
Internet Engineering Task Force (IETF) A. Bryan
Request for Comments: 5854 T. Tsujikawa
Category: Standards Track N. McNab
ISSN: 2070-1721
 P. Poeml
 MirrorBrain
 June 2010

 The Metalink Download Description Format

Abstract

 This document specifies Metalink, an XML-based download description
 format. Metalink describes download locations (mirrors),
 cryptographic hashes, and other information. Clients can
 transparently use this information to reliably transfer files.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5854.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bryan, et al. Standards Track [Page 1]

RFC 5854 Metalink Download Description Format June 2010

Table of Contents

 1. Introduction . 3
 1.1. Examples . 4
 1.2. Namespace and Version 5
 1.3. Notational Conventions 5
 2. Metalink Documents . 6
 3. Common Metalink Constructs 7
 3.1. Text Constructs . 7
 3.2. Date Constructs . 8
 4. Metalink Element Definitions 8
 4.1. Container Elements . 8
 4.1.1. The "metalink:metalink" Element 8
 4.1.2. The "metalink:file" Element 9
 4.1.3. The "metalink:pieces" Element 12
 4.2. Metadata Elements . 12
 4.2.1. The "metalink:copyright" Element 12
 4.2.2. The "metalink:description" Element 13
 4.2.3. The "metalink:generator" Element 13
 4.2.4. The "metalink:hash" Element 14
 4.2.5. The "metalink:identity" Element 15
 4.2.6. The "metalink:language" Element 15
 4.2.7. The "metalink:logo" Element 16
 4.2.8. The "metalink:metaurl" Element 16
 4.2.9. The "metalink:origin" Element 18
 4.2.10. The "metalink:os" Element 18
 4.2.11. The "metalink:published" Element 18
 4.2.12. The "metalink:publisher" Element 18
 4.2.13. The "metalink:signature" Element 19
 4.2.14. The "metalink:size" Element 20
 4.2.15. The "metalink:updated" Element 20
 4.2.16. The "metalink:url" Element 20
 4.2.17. The "metalink:version" Element 21
 5. Extending Metalink . 21
 5.1. Extensions from Non-Metalink Vocabularies 21
 5.2. Extensions to the Metalink Vocabulary 21
 5.3. Processing Foreign Markup 22
 5.4. Extension Elements . 22
 5.4.1. Simple Extension Elements 22
 5.4.2. Structured Extension Elements 23
 6. IANA Considerations . 23
 6.1. XML Namespace Registration 23
 6.2. application/metalink4+xml MIME type 23
 7. Security Considerations 24
 7.1. Digital Signatures . 25
 7.2. URIs and IRIs . 26
 7.3. Spoofing . 26
 7.4. Cryptographic Hashes 26

Bryan, et al. Standards Track [Page 2]

RFC 5854 Metalink Download Description Format June 2010

 8. References . 27
 8.1. Normative References 27
 8.2. Informative References 28
 Appendix A. Acknowledgements and Contributors 30
 Appendix B. RELAX NG Compact Schema 31
 Index . 36

1. Introduction

 Metalink is a document format based on Extensible Markup Language
 (XML) that describes a file or list of files to be downloaded from a
 server. Metalinks can list a number of files, each with an
 extensible set of attached metadata. Each listed file can have a
 description, multiple cryptographic hashes, and a list of Uniform
 Resource Identifiers (URIs) from which it is available.

 Often, identical copies of a file are accessible in multiple
 locations on the Internet over a variety of protocols, such as File
 Transfer Protocol (FTP), Hypertext Transfer Protocol (HTTP), and
 Peer-to-Peer (P2P). In some cases, users are shown a list of these
 multiple download locations (mirror servers) and must manually select
 one based on geographical location, priority, or bandwidth. This is
 done to distribute the load across multiple servers, and to give
 human users the opportunity to choose a download location that they
 expect to work best for them.

 At times, individual servers can be slow, outdated, or unreachable,
 but this cannot be determined until the download has been initiated.
 This can lead to the user canceling the download and needing to
 restart it. During downloads, errors in transmission can corrupt the
 file. There are no easy ways to repair these files. For large
 downloads, this can be especially troublesome. Any of the number of
 problems that can occur during a download lead to frustration on the
 part of users, and bandwidth wasted with retransmission.

 Knowledge about availability of a download on mirror servers can be
 acquired and maintained by the operators of the origin server or by a
 third party. This knowledge, together with cryptographic hashes,
 digital signatures, and more, can be stored in a machine-readable
 Metalink file. The Metalink file can transfer this knowledge to the
 user agent, which can peruse it in automatic ways or present the
 information to a human user. User agents can fall back to alternate
 mirrors if the current one has an issue. Thereby, clients are
 enabled to work their way to a successful download under adverse
 circumstances. All this can be done transparently to the human user
 and the download is much more reliable and efficient. In contrast, a

Bryan, et al. Standards Track [Page 3]

RFC 5854 Metalink Download Description Format June 2010

 traditional HTTP redirect to one mirror conveys only comparatively
 minimal information -- a referral to a single server, and there is no
 provision in the HTTP protocol to handle failures.

 Other features that some clients provide include multi-source
 downloads, where chunks of a file are downloaded from multiple
 mirrors (and optionally, Peer-to-Peer) simultaneously, which
 frequently results in a faster download. Metalinks can leverage
 HTTP, FTP, and Peer-to-Peer protocols together, because regardless of
 the protocol over which the Metalink was obtained, it can make a
 resource accessible through other protocols. If the Metalink was
 obtained from a trusted source, included verification metadata can
 solve trust issues when downloading files from replica servers
 operated by third parties. Metalinks also provide structured
 information about downloads that can be indexed by search engines.

1.1. Examples

 A brief, Metalink Document that describes a single file:

 <?xml version="1.0" encoding="UTF-8"?>
 <metalink xmlns="urn:ietf:params:xml:ns:metalink">
 <file name="example.ext">
 <size>14471447</size>
 <url>ftp://ftp.example.com/example.ext</url>
 <url>http://example.com/example.ext</url>
 <metaurl mediatype="torrent">
 http://example.com/example.ext.torrent</metaurl>
 </file>
 </metalink>

 A more extensive Metalink Document that describes two files:

 <?xml version="1.0" encoding="UTF-8"?>
 <metalink xmlns="urn:ietf:params:xml:ns:metalink">
 <published>2009-05-15T12:23:23Z</published>
 <file name="example.ext">
 <size>14471447</size>
 <identity>Example</identity>
 <version>1.0</version>
 <language>en</language>
 <description>
 A description of the example file for download.
 </description>
 <hash type="sha-256">f0ad929cd259957e160ea442eb80986b5f01...</hash>
 <url location="de"
 priority="1">ftp://ftp.example.com/example.ext</url>

Bryan, et al. Standards Track [Page 4]

RFC 5854 Metalink Download Description Format June 2010

 <url location="fr"
 priority="1">http://example.com/example.ext</url>
 <metaurl mediatype="torrent"
 priority="2">http://example.com/example.ext.torrent</metaurl>
 </file>
 <file name="example2.ext">
 <size>14471447</size>
 <identity>Example2</identity>
 <version>1.0</version>
 <language>en</language>
 <description>
 Another description for a second file.
 </description>
 <hash type="sha-256">2f548ce50c459a0270e85a7d63b2383c5523...</hash>
 <url location="de"
 priority="1">ftp://ftp.example.com/example2.ext</url>
 <url location="fr"
 priority="1">http://example.com/example2.ext</url>
 <metaurl mediatype="torrent"
 priority="2">http://example.com/example2.ext.torrent</metaurl>
 </file>
 </metalink>

1.2. Namespace and Version

 The XML Namespaces URI [REC-xml-names] for the XML data format
 described in this specification is:

 urn:ietf:params:xml:ns:metalink

 For convenience, this data format may be referred to as "Metalink",
 which this specification uses internally.

