 47
18. Security Considerations 47
19. Acknowledgments ... 48
20. References ... 51
 20.1. Normative References 51
 20.2. Informative References 52
Appendix A. Non-Normative RELAX NG Schema in XML Syntax 54
Appendix B. Examples Online 67

Hardie, et al. Standards Track [Page 2]

RFC 5222 LoST August 2008

1. Introduction

 Protocols such as Naming Authority Pointer (NAPTR) records and the
 Service Location Protocol (SLP) can be used to discover servers
 offering a particular service. However, for an important class of
 services the appropriate specific service instance depends both on
 the identity of the service and the geographic location of the entity
 that needs to reach it. Emergency telecommunications services are an
 important example; here, the service instance is a Public Safety
 Answering Point (PSAP) that has jurisdiction over the location of the
 user making the call. The desired PSAP isn’t necessarily the one
 that is topologically or even line-of-sight closest to the caller;
 rather, it is the one that serves the caller’s location based on
 jurisdictional boundaries.

 This document describes a protocol for mapping a service identifier
 and location information compatible with the Presence Information
 Data Format Location Object (PIDF-LO) [6] to one or more service
 URIs. Service identifiers take the form of the service URNs
 described in [9]. Location information here includes revised civic
 location information [10] and a subset of the PIDF-LO profile [13],
 which consequently includes the Geo-Shapes [12] defined for GML [11].
 Example service URI schemes include sip [14], xmpp [15], and tel
 [16]. While the initial focus is on providing mapping functions for
 emergency services, it is likely that the protocol is applicable to
 other service URNs. For example, in the United States, the "2-1-1"
 and "3-1-1" service numbers follow a similar location-to-service
 behavior as emergency services.

 This document names this protocol "LoST", for Location-to-Service
 Translation. LoST satisfies the requirements [18] for mapping
 protocols. LoST provides a number of operations, centered around
 mapping locations and service URNs to service URLs and associated
 information. LoST mapping queries can contain either civic or
 geodetic location information. For civic addresses, LoST can
 indicate which parts of the civic address are known to be valid or
 invalid, thus providing address validation, as described in Section
 3.5 of [18]. LoST indicates errors in the location data to
 facilitate debugging and proper user feedback, but also provides
 best-effort answers.

 LoST queries can be resolved recursively or iteratively. To minimize
 round trips and to provide robustness against network failures, LoST
 supports caching of individual mappings and indicates the region for
 which the same answer would be returned ("service region").

Hardie, et al. Standards Track [Page 3]

RFC 5222 LoST August 2008

 As defined in this document, LoST messages are carried in HTTP and
 HTTPS protocol exchanges, facilitating use of TLS for protecting the
 integrity and confidentiality of requests and responses.

 This document focuses on the description of the protocol between the
 mapping client and the mapping server. Other functions, such as
 discovery of mapping servers, data replication and the overall
 mapping server architecture are described in a separate document
 [19].

 The query message carries location information and a service
 identifier encoded as a Uniform Resource Name (URN) (see [9]) from
 the LoST client to the LoST server. The LoST server uses its
 database to map the input values to one or more Uniform Resource
 Identifiers (URIs) and returns those URIs along with optional
 information, such as hints about the service boundary, in a response
 message to the LoST client. If the server cannot resolve the query
 itself, it may in turn query another server or return the address of
 another LoST server, identified by a LoST server name. In addition
 to the mapping function described in Section 8, the protocol also
 allows to retrieve the service boundary (see Section 9) and to list
 the services available for a particular location (see Section 11) or
 supported by a particular server (see Section 10).

2. Terminology and Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [1].

 This document uses the following terms:

 Mapping:
 Mapping is a process that takes a location and a service
 identifier as inputs and returns one or more URIs. Those URIs can
 point either to a host providing that service or to a host that in
 turn routes the request to the final destination. This definition
 is a generalization of the term "mapping" as used in [18], because
 LoST can be used for non-emergency services.

 LoST client:
 A host acts as a LoST client if it sends LoST query messages and
 receives LoST response messages.

 LoST server:
 A host acts as a LoST server if it receives LoST query messages
 and sends LoST response messages. In recursive operation, the
 same entity may be both a client and a server.

Hardie, et al. Standards Track [Page 4]

RFC 5222 LoST August 2008

 Authoritative LoST server:
 An authoritative server acts only as a server and successfully
 resolves the input location and service identifier to a URI or set
 of URIs.

 Service boundary:
 A service boundary circumscribes the region within which all
 locations map to the same service URI or set of URIs for a given
 service. A service boundary may consist of several non-contiguous
 geometric shapes.

 Validation:
 The term "validation" describes the behavior defined as "location
 validation" in Section 3.5 of [18].

 Additional emergency service terminology can be found in [18].

3. Overview of Protocol Usage

 The LoST protocol supports the following types of queries and
 responses:

 <findService> and <findServiceResponse>
 A LoST client retrieves contact URIs based on location information
 and a service identifier with this request and response. The same
 query type may also ask for location validation and for service
 numbers, either combined with a mapping request or separately.
 The details can be found in Section 8.

 <getServiceBoundary> and <getServiceBoundaryResponse>
 A LoST client obtains a service boundary with this request and
 response, as described in Section 9.

 <listServices> and <listServicesResponse>
 With this request and response, a LoST client can find out which
 services a LoST server supports, as described in Section 10.

 <listServicesByLocation> and <listServicesByLocationResponse>
 A LoST client can determine with this request and response which
 services are available for a specific location region. Section 11
 describes the details.

 LoST clients may initiate any of the above queries at any time.
 Among the common triggers are:

 1. when the client initially starts up or attaches to a network;

Hardie, et al. Standards Track [Page 5]

RFC 5222 LoST August 2008

 2. when the client detects that its location has changed
 sufficiently that it is outside the bounds of the service region;

 3. when a SIP message arrives at a SIP proxy performing location-
 based call routing;

 4. when cached mapping information has expired; and

 5. when invoking a particular service. At that time, a client may
 omit requests for service boundaries or other auxiliary
 information.

 A service-specific Best Current Practice (BCP) document, such as
 [21], governs whether a client is expected to invoke the mapping
 service just before needing the service or whether to rely on cached
 answers. Cache entries expire at their expiration time (see
 Section 5.2), or they become invalid if the caller’s device moves
 beyond the boundaries of the service region. Service-specific Best
 Current Practice documents may also provide guidance on the contact
 URI schemes most appropriate to the service. As a general set of
 guidelines, URI schemes that do not provide mechanisms for actually
 initiating a contact method should be avoided (examples include data,
 info, cid, and tag) as transforming those references into contact
 mechanisms requires a layer of indirection that makes the overall
 mechanism more fragile. Provisionally registered URI schemes should
 also be carefully considered before use, because they are subject to
 change in core semantics.

4. LoST Servers and Their Resolution

 LoST servers are identified by U-NAPTR/DDDS (URI-Enabled NAPTR/
 Dynamic Delegation Discovery Service) [8] application unique strings,
 in the form of a DNS name. An example is ’lostserver.example.com’.

 Clients need to use the U-NAPTR [8] specification described below to
 obtain a URI (indicating host and protocol) for the applicable LoST
 service. In this document, only the HTTP and HTTPS URL schemes are
 defined. Note that the HTTP URL can be any valid HTTP URL, including
 those containing path elements.

 The following two DNS entries show the U-NAPTR resolution for
 "example.com" to the HTTPS URL https://lostserv.example.com/secure or
 the HTTP URL http://lostserver.example.com, with the former being
 preferred.

Hardie, et al. Standards Track [Page 6]

RFC 5222 LoST August 2008

 example.com.

 IN NAPTR 100 10 "u" "LoST:https"
 "!.*!https://lostserver.example.com/secure!" ""

 IN NAPTR 200 10 "u" "LoST:http"
 "!.*!http://lostserver.example.com!" ""

 Clients learn the LoST server’s host name by means beyond the scope
 of this specification, such as SIP configuration and DHCP [25].

5. The <mapping> Element

 The <mapping> element is the core data element in LoST, describing a
 service region and the associated service URLs. Its attributes and
 elements are described in subsections below.

5.1. The Mapping Data Source: ’source’, ’sourceId’, and ’lastUpdated’
 Attributes

 The ’source’, ’sourceId’, and ’lastUpdated’ attributes uniquely
 identify a particular mapping record. They are created by the
 authoritative source for a mapping and are never modified when a
 mapping is served from a cache. All three attributes are REQUIRED
 for all <mapping> elements. A receiver can replace a mapping with
 another one having the same ’source’ and ’sourceId’ and a more recent
 time in ’lastUpdated’.

 The ’source’ attribute contains a LoST application unique string
 identifying the authoritative generator of the mapping (Section 4).

 The ’sourceId’ attribute identifies a particular mapping and contains
 an opaque token that MUST be unique among all different mappings
 maintained by the authoritative source for that particular service.
 For example, a Universally Unique Identifier (UUID) is a suitable
 format.

 The ’lastUpdated’ attribute describes when a specific instance of
 mapping, identified by the combination of ’source’ and ’sourceId’,
 was last changed. The contents of this attribute has the XML data
 type dateTime in its timezoned form, using the canonical UTC
 representation with the letter ’Z’ as the timezone indicator.

Hardie, et al. Standards Track [Page 7]

RFC 5222 LoST August 2008

5.2. Mapping Validity: The ’expires’ Attribute

 The ’expires’ attribute contains the absolute time at which the
 mapping becomes invalid. The contents of this attribute is a
 timezoned XML type dateTime, in canonical representation. The
 <mapping> element MUST include the ’expires’ attribute.

 Optionally, this attribute may contain the values of ’NO-CACHE’ and
 ’NO-EXPIRATION’ instead of a dateTime value. The value ’NO-CACHE’ is
 an indication that the mapping should not be cached. The value of
 ’NO-EXPIRATION’ is an indication that the mapping does not expire.

 On occasion, a server may be forced to return an expired mapping if
 it cannot reach the authoritative server or the server fails to
 return a usable answer. Clients and servers MAY cache the mapping so
 that they have at least some information available. Caching servers
 that have such stale information SHOULD re-attempt the query each
 time a client requests a mapping. Since the expired mapping will be
 returned to the client as a non-error/non-warning response, the
 client MUST check the ’expires’ attribute; if the mapping has
 expired, local policy at the client determines whether it discards
 the answer and tries again later or uses the possibly stale response.

5.3. Describing the Service with the <displayName> Element

 Zero or more <displayName> elements describe the service with a
 string that is suitable for display to human users, each annotated
 with the ’xml:lang’ attribute that contains a language tag to aid in
 the rendering of text.

5.4. The Mapped Service: The <service> Element

 The mandatory <service> element identifies the service for which this
 mapping applies. Two cases need to be distinguished when the LoST
 server sets the <service> element in the response message:

 1. If the requested service, identified by the service URN [9] in
 the <service> element of the request, exists for the location
 indicated, then the LoST server copies the service URN from the
 request into the <service> element.

 2. If, however, the requested service, identified by the service URN
 [9] in the <service> element in the request, does not exist for
 the location indicated, the server either can return a
 <serviceNotImplemented> (Section 13.1) error or can provide an
 alternate service that approximates the desired service for that

Hardie, et al. Standards Track [Page 8]

RFC 5222 LoST August 2008

 location. In the latter case, the server MUST include a
 <service> element with the alternative service URN. The choice
 of service URN is left to local policy, but the alternate service
 should be able to satisfy the original service request.