1.3. Notational Conventions

 This specification describes conformance of Metalink Documents.
 Additionally, it places some requirements on Metalink Processors.

 This specification uses the namespace prefix "metalink:" for the
 Namespace URI identified in Section 1.2, above. Note that the choice
 of namespace prefix is arbitrary and not semantically significant.

 Metalink is specified using terms from the XML Infoset
 [REC-xml-infoset]. However, this specification uses a shorthand for
 two common terms: the phrase "Information Item" is omitted when
 naming Element Information Items and Attribute Information Items.
 Therefore, when this specification uses the term "element," it is
 referring to an Element Information Item in Infoset terms. Likewise,

Bryan, et al. Standards Track [Page 5]

RFC 5854 Metalink Download Description Format June 2010

 when it uses the term "attribute," it is referring to an Attribute
 Information Item.

 Some sections of this specification are illustrated with fragments of
 a non-normative RELAX NG Compact schema [RELAX-NG]. However, the
 text of this specification provides the definition of conformance. A
 complete schema appears in Appendix B.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, [RFC2119], as
 scoped to those conformance targets.

2. Metalink Documents

 This specification describes Metalink Documents.

 A Metalink Document describes a file or group of files, how to access
 them, and metadata that identifies them. Its root is the metalink:
 metalink element.

 namespace metalink = "urn:ietf:params:xml:ns:metalink"
 start = metalinkMetalink

 Metalink Documents are specified in terms of the XML Information Set,
 serialized as XML 1.0 [REC-xml] and identified with the "application/
 metalink4+xml" media type.

 Metalink Documents MUST be well-formed XML. This specification does
 not define a Document Type Definition (DTD) for Metalink Documents,
 and hence it does not require them to be valid (in the sense used by
 XML).

 Metalink allows the use of Internationalized Resource Identifiers
 (IRIs), encoded according to [RFC3987]. Every URI [RFC3986] is also
 an IRI, so a URI may be used wherever an IRI is named below. There
 is one special consideration: when an IRI that is not also a URI is
 given for dereferencing, it MUST be mapped to a URI using the steps
 in Section 3.1 of [RFC3987].

 Any element defined by this specification MAY have an xml:lang
 attribute, whose content indicates the natural language for the
 element and its descendents. The language context is only
 significant for elements and attributes declared to be "Language-
 Sensitive" by this specification. Requirements regarding the content
 and interpretation of xml:lang are specified in XML 1.0 [REC-xml],
 Section 2.12.

Bryan, et al. Standards Track [Page 6]

RFC 5854 Metalink Download Description Format June 2010

 metalinkCommonAttributes =
 attribute xml:lang { metalinkLanguageTag }?,
 undefinedAttribute*

 All leading and trailing whitespace is part of the element content
 and MUST NOT be ignored. Consequently, it is disallowed for elements
 where the defined type does not allow whitespace, such as dates,
 integers, or IRIs. Some XML-generating implementations erroneously
 insert whitespace around values by default, and such implementations
 will generate invalid Metalink Documents.

 Metalink Documents that do not follow this specification are invalid
 and SHOULD NOT be used by Metalink Processors.

 Metalink is an extensible format. See Section 5 of this document for
 a full description of how Metalink Documents can be extended.

3. Common Metalink Constructs

 Many Metalink elements share common structures. This section defines
 those structures and their requirements for convenient reference by
 the appropriate element definitions.

 When an element is identified as being a particular kind of
 construct, it inherits the corresponding requirements from that
 construct’s definition in this section.

3.1. Text Constructs

 A Text construct contains human-readable text, usually short in
 length.

 metalinkTextConstruct =
 metalinkCommonAttributes,
 text

 For example, a metalink:description with text content:

 ...
 <description>
 A description of the example file for download.
 </description>
 ...

 The content of the Text construct MUST NOT contain child elements.
 Such text is intended to be presented to humans in a readable
 fashion. Thus, whitespace could be collapsed (including line

Bryan, et al. Standards Track [Page 7]

RFC 5854 Metalink Download Description Format June 2010

 breaks), and text could be displayed using typographic techniques
 such as justification and proportional fonts.

3.2. Date Constructs

 A Date construct is an element whose content MUST conform to the
 "date-time" production in [RFC3339]. In addition, an uppercase "T"
 character MUST be used to separate date and time, and an uppercase
 "Z" character MUST be present in the absence of a numeric time zone
 offset.

 metalinkDateConstruct =
 metalinkCommonAttributes,
 xsd:dateTime

 Such date values happen to be compatible with the following
 specifications: [ISO.8601.1988], [NOTE-datetime-19980827], and
 [REC-xmlschema-2-20041028].

 Example Date constructs:

 ...
 <updated>2010-05-01T12:15:02Z</updated>
 ...
 <updated>2010-05-01T12:15:02.25Z</updated>
 ...
 <updated>2010-05-01T12:15:02+01:00</updated>
 ...
 <updated>2010-05-01T12:15:02.25+01:00</updated>
 ...

4. Metalink Element Definitions

4.1. Container Elements

4.1.1. The "metalink:metalink" Element

 The "metalink:metalink" element is the document (i.e., top-level)
 element of a Metalink Document, acting as a container for metadata
 and data associated with the listed files. It contains one or more
 metalink:file child elements that consist of Metadata elements.

 metalinkMetalink =
 element metalink:metalink {
 metalinkCommonAttributes,
 (metalinkFile+
 & metalinkGenerator?
 & metalinkOrigin?

Bryan, et al. Standards Track [Page 8]

RFC 5854 Metalink Download Description Format June 2010

 & metalinkPublished?
 & metalinkUpdated?
 & extensionElement*)
 }

 The following child elements are defined by this specification (note
 that the presence of some of these elements is required):

 o metalink:metalink elements MUST contain one or more metalink:file
 elements.

 o metalink:metalink elements MAY contain exactly one metalink:
 generator element and MUST NOT contain more than one such element.

 o metalink:metalink elements SHOULD contain exactly one metalink:
 origin element and MUST NOT contain more than one such element.

 o metalink:metalink elements MAY contain exactly one metalink:
 published element and MUST NOT contain more than one such element.

 o metalink:metalink elements MAY contain exactly one metalink:
 updated element and MUST NOT contain more than one such element.

4.1.1.1. Providing Textual Content

 Experience teaches that downloads providing textual content are, in
 general, more useful than those that do not. Some applications (one
 example is full-text indexers) require a minimum amount of text to
 function reliably and predictably. Metalink publishers should be
 aware of this. It is RECOMMENDED that each metalink:file element
 contain a non-empty metalink:description element, a non-empty
 metalink:identity element, a non-empty metalink:version element, and
 a non-empty metalink:publisher element when these elements are
 present. However, the absence of metalink:description, metalink:
 identity, metalink:version, and metalink:publisher is not an error,
 and Metalink Processors MUST NOT fail to function correctly as a
 consequence of such an absence.

4.1.2. The "metalink:file" Element

 The "metalink:file" element represents an individual file, acting as
 a container for metadata and data associated with the file. Each
 unique file described in a Metalink Document MUST have its own
 metalink:file element.

 All metalink:url elements contained in each metalink:file element
 SHOULD lead to identical files. That is, each metalink:url element
 should be an alternative location for the same file and each

Bryan, et al. Standards Track [Page 9]

RFC 5854 Metalink Download Description Format June 2010

 metalink:metaurl element should provide metadata to retrieve the same
 file in another way, such as a Peer-to-Peer network. Refer to
 Sections 4.2.8 and 4.2.16 for more information.

 metalinkFile =
 element metalink:file {
 metalinkCommonAttributes,
 attribute name { text },
 (metalinkCopyright?
 & metalinkDescription?
 & metalinkHash*
 & metalinkIdentity?
 & metalinkLanguage*
 & metalinkLogo?
 & metalinkMetaURL*
 & metalinkOS*
 & metalinkPieces*
 & metalinkPublisher?
 & metalinkSignature?
 & metalinkSize?
 & metalinkURL*
 & metalinkVersion?
 & extensionElement*)
 }

 This specification assigns no significance to the order of metalink:
 file elements or to the order of metalink:url or metalink:metaurl
 elements. Significance is determined by the value of the "priority"
 attribute of the metalink:url or metalink:metaurl elements.

 The following child elements are defined by this specification (the
 presence of some of them is required):

 o metalink:file elements MAY contain exactly one metalink:copyright
 element and MUST NOT contain more than one such element.

 o metalink:file elements MAY contain exactly one metalink:
 description element and MUST NOT contain more than one such
 element.

 o metalink:file elements MAY contain exactly one metalink:identity
 element and MUST NOT contain more than one such element.

 o metalink:file elements MAY contain one or more metalink:hash
 elements.

 o metalink:file elements MAY contain one or more metalink:language
 elements.

Bryan, et al. Standards Track [Page 10]

RFC 5854 Metalink Download Description Format June 2010

 o metalink:file elements MAY contain exactly one metalink:logo
 element and MUST NOT contain more than one such element.

 o metalink:file elements MAY contain one or more metalink:os
 element.

 o metalink:file elements MUST contain at least one metalink:url
 element or at least one metalink:metaurl element. Typically,
 metalink:file elements contain more than one metalink:url element
 to provide multiple download sources.

 o metalink:file elements MAY contain one or more metalink:pieces
 elements.

 o metalink:file elements MAY contain exactly one metalink:publisher
 element and MUST NOT contain more than one such element.

 o metalink:file elements MAY contain one or more metalink:signature
 elements.

 o metalink:file elements SHOULD contain exactly one metalink:size
 element and MUST NOT contain more than one such element.

 o metalink:file elements MAY contain exactly one metalink:version
 element and MUST NOT contain more than one such element.

4.1.2.1. The "name" Attribute

 metalink:file elements MUST have a "name" attribute, which contains
 the local file name to which the downloaded file will be written.
 Hence, if a Metalink Document contains multiple metalink:file
 elements, the value of the "name" attribute MUST be unique for each.

 Directory information can also be contained in a "path/file" format
 only, as in:

 <file name="debian-amd64/sarge/Contents-amd64.gz">

 In this example, a subdirectory "debian-amd64/sarge/" will be created
 and a file named "Contents-amd64.gz" will be created inside it.

 Security Note: The path MUST NOT contain any directory traversal
 directives or information. The path MUST be relative. The path
 MUST NOT begin with a "/", "./", or "../"; contain "/../"; or end
 with "/..".

Bryan, et al. Standards Track [Page 11]

RFC 5854 Metalink Download Description Format June 2010

4.1.3. The "metalink:pieces" Element

 The "metalink:pieces" element acts as a container for a list of
 cryptographic hashes of contiguous, non-overlapping pieces of the
 file. The cryptographic hashes MUST be listed in the same order as
 the corresponding pieces appear in the file, starting at the
 beginning of the file. Metalink Documents MAY contain one or
 multiple metalink:pieces container elements, if each "type" attribute
 of metalink:pieces has a unique value.

 metalinkPieces =
 element metalink:pieces {
 attribute length { xsd:positiveInteger },
 attribute type { text },
 metalinkHash+
 }

4.1.3.1. The "type" Attribute

 metalink:pieces elements MUST have a "type" attribute.

 The Internet Assigned Numbers Authority (IANA) registry named "Hash
 Function Textual Names" defines values for hash types. See
 Section 7.4 for security implications.

4.1.3.2. The "length" Attribute

 metalink:pieces elements MUST have a "length" attribute, which is a
 positive integer that describes the length of the pieces of the file
 in octets. The whole file is divided into non-overlapping pieces of
 this length, starting from the beginning of the file. That is, every
 piece MUST be the same size, apart from the last piece, which is the
 remainder. The last piece extends to the end of the file, and it
 therefore MAY be shorter than the other pieces.

4.2. Metadata Elements

4.2.1. The "metalink:copyright" Element

 The "metalink:copyright" element is a Text construct that conveys a
 human-readable copyright for a file. It is Language-Sensitive.

 metalinkCopyright =
 element metalink:copyright {
 metalinkTextConstruct
 }

Bryan, et al. Standards Track [Page 12]

RFC 5854 Metalink Download Description Format June 2010

4.2.2. The "metalink:description" Element

 The "metalink:description" element is a Text construct that conveys a
 human-readable file description. It is Language-Sensitive.

 metalinkDescription =
 element metalink:description {
 metalinkTextConstruct
 }

4.2.3. The "metalink:generator" Element

 The "metalink:generator" element’s content identifies the generating
 agent name and version used to generate a Metalink Document, for
 debugging and other purposes.

 metalinkGenerator =
 element metalink:generator {
 metalinkTextConstruct
 }

 The metalink:generator element’s content is defined below in ABNF
 notation [RFC5234].

 token = 1*<any CHAR except CTLs or separators>
 separators = "(" / ")" / "<" / ">" / "@"
 / "," / ";" / ":" / "\" / DQUOTE
 / "/" / "[" / "]" / "?" / "="
 / "{" / "}" / SP / HTAB
 agent = token ["/" agent-version]
 agent-version = token

 Examples:

 ...
 <generator>MirrorBrain/2.11</generator>
 ...
 <generator>MirrorManager/1.2.11</generator>
 ...
 <generator>metalinktools/0.3.6</generator>
 ...
 <generator>MetalinkEditor/1.2.0</generator>
 ...

 Although any token character MAY appear in an agent-version, this
 token SHOULD only be used for a version identifier (i.e., successive
 versions of the same agent SHOULD only differ in the agent-version
 portion of the agent value).

Bryan, et al. Standards Track [Page 13]

RFC 5854 Metalink Download Description Format June 2010

4.2.4. The "metalink:hash" Element

 The "metalink:hash" element is a Text construct that conveys a
 cryptographic hash for a file. All hashes are encoded in lowercase
 hexadecimal format. Hashes are used to verify the integrity of a
 complete file or portion of a file to determine if the file has been
 transferred without any errors.

 metalinkHash =
 element metalink:hash {
 attribute type { text }?,
 text
 }

 Metalink Documents MAY contain one or multiples hashes of a complete
 file. metalink:hash elements with a "type" attribute MUST contain a
 hash of the complete file. In this example, both SHA-1 and SHA-256
 hashes of the complete file are included.

 ...
 <hash type="sha-1">a97fcf6ba9358f8a6f62beee4421863d3e52b080</hash>
 <hash type="sha-256">fc87941af7fd7f03e53b34af393f4c14923d74...</hash>
 ...

 Metalink Documents MAY also contain hashes for individual pieces of a
 file. metalink:hash elements that are inside a metalink:pieces
 container element have a hash for that specific piece or chunk of the
 file, and are of the same hash type as the metalink:pieces element in
 which they are contained. Metalink Documents MAY contain one or
 multiple metalink:pieces container elements, if each "type" attribute
 of metalink:pieces has a unique value.

 metalink:hash elements without a "type" attribute MUST contain a hash
 for that specific piece or chunk of the file and MUST be listed in
 the same order as the corresponding pieces appear in the file,
 starting at the beginning of the file. The size of the piece is
 equal to the value of the "length" attribute of the metalink:pieces
 element, apart from the last piece, which is the remainder. See
 Section 4.1.3.2 for more information on the size of pieces.