5.5. Defining the Service Region with the <serviceBoundary> Element

 A response MAY indicate the region for which the service URL returned
 would be the same as in the actual query, the so-called service
 region. The service region can be indicated by value or by reference
 (see Section 5.6). If a client moves outside the service area and
 wishes to obtain current service data, it sends a new query with its
 current location. The service region is described by value in one or
 more <serviceBoundary> elements, each formatted according to a
 specific location profile, identified by the ’profile’ attribute (see
 Section 12). <serviceBoundary> elements formatted according to
 different location profiles are alternative representations of the
 same area, not additive to one another; this allows a client
 understanding only one of the profile types to be sure it has a
 complete view of the serviceBoundary. Within a serviceBoundary
 element there may, however, be multiple locations which are additive;
 this is necessary because some <serviceBoundary> areas could not be
 easily expressed with a single shape or civic location. If included
 in a response, the <serviceBoundary> element MUST contain at least
 one service boundary that uses the same profile as the request.

 A service boundary is requested by the client, using the
 ’serviceBoundary’ attribute in the request with the value set to
 "value".

5.6. Service Boundaries by Reference: The <serviceBoundaryReference>
 Element

 Since geodetic service boundaries may contain thousands of points and
 can thus be quite large, clients may wish to conserve bandwidth by
 requesting a reference to the service boundary instead of the value
 described in Section 5.5. The identifier of the service boundary is
 returned as an attribute of the <serviceBoundaryReference> element,
 along with a LoST application unique string (see Section 4)
 identifying the server from where it can be retrieved. The actual
 value of the service boundary is then retrieved with the
 getServiceBoundary (Section 9) request.

 A reference to a service boundary is requested by the client using
 the ’serviceBoundary’ attribute in the request with the value set to
 "reference". A LoST server may decide, based on local policy, to
 return the service boundary by value or to omit the
 <serviceBoundaryReference> element in the response.

Hardie, et al. Standards Track [Page 9]

RFC 5222 LoST August 2008

 The identifier is a random token with at least 128 bits of entropy
 and can be assumed to be globally unique. It uniquely references a
 particular boundary. If the boundary changes, a new identifier MUST
 be chosen. Because of these properties, a client receiving a mapping
 response can simply check if it already has a copy of the boundary
 with that identifier. If so, it can skip checking with the server
 whether the boundary has been updated. Since service boundaries are
 likely to remain unchanged for extended periods of time, possibly
 exceeding the normal lifetime of the service URL, this approach
 avoids unnecessarily refreshing the boundary information just because
 the remainder of the mapping has become invalid.

5.7. The Service Number: The <serviceNumber> Element

 The service number is returned in the optional <serviceNumber>
 element. It contains a string of digits, * and # that a user on a
 device with a 12-key dial pad could use to reach that particular
 service.

5.8. Service URLs: The <uri> Element

 The response returns the service URLs in one or more <uri> elements.
 The URLs MUST be absolute URLs. The ordering of the URLs has no
 particular significance. Each URL scheme MUST only appear at most
 once, but it is permissible to include both secured and regular
 versions of a protocol, such as both ’http’ and ’https’ or ’sip’ and
 ’sips’.

6. Path of a Request: The <path> Element

 To prevent loops and to allow tracing of request and response paths,
 all requests that allow recursion include a <path> element that
 contains one or more <via> elements, each possessing an attribute
 containing a LoST application unique string (see Section 4). The
 order of <via> elements corresponds to the order of LoST servers,
 i.e., the first <via> element identifies the server that initially
 received the request from the client issuing the request. Every
 server in a recursive query operation is included in the <path>
 element, including the first server to receive it.

 The server that answers the request instead of forwarding it, such as
 the authoritative server, copies the <path> element verbatim into the
 response. The <path> element is not modified in responses as the
 responses traverses the server chain back to the querying client.

 If a query is answered iteratively, the querier includes all servers
 that it has already contacted.

Hardie, et al. Standards Track [Page 10]

RFC 5222 LoST August 2008

 When a cached mapping is returned, then the <path> element cached
 together with the mapping is returned.

 The example in Figure 4 indicates that the answer was given to the
 client by the LoST server at esgw.ueber-110.de.example, which got the
 answer from the (authoritative) LoST server at
 polizei.muenchen.de.example.

7. Identifying the Location Element Used for Mapping: <locationUsed>

 Several of the requests can provide one or more <location> elements,
 among which the server gets to choose. It is useful for the client
 to be able to determine which one was actually used in producing the
 result. For that purpose, the <location> tag MUST contain an ’id’
 attribute that uniquely identifies the <location> element. The
 format of the identifier is left to the client; it could, for
 example, use a hash of the location information. The server returns
 the identifier for the <location> element it used in the
 <locationUsed> tag.

8. Mapping a Location and Service to URLs: <findService>

8.1. Overview

 The <findService> query constitutes the core of the LoST
 functionality, mapping civic or geodetic locations to URLs and
 associated data. After giving an example, we enumerate the elements
 of the query and response.

8.2. Examples

8.2.1. Example Using Geodetic Coordinates

 The following is an example of mapping a service to a location using
 geodetic coordinates, for the service associated with the police
 (urn:service:sos.police).

Hardie, et al. Standards Track [Page 11]

RFC 5222 LoST August 2008

 <?xml version="1.0" encoding="UTF-8"?>
 <findService
 xmlns="urn:ietf:params:xml:ns:lost1"
 xmlns:p2="http://www.opengis.net/gml"
 serviceBoundary="value"
 recursive="true">

 <location id="6020688f1ce1896d" profile="geodetic-2d">
 <p2:Point id="point1" srsName="urn:ogc:def:crs:EPSG::4326">
 <p2:pos>37.775 -122.422</p2:pos>
 </p2:Point>
 </location>
 <service>urn:service:sos.police</service>

 </findService>

 Figure 1: A <findService> geodetic query

 Given the query above, a server would respond with a service, and
 information related to that service. In the example below, the
 server has mapped the location given by the client for a police
 service to the New York City Police Department, instructing the
 client that it may contact them via the URIs "sip:nypd@example.com"
 and "xmpp:nypd@example.com". The server has also given the client a
 geodetic, two-dimensional boundary for this service. The mapping was
 last updated on November 1, 2006 and expires on January 1, 2007. If
 the client’s location changes beyond the given service boundary or
 the expiration time has been reached, it may want to requery for this
 information, depending on the usage environment of LoST.

Hardie, et al. Standards Track [Page 12]

RFC 5222 LoST August 2008

 <?xml version="1.0" encoding="UTF-8"?>
 <findServiceResponse xmlns="urn:ietf:params:xml:ns:lost1"
 xmlns:p2="http://www.opengis.net/gml">
 <mapping
 expires="2007-01-01T01:44:33Z"
 lastUpdated="2006-11-01T01:00:00Z"
 source="authoritative.example"
 sourceId="7e3f40b098c711dbb6060800200c9a66">
 <displayName xml:lang="en">
 New York City Police Department
 </displayName>
 <service>urn:service:sos.police</service>
 <serviceBoundary profile="geodetic-2d">
 <p2:Polygon srsName="urn:ogc:def::crs:EPSG::4326">
 <p2:exterior>
 <p2:LinearRing>
 <p2:pos>37.775 -122.4194</p2:pos>
 <p2:pos>37.555 -122.4194</p2:pos>
 <p2:pos>37.555 -122.4264</p2:pos>
 <p2:pos>37.775 -122.4264</p2:pos>
 <p2:pos>37.775 -122.4194</p2:pos>
 </p2:LinearRing>
 </p2:exterior>
 </p2:Polygon>
 </serviceBoundary>
 <uri>sip:nypd@example.com</uri>
 <uri>xmpp:nypd@example.com</uri>
 <serviceNumber>911</serviceNumber>
 </mapping>
 <path>
 <via source="resolver.example"/>
 <via source="authoritative.example"/>
 </path>
 <locationUsed id="6020688f1ce1896d"/>
 </findServiceResponse>

 Figure 2: A <findServiceResponse> geodetic answer

8.2.2. Civic Address Mapping Example

 The example below shows how to map a service to a location much like
 the example in Section 8.2.1, but using civic address location
 information. In this example, the client requests the service
 associated with police (urn:service:sos.police) along with a specific
 civic address (house number 6 on a street named Otto-Hahn-Ring in
 Munich, Germany).

Hardie, et al. Standards Track [Page 13]

RFC 5222 LoST August 2008

 <?xml version="1.0" encoding="UTF-8"?>
 <findService xmlns="urn:ietf:params:xml:ns:lost1"
 recursive="true" serviceBoundary="value">
 <location id="627b8bf819d0bad4d" profile="civic">
 <civicAddress
 xmlns="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr">
 <country>DE</country>
 <A1>Bavaria</A1>
 <A3>Munich</A3>
 <A6>Otto-Hahn-Ring</A6>
 <HNO>6</HNO>
 <PC>81675</PC>
 </civicAddress>
 </location>
 <service>urn:service:sos.police</service>
 </findService>

 Figure 3: A <findService> civic address query

 Given the query above, a server would respond with a service, and
 information related to that service. In the example below, the
 server has mapped the location given by the client for a police
 service to the Muenchen Polizei-Abteilung, instructing the client
 that it may contact them via the URIs sip:munich-police@example.com
 and xmpp:munich-police@example.com. The server has also given the
 client a civic address boundary (the city of Munich) for this
 service. The mapping was last updated on November 1, 2006 by the
 authoritative source "polizei.muenchen.de.example" and expires on
 January 1, 2007. This instructs the client to requery for the
 information if its location changes beyond the given service boundary
 (i.e., beyond the indicated district of Munich) or after January 1,
 2007.

Hardie, et al. Standards Track [Page 14]

RFC 5222 LoST August 2008

 <?xml version="1.0" encoding="UTF-8"?>
 <findServiceResponse xmlns="urn:ietf:params:xml:ns:lost1">
 <mapping
 expires="2007-01-01T01:44:33Z"
 lastUpdated="2006-11-01T01:00:00Z"
 source="esgw.ueber-110.de.example"
 sourceId="e8b05a41d8d1415b80f2cdbb96ccf109">
 <displayName xml:lang="de">
 Muenchen Polizei-Abteilung
 </displayName>
 <service>urn:service:sos.police</service>
 <serviceBoundary
 profile="civic">
 <civicAddress
 xmlns="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr">
 <country>DE</country>
 <A1>Bavaria</A1>
 <A3>Munich</A3>
 <PC>81675</PC>
 </civicAddress>
 </serviceBoundary>
 <uri>sip:munich-police@example.com</uri>
 <uri>xmpp:munich-police@example.com</uri>
 <serviceNumber>110</serviceNumber>
 </mapping>
 <path>
 <via source="esgw.ueber-110.de.example"/>
 <via source="polizei.muenchen.de.example"/>
 </path>
 <locationUsed id="627b8bf819d0bad4d"/>
 </findServiceResponse>

 Figure 4: A <findServiceResponse> civic address answer

8.3. Components of the <findService> Request

 The <findService> request includes attributes and elements that
 govern whether the request is handled iteratively or recursively,
 whether location validation is performed, and which elements may be
 contained in the response.

8.3.1. The <location> Element

 The <findService> query communicates location information using one
 or more <location> elements, which MUST conform to a location profile
 (see Section 12). There MUST NOT be more than one location element

Hardie, et al. Standards Track [Page 15]

RFC 5222 LoST August 2008

 for each distinct location profile. The order of location elements
 is significant; the server uses the first location element where it
 understands the location profile.

8.3.2. Identifying the Service: The <service> Element

 The type of service desired is specified by the <service> element.
 It contains service URNs from the registry established in [9].

8.3.3. Recursion and Iteration

 LoST can operate in either recursive or iterative mode, on a request-
 by-request basis. In recursive mode, the LoST server initiates
 queries on behalf of the requester and returns the result to the
 requester.

 In iterative mode, the server contacted returns a redirection
 response indicating the next server to be queried if the server
 contacted cannot provide an answer itself.