Bryan, et al. Standards Track [Page 14]

RFC 5854 Metalink Download Description Format June 2010

 In this example, SHA-1 and SHA-256 hashes of the complete file are
 included, along with four SHA-1 piece hashes.

 ...
 <hash type="sha-1">a97fcf6ba9358f8a6f62beee4421863d3e52b080</hash>
 <hash type="sha-256">fc87941af7fd7f03e53b34af393f4c14923d74...</hash>
 <pieces length="1048576" type="sha-1">
 <hash>d96b9a4b92a899c2099b7b31bddb5ca423bb9b30</hash>
 <hash>10d68f4b1119014c123da2a0a6baf5c8a6d5ba1e</hash>
 <hash>3e84219096435c34e092b17b70a011771c52d87a</hash>
 <hash>67183e4c3ab892d3ebe8326b7d79eb62d077f487</hash>
 </pieces>
 ...

4.2.4.1. The "type" Attribute

 metalink:hash elements MUST have a "type" attribute, if and only if
 it contains a hash of the complete file. The IANA registry named
 "Hash Function Textual Names" defines values for hash types.
 metalink:hash elements MUST NOT have a "type" attribute, if they are
 inside a metalink:pieces container element. See Section 7.4 for
 security implications.

4.2.5. The "metalink:identity" Element

 The "metalink:identity" element is a Text construct that conveys a
 human-readable identity for a file. For example, the identity of
 Firefox 3.5 would be "Firefox".

 metalinkIdentity =
 element metalink:identity {
 metalinkTextConstruct
 }

4.2.6. The "metalink:language" Element

 The "metalink:language" element is a Text construct that conveys a
 code for the language of a file, per [RFC5646].

 Multiple metalink:language elements are allowed, for instance, to
 describe a file such as an binary installation program that provides
 multiple language options, a movie with multiple language tracks, or
 a document in multiple languages.

 metalinkLanguage =
 element metalink:language {
 metalinkTextConstruct
 }

Bryan, et al. Standards Track [Page 15]

RFC 5854 Metalink Download Description Format June 2010

4.2.7. The "metalink:logo" Element

 The "metalink:logo" element’s content is an IRI reference [RFC3987]
 that identifies an image that provides visual identification for a
 file.

 metalinkLogo =
 element metalink:logo {
 metalinkCommonAttributes,
 (metalinkUri)
 }

 The image SHOULD have an aspect ratio of one (horizontal) to one
 (vertical) and SHOULD be suitable for presentation at a small size.

4.2.8. The "metalink:metaurl" Element

 The "metalink:metaurl" element contains the IRI of a metadata file,
 also known as a metainfo file, about a resource to download. For
 example, this could be the IRI of a BitTorrent .torrent file, a
 Metalink Document, or other type of metadata file. Note that the
 information in the metalink:hash element does not apply to these
 metadata files but to the files that are described by them.

 metalinkMetaURL =
 element metalink:metaurl {
 metalinkCommonAttributes,
 attribute priority { xsd:positiveInteger {
 maxInclusive = "999999"}}?,
 attribute mediatype { text },
 attribute name { text }?,
 (metalinkUri)
 }

4.2.8.1. The "priority" Attribute

 metalink:metaurl elements MAY have a priority attribute. Values MUST
 be positive integers between 1 and 999999. Lower values indicate a
 higher priority. metalink:metaurl elements without a priority
 attribute are considered to have the lowest priority, i.e., 999999.
 The priority values of metalink:metaurl and metalink:url elements are
 compared and those with the lowest values, starting with 1, are used
 first. Multiple metalink:metaurl and metalink:url elements MAY have
 the same priority, i.e., one BitTorrent .torrent file and three FTP
 URIs could have priority="1". See also the "priority" attribute of
 the metalink:url element.

Bryan, et al. Standards Track [Page 16]

RFC 5854 Metalink Download Description Format June 2010

4.2.8.2. The "mediatype" Attribute

 metalink:metaurl elements MUST have a "mediatype" attribute that
 indicates the Multipurpose Internet Mail Extensions (MIME) media type
 [RFC4288] of the metadata file available at the IRI. In the case of
 BitTorrent as specified in [BITTORRENT], the value "torrent" is
 REQUIRED. Types without "/" are reserved. Currently, "torrent" is
 the only reserved value.

 Values for this attribute are defined below in ABNF notation
 [RFC5234].

 media-type = (type-name "/" subtype-name) / media-reserved
 media-reserved = "torrent"
 type-name = <Defined in Section 4.2 of RFC 4288>
 subtype-name = <Defined in Section 4.2 of RFC 4288>

4.2.8.3. The "name" Attribute

 metalink:metaurl elements MAY have a "name" attribute that indicates
 a specific file in a BitTorrent .torrent file or a Metalink Document
 that describes multiple files.

 Directory information can also be contained in a "path/file" format
 only, as in:

 <metaurl
 mediatype="torrent" name="debian-amd64/sarge/Contents-amd64.gz">

 In this example, a file named "Contents-amd64.gz" is indicated, in a
 "debian-amd64/sarge/" subdirectory. The path MUST NOT contain any
 directory traversal directives or information. The path MUST be
 relative. The path MUST NOT begin with a "/", "./", or "../";
 contain "/../"; or end with "/..".

4.2.9. The "metalink:origin" Element

 The "metalink:origin" element is an IRI where the Metalink Document
 was originally published. If the dynamic attribute of metalink:
 origin is "true", then updated versions of the Metalink can be found
 at this IRI.

 metalinkOrigin =
 element metalink:origin {
 metalinkCommonAttributes,
 attribute dynamic { xsd:boolean }?,
 (metalinkUri)
 }

Bryan, et al. Standards Track [Page 17]

RFC 5854 Metalink Download Description Format June 2010

4.2.9.1. The "dynamic" Attribute

 The metalink:origin element MAY have a "dynamic" attribute, set to
 "true" or "false", which tells if a Metalink at the origin IRI will
 contain dynamic updated information or if it is static and not likely
 to be updated.

4.2.10. The "metalink:os" Element

 The "metalink:os" element is a Text construct that conveys an
 Operating System that a file is suitable for. The IANA registry
 named "Operating System Names" defines values for OS types.

 metalinkOS =
 element metalink:os {
 metalinkTextConstruct
 }

4.2.11. The "metalink:published" Element

 The "metalink:published" element is a Date construct indicating an
 instant in time associated with an event early in the life cycle of
 the entry.

 metalinkPublished =
 element metalink:published {
 metalinkDateConstruct
 }

 Typically, metalink:published will be associated with the initial
 creation or first availability of the resource. The metalink:updated
 element is used when a Metalink Document has been updated after
 initial publication.

4.2.12. The "metalink:publisher" Element

 The "metalink:publisher" element contains a human-readable group or
 other entity that has published the file described in the Metalink
 Document and an IRI for more information.

 metalinkPublisher =
 element metalink:publisher {
 metalinkCommonAttributes,
 attribute name { text },
 attribute url { metalinkUri }?
 }

Bryan, et al. Standards Track [Page 18]

RFC 5854 Metalink Download Description Format June 2010

4.2.12.1. The "name" Attribute

 The metalink:publisher element MUST have a "name" attribute that
 indicates the human-readable name of the publisher.