 For the queries defined in this document, only the LoST <findService>
 and <listServicesByLocation> queries can be recursive, as indicated
 by the ’recursive’ attribute. A value of "true" indicates a
 recursive query, with the default being "false" when the attribute is
 omitted. Regardless of the attribute, a server MAY always answer a
 query by providing a LoST application unique string (see Section 4),
 i.e., indirection; however, it MUST NOT recurse if the attribute is
 "false".

8.3.4. Service Boundary

 LoST <mapping> elements can describe the service boundary either by
 value or by reference. Returning a service boundary reference is
 generally more space-efficient for geospatial (polygon) boundaries
 and if the boundaries change rarely, but does incur an additional
 <getServiceBoundary> request. The querier can express a preference
 for one or the other modality with the ’serviceBoundary’ attribute in
 the <findService> request, but the server makes the final decision as
 to whether to return a reference or a value.

8.3.5. Requesting Civic Location Validation

 Civic address validation is requested by setting the optional
 attribute ’validateLocation’ to true. If the attribute is omitted,
 it is assumed to be false. The response is described in
 Section 8.4.2. The example in Figure 5 demonstrates address
 validation. If the server chooses a geodetic location among the
 locations provided in a request, the attribute is ignored.

Hardie, et al. Standards Track [Page 16]

RFC 5222 LoST August 2008

 <?xml version="1.0" encoding="UTF-8"?>
 <findService
 xmlns="urn:ietf:params:xml:ns:lost1"
 recursive="true"
 validateLocation="true"
 serviceBoundary="value">
 <location id="627b8bf819d0bad4d" profile="civic">
 <civicAddress
 xmlns="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr">
 <country>DE</country>
 <A1>Bavaria</A1>
 <A3>Munich</A3>
 <A6>Otto-Hahn-Ring</A6>
 <HNO>6</HNO>
 <PC>81675</PC>
 </civicAddress>
 </location>
 <service>urn:service:sos.police</service>
 </findService>

 Figure 5: A <findService> query with address validation request

Hardie, et al. Standards Track [Page 17]

RFC 5222 LoST August 2008

 <?xml version="1.0" encoding="UTF-8"?>
 <findServiceResponse xmlns="urn:ietf:params:xml:ns:lost1">
 <mapping
 expires="2007-01-01T01:44:33Z"
 lastUpdated="2006-11-01T01:00:00Z"
 source="authoritative.example"
 sourceId="4db898df52b84edfa9b6445ea8a0328e">
 <displayName xml:lang="de">
 Muenchen Polizei-Abteilung
 </displayName>
 <service>urn:service:sos.police</service>
 <serviceBoundary profile="civic">
 <civicAddress
 xmlns="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr">
 <country>DE</country>
 <A1>Bavaria</A1>
 <A3>Munich</A3>
 <PC>81675</PC>
 </civicAddress>
 </serviceBoundary>
 <uri>sip:munich-police@example.com</uri>
 <uri>xmpp:munich-police@example.com</uri>
 <serviceNumber>110</serviceNumber>
 </mapping>
 <locationValidation>
 <valid>country A1 A3 A6</valid>
 <invalid>PC</invalid>
 <unchecked>HNO</unchecked>
 </locationValidation>
 <path>
 <via source="resolver.example"/>
 <via source="authoritative.example"/>
 </path>
 <locationUsed id="627b8bf819d0bad4d"/>
 </findServiceResponse>

 Figure 6: A <findServiceResponse> message with address validation
 information

8.4. Components of the Mapping Response <findServiceResponse>

8.4.1. Overview

 Mapping responses consist of the <mapping> element (Section 5)
 describing the mapping itself, possibly followed by warnings
 (Section 13.2), location validation information (Section 8.4.2), and
 an indication of the path (Section 6) the response has taken.

Hardie, et al. Standards Track [Page 18]

RFC 5222 LoST August 2008

8.4.2. Civic Address Validation: The <locationValidation> Element

 A server can indicate in its response which civic address elements it
 has recognized as valid, which ones it has ignored, and which ones it
 has checked and found to be invalid. The server SHOULD include this
 information if the ’validateLocation’ attribute in the request was
 true, but local policy at the server may allow this information to be
 omitted. Each element contains a list of tokens separated by
 whitespace, enumerating the civic location labels used in child
 elements of the <civicAddress> element. The <valid> element
 enumerates those civic address elements that have been recognized as
 valid by the LoST server and that have been used to determine the
 mapping. The <unchecked> elements enumerates the civic address
 elements that the server did not check and that were not used in
 determining the response. The <invalid> element enumerate civic
 address elements that the server attempted to check, but that did not
 match the other civic address elements found in the <valid> list.
 Civic location tokens that are not listed in either the <valid>,
 <invalid>, or <unchecked> element belong to the class of unchecked
 tokens.

 Note that the same address can yield different responses if parts of
 the civic address contradict each other. For example, if the postal
 code does not match the city, local server policy determines whether
 the postal code or the city is considered valid. The mapping
 naturally corresponds to the valid elements.

 The example shown in Figure 5 and in Figure 6 indicates that the
 tokens ’country’, ’A1’, ’A3’, and ’A6’ have been validated by the
 LoST server. The server considered the postal code 81675 in the <PC>
 element as not valid for this location. The ’HNO’ token belongs to
 the class of unchecked location tokens.

9. Retrieving the Service Boundary via <getServiceBoundary>

 As discussed in Section 5.5, the <findServiceResponse> can return a
 globally unique identifier in the ’serviceBoundary’ attribute that
 can be used to retrieve the service boundary, rather than returning
 the boundary by value. This is shown in the example in Figure 7 and
 Figure 8. The client can then retrieve the boundary using the
 <getServiceBoundary> request and obtains the boundary in the
 <getServiceBoundaryResponse>, illustrated in the example in Figure 9
 and Figure 10. The client issues the request to the server
 identified in the ’server’ attribute of the
 <serviceBoundaryReference> element. These requests are always
 directed to the authoritative server and do not recurse.

Hardie, et al. Standards Track [Page 19]

RFC 5222 LoST August 2008

 <?xml version="1.0" encoding="UTF-8"?>
 <findService
 xmlns="urn:ietf:params:xml:ns:lost1"
 xmlns:p2="http://www.opengis.net/gml"
 recursive="true"
 serviceBoundary="reference">
 <location id="6020688f1ce1896d" profile="geodetic-2d">
 <p2:Point id="point1" srsName="urn:ogc:def:crs:EPSG::4326">
 <p2:pos>37.775 -122.422</p2:pos>
 </p2:Point>
 </location>
 <service>urn:service:sos.police</service>
 </findService>

 Figure 7: <findService> request and response with service boundary
 reference

 <?xml version="1.0" encoding="UTF-8"?>
 <findServiceResponse xmlns="urn:ietf:params:xml:ns:lost1"
 xmlns:p2="http://www.opengis.net/gml">
 <mapping
 expires="2007-01-01T01:44:33Z"
 lastUpdated="2006-11-01T01:00:00Z"
 source="authoritative.example"
 sourceId="7e3f40b098c711dbb6060800200c9a66">
 <displayName xml:lang="en">
 New York City Police Department
 </displayName>
 <service>urn:service:sos.police</service>
 <serviceBoundaryReference
 source="authoritative.example"
 key="7214148E0433AFE2FA2D48003D31172E"/>
 <uri>sip:nypd@example.com</uri>
 <uri>xmpp:nypd@example.com</uri>
 <serviceNumber>911</serviceNumber>
 </mapping>
 <path>
 <via source="resolver.example"/>
 <via source="authoritative.example"/>
 </path>
 <locationUsed id="6020688f1ce1896d"/>
 </findServiceResponse>

 Figure 8: <findServiceResponse> message with service boundary
 reference

Hardie, et al. Standards Track [Page 20]

RFC 5222 LoST August 2008

 <?xml version="1.0" encoding="UTF-8"?>
 <getServiceBoundary xmlns="urn:ietf:params:xml:ns:lost1"
 key="7214148E0433AFE2FA2D48003D31172E"/>

 Figure 9: Requesting a service boundary with <getServiceBoundary>

 <?xml version="1.0" encoding="UTF-8"?>
 <getServiceBoundaryResponse
 xmlns="urn:ietf:params:xml:ns:lost1">
 <serviceBoundary profile="geodetic-2d">
 <p2:Polygon srsName="urn:ogc:def::crs:EPSG::4326">
 <p2:exterior>
 <p2:LinearRing>
 <p2:pos>37.775 -122.4194</p2:pos>
 <p2:pos>37.555 -122.4194</p2:pos>
 <p2:pos>37.555 -122.4264</p2:pos>
 <p2:pos>37.775 -122.4264</p2:pos>
 <p2:pos>37.775 -122.4194</p2:pos>
 </p2:LinearRing>
 </p2:exterior>
 </p2:Polygon>
 </serviceBoundary>
 <path>
 <via source="resolver.example"/>
 <via source="authoritative.example"/>
 </path>
 </getServiceBoundaryResponse>

 Figure 10: Geodetic service boundary response

10. List Services: <listServices>

 A LoST client can ask a LoST server for the list of services that it
 understands, primarily for diagnostic purposes. The query does not
 contain location information, as it simply provides an indication of
 which services the server can look up, not whether a particular
 service is offered for a particular area. Typically, only top-level
 services are included in the answer, implying support for all sub-
 services. Since the query is answered by the queried server, there
 is no notion of recursion or indirection. The
 <listServicesByLocation> (Section 11) query below can be used to find
 out whether a particular service is offered for a specific location.
 An example request and response are shown in Figure 11.

Hardie, et al. Standards Track [Page 21]

RFC 5222 LoST August 2008

 <?xml version="1.0" encoding="UTF-8"?>
 <listServices
 xmlns="urn:ietf:params:xml:ns:lost1">
 <service>urn:service:sos</service>
 </listServices>

 Figure 11: Example of <ListServices> query

 <?xml version="1.0" encoding="UTF-8"?>
 <listServicesResponse
 xmlns="urn:ietf:params:xml:ns:lost1">
 <serviceList>
 urn:service:sos.ambulance
 urn:service:sos.animal-control
 urn:service:sos.fire
 urn:service:sos.gas
 urn:service:sos.mountain
 urn:service:sos.marine
 urn:service:sos.physician
 urn:service:sos.poison
 urn:service:sos.police
 </serviceList>
 <path>
 <via source="authoritative.example"/>
 </path>
 </listServicesResponse>

 Figure 12: Example of <ListServicesResponse>

11. List Services By Location: <listServicesByLocation>

 A LoST client can ask a LoST server for the list of services it knows
 about for a particular area. The <listServicesByLocation> query
 contains one or more <location> elements, each from a different
 location profile (Section 12), and may contain the <service> element.
 As for <findService>, the server selects the first location element
 that has a profile the server understands and it can operate either
 recursively or iteratively; <via> elements track the progress of the
 request. The query indicates the services that the server can
 enumerate from within the forest structure of which it is a part.
 Because LoST does not presume a single, overarching organization of
 all potential service types, there may be services available within a
 geographic area that could be described by other LoST servers
 connected to other forest structures. As an example, the emergency
 services forest for a region may be distinct from the forests that
 locate commercial services within the same region.

Hardie, et al. Standards Track [Page 22]

RFC 5222 LoST August 2008

 If the query contains the <service> element, the LoST server returns
 only immediate child services of the queried service that are
 available for the provided location. If the <service> element is
 absent, the LoST service returns all top-level services available for
 the provided location that it knows about.

 A server responds to this query with a
 <listServicesByLocationResponse> response. This response MAY contain
 <via> elements (see Section 6) and MUST contain a <serviceList>
 element, consisting of a whitespace-separated list of service URNs.
 The query and response are illustrated in Figure 13 and in Figure 14,
 respectively.

 <?xml version="1.0" encoding="UTF-8"?>
 <listServicesByLocation
 xmlns="urn:ietf:params:xml:ns:lost1"
 xmlns:p2="http://www.opengis.net/gml"
 recursive="true">
 <location id="3e19dfb3b9828c3" profile="geodetic-2d">
 <p2:Point srsName="urn:ogc:def:crs:EPSG::4326">
 <p2:pos>-34.407 150.883</p2:pos>
 </p2:Point>
 </location>
 <service>urn:service:sos</service>
 </listServicesByLocation>

 Figure 13: Example of <ListServicesbyLocation> query

Hardie, et al. Standards Track [Page 23]

RFC 5222 LoST August 2008

 <?xml version="1.0" encoding="UTF-8"?>
 <listServicesByLocationResponse
 xmlns="urn:ietf:params:xml:ns:lost1">
 <serviceList>
 urn:service:sos.ambulance
 urn:service:sos.animal-control
 urn:service:sos.fire
 urn:service:sos.gas
 urn:service:sos.mountain
 urn:service:sos.marine
 urn:service:sos.physician
 urn:service:sos.poison
 urn:service:sos.police
 </serviceList>
 <path>
 <via source="resolver.example"/>
 <via source="authoritative.example"/>
 </path>
 <locationUsed id="3e19dfb3b9828c3"/>
 </listServicesByLocationResponse>

 Figure 14: Example of <ListServicesByLocationResponse> response

12. Location Profiles

 LoST uses location information in <location> elements in requests and
 <serviceBoundary> elements in responses. Such location information
 may be expressed in a variety of ways. This variety can cause
 interoperability problems where a request or response contains
 location information in a format not understood by the server or the
 client, respectively. To achieve interoperability, this document
 defines two mandatory-to-implement baseline location profiles to
 define the manner in which location information is transmitted. It
 is possible to standardize other profiles in the future. The
 baseline profiles are:

 geodetic-2d:
 a profile for two-dimensional geodetic location information, as
 described in Section 12.2;.

 civic:
 a profile consisting of civic address location information, as
 described in Section 12.3.

Hardie, et al. Standards Track [Page 24]

RFC 5222 LoST August 2008

 Requests and responses containing <location> or <serviceBoundary>
 elements MUST contain location information in exactly one of the two
 baseline profiles, in addition to zero or more additional profiles.
 The ordering of location information indicates a preference on the
 part of the sender.

 Standards action is required for defining new profiles. A location
 profile MUST define:

 1. The token identifying it in the LoST location profile registry.

 2. The formal definition of the XML to be used in requests, i.e., an
 enumeration and definition of the XML child elements of the
 <location> element.

 3. The formal definition of the XML to be used in responses, i.e.,
 an enumeration and definition of the XML child elements of the
 <serviceBoundary> element.

 4. The declaration of whether geodetic-2d or civic is to be used as
 the baseline profile. It is necessary to explicitly declare the
 baseline profile as future profiles may be combinations of
 geodetic and civic location information.

12.1. Location Profile Usage

 A location profile is identified by a token in an IANA-maintained
 registry (Section 17.5). Clients send location information compliant
 with a location profile, and servers respond with location
 information compliant with that same location profile.

 When a LoST client sends a <findService> request that provides
 location information, it includes one or more <location> elements. A
 <location> element carries an optional ’profile’ attribute that
 indicates the location format of the child elements. A client may
 obtain location information that does not conform to a profile it
 recognizes, or it may not have the capability to map XML to profiles.
 In that case, a client MAY omit the profile attribute and the server
 should interpret the XML location data to the best of its ability,
 returning a "locationProfileUnrecognized" error if it is unable to do
 so.

 The concept of location profiles is described in Section 12. With
 the ability to specify more than one <location> element, the client
 is able to convey location information for multiple location profiles
 in the same request.

Hardie, et al. Standards Track [Page 25]

RFC 5222 LoST August 2008

 When a LoST server sends a response that contains location
 information, it uses the <serviceBoundary> elements much like the
 client uses the <location> elements. Each <serviceBoundary> element
 contains location information conforming to the location profile
 specified in the ’profile’ attribute. A response MAY contain
 multiple mappings or boundaries for the different <location>
 elements, subject to the restrictions below.

 Using the location profiles defined in this document, the following
 rules ensure interoperability between clients and servers:

 1. A client MUST be capable of understanding the response for the
 baseline profiles it used in the request.

 2. If a client sends location information conformant to any location
 profile other than the ones described in this document, it MUST
 also send, in the same request, location information conformant
 to one of the baseline profiles. Otherwise, the server might not
 be able to understand the request.

 3. A client MUST NOT send multiple <location> objects that are
 derived from different baseline profiles. In other words, a
 client MUST only send location objects according to the same
 baseline profile in a query, but it MAY contain a location
 element following a baseline profile in addition to some other
 profile.

 4. If a client has both location information primarily of geodetic
 nature and location information primarily of a civic nature, it
 MUST send separate requests containing each type of location
 information.

 5. There can only be one instance of each location profile in a
 query.

 6. Servers MUST implement all profiles described in this document.

 7. A server uses the first-listed location profile that it
 understands and ignores the others.

 8. If a server receives a request that only contains location
 information using profiles it does not understand, the server
 responds with a <locationProfileError> (Section 13.1).

Hardie, et al. Standards Track [Page 26]

RFC 5222 LoST August 2008

 9. The <serviceBoundary> element MUST use the same location profile
 that was used to retrieve the answer and indicates which profile
 has been used with the ’profile’ attribute.

 These rules enable the use of location profiles not yet specified,
 while ensuring baseline interoperability. Take, for example, this
 scenario illustrated in Figure 15 and 16. Client X has had its
 firmware upgraded to support the ’not-yet-standardized-prism-profile’
 location profile. Client X sends location information to Server Y,
 which does not understand the ’not-yet-standardized-prism-profile’
 location profile. If Client X also sends location information using
 the geodetic-2D baseline profile, then Server Y will still be able to
 understand the request and provide an understandable response, though
 with location information that might not be as precise or expressive
 as desired. This is possible because both Client X and Server Y
 understand the baseline profile.

Hardie, et al. Standards Track [Page 27]

RFC 5222 LoST August 2008

 <?xml version="1.0" encoding="UTF-8"?>
 <findService
 xmlns="urn:ietf:params:xml:ns:lost1"
 xmlns:gml="http://www.opengis.net/gml"
 xmlns:gs="http://www.opengis.net/pidflo/1.0"
 recursive="true"
 serviceBoundary="value">
 <location id="ABC 123"
 profile="not-yet-standardized-prism-profile">
 <gs:Prism srsName="urn:ogc:def:crs:EPSG::4979">
 <gs:base>
 <gml:Polygon>
 <gml:exterior>
 <gml:LinearRing>
 <gml:posList>
 42.556844 -73.248157 36.6
 42.656844 -73.248157 36.6
 42.656844 -73.348157 36.6
 42.556844 -73.348157 36.6
 42.556844 -73.248157 36.6
 </gml:posList>
 </gml:LinearRing>
 </gml:exterior>
 </gml:Polygon>
 </gs:base>
 <gs:height uom="urn:ogc:def:uom:EPSG::9001">
 2.4
 </gs:height>
 </gs:Prism>
 </location>
 <location id="DEF 345" profile="geodetic-2d">
 <gml:Point id="point1" srsName="urn:ogc:def:crs:EPSG:4326">
 <gml:pos>42.656844 -73.348157</gml:pos>
 </gml:Point>
 </location>
 <service>urn:service:sos.police</service>
 </findService>

 Figure 15: Example of a <findServices> query with baseline profile
 interoperability

Hardie, et al. Standards Track [Page 28]

RFC 5222 LoST August 2008

 <?xml version="1.0" encoding="UTF-8"?>
 <findServiceResponse
 xmlns="urn:ietf:params:xml:ns:lost1"
 xmlns:p2="http://www.opengis.net/">
 <mapping
 expires="2007-01-01T01:44:33Z"
 lastUpdated="2006-11-01T01:00:00Z"
 source="authoritative.example"
 sourceId="cf19bbb038fb4ade95852795f045387d">
 <displayName xml:lang="en">
 New York City Police Department
 </displayName>
 <service>urn:service:sos.police</service>
 <serviceBoundary profile="geodetic-2d">
 <p2:Polygon srsName="urn:ogc:def::crs:EPSG::4326">
 <p2:exterior>
 <p2:LinearRing>
 <p2:pos>37.775 -122.4194</p2:pos>
 <p2:pos>37.555 -122.4194</p2:pos>
 <p2:pos>37.555 -122.4264</p2:pos>
 <p2:pos>37.775 -122.4264</p2:pos>
 <p2:pos>37.775 -122.4194</p2:pos>
 </p2:LinearRing>
 </p2:exterior>
 </p2:Polygon>
 </serviceBoundary>
 <uri>sip:nypd@example.com</uri>
 <serviceNumber>911</serviceNumber>
 </mapping>
 <path>
 <via source="resolver.example"/>
 <via source="authoritative.example"/>
 </path>
 <locationUsed id="DEF 345"/>
 </findServiceResponse>

 Figure 16: Example of a <findServiceResponse> message with baseline
 profile interoperability

Hardie, et al. Standards Track [Page 29]

RFC 5222 LoST August 2008

12.2. Two-Dimensional Geodetic Profile

 The "geodetic-2d" location profile is identified by the token
 "geodetic-2d". Clients and servers use this profile by placing the
 following location shapes into the <serviceBoundary> or into the
 <location> element (unless indicated otherwise):

 Point:
 The <Point> element is described in Section 5.2.1 of [13].
 Section 5.2.1 of [13] shows also the specification of a <Point>
 with either a two-dimensional position (latitude and longitude) or
 three-dimensional position (latitude, longitude, and altitude). A
 client MAY use the three-dimensional position, and servers MAY
 interpret a three-dimensional position as a two-dimensional
 position by ignoring the altitude value. A <Point> element is not
 placed into a <serviceBoundary> element.

 Polygon:
 The <Polygon> element is described in Section 5.2.2 of [13]. The
 restriction to 16 points for a polygon contained in Section 7.2.2
 of [12] is not applicable to this document.

 Circle:
 The <Circle> element is described in Section 5.2.3 of [13].

 Ellipse:
 The <Ellipse> element is described in Section 5.2.4 of [13].

 ArcBand:
 The <ArcBand> element is described in Section 5.2.5 of [13].

 When a client uses a <Polygon>, <Circle>, <Ellipse>, or <ArcBand>
 element within the <location> element, it is indicating that it will
 be satisfied by query results appropriate to any portion of the
 shape. It is left to the server to select an appropriate matching
 algorithm. A server MAY return multiple <mapping> elements if the
 shape extends across multiple service areas. Servers are not
 required to return all possible <mapping> elements to avoid denial-
 of-service attacks in which clients present queries that span a very
 large number of service boundaries (e.g., presenting a shape covering
 all of the United States).

 In the case where the server does not return multiple <mapping>
 elements, but the shape extends across a service boundary, it is
 possible that the matching algorithm selected by the LoST server will
 return results that match a portion of the shape but do not match
 those specific to a particular point. A client may always select a
 point from within the shape to avoid this condition. The cases where

Hardie, et al. Standards Track [Page 30]

RFC 5222 LoST August 2008

 it does not are generally those where it knows its own position only
 within the shape given. In emergency service use cases, that may
 result in the PSAP contacted at the URI provided by LoST being
 required to forward a call to one of its neighbors; this is an
 expected part of the overall emergency response system. In non-
 emergency service use cases, the service deployment model should take
 into account this issue as part of the provisioning model, as the
 combination of the data in the LoST server and the algorithm used for
 mapping determine which contact URIs are returned when shapes are
 used that overlap multiple service areas.