4.2.12.2. The "url" Attribute

 The metalink:publisher element MAY have a "url" attribute whose value
 MUST be an IRI reference [RFC3987].

4.2.13. The "metalink:signature" Element

 The "metalink:signature" element is a Text construct that conveys a
 digital signature for a file described in a Metalink Document.
 Digital signatures verify that a file is from the entity that has
 signed it.

 Support in Metalink Processors for digital signatures included in
 this element is OPTIONAL. Note that the signing of Metalink
 Documents, as opposed to a digital signature of a file described in a
 Metalink Document, is covered in Section 7.1.

 metalinkSignature =
 element metalink:signature {
 attribute mediatype { text },
 metalinkTextConstruct
 }

 Example with an OpenPGP signature [RFC4880]:

 <signature mediatype="application/pgp-signature">
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1.4.10 (GNU/Linux)

 iEYEABECAAYFAkrxdXQACgkQeOEcayedXJHqFwCfd1p/HhRf/iDvYhvFbTrQPz+p
 p3oAoO9lKHoOqOE0EMB3zmMcLoYUrNkg
 =ggAf
 -----END PGP SIGNATURE-----
 </signature>

4.2.13.1. The "mediatype" Attribute

 metalink:signature elements MUST have a "mediatype" attribute that
 indicates the MIME media type [RFC4288] of the included digital
 signature.

 Values for this attribute are defined below in ABNF notation
 [RFC5234].

Bryan, et al. Standards Track [Page 19]

RFC 5854 Metalink Download Description Format June 2010

 media-type = type-name "/" subtype-name
 type-name = <Defined in Section 4.2 of RFC 4288>
 subtype-name = <Defined in Section 4.2 of RFC 4288>

4.2.14. The "metalink:size" Element

 The "metalink:size" element indicates the length of the linked
 content in octets. This is the content length of the representation
 returned when the IRI is mapped to a URI and dereferenced. Note that
 the "metalink:size" element MUST override the actual content length
 of the representation as reported by the underlying protocol, and
 those that do not match MUST be discarded by Metalink Processors.
 This value MUST be a non-negative integer.

 metalinkSize =
 element metalink:size {
 xsd:nonNegativeInteger
 }

4.2.15. The "metalink:updated" Element

 The "metalink:updated" element is a Date construct indicating the
 most recent instant in time when a Metalink was modified in a way the
 publisher considers significant. Therefore, not all modifications
 necessarily result in a changed metalink:updated value.

 metalinkUpdated =
 element metalink:updated {
 metalinkDateConstruct
 }

 Publishers MAY change the value of this element over time.

4.2.16. The "metalink:url" Element

 The "metalink:url" element contains a file IRI. Most metalink:file
 container elements will contain multiple metalink:url elements, and
 each one SHOULD be a valid alternative to download the same file.

 The metalink:url elements SHOULD be resolvable and, if resolvable,
 SHOULD lead to identical files.

 Metalink Processors MUST filter out invalid files obtained from
 "metalink:url" elements by using information in the metalink:size
 element and metalink:hash elements.

Bryan, et al. Standards Track [Page 20]

RFC 5854 Metalink Download Description Format June 2010

 metalinkURL =
 element metalink:url {
 metalinkCommonAttributes,
 attribute location { xsd:string {
 minLength = "2" maxLength="2"}
 }?,
 attribute priority { xsd:positiveInteger {
 maxInclusive = "999999"}}?,
 (metalinkUri)
 }

4.2.16.1. The "priority" Attribute

 metalink:url elements MAY have a priority attribute. Values MUST be
 positive integers between 1 and 999999. Lower values indicate a
 higher priority. metalink:url elements without a priority attribute
 are considered to have the lowest priority, i.e., 999999. Multiple
 metalink:url elements can have the same priority, i.e., ten different
 mirrors could have priority="1".

4.2.16.2. The "location" Attribute

 metalink:url elements MAY have a "location" attribute, which is a
 [ISO3166-1] alpha-2 two letter country code for the geographical
 location of the physical server an IRI is used to access.

4.2.17. The "metalink:version" Element

 The "metalink:version" element is a Text construct that conveys a
 human-readable version for a file. The version of Firefox 3.5 would
 be "3.5".

 metalinkVersion =
 element metalink:version {
 metalinkTextConstruct
 }

5. Extending Metalink

5.1. Extensions from Non-Metalink Vocabularies

 This specification describes Metalink’s XML vocabulary.

5.2. Extensions to the Metalink Vocabulary

 The Metalink namespace is reserved for future forward-compatible
 revisions of Metalink. Future versions of this specification could
 add new elements and attributes to the Metalink markup vocabulary.

Bryan, et al. Standards Track [Page 21]

RFC 5854 Metalink Download Description Format June 2010

 Software written to conform to this version of the specification will
 not be able to process such markup correctly and, in fact, will not
 be able to distinguish it from markup error. For the purposes of
 this discussion, unrecognized markup from the Metalink vocabulary
 will be considered "foreign markup".

5.3. Processing Foreign Markup

 Metalink Processors that encounter foreign markup in a location that
 is legal according to this specification MUST ignore such foreign
 markup, in particular they MUST NOT stop processing or signal an
 error. It might be the case that the Metalink Processor is able to
 process the foreign markup correctly and does so. Otherwise, such
 markup is termed "unknown foreign markup".

 When unknown foreign markup is encountered as a child of metalink:
 file, metalink:metalink, Metalink Processors MAY bypass the markup
 and any textual content and MUST NOT change their behavior as a
 result of the markup’s presence.

5.4. Extension Elements

 Metalink allows foreign markup anywhere in a Metalink document,
 except where it is explicitly forbidden. Child elements of metalink:
 file and metalink:metalink are considered Metadata elements and are
 described below. The role of other foreign markup is undefined by
 this specification.

5.4.1. Simple Extension Elements

 A Simple Extension element MUST NOT have any attributes or child
 elements. The element MAY contain character data or be empty.
 Simple Extension elements are not Language-Sensitive.

 simpleExtensionElement =
 element * - metalink:* {
 text
 }

 The element can be interpreted as a simple property (or name/value
 pair) of the parent element that encloses it. The pair consisting of
 the namespace URI of the element and the local name of the element
 can be interpreted as the name of the property. The character data
 content of the element can be interpreted as the value of the
 property. If the element is empty, then the property value can be
 interpreted as an empty string.

Bryan, et al. Standards Track [Page 22]

RFC 5854 Metalink Download Description Format June 2010

5.4.2. Structured Extension Elements

 The root element of a Structured Extension element MUST have at least
 one attribute or child element. It MAY have attributes, it MAY
 contain well-formed XML content (including character data), or it MAY
 be empty. Structured Extension elements are Language-Sensitive.

 structuredExtensionElement =
 element * - metalink:* {
 (attribute * { text }+,
 (text|anyElement)*)
 | (attribute * { text }*,
 (text?, anyElement+, (text|anyElement)*))
 }

 The structure of a Structured Extension element, including the order
 of its child elements, could be significant.

 This specification does not provide an interpretation of a Structured
 Extension element. The syntax of the XML contained in the element
 (and an interpretation of how the element relates to its containing
 element) is defined by the specification of the Metalink extension.

6. IANA Considerations

6.1. XML Namespace Registration

 This document makes use of the XML registry specified in [RFC3688].
 Accordingly, IANA has made the following registration:

 Registration request for the Metalink namespace:

 URI: urn:ietf:params:xml:ns:metalink

 Registrant Contact: See the "Authors’ Addresses" section of this
 document.

 XML: None. Namespace URIs do not represent an XML specification.

6.2. application/metalink4+xml MIME type

 A Metalink Document, when serialized as XML 1.0, can be identified
 with the following media type:

 Type name: application

 Subtype name: metalink4+xml

Bryan, et al. Standards Track [Page 23]

RFC 5854 Metalink Download Description Format June 2010

 Required parameters: None.

 Optional parameters:

 "charset": This parameter has semantics identical to the charset
 parameter of the "application/xml" media type as specified in
 [RFC3023].

 Encoding considerations: Identical to those of "application/xml" as
 described in [RFC3023], Section 3.2.

 Security considerations: As defined in this specification.

 In addition, as this media type uses the "+xml" convention, it
 shares the same security considerations as described in [RFC3023],
 Section 10.

 Interoperability considerations: There are no known interoperability
 issues.

 Published specification: This specification.

 Applications that use this media type: File transfer applications.

 Additional information:

 Magic number(s): None.

 File extension: .meta4

 Macintosh File Type code: TEXT

 Person and email address to contact for further information:
 Anthony Bryan <anthonybryan@gmail.com>

 Intended usage: COMMON

 Restrictions on usage: None.

 Author: Anthony Bryan <anthonybryan@gmail.com>

 Change controller: IESG

7. Security Considerations

 Because Metalink is an XML-based format, existing XML security
 mechanisms can be used to secure its content.

Bryan, et al. Standards Track [Page 24]

RFC 5854 Metalink Download Description Format June 2010

 Publishers of Metalink Documents may have sound reasons for signing
 otherwise-unprotected content. For example, a merchant might
 digitally sign a Metalink that lists a file download to verify its
 origin. Other merchants may wish to sign and encrypt Metalink
 Documents that list digital songs that have been purchased. Many
 other examples are conceivable.

 Publishers are encouraged to offer Metalink documents via
 authenticated HTTP under Transport Layer Security (TLS) as specified
 in [RFC2818]. The choice of a secure content layer rests entirely
 with the content providers.

 Publishers are also encouraged to include digital signatures of the
 files within the Metalink Documents, if they are available, as
 described in Section 4.2.13.

 Normally, a publisher is in the best position to know how strong the
 protective signing ought to be on their content. Thus, a publisher
 can choose weak or strong cryptography, and a Metalink Processor
 SHOULD normally accept that. There are potential applications where
 the Metalink Processor chooses to reject weak cryptography, but that
 is not envisioned as the common use case.

7.1. Digital Signatures

 The root of a Metalink Document (i.e., metalink:metalink) or any
 metalink:file element MAY have an Enveloped Signature, as described
 by XML-Signature and Syntax Processing [REC-xmldsig-core].

 Although signing and verifying signatures are both OPTIONAL, an
 implementation that supports either feature SHOULD implement RSA with
 a minimum key size of 2048 with SHA-256.

 Metalink Processors that support verifying signatures MUST reject
 Metalink Documents with invalid signatures.

 Metalink Processors MUST NOT reject a Metalink Document containing
 such a signature because they are not capable of verifying it; they
 MUST continue processing and MAY inform the user of their failure to
 validate the signature.

 In other words, the presence of an element with the namespace URI
 "http://www.w3.org/2000/09/xmldsig#" and a local name of "Signature"
 as a child of the document element MUST NOT cause a Metalink
 Processor to fail merely because of its presence.

 Other elements in a Metalink Document MUST NOT be signed unless their
 definitions explicitly specify such a capability.

Bryan, et al. Standards Track [Page 25]

RFC 5854 Metalink Download Description Format June 2010

 Section 6.5.1 of [REC-xmldsig-core] requires support for Canonical
 XML [REC-xml-c14n]. However, many - implementers do not use it
 because signed XML documents - enclosed in other XML documents have
 their signatures - broken. Thus, Metalink Processors that verify
 signed Metalink Documents MUST be able to canonicalize with the
 exclusive XML canonicalization method identified by the URI
 "http://www.w3.org/2001/10/xml-exc-c14n#", as specified in Exclusive
 XML Canonicalization [REC-xml-exc-c14n].

 Section 4.4.2 of [REC-xmldsig-core] requires support for Digital
 Signature Algorithm (DSA) signatures and recommends support for RSA
 signatures. However, because of the much greater popularity in the
 market of RSA versus DSA, Metalink Processors that verify signed
 Metalink Documents MUST be able to verify RSA signatures, but do not
 need be able to verify DSA signatures. Due to security issues that
 can arise if the keying material for message authentication code
 (MAC) authentication is not handled properly, Metalink Documents
 SHOULD NOT use MACs for signatures.

7.2. URIs and IRIs

 Metalink Processors handle URIs and IRIs. See Section 7 of [RFC3986]
 and Section 8 of [RFC3987] for security considerations related to
 their handling and use.

7.3. Spoofing

 There is potential for spoofing attacks where the attacker publishes
 Metalink Documents with false information. Malicious publishers
 might create Metalink Documents containing inaccurate information
 anywhere in the document. Unaware downloaders could be deceived into
 downloading malicious or worthless content. Malicious publishers
 could attempt a distributed denial-of-service attack by inserting
 unrelated IRIs into Metalink Documents.

 Digital signatures address the issue of spoofing.

7.4. Cryptographic Hashes

 Currently, some of the hash types defined in the IANA registry named
 "Hash Function Textual Names" are considered insecure. These include
 the whole Message Digest family of algorithms that are not suitable
 for cryptographically strong verification. Malicious parties could
 provide files that appear to be identical to another file because of
 a collision, i.e., the weak cryptographic hashes of the intended file
 and a substituted malicious file could match.

Bryan, et al. Standards Track [Page 26]

RFC 5854 Metalink Download Description Format June 2010

 Metalink Generators and Processors MUST support "sha-256", which is
 SHA-256, as specified in [FIPS-180-3], and MAY support stronger
 hashes.

 If a Metalink Document contains hashes, it SHOULD include "sha-256",
 which is SHA-256, or stronger. It MAY also include other hashes from
 the IANA registry named "Hash Function Textual Names".

8. References

8.1. Normative References

 [BITTORRENT] Cohen, B., "The BitTorrent Protocol Specification",
 BITTORRENT 11031, February 2008,
 <http://www.bittorrent.org/beps/bep_0003.html>.

 [FIPS-180-3] National Institute of Standards and Technology (NIST),
 "Secure Hash Standard (SHS)", FIPS PUB 180-3,
 October 2008.

 [ISO3166-1] International Organization for Standardization, "ISO
 3166- 1:2006. Codes for the representation of names of
 countries and their subdivisions -- Part 1: Country
 codes", November 2006.

 [REC-xml] Yergeau, F., Paoli, J., Bray, T., Sperberg-McQueen, C.,
 and E. Maler, "Extensible Markup Language (XML) 1.0
 (Fifth Edition)", W3C REC-xml-20081126, November 2008,
 <http://www.w3.org/TR/2008/REC-xml-20081126/>.

 [REC-xml-c14n]
 Boyer, J., "Canonical XML Version 1.0", W3C REC REC-xml-
 c14n-20010315, March 2001,
 <http://www.w3.org/TR/2001/REC-xml-c14n-20010315>.

 [REC-xml-exc-c14n]
 Eastlake, D., Boyer, J., and J. Reagle, "Exclusive XML
 Canonicalization Version 1.0", W3C REC REC-xml-exc-c14n-
 20020718, July 2002,
 <http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/>.

 [REC-xml-infoset]
 Cowan, J. and R. Tobin, "XML Information Set (Second
 Edition)", W3C REC-xml-infoset-20040204, February 2004,
 <http://www.w3.org/TR/2004/REC-xml-infoset-20040204/>.