 As a general guideline, any deployed matching algorithm should ensure
 that the algorithm used does not needlessly return no results if
 there are valid results for any portion of the shape. If an
 authoritative server receives a query for which the area in the query
 overlaps the area for which the server has mapping information, then
 it MUST return either a mapping whose coverage area intersects the
 query area or a redirect to another server whose coverage area is a
 subset of the server’s coverage area.

 When geodetic location information of this location profile is placed
 in the <serviceBoundary> element, then the elements with geospatial
 coordinates are alternative descriptions of the same service region,
 not additive geometries.

12.3. Basic Civic Profile

 The basic civic location profile is identified by the token ’civic’.
 Clients use this profile by placing a <civicAddress> element, defined
 in [10], within the <location> element.

 Servers use this profile by placing a <civicAddress> element, defined
 in [10], within the <serviceBoundary> element.

 A response MAY contain more than one <serviceBoundary> element with
 profile ’civic’. Each <serviceBoundary> element describes a set of
 civic addresses that fall within the service boundary, namely, all
 addresses that textually match the civic address elements provided,
 regardless of the value of other address elements. A location falls
 within the mapping’s service boundary if it matches any of the
 <serviceBoundary> elements. Hence, a response may contain multiple
 <serviceBoundary> elements with civic and/or geodetic location
 profiles.

Hardie, et al. Standards Track [Page 31]

RFC 5222 LoST August 2008

13. Errors, Warnings, and Redirects

 When a LoST server cannot fulfill a request completely, it can return
 either an error or a warning, depending on the severity of the
 problem. It returns an <errors> element if no useful response can be
 returned for the query. It returns a <warnings> element as part of
 another response element if it was able to respond in part, but the
 response may not be quite what the client had desired. For both
 elements, the ’source’ attribute names the server that originally
 generated the error or warning, such as the authoritative server.
 Unless otherwise noted, all elements below can be either an error or
 a warning, depending on whether a default response, such as a
 mapping, is included.

13.1. Errors

 LoST defines a pattern for errors, defined as <errors> elements in
 the Relax NG schema. This pattern defines a ’message’ attribute
 containing human-readable text and an ’xml:lang’ attribute denoting
 the language of the human-readable text. One or more such error
 elements are contained in the <errors> element.

 The following errors follow this basic pattern:

 badRequest
 The server could not parse or otherwise understand a request,
 e.g., because the XML was malformed.

 forbidden
 The server refused to send an answer. This generally only occurs
 for recursive queries, namely, if the client tried to contact the
 authoritative server and was refused.

 internalError
 The server could not satisfy a request due to misconfiguration or
 other operational and non-protocol-related reasons.

 locationProfileUnrecognized
 None of the profiles in the request were recognized by the server
 (see Section 12).

 locationInvalid
 The geodetic or civic location in the request was invalid. For
 example, the longitude or latitude values fall outside the
 acceptable ranges.

Hardie, et al. Standards Track [Page 32]

RFC 5222 LoST August 2008

 SRSInvalid
 The spatial reference system (SRS) contained in the location
 element was not recognized or does not match the location profile.

 loop
 During a recursive query, the server was about to visit a server
 that was already in the server list in the <path> element,
 indicating a request loop.

 notFound
 The server could not find an answer to the query.

 serverError
 An answer was received from another LoST server, but it could not
 be parsed or otherwise understood. This error occurs only for
 recursive queries.

 serverTimeout
 A time out occurred before an answer was received.

 serviceNotImplemented
 The requested service URN is not implemented and no substitution
 was available.

 An example is below:

 <?xml version="1.0" encoding="UTF-8"?>
 <errors xmlns="urn:ietf:params:xml:ns:lost1"
 source="resolver.example">
 <internalError message="Software bug." xml:lang="en"/>
 </errors>

 Figure 17: Example of an error response

Hardie, et al. Standards Track [Page 33]

RFC 5222 LoST August 2008

13.2. Warnings

 A response MAY contain zero or more warnings. This pattern defines a
 ’message’ attribute containing human-readable text and an ’xml:lang’
 attribute denoting the language of the human-readable text. One or
 more such warning elements are contained in the <warnings> element.
 To provide human-readable text in an appropriate language, the HTTP
 content negotiation capabilities (see Section 14) MAY be utilized by
 a server.

 This version of the specification defines the following warnings:

 locationValidationUnavailable
 The <locationValidationUnavailable> element MAY be returned when a
 server wishes to notify a client that it cannot fulfill a location
 validation request. This warning allows a server to return
 mapping information while signaling this exception state.

 serviceSubstitution
 The <serviceSubstitution> element MAY be returned when a server
 was not able to fulfill a <findService> request for a given
 service URN. For example, a <findService> request with the
 ’urn:service:sos.police’ service URN for a location in Uruguay may
 cause the LoST service to return a mapping for the
 ’urn:service:sos’ service URN since Uruguay does not make use of
 the sub-services police, fire, and ambulance. If this warning is
 returned, then the <service> element in the response provides
 information about the service URN that refers to the mapping.

 defaultMappingReturned
 The <defaultMappingReturned> element MAY be returned when a server
 was not able to fulfill a <findService> request for a given
 location but is able to respond with a default URI. For example,
 a nearby PSAP may be returned.

Hardie, et al. Standards Track [Page 34]

RFC 5222 LoST August 2008

 An example of a warning is shown below:

 <?xml version="1.0" encoding="UTF-8"?>
 <findServiceResponse xmlns="urn:ietf:params:xml:ns:lost1"
 xmlns:p2="http://www.opengis.net/">
 <mapping
 expires="2007-01-01T01:44:33Z"
 lastUpdated="2006-11-01T01:00:00Z"
 source="authoritative.example"
 sourceId="fb8ed888433343b7b27865aeb38f3a99">
 <displayName xml:lang="en">
 New York City Police Department
 </displayName>
 <service>urn:service:sos.police</service>
 <serviceBoundary profile="geodetic-2d">
 <p2:Polygon srsName="urn:ogc:def::crs:EPSG::4326">
 <p2:exterior>
 <p2:LinearRing>
 <p2:pos>37.775 -122.4194</p2:pos>
 <p2:pos>37.555 -122.4194</p2:pos>
 <p2:pos>37.555 -122.4264</p2:pos>
 <p2:pos>37.775 -122.4264</p2:pos>
 <p2:pos>37.775 -122.4194</p2:pos>
 </p2:LinearRing>
 </p2:exterior>
 </p2:Polygon>
 </serviceBoundary>
 <uri>sip:nypd@example.com</uri>
 <serviceNumber>911</serviceNumber>
 </mapping>
 <warnings source="authoritative.example">
 <defaultMappingReturned
 message="Unable to determine PSAP for the given location;
 using default PSAP"
 xml:lang="en"/>
 </warnings>
 <path>
 <via source="resolver.example"/>
 <via source="authoritative.example"/>
 </path>
 </findServiceResponse>

 Figure 18: Example of a warning response

Hardie, et al. Standards Track [Page 35]

RFC 5222 LoST August 2008

13.3. Redirects

 A LoST server can respond indicating that the querier should redirect
 the query to another server, using the <redirect> element. The
 element includes a ’target’ attribute indicating the LoST application
 unique string (see Section 4) that the client SHOULD be contacting
 next, as well as the ’source’ attribute indicating the server that
 generated the redirect response and a ’message’ attribute explaining
 the reason for the redirect response. During a recursive query, a
 server receiving a <redirect> response can decide whether it wants to
 follow the redirection or simply return the response to its upstream
 querier. The "expires" value in the response returned by the server
 handling the redirected query indicates the earliest time at which a
 new query might be needed (see Section 5.2). The query for the same
 tuple of location and service SHOULD NOT be directed to the server
 that gave redirect prior to that time.

 An example is below:

 <?xml version="1.0" encoding="UTF-8"?>
 <redirect xmlns="urn:ietf:params:xml:ns:lost1"
 target="eastpsap.example"
 source="westpsap.example"
 message="We have temporarily failed over." xml:lang="en"/>

 Figure 19: Example of a redirect response

14. LoST Transport: HTTP

 LoST needs an underlying protocol transport mechanism to carry
 requests and responses. This document defines the use of LoST over
 HTTP and LoST over HTTP-over-TLS. Client and server developers are
 reminded that full support of RFC 2616 HTTP facilities is expected.
 If LoST clients or servers re-implement HTTP, rather than using
 available servers or client code as a base, careful attention must be
 paid to full interoperability. Other transport mechanisms are left
 to future documents. The available transport mechanisms are
 determined through the use of the LoST U-NAPTR application. In
 protocols that support content type indication, LoST uses the media
 type application/lost+xml.

 When using HTTP [3] and HTTP-over-TLS [4], LoST requests use the HTTP
 POST method. The HTTP request MUST use the Cache-Control response
 directive "no-cache" to disable HTTP-level caching even by caches
 that have been configured to return stale responses to client
 requests.

Hardie, et al. Standards Track [Page 36]

RFC 5222 LoST August 2008

 All LoST responses, including those indicating a LoST warning or
 error, are carried in 2xx responses, typically 200 (OK). Other 2xx
 responses, in particular 203 (Non-authoritative information), may be
 returned by HTTP caches that disregard the caching instructions. 3xx,
 4xx, and 5xx HTTP response codes indicate that the HTTP request
 itself failed or was redirected; these responses do not contain any
 LoST XML elements. The 3xx responses are distinct from the redirects
 that are described in Section 13.3; the redirect operation in
 Section 13.3 occur after a LoST server processes the request. Where
 an HTTP-layer redirect will be general, a LoST server redirect as
 described in Section 13.3 might be specific to a specific service or
 be the result of other processing by the LoST server.

 The HTTP URL is derived from the LoST server name via U-NAPTR
 application, as discussed above.

15. Relax NG Schema

 This section provides the Relax NG schema used by the LoST protocol
 in the compact form. The verbose form is included in Appendix A.

namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"
default namespace ns1 = "urn:ietf:params:xml:ns:lost1"

##
Location-to-Service Translation (LoST) Protocol

##
A LoST XML instance has three request types, each with
a corresponding response type: find service, list services,
and get service boundary.
##
start =
 findService
 | listServices
 | listServicesByLocation
 | getServiceBoundary
 | findServiceResponse
 | listServicesResponse
 | listServicesByLocationResponse
 | getServiceBoundaryResponse
 | errors
 | redirect

##
The queries.
##
div {

Hardie, et al. Standards Track [Page 37]

RFC 5222 LoST August 2008

 findService =
 element findService {
 requestLocation,
 commonRequestPattern,
 attribute validateLocation {
 xsd:boolean >> a:defaultValue ["false"]
 }?,
 attribute serviceBoundary {
 ("reference" | "value") >> a:defaultValue ["reference"]
 }?,
 attribute recursive { xsd:boolean >> a:defaultValue ["false"] }?
 }
 listServices = element listServices { commonRequestPattern }
 listServicesByLocation =
 element listServicesByLocation {
 requestLocation,
 commonRequestPattern,
 attribute recursive { xsd:boolean >> a:defaultValue ["true"] }?
 }
 getServiceBoundary =
 element getServiceBoundary { serviceBoundaryKey, extensionPoint }
}

##
The responses.
##
div {
 findServiceResponse =
 element findServiceResponse {
 mapping+, locationValidation?, commonResponsePattern, locationUsed
 }
 listServicesResponse =
 element listServicesResponse { serviceList, commonResponsePattern }
 listServicesByLocationResponse =
 element listServicesByLocationResponse {
 serviceList, commonResponsePattern, locationUsed
 }
 getServiceBoundaryResponse =
 element getServiceBoundaryResponse {
 serviceBoundary, commonResponsePattern
 }
}