Bryan, et al. Standards Track [Page 27]

RFC 5854 Metalink Download Description Format June 2010

 [REC-xml-names]
 Hollander, D., Bray, T., Tobin, R., and A. Layman,
 "Namespaces in XML 1.0 (Third Edition)", W3C REC-xml-
 names-20091208, December 2009,
 <http://www.w3.org/TR/2009/REC-xml-names-20091208/>.

 [REC-xmldsig-core]
 Solo, D., Reagle, J., and D. Eastlake, "XML-Signature
 Syntax and Processing (Second Edition)",
 W3C REC-xmldsig- core-20080610, June 2008,
 <http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC3023] Murata, M., St. Laurent, S., and D. Kohn, "XML Media
 Types", RFC 3023, January 2001.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, July 2002.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

 [RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
 Identifiers (IRIs)", RFC 3987, January 2005.

 [RFC4288] Freed, N. and J. Klensin, "Media Type Specifications and
 Registration Procedures", BCP 13, RFC 4288,
 December 2005.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for
 Syntax Specifications: ABNF", STD 68, January 2008.

 [RFC5646] Phillips, A. and M. Davis, "Tags for Identifying
 Languages", BCP 47, RFC 5646, September 2009.

8.2. Informative References

 [ISO.8601.1988]
 International Organization for Standardization, "Data
 elements and interchange formats - Information
 interchange - Representation of dates and times",
 ISO Standard 8601, June 1988.

Bryan, et al. Standards Track [Page 28]

RFC 5854 Metalink Download Description Format June 2010

 [NOTE-datetime-19980827]
 Wolf, M. and C. Wicksteed, "Date and Time Formats",
 W3C NOTE-datetime-19980827, August 1998,
 <http://www.w3.org/TR/1998/NOTE-datetime-19980827>.

 [REC-xmlschema-2-20041028]
 Malhotra, A. and P. Biron, "XML Schema Part 2: Datatypes
 Second Edition", W3C REC-xmlschema-2-20041028,
 October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/>.

 [RELAX-NG] Clark, J., "RELAX NG Compact Syntax", December 2001,
 <http ://www.oasis-open.org/committees/relax-ng/
 compact-20021121.html>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC4287] Nottingham, M. and R. Sayre, "The Atom Syndication
 Format", RFC 4287, December 2005.

 [RFC4880] Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and
 R. Thayer, "OpenPGP Message Format", RFC 4880,
 November 2007.

Bryan, et al. Standards Track [Page 29]

RFC 5854 Metalink Download Description Format June 2010

Appendix A. Acknowledgements and Contributors

 The layout and shape of this document relies heavily on work
 pioneered in the Atom Syndication Format as specified in [RFC4287].

 The content and concepts within are a product of the Metalink
 community. Key contributors provided early implementations: A. Bram
 Neijt, Hampus Wessman, Darius Liktorius, Manuel Subredu, Michael
 Burford, Giorgio Maone, Nils Maier, Max Velasques, Manolo Valdes,
 Hayden Legendre, Frederick Cheung, Rene Leonhardt, Per Oyvind
 Karlsen, Matt Domsch, Yazsoft, KGet developers, Free Download Manager
 developers, Orbit developers, Arne Babenhauserheide, Mathias
 Berchtold, Xienzhenyu and TheWorld Browser developers, Xi Software,
 Agostino Russo, and James Antill.

 The Metalink community has dozens of contributors who contributed to
 the evolution of Metalink or proposed ideas and wording for this
 document, including:

 Paul Burkhead, Kristian Weston, Nicolas Alvarez, Urs Wolfer, Bridget
 and Ethan Fletcher, Patrick Ruckstuhl, Sebastien Willemijns, Micah
 Cowan, Ruben Kerkhof, Danny Ayers, Nick Dominguez, Gary Zellerbach,
 James Clark, Daniel Stenberg, John and Sandra Sowder, Salvatore
 Musumeci, Steve Eshelman, Lucas Hewett, Ryan Cronin, Dave Winquist,
 Bob Denison, Wes Shelton, Josh Colbert, Steve Kleisath, Chad Neptune,
 Derick Cordoba, Nick Carrabba, Chris Carrabba, Erin Solari, Ryan
 Alexander, Tom Mainville, Janie Wargo, Jason Hansen, Tim Bray, Dan
 Brickley, Markus Hofmann, Dan Connolly, Tim Berners-Lee, Louis
 Suarez-Potts, Ross Smith, Jeff Covey, Ed Lee, Shawn Wilsher, Mike
 Connor, Johan Svedberg, Kees Cook, Dedric Carter, and Debi Goulding.
 We also thank the Anthony Family, the Bryan Family, Juanita Anthony,
 and Zimmy Bryan.

 Special thanks to Eran Hammer-Lahav, document shepherd, and Lisa
 Dusseault, Area Director. We also thank the following contributors
 for assistance and review: Mark Nottingham, Peter Saint-Andre, Julian
 Reschke, Chris Newman, Ian Macfarlane, Dave Cridland, Barry Leiba,
 Uri Blumenthal, Paul Hoffman, Felix Sasaki, Matthias Fuchs, Mark
 Baker, Scott Cantor, Brian Carpenter, Alexey Melnikov, Lars Eggert,
 Pasi Eronen, Tim Polk, Dan Romascanu, and Bjoern Hoehrmann.

 Peter Poeml wishes to acknowledge the support of SUSE Linux Products
 GmbH / Novell Inc., where he was employed during much of the work on
 this document.

 This document is dedicated to Sonora Bryan.

Bryan, et al. Standards Track [Page 30]

RFC 5854 Metalink Download Description Format June 2010

Appendix B. RELAX NG Compact Schema

 This appendix is informative.

 The Relax NG schema explicitly excludes elements in the Metalink
 namespace that are not defined in this revision of the specification.
 Requirements for Metalink Processors encountering such markup are
 given in Sections 5.2 and 5.3.

 # -*- rnc -*-
 # RELAX NG Compact Syntax Grammar for the
 # Metalink Format Specification Version 4
 # Based on RFC 4287 schema

 namespace local = ""
 namespace metalink = "urn:ietf:params:xml:ns:metalink"
 namespace xsd = "http://www.w3.org/2001/XMLSchema"

 # Common attributes

 metalinkCommonAttributes =
 attribute xml:lang { metalinkLanguageTag }?,
 undefinedAttribute*

 # Text Constructs

 metalinkTextConstruct =
 metalinkCommonAttributes,
 text

 # Date Construct

 metalinkDateConstruct =
 metalinkCommonAttributes,
 xsd:dateTime

 start = metalinkMetalink

 metalinkMetalink =
 element metalink:metalink {
 metalinkCommonAttributes,
 (metalinkFile+
 & metalinkGenerator?
 & metalinkOrigin?
 & metalinkPublished?
 & metalinkUpdated?
 & extensionElement*)
 }

Bryan, et al. Standards Track [Page 31]

RFC 5854 Metalink Download Description Format June 2010

 metalinkFile =
 element metalink:file {
 metalinkCommonAttributes,
 attribute name { text },
 (metalinkCopyright?
 & metalinkDescription?
 & metalinkHash*
 & metalinkIdentity?
 & metalinkLanguage*
 & metalinkLogo?
 & metalinkMetaURL*
 & metalinkOS*
 & metalinkPieces*
 & metalinkPublisher?
 & metalinkSignature?
 & metalinkSize?
 & metalinkURL*
 & metalinkVersion?
 & extensionElement*)
 }

 metalinkPieces =
 element metalink:pieces {
 attribute length { xsd:positiveInteger },
 attribute type { text },
 metalinkHash+
 }

 metalinkCopyright =
 element metalink:copyright {
 metalinkTextConstruct
 }

 metalinkDescription =
 element metalink:description {
 metalinkTextConstruct
 }

 metalinkGenerator =
 element metalink:generator {
 metalinkTextConstruct
 }

 metalinkHash =
 element metalink:hash {
 attribute type { text }?,
 text
 }

Bryan, et al. Standards Track [Page 32]