##
A pattern common to some of the queries.
##
div {
 commonRequestPattern = service, path?, extensionPoint

Hardie, et al. Standards Track [Page 38]

RFC 5222 LoST August 2008

}

##
A pattern common to responses.
##
div {
 commonResponsePattern = warnings*, path, extensionPoint
}

##
Location in Requests
##
div {
 requestLocation =
 element location {
 attribute id { xsd:token },
 locationInformation
 }+
}

##
Location Information
##
div {
 locationInformation =
 extensionPoint+,
 attribute profile { xsd:NMTOKEN }?
}

##
Service Boundary
##
div {
 serviceBoundary = element serviceBoundary { locationInformation }+
}

##
Service Boundary Reference
##
div {
 serviceBoundaryReference =
 element serviceBoundaryReference {
 source, serviceBoundaryKey, extensionPoint
 }
 serviceBoundaryKey = attribute key { xsd:token }
}

##

Hardie, et al. Standards Track [Page 39]

RFC 5222 LoST August 2008

Path -
Contains a list of via elements -
places through which information flowed
##
div {
 path =
 element path {
 element via { source, extensionPoint }+
 }
}

##
Location Used
##
div {
 locationUsed =
 element locationUsed {
 attribute id { xsd:token }
 }?
}

##
Expires pattern
##
div {
 expires =
 attribute expires { xsd:dateTime | "NO-CACHE" | "NO-EXPIRATION" }
}

##
A QName list
##
div {
 qnameList = list { xsd:QName* }
}

##
A location-to-service mapping.
##
div {
 mapping =
 element mapping {
 element displayName {
 xsd:string,
 attribute xml:lang { xsd:language }
 }*,
 service,
 (serviceBoundary | serviceBoundaryReference)?,

Hardie, et al. Standards Track [Page 40]

RFC 5222 LoST August 2008

 element uri { xsd:anyURI }*,
 element serviceNumber {
 xsd:token { pattern = "[0-9*#]+" }
 }?,
 extensionPoint,
 expires,
 attribute lastUpdated { xsd:dateTime },
 source,
 attribute sourceId { xsd:token },
 message
 }
}

##
Location validation
##
div {
 locationValidation =
 element locationValidation {
 element valid { qnameList }?,
 element invalid { qnameList }?,
 element unchecked { qnameList }?,
 extensionPoint
 }
}

##
Errors and Warnings Container.
##
div {
 exceptionContainer =
 (badRequest?
 & internalError?
 & serviceSubstitution?
 & defaultMappingReturned?
 & forbidden?
 & notFound?
 & loop?
 & serviceNotImplemented?
 & serverTimeout?
 & serverError?
 & locationInvalid?
 & locationProfileUnrecognized?),
 extensionPoint,
 source
 errors = element errors { exceptionContainer }
 warnings = element warnings { exceptionContainer }
}

Hardie, et al. Standards Track [Page 41]

RFC 5222 LoST August 2008

##
Basic Exceptions
##
div {

 ##
 ## Exception pattern.
 ##
 basicException = message, extensionPoint
 badRequest = element badRequest { basicException }
 internalError = element internalError { basicException }
 serviceSubstitution = element serviceSubstitution { basicException }
 defaultMappingReturned =
 element defaultMappingReturned { basicException }
 forbidden = element forbidden { basicException }
 notFound = element notFound { basicException }
 loop = element loop { basicException }
 serviceNotImplemented =
 element serviceNotImplemented { basicException }
 serverTimeout = element serverTimeout { basicException }
 serverError = element serverError { basicException }
 locationInvalid = element locationInvalid { basicException }
 locationValidationUnavailable =
 element locationValidationUnavailable { basicException }
 locationProfileUnrecognized =
 element locationProfileUnrecognized {
 attribute unsupportedProfiles { xsd:NMTOKENS },
 basicException
 }
}

##
Redirect.
##
div {

 ##
 ## Redirect pattern
 ##
 redirect =
 element redirect {
 attribute target { appUniqueString },
 source,
 message,
 extensionPoint
 }
}

Hardie, et al. Standards Track [Page 42]

RFC 5222 LoST August 2008

##
Some common patterns.
##
div {
 message =
 (attribute message { xsd:token },
 attribute xml:lang { xsd:language })?
 service = element service { xsd:anyURI }?
 appUniqueString =
 xsd:token { pattern = "([a-zA-Z0-9\-]+\.)+[a-zA-Z0-9]+" }
 source = attribute source { appUniqueString }
 serviceList =
 element serviceList {
 list { xsd:anyURI* }
 }
}

##
Patterns for inclusion of elements from schemas in
other namespaces.
##
div {

 ##
 ## Any element not in the LoST namespace.
 ##
 notLost = element * - (ns1:* | ns1:*) { anyElement }

 ##
 ## A wildcard pattern for including any element
 ## from any other namespace.
 ##
 anyElement =
 (element * { anyElement }
 | attribute * { text }
 | text)*

 ##
 ## A point where future extensions
 ## (elements from other namespaces)
 ## can be added.
 ##
 extensionPoint = notLost*
}

 Figure 20: RelaxNG schema

Hardie, et al. Standards Track [Page 43]

RFC 5222 LoST August 2008

16. Internationalization Considerations

 The LoST protocol is mostly meant for machine-to-machine
 communications; as such, most of its elements are tokens not meant
 for direct human consumption. If these tokens are presented to the
 end user, some localization may need to occur. The content of the
 <displayName> element and the ’message’ attributes may be displayed
 to the end user, and they are thus complex types designed for this
 purpose.

 LoST exchanges information using XML. All XML processors are
 required to understand UTF-8 and UTF-16 encodings, and therefore all
 LoST clients and servers MUST understand UTF-8 and UTF-16 encoded
 XML. Additionally, LoST servers and clients MUST NOT encode XML with
 encodings other than UTF-8 or UTF-16.

17. IANA Considerations

17.1. U-NAPTR Registrations

 This document registers the following U-NAPTR application service
 tag:

 Application Service Tag: LoST

 Defining Publication: The specification contained within this
 document.

 This document registers the following U-NAPTR application protocol
 tags:

 o Application Protocol Tag: http

 Defining Publication: RFC 2616 [3]

 o Application Protocol Tag: https

 Defining Publication: RFC 2818 [4]

17.2. Content-Type Registration for ’application/lost+xml’

 This specification requests the registration of a new MIME type
 according to the procedures of RFC 4288 [7] and guidelines in RFC
 3023 [5].

Hardie, et al. Standards Track [Page 44]

RFC 5222 LoST August 2008

 MIME media type name: application

 MIME subtype name: lost+xml

 Mandatory parameters: none

 Optional parameters: charset
 Indicates the character encoding of enclosed XML.

 Encoding considerations: Uses XML, which can employ 8-bit
 characters, depending on the character encoding used. See RFC
 3023 [5], Section 3.2.

 Security considerations: This content type is designed to carry LoST
 protocol payloads.

 Interoperability considerations: None

 Published specification: RFC 5222

 Applications that use this media type: Emergency and location-based
 systems

 Additional information:

 Magic Number: None

 File Extension: .lostxml

 Macintosh file type code: ’TEXT’

 Personal and email address for further information:
 Hannes Tschofenig, Hannes.Tschofenig@nsn.com

 Intended usage: LIMITED USE

 Author:
 This specification is a work item of the IETF ECRIT working group,
 with mailing list address <ecrit@ietf.org>.

 Change controller:
 The IESG <iesg@ietf.org>

Hardie, et al. Standards Track [Page 45]

RFC 5222 LoST August 2008

17.3. LoST Relax NG Schema Registration

 URI: urn:ietf:params:xml:schema:lost1

 Registrant Contact: IETF ECRIT Working Group, Hannes Tschofenig
 (Hannes.Tschofenig@nsn.com).

 Relax NG Schema: The Relax NG schema to be registered is contained
 in Section 15. Its first line is

 default namespace = "urn:ietf:params:xml:ns:lost1"

 and its last line is

 }

17.4. LoST Namespace Registration

 URI: urn:ietf:params:xml:ns:lost1

 Registrant Contact: IETF ECRIT Working Group, Hannes Tschofenig
 (Hannes.Tschofenig@nsn.com).

 XML:

BEGIN
<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
 "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta http-equiv="content-type"
 content="text/html;charset=iso-8859-1"/>
 <title>LoST Namespace</title>
</head>
<body>
 <h1>Namespace for LoST</h1>
 <h2>urn:ietf:params:xml:ns:lost1</h2>
<p>See
 RFC5222.</p>
</body>
</html>
END

Hardie, et al. Standards Track [Page 46]

RFC 5222 LoST August 2008

17.5. LoST Location Profile Registry

 This document creates a registry of location profile names for the
 LoST protocol. Profile names are XML tokens. This registry will
 operate in accordance with RFC 5226 [2], Standards Action.

 geodetic-2d:
 Defined in Section 12.2.

 civic:
 Defined in Section 12.3.

18. Security Considerations

 There are several threats to the overall system of which service
 mapping forms a part. An attacker that can obtain service contact
 URIs can use those URIs to attempt to disrupt those services. An
 attacker that can prevent the lookup of contact URIs can impair the
 reachability of such services. An attacker that can eavesdrop on the
 communication requesting this lookup can surmise the existence of an
 emergency and possibly its nature, and may be able to use this to
 launch a physical attack on the caller.

 To avoid an attacker modifying the query or its result, Transport
 Layer Security (TLS) MUST be implemented and SHOULD be used. Use is
 RECOMMENDED both for clients’ queries to servers and for queries
 among servers; this latter recommendation is to help avoid LoST cache
 poisoning attacks by replacing answers given to caching LoST servers.

 The use of server identity checks with TLS, as described in Section
 3.1 of [4], is also RECOMMENDED. Omitting the server identity check
 allows an attacker to masquerade as a LoST server, so this approach
 should be used only when getting any answer, even from a potentially
 malicious LoST server, is preferred over closing the connection (and
 thus not getting any answer at all). The host name compared against
 the server certificate is the host name in the URI, not the DNS name
 used as input to NAPTR resolution.

 Note that the security considerations in [22] recommend comparing the
 input of NAPTR resolution to the certificate, not the output (host
 name in the URI). This approach was not chosen because in emergency
 service use cases, it is likely that deployments will see a large
 number of inputs to the U-NAPTR algorithm resolving to a single
 server, typically run by a local emergency services authority. In
 this case, checking the input to the NAPTR resolution against the
 certificates provided by the LoST server would be impractical, as the
 list of organizations using it would be large, subject to rapid
 change, and unknown to the LoST server operator.

Hardie, et al. Standards Track [Page 47]

RFC 5222 LoST August 2008

 The use of server identity does leave open the possibility of DNS-
 based attacks, as the NAPTR records may be altered by an attacker.
 The attacks include, for example, interception of DNS packets between
 the client and the recursive name server, DNS cache poisoning, and
 intentional modifications by the recursive name server; see [23] for
 more comprehensive discussion.

 DNS Security (DNSSEC) [20] can be used to protect against these
 threats. While DNSSEC is incompletely deployed, users should be
 aware of the risk, particularly when they are requesting NAPTR
 records in environments where the local recursive name server, or the
 network between the client and the local recursive name server, is
 not considered trustworthy.

 LoST deployments that are unable to use DNSSEC and unwilling to trust
 DNS resolution without DNSSEC cannot use the NATPR-based discovery of
 LoST servers as is. When suitable configuration mechanisms are
 available, one possibility is to configure the LoST server URIs
 (instead of the domain name to be used for NAPTR resolution)
 directly. Future specifications for applying LoST in non-emergency
 services may also specify additional discovery mechanisms and name
 matching semantics.