RFC 5854 Metalink Download Description Format June 2010

 metalinkIdentity =
 element metalink:identity {
 metalinkTextConstruct
 }

 metalinkLanguage =
 element metalink:language {
 metalinkTextConstruct
 }

 metalinkLogo =
 element metalink:logo {
 metalinkCommonAttributes,
 (metalinkUri)
 }

 metalinkMetaURL =
 element metalink:metaurl {
 metalinkCommonAttributes,
 attribute priority { xsd:positiveInteger {
 maxInclusive = "999999"}}?,
 attribute mediatype { text },
 attribute name { text }?,
 (metalinkUri)
 }

 metalinkOrigin =
 element metalink:origin {
 metalinkCommonAttributes,
 attribute dynamic { xsd:boolean }?,
 (metalinkUri)
 }

 metalinkOS =
 element metalink:os {
 metalinkTextConstruct
 }

 metalinkPublished =
 element metalink:published {
 metalinkDateConstruct
 }

 metalinkPublisher =
 element metalink:publisher {
 metalinkCommonAttributes,
 attribute name { text },
 attribute url { metalinkUri }?

Bryan, et al. Standards Track [Page 33]

RFC 5854 Metalink Download Description Format June 2010

 }

 metalinkSignature =
 element metalink:signature {
 attribute mediatype { text },
 metalinkTextConstruct
 }

 metalinkSize =
 element metalink:size {
 xsd:nonNegativeInteger
 }

 metalinkUpdated =
 element metalink:updated {
 metalinkDateConstruct
 }

 metalinkURL =
 element metalink:url {
 metalinkCommonAttributes,
 attribute location { xsd:string {
 minLength = "2" maxLength="2"}
 }?,
 attribute priority { xsd:positiveInteger {
 maxInclusive = "999999"}}?,
 (metalinkUri)
 }

 metalinkVersion =
 element metalink:version {
 metalinkTextConstruct
 }

 # As defined in RFC 3066 and compatible with RFC 5646
 metalinkLanguageTag = xsd:string {
 pattern = "[A-Za-z]{1,8}(-[A-Za-z0-9]{1,8})*"
 }

 # Unconstrained; it’s not entirely clear how IRI fit into
 # xsd:anyURI so let’s not try to constrain it here
 metalinkUri = text

 # Simple Extension

 simpleExtensionElement =
 element * - metalink:* {
 text

Bryan, et al. Standards Track [Page 34]

RFC 5854 Metalink Download Description Format June 2010

 }

 # Structured Extension

 structuredExtensionElement =
 element * - metalink:* {
 (attribute * { text }+,
 (text|anyElement)*)
 | (attribute * { text }*,
 (text?, anyElement+, (text|anyElement)*))
 }

 # Other Extensibility

 extensionElement =
 simpleExtensionElement | structuredExtensionElement

 undefinedAttribute =
 attribute * - (xml:lang | local:*) { text }

 undefinedContent = (text|anyForeignElement)*

 anyElement =
 element * {
 (attribute * { text }
 | text
 | anyElement)*
 }

 anyForeignElement =
 element * - metalink:* {
 (attribute * { text }
 | text
 | anyElement)*
 }

 # EOF

Bryan, et al. Standards Track [Page 35]

RFC 5854 Metalink Download Description Format June 2010

Index

 A
 ABNF
 metalinkGenerator 13
 metaurl mediatype 17
 signature mediatype 19
 application/metalink4+xml Media Type 23

 C
 copyright XML element 12

 D
 description XML element 13

 F
 file XML element 10

 G
 generator XML element 13
 Grammar
 metalinkCommonAttributes 7
 metalinkCopyright 13
 metalinkDateConstruct 8
 metalinkDescription 13
 metalinkFile 10
 metalinkGenerator 13
 metalinkHash 14
 metalinkIdentity 15
 metalinkLanguage 15
 metalinkLogo 16
 metalinkMetalink 8
 metalinkMetaURL 16
 metalinkOrigin 17
 metalinkOS 18
 metalinkPieces 12
 metalinkPublished 18
 metalinkPublisher 18
 metalinkSignature 19
 metalinkSize 20
 metalinkTextConstruct 7
 metalinkUpdated 20
 metalinkURL 21
 metalinkVersion 21
 simpleExtensionElement 22
 structuredExtensionElement 23

Bryan, et al. Standards Track [Page 36]

RFC 5854 Metalink Download Description Format June 2010

 H
 hash XML element 14

 I
 identity XML element 15

 L
 language XML element 15
 logo XML element 16

 M
 Media Type
 application/metalink4+xml 23
 metalink XML element 8
 metalinkCommonAttributes grammar production 7
 metalinkCopyright grammar production 12
 metalinkDateConstruct grammar production 8
 metalinkDescription grammar production 13
 metalinkFile grammar production 10
 metalinkGenerator ABNF 13
 metalinkGenerator grammar production 13
 metalinkHash grammar production 14
 metalinkIdentity grammar production 15
 metalinkLanguage grammar production 15
 metalinkLogo grammar production 16
 metalinkMetalink grammar production 8
 metalinkMetaURL grammar production 16
 metalinkOrigin grammar production 17
 metalinkOS grammar production 18
 metalinkPieces grammar production 12
 metalinkPublished grammar production 18
 metalinkPublisher grammar production 18
 metalinkSignature grammar production 19
 metalinkSize grammar production 20
 metalinkTextConstruct grammar production 7
 metalinkUpdated grammar production 20
 metalinkURL grammar production 21
 metalinkVersion grammar production 21
 metaurl mediatype ABNF 16
 metaurl XML element 16

 O
 origin XML element 17
 os XML element 18

Bryan, et al. Standards Track [Page 37]

RFC 5854 Metalink Download Description Format June 2010

 P
 pieces XML element 12
 published XML element 18
 publisher XML element 18

 S
 signature mediatype ABNF 19
 signature XML element 19
 simpleExtensionElement grammar production 22
 size XML element 20
 structuredExtensionElement grammar production 23

 U
 updated XML element 20
 url XML element 20

 V
 version XML element 21

 X
 XML Elements
 copyright 12
 description 13
 file 9
 generator 13
 hash 14
 identity 15
 language 15
 logo 16
 metalink 8
 metaurl 16
 origin 17
 os 18
 pieces 12
 published 18
 publisher 18
 signature 19
 size 20
 updated 20
 url 20
 version 21

Bryan, et al. Standards Track [Page 38]

RFC 5854 Metalink Download Description Format June 2010

Authors’ Addresses

 Anthony Bryan
 Pompano Beach, FL
 USA

 EMail: anthonybryan@gmail.com
 URI: http://www.metalinker.org

 Tatsuhiro Tsujikawa
 Shiga
 Japan

 EMail: tatsuhiro.t@gmail.com
 URI: http://aria2.sourceforge.net

 Neil McNab
 San Diego, CA
 USA

 EMail: neil@nabber.org
 URI: http://www.nabber.org

 Dr. med. Peter Poeml
 MirrorBrain
 Venloer Str. 317
 Koeln 50823
 DE

 Phone: +49 221 6778 333 8
 EMail: peter@poeml.de
 URI: http://mirrorbrain.org/˜poeml/

Bryan, et al. Standards Track [Page 39]