 Generally, LoST servers will not need to authenticate or authorize
 clients presenting mapping queries. If they do, an authentication of
 the underlying transport mechanism, such as HTTP basic and digest
 authentication, MAY be used. Basic authentication SHOULD only be
 used in combination with TLS.

 A more detailed description of threats and security requirements is
 provided in [17]. The threats and security requirements in non-
 emergency service uses of LoST may be considerably different from
 those described here. For example, an attacker might seek monetary
 benefit by returning service mapping information that directed users
 to specific service providers. Before deploying LoST in new
 contexts, a thorough analysis of the threats and requirements
 specific to that context should be undertaken and decisions made on
 the appropriate mitigations.

19. Acknowledgments

 We would like to the thank the following working group members for
 the detailed review of previous LoST document versions:

 o Martin Thomson (Review July 2006)

 o Jonathan Rosenberg (Review July 2006)

Hardie, et al. Standards Track [Page 48]

RFC 5222 LoST August 2008

 o Leslie Daigle (Review September 2006)

 o Shida Schubert (Review November 2006)

 o Martin Thomson (Review December 2006)

 o Barbara Stark (Review January 2007)

 o Patrik Faltstrom (Review January 2007)

 o Shida Schubert (Review January 2007 as a designated expert
 reviewer)

 o Jonathan Rosenberg (Review February 2007)

 o Tom Taylor (Review February 2007)

 o Theresa Reese (Review February 2007)

 o Shida Schubert (Review February 2007)

 o James Winterbottom (Review July 2007)

 o Karl Heinz Wolf (Review May and June 2007)

 We would also like to thank the following working group members for
 their input to selected design aspects of the LoST protocol:

 o Leslie Daigle and Martin Thomson (DNS-based LoST discovery
 procedure)

 o John Schnizlein (authoritive LoST answers)

 o Rohan Mahy (display names)

 o James Polk (error handling)

 o Ron Watro and Richard Barnes (expiry of cached data)

 o Stephen Edge, Keith Drage, Tom Taylor, Martin Thomson, and James
 Winterbottom (indication of PSAP confidence level)

 o Martin Thomson (service boundary references)

 o Martin Thomson (service URN in LoST response message)

 o Clive D.W. Feather, Martin Thomson (validation functionality)

Hardie, et al. Standards Track [Page 49]

RFC 5222 LoST August 2008

 o Roger Marshall (PSAP preference in LoST response)

 o James Winterbottom, Marc Linsner, Keith Drage, Tom Taylor, Martin
 Thomson, John Schnizlein, Shida Schubert, Clive D.W. Feather,
 Richard Stastny, John Hearty, Roger Marshall, Jean-Francois Mule,
 Pierre Desjardins (location profiles)

 o Michael Hammer, Patrik Faltstrom, Richard Stastny, Martin Thomson,
 Roger Marshall, Tom Taylor, Spencer Dawkins, Keith Drage (list
 services functionality)

 o Martin Thomson, Michael Hammer (mapping of services)

 o Shida Schubert, James Winterbottom, Keith Drage (default service
 URN)

 o Otmar Lendl (LoST aggregation)

 o Tom Taylor (terminology)

 Klaus Darilion and Marc Linsner provided miscellaneous input to the
 design of the protocol. Finally, we would like to thank Brian Rosen,
 who participated in almost every discussion thread.

 Early implementation efforts led to good feedback by two open source
 implementation groups. We would like to thank the implementers for
 their work and for helping us to improve the quality of the
 specification:

 o Wonsang Song

 o Jong-Yul Kim

 o Anna Makarowska

 o Krzysztof Rzecki

 o Blaszczyk Piotr

 We would like to thank Jon Peterson, Dan Romascanu, Lisa Dusseault,
 and Tim Polk for their IESG review comments. Blocking IESG comments
 were also received from Pasi Eronen (succeeding Sam Hartman’s review)
 and Cullen Jennings. Adjustments have been made to several pieces of
 text to satisfy these requests for changes, most notably in the
 Security Considerations and in the discussion of redirection in the
 presence of overlapping coverage areas.

Hardie, et al. Standards Track [Page 50]

RFC 5222 LoST August 2008

20. References

20.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.

 [3] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
 Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 [4] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [5] Murata, M., St. Laurent, S., and D. Kohn, "XML Media Types",
 RFC 3023, January 2001.

 [6] Peterson, J., "A Presence-based GEOPRIV Location Object
 Format", RFC 4119, December 2005.

 [7] Freed, N. and J. Klensin, "Media Type Specifications and
 Registration Procedures", BCP 13, RFC 4288, December 2005.

 [8] Daigle, L., "Domain-Based Application Service Location Using
 URIs and the Dynamic Delegation Discovery Service (DDDS)",
 RFC 4848, April 2007.

 [9] Schulzrinne, H., "A Uniform Resource Name (URN) for Emergency
 and Other Well-Known Services", RFC 5031, January 2008.

 [10] Thomson, M. and J. Winterbottom, "Revised Civic Location Format
 for Presence Information Data Format Location Object
 (PIDF-LO)", RFC 5139, February 2008.

 [11] Cox, S., Daisey, P., Lake, R., Portele, C., and A. Whiteside,
 "Geographic information - Geography Markup Language (GML)", OGC
 Standard OpenGIS 03-105r1, April 2004.

 [12] Reed, C. and M. Thomson, "GML 3.1.1 PIDF-LO Shape Application
 Schema for use by the Internet Engineering Task Force (IETF)",
 Candidate OpenGIS Implementation Specification , December 2006.

Hardie, et al. Standards Track [Page 51]

RFC 5222 LoST August 2008

20.2. Informative References

 [13] Winterbottom, J., Thomson, M., and H. Tschofenig, "GEOPRIV
 PIDF-LO Usage Clarification, Considerations and
 Recommendations", Work in Progress, February 2008.

 [14] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [15] Saint-Andre, P., Ed., "Extensible Messaging and Presence
 Protocol (XMPP): Instant Messaging and Presence", RFC 3921,
 October 2004.

 [16] Schulzrinne, H., "The tel URI for Telephone Numbers", RFC 3966,
 December 2004.

 [17] Taylor, T., Tschofenig, H., Schulzrinne, H., and M. Shanmugam,
 "Security Threats and Requirements for Emergency Call Marking
 and Mapping", RFC 5069, January 2008.

 [18] Schulzrinne, H. and R. Marshall, "Requirements for Emergency
 Context Resolution with Internet Technologies", RFC 5012,
 January 2008.

 [19] Schulzrinne, H., "Location-to-URL Mapping Architecture and
 Framework", Work in Progress, September 2007.

 [20] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose,
 "DNS Security Introduction and Requirements", RFC 4033,
 March 2005.

 [21] Rosen, B. and J. Polk, "Best Current Practice for
 Communications Services in support of Emergency Calling", Work
 in Progress, February 2008.

 [22] Daigle, L. and A. Newton, "Domain-Based Application Service
 Location Using SRV RRs and the Dynamic Delegation Discovery
 Service (DDDS)", RFC 3958, January 2005.

 [23] Atkins, D. and R. Austein, "Threat Analysis of the Domain Name
 System (DNS)", RFC 3833, August 2004.

 [24] <http://www.tschofenig.priv.at/svn/draft-ietf-ecrit-lost/
 RelaxNG>.

Hardie, et al. Standards Track [Page 52]

RFC 5222 LoST August 2008

 [25] Schulzrinne, H., Polk, J., and H. Tschofenig, "Discovering
 Location-to-Service Translation (LoST) Servers Using the
 Dynamic Host Configuration Protocol (DHCP)", RFC 5223,
 August 2008.

Hardie, et al. Standards Track [Page 53]

RFC 5222 LoST August 2008

Appendix A. Non-Normative RELAX NG Schema in XML Syntax

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar ns="urn:ietf:params:xml:ns:lost1"
 xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

 <start>
 <a:documentation>
 Location-to-Service Translation (LoST) Protocol

 A LoST XML instance has three request types, each with
 a corresponding response type: find service, list services,
 and get service boundary.
 </a:documentation>
 <choice>
 <ref name="findService"/>
 <ref name="listServices"/>
 <ref name="listServicesByLocation"/>
 <ref name="getServiceBoundary"/>
 <ref name="findServiceResponse"/>
 <ref name="listServicesResponse"/>
 <ref name="listServicesByLocationResponse"/>
 <ref name="getServiceBoundaryResponse"/>
 <ref name="errors"/>
 <ref name="redirect"/>
 </choice>
 </start>

 <div>
 <a:documentation>
 The queries.
 </a:documentation>

 <define name="findService">
 <element name="findService">
 <ref name="requestLocation"/>
 <ref name="commonRequestPattern"/>
 <optional>
 <attribute name="validateLocation">
 <data type="boolean"/>
 <a:defaultValue>false</a:defaultValue>
 </attribute>
 </optional>
 <optional>
 <attribute name="serviceBoundary">

Hardie, et al. Standards Track [Page 54]

RFC 5222 LoST August 2008

 <choice>
 <value>reference</value>
 <value>value</value>
 </choice>
 <a:defaultValue>reference</a:defaultValue>
 </attribute>
 </optional>
 <optional>
 <attribute name="recursive">
 <data type="boolean"/>
 <a:defaultValue>false</a:defaultValue>
 </attribute>
 </optional>
 </element>
 </define>

 <define name="listServices">
 <element name="listServices">
 <ref name="commonRequestPattern"/>
 </element>
 </define>

 <define name="listServicesByLocation">
 <element name="listServicesByLocation">
 <ref name="requestLocation"/>
 <ref name="commonRequestPattern"/>
 <optional>
 <attribute name="recursive">
 <data type="boolean"/>
 <a:defaultValue>true</a:defaultValue>
 </attribute>
 </optional>
 </element>
 </define>

 <define name="getServiceBoundary">
 <element name="getServiceBoundary">
 <ref name="serviceBoundaryKey"/>
 <ref name="extensionPoint"/>
 </element>
 </define>
 </div>

 <div>
 <a:documentation>
 The responses.
 </a:documentation>

Hardie, et al. Standards Track [Page 55]

RFC 5222 LoST August 2008

 <define name="findServiceResponse">
 <element name="findServiceResponse">
 <oneOrMore>
 <ref name="mapping"/>
 </oneOrMore>
 <optional>
 <ref name="locationValidation"/>
 </optional>
 <ref name="commonResponsePattern"/>
 <ref name="locationUsed"/>
 </element>
 </define>

 <define name="listServicesResponse">
 <element name="listServicesResponse">
 <ref name="serviceList"/>
 <ref name="commonResponsePattern"/>
 </element>
 </define>

 <define name="listServicesByLocationResponse">
 <element name="listServicesByLocationResponse">
 <ref name="serviceList"/>
 <ref name="commonResponsePattern"/>
 <ref name="locationUsed"/>
 </element>
 </define>

 <define name="getServiceBoundaryResponse">
 <element name="getServiceBoundaryResponse">
 <ref name="serviceBoundary"/>
 <ref name="commonResponsePattern"/>
 </element>
 </define>
 </div>

 <div>
 <a:documentation>
 A pattern common to some of the queries.
 </a:documentation>

 <define name="commonRequestPattern">
 <ref name="service"/>
 <optional>
 <ref name="path"/>

Hardie, et al. Standards Track [Page 56]

RFC 5222 LoST August 2008

 </optional>
 <ref name="extensionPoint"/>
 </define>
 </div>

 <div>
 <a:documentation>
 A pattern common to responses.
 </a:documentation>

 <define name="commonResponsePattern">
 <zeroOrMore>
 <ref name="warnings"/>
 </zeroOrMore>
 <ref name="path"/>
 <ref name="extensionPoint"/>
 </define>
 </div>

 <div>
 <a:documentation>
 Location in Requests
 </a:documentation>

 <define name="requestLocation">
 <oneOrMore>
 <element name="location">
 <attribute name="id">
 <data type="token"/>
 </attribute>
 <ref name="locationInformation"/>
 </element>
 </oneOrMore>
 </define>
 </div>

 <div>
 <a:documentation>
 Location Information
 </a:documentation>

 <define name="locationInformation">
 <oneOrMore>
 <ref name="extensionPoint"/>
 </oneOrMore>
 <optional>
 <attribute name="profile">
 <data type="NMTOKEN"/>

Hardie, et al. Standards Track [Page 57]

RFC 5222 LoST August 2008

 </attribute>
 </optional>
 </define>
 </div>

 <div>
 <a:documentation>
 Service Boundary
 </a:documentation>

 <define name="serviceBoundary">
 <oneOrMore>
 <element name="serviceBoundary">
 <ref name="locationInformation"/>
 </element>
 </oneOrMore>
 </define>
 </div>

 <div>
 <a:documentation>
 Service Boundary Reference
 </a:documentation>

 <define name="serviceBoundaryReference">

 <element name="serviceBoundaryReference">
 <ref name="source"/>
 <ref name="serviceBoundaryKey"/>
 <ref name="extensionPoint"/>
 </element>
 </define>

 <define name="serviceBoundaryKey">
 <attribute name="key">
 <data type="token"/>
 </attribute>
 </define>
 </div>

 <div>
 <a:documentation>
 Path -
 Contains a list of via elements -
 places through which information flowed
 </a:documentation>

Hardie, et al. Standards Track [Page 58]

RFC 5222 LoST August 2008

 <define name="path">
 <element name="path">
 <oneOrMore>
 <element name="via">
 <ref name="source"/>
 <ref name="extensionPoint"/>
 </element>
 </oneOrMore>
 </element>
 </define>
 </div>

 <div>
 <a:documentation>
 Location Used
 </a:documentation>

 <define name="locationUsed">
 <optional>
 <element name="locationUsed">
 <attribute name="id">
 <data type="token"/>
 </attribute>
 </element>
 </optional>
 </define>
 </div>

 <div>
 <a:documentation>
 Expires pattern
 </a:documentation>

 <define name="expires">
 <attribute name="expires">
 <choice>
 <data type="dateTime"/>
 <value>NO-CACHE</value>
 <value>NO-EXPIRATION</value>
 </choice>
 </attribute>
 </define>
 </div>

 <div>
 <a:documentation>
 A QName list
 </a:documentation>

Hardie, et al. Standards Track [Page 59]

RFC 5222 LoST August 2008

 <define name="qnameList">
 <list>
 <zeroOrMore>
 <data type="QName"/>
 </zeroOrMore>
 </list>
 </define>
 </div>

 <div>
 <a:documentation>
 A location-to-service mapping.
 </a:documentation>

 <define name="mapping">
 <element name="mapping">
 <zeroOrMore>
 <element name="displayName">
 <data type="string"/>
 <attribute name="xml:lang">
 <data type="language"/>
 </attribute>
 </element>
 </zeroOrMore>
 <ref name="service"/>
 <optional>
 <choice>
 <ref name="serviceBoundary"/>
 <ref name="serviceBoundaryReference"/>
 </choice>
 </optional>
 <zeroOrMore>
 <element name="uri">
 <data type="anyURI"/>
 </element>
 </zeroOrMore>
 <optional>
 <element name="serviceNumber">
 <data type="token">
 <param name="pattern">[0-9*#]+</param>
 </data>
 </element>
 </optional>
 <ref name="extensionPoint"/>
 <ref name="expires"/>
 <attribute name="lastUpdated">
 <data type="dateTime"/>
 </attribute>

Hardie, et al. Standards Track [Page 60]

RFC 5222 LoST August 2008

 <ref name="source"/>
 <attribute name="sourceId">
 <data type="token"/>
 </attribute>
 <ref name="message"/>
 </element>
 </define>
 </div>

 <div>
 <a:documentation>
 Location validation
 </a:documentation>

 <define name="locationValidation">
 <element name="locationValidation">
 <optional>
 <element name="valid">
 <ref name="qnameList"/>
 </element>
 </optional>
 <optional>
 <element name="invalid">
 <ref name="qnameList"/>
 </element>
 </optional>
 <optional>
 <element name="unchecked">
 <ref name="qnameList"/>
 </element>
 </optional>
 <ref name="extensionPoint"/>
 </element>
 </define>
 </div>

 <div>
 <a:documentation>
 Errors and Warnings Container.
 </a:documentation>

 <define name="exceptionContainer">
 <interleave>
 <optional>
 <ref name="badRequest"/>
 </optional>
 <optional>

Hardie, et al. Standards Track [Page 61]

RFC 5222 LoST August 2008

 <ref name="internalError"/>
 </optional>
 <optional>
 <ref name="serviceSubstitution"/>
 </optional>
 <optional>
 <ref name="defaultMappingReturned"/>
 </optional>
 <optional>
 <ref name="forbidden"/>
 </optional>
 <optional>
 <ref name="notFound"/>
 </optional>
 <optional>
 <ref name="loop"/>
 </optional>
 <optional>
 <ref name="serviceNotImplemented"/>
 </optional>
 <optional>
 <ref name="serverTimeout"/>
 </optional>
 <optional>
 <ref name="serverError"/>
 </optional>
 <optional>
 <ref name="locationInvalid"/>
 </optional>
 <optional>
 <ref name="locationProfileUnrecognized"/>
 </optional>
 </interleave>
 <ref name="extensionPoint"/>
 <ref name="source"/>
 </define>

 <define name="errors">
 <element name="errors">
 <ref name="exceptionContainer"/>
 </element>
 </define>

 <define name="warnings">
 <element name="warnings">
 <ref name="exceptionContainer"/>
 </element>
 </define>

Hardie, et al. Standards Track [Page 62]

RFC 5222 LoST August 2008

 </div>

 <div>
 <a:documentation>
 Basic Exceptions
 </a:documentation>

 <define name="basicException">
 <a:documentation>
 Exception pattern.
 </a:documentation>
 <ref name="message"/>
 <ref name="extensionPoint"/>
 </define>

 <define name="badRequest">
 <element name="badRequest">
 <ref name="basicException"/>
 </element>
 </define>

 <define name="internalError">
 <element name="internalError">
 <ref name="basicException"/>
 </element>
 </define>

 <define name="serviceSubstitution">
 <element name="serviceSubstitution">
 <ref name="basicException"/>
 </element>
 </define>

 <define name="defaultMappingReturned">
 <element name="defaultMappingReturned">
 <ref name="basicException"/>
 </element>
 </define>

 <define name="forbidden">
 <element name="forbidden">
 <ref name="basicException"/>
 </element>
 </define>

 <define name="notFound">
 <element name="notFound">
 <ref name="basicException"/>

Hardie, et al. Standards Track [Page 63]

RFC 5222 LoST August 2008

 </element>
 </define>

 <define name="loop">
 <element name="loop">
 <ref name="basicException"/>
 </element>
 </define>

 <define name="serviceNotImplemented">
 <element name="serviceNotImplemented">
 <ref name="basicException"/>
 </element>
 </define>

 <define name="serverTimeout">
 <element name="serverTimeout">
 <ref name="basicException"/>
 </element>
 </define>

 <define name="serverError">
 <element name="serverError">
 <ref name="basicException"/>
 </element>
 </define>

 <define name="locationInvalid">
 <element name="locationInvalid">
 <ref name="basicException"/>
 </element>
 </define>

 <define name="locationValidationUnavailable">
 <element name="locationValidationUnavailable">
 <ref name="basicException"/>
 </element>
 </define>

 <define name="locationProfileUnrecognized">
 <element name="locationProfileUnrecognized">
 <attribute name="unsupportedProfiles">
 <data type="NMTOKENS"/>
 </attribute>
 <ref name="basicException"/>
 </element>
 </define>
 </div>

Hardie, et al. Standards Track [Page 64]

RFC 5222 LoST August 2008

 <div>
 <a:documentation>
 Redirect.
 </a:documentation>

 <define name="redirect">
 <a:documentation>
 Redirect pattern
 </a:documentation>
 <element name="redirect">
 <attribute name="target">
 <ref name="appUniqueString"/>
 </attribute>
 <ref name="source"/>
 <ref name="message"/>
 <ref name="extensionPoint"/>
 </element>
 </define>
 </div>

 <div>
 <a:documentation>
 Some common patterns.
 </a:documentation>

 <define name="message">
 <optional>
 <group>
 <attribute name="message">
 <data type="token"/>
 </attribute>
 <attribute name="xml:lang">
 <data type="language"/>
 </attribute>
 </group>
 </optional>
 </define>

 <define name="service">
 <optional>
 <element name="service">
 <data type="anyURI"/>
 </element>
 </optional>
 </define>

Hardie, et al. Standards Track [Page 65]

RFC 5222 LoST August 2008

 <define name="appUniqueString">
 <data type="token">
 <param name="pattern">([a-zA-Z0-9\-]+\.)+[a-zA-Z0-9]+</param>
 </data>
 </define>

 <define name="source">
 <attribute name="source">
 <ref name="appUniqueString"/>
 </attribute>
 </define>

 <define name="serviceList">
 <element name="serviceList">
 <list>
 <zeroOrMore>
 <data type="anyURI"/>
 </zeroOrMore>
 </list>
 </element>
 </define>
 </div>

 <div>
 <a:documentation>
 Patterns for inclusion of elements from schemas in
 other namespaces.
 </a:documentation>

 <define name="notLost">
 <a:documentation>
 Any element not in the LoST namespace.
 </a:documentation>
 <element>
 <anyName>
 <except>
 <nsName ns="urn:ietf:params:xml:ns:lost1"/>
 <nsName/>
 </except>
 </anyName>
 <ref name="anyElement"/>
 </element>
 </define>

 <define name="anyElement">
 <a:documentation>

Hardie, et al. Standards Track [Page 66]

RFC 5222 LoST August 2008

 A wildcard pattern for including any element
 from any other namespace.
 </a:documentation>
 <zeroOrMore>
 <choice>
 <element>
 <anyName/>
 <ref name="anyElement"/>
 </element>
 <attribute>
 <anyName/>
 </attribute>
 <text/>
 </choice>
 </zeroOrMore>
 </define>

 <define name="extensionPoint">
 <a:documentation>
 A point where future extensions
 (elements from other namespaces)
 can be added.
 </a:documentation>
 <zeroOrMore>
 <ref name="notLost"/>
 </zeroOrMore>
 </define>
 </div>

 </grammar>

 Figure 21

Appendix B. Examples Online

 The XML examples and Relax NG schemas may be found online [24].

Hardie, et al. Standards Track [Page 67]

RFC 5222 LoST August 2008

Authors’ Addresses

 Ted Hardie
 Qualcomm, Inc.

 EMail: hardie@qualcomm.com

 Andrew Newton
 American Registry for Internet Numbers
 3635 Concorde Parkway, Suite 200
 Chantilly, VA 20151
 US

 Phone: +1 703 227 9894
 EMail: andy@hxr.us

 Henning Schulzrinne
 Columbia University
 Department of Computer Science
 450 Computer Science Building
 New York, NY 10027
 US

 Phone: +1 212 939 7004
 EMail: hgs+ecrit@cs.columbia.edu
 URI: http://www.cs.columbia.edu

 Hannes Tschofenig
 Nokia Siemens Networks
 Linnoitustie 6
 Espoo 02600
 Finland

 Phone: +358 (50) 4871445
 EMail: Hannes.Tschofenig@nsn.com
 URI: http://www.tschofenig.priv.at

Hardie, et al. Standards Track [Page 68]

RFC 5222 LoST August 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Hardie, et al. Standards Track [Page 69]

