
Internet Engineering Task Force (IETF) S. Bosch
Request for Comments: 7352 September 2014
Category: Standards Track
ISSN: 2070-1721

 Sieve Email Filtering: Detecting Duplicate Deliveries

Abstract

 This document defines a new test command, "duplicate", for the Sieve
 email filtering language. This test adds the ability to detect
 duplications. The main application for this new test is handling
 duplicate deliveries commonly caused by mailing list subscriptions or
 redirected mail addresses. The detection is normally performed by
 matching the message ID to an internal list of message IDs from
 previously delivered messages. For more complex applications, the
 "duplicate" test can also use the content of a specific header field
 or other parts of the message.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7352.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bosch Standards Track [Page 1]

RFC 7352 Sieve: Detecting Duplicate Deliveries September 2014

Table of Contents

 1. Introduction ..2
 2. Conventions Used in This Document3
 3. Test "duplicate" ..3
 3.1. Arguments ":header" and ":uniqueid"5
 3.2. Argument ":handle" ...7
 3.3. Arguments ":seconds" and ":last"8
 3.4. Interaction with Other Sieve Extensions9
 4. Sieve Capability Strings ..9
 5. Examples ..9
 5.1. Example 1 ..9
 5.2. Example 2 ...10
 5.3. Example 3 ...11
 5.4. Example 4 ...12
 6. Security Considerations ..12
 7. IANA Considerations ..13
 8. Acknowledgements ...14
 9. References ...14
 9.1. Normative References14
 9.2. Informative References15

1. Introduction

 This document specifies an extension to the Sieve filtering language
 defined by RFC 5228 [SIEVE]. It adds a test to track whether or not
 a text string was seen before by the delivery agent in an earlier
 execution of the Sieve script. This can be used to detect and handle
 duplicate message deliveries.

 Duplicate deliveries are a common side effect of being subscribed to
 a mailing list. For example, if a member of the list decides to
 reply to both the user and the mailing list itself, the user will
 often get one copy of the message directly and another through the
 mailing list. Also, if someone crossposts over several mailing lists
 to which the user is subscribed, the user will likely receive a copy
 from each of those lists. In another scenario, the user has several
 redirected mail addresses all pointing to his main mail account. If
 one of the user’s contacts sends the message to more than one of
 those addresses, the user will likely receive more than a single
 copy. Using the "duplicate" extension, users have the means to
 detect and handle such duplicates (e.g., by discarding them, marking
 them as "seen", or putting them in a special folder).

Bosch Standards Track [Page 2]

RFC 7352 Sieve: Detecting Duplicate Deliveries September 2014

 Duplicate messages are normally detected using the Message-ID header
 field, which is required to be unique for each message. However, the
 "duplicate" test is flexible enough to use different criteria for
 defining what makes a message a duplicate (e.g., using the subject
 line or parts of the message body). Other applications of this new
 test command are also possible, as long as the tracked unique value
 is a string.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [KEYWORDS].

 Conventions for notations are as in Section 1.1 of [SIEVE], including
 use of the "Usage:" label for the definition of action and tagged
 arguments syntax.

3. Test "duplicate"

 Usage: "duplicate" [":handle" <handle: string>]
 [":header" <header-name: string> /
 ":uniqueid" <value: string>]
 [":seconds" <timeout: number>] [":last"]

 The "duplicate" test identifies the message by a "unique ID" and,
 using that unique ID, keeps track of which messages were seen by a
 "duplicate" test during an earlier Sieve execution. In its basic
 form, the test gets the unique ID from the content of the message’s
 Message-ID header field. The "duplicate" test evaluates to "true"
 if the message was seen before, and it evaluates to "false" if it
 was not.

 As a side effect, the "duplicate" test adds the unique ID to an
 internal duplicate-tracking list once the Sieve execution finishes
 successfully. The first time a particular unique ID is seen, the
 message is not a duplicate, and the unique ID is added to the
 tracking list. If a future Sieve execution sees a message whose
 unique ID appears in the tracking list, that test will evaluate to
 "true", and that message will be considered a duplicate.

 Note that this side effect is performed only when the "duplicate"
 test is actually evaluated. If the "duplicate" test is nested in a
 control structure or if it is not the first item of an "allof" or
 "anyof" test list, its evaluation depends on the result of preceding
 tests, which may produce unexpected results.

Bosch Standards Track [Page 3]

RFC 7352 Sieve: Detecting Duplicate Deliveries September 2014

 Implementations MUST only update the internal duplicate-tracking list
 when the Sieve script execution finishes successfully. If failing
 script executions add the unique ID to the duplicate-tracking list,
 all "duplicate" tests in the Sieve script would erroneously yield
 "true" for the next delivery attempt of the same message. This
 can -- depending on the action taken for a duplicate -- easily lead
 to discarding the message without further notice.

 However, deferring the definitive modification of the tracking list
 to the end of a successful Sieve script execution is not without
 problems. It can cause a race condition when a duplicate message is
 delivered in parallel before the tracking list is updated. This way,
 a duplicate message could be missed by the "duplicate" test. More
 complex implementations could use a locking mechanism to prevent this
 problem. But, irrespective of what implementation is chosen,
 situations in which the "duplicate" test erroneously yields "true"
 MUST be prevented.

 The "duplicate" test MUST only check for duplicates amongst unique ID
 values encountered in previous executions of the Sieve script; it
 MUST NOT consider ID values encountered earlier in the current Sieve
 script execution as potential duplicates. This means that all
 "duplicate" tests in a Sieve script execution, including those
 located in scripts included using the "include" [INCLUDE] extension,
 MUST always yield the same result if the arguments are identical.

 The Message-ID header field is assumed to be globally unique as
 required in Section 3.6.4 of RFC 5322 [IMAIL]. In practice, this
 assumption may not always prove to be true. The "duplicate" test
 does not deal with this situation, which means that false duplicates
 may be detected in this case. However, the user can address such
 situations by specifying an alternative means of message
 identification using the ":header" or the ":uniqueid" argument, as
 described in the next section.

Bosch Standards Track [Page 4]

RFC 7352 Sieve: Detecting Duplicate Deliveries September 2014

3.1. Arguments ":header" and ":uniqueid"

 Duplicate tracking involves determining the unique ID for a
 given message and checking whether that unique ID is in the
 duplicate-tracking list. The unique ID for a message is
 determined as follows:

 o When neither the ":header" argument nor the ":uniqueid" argument
 is used, the unique ID is the content of the message’s Message-ID
 header field.

 o When the ":header" argument is used, the unique ID is the content
 of the specified header field in the message. The header field
 name is not part of the resulting unique ID; it consists only of
 the field value.

 o When the ":uniqueid" argument is used, the unique ID is the string
 parameter that is specified with the argument.

 The ":header" and ":uniqueid" arguments are mutually exclusive;
 specifying both for a single "duplicate" test command MUST trigger an
 error.

 The syntax rules for the header name parameter of the ":header"
 argument are specified in Section 2.4.2.2 of RFC 5228 [SIEVE]. Note
 that implementations MUST NOT trigger an error for an invalid header
 name. Instead, the "duplicate" test MUST yield "false"
 unconditionally in this case. The parameter of the ":uniqueid"
 argument can be any string.

 If the tracked unique ID value is extracted directly from a message
 header field (i.e., when the ":uniqueid" argument is not used), the
 following operations MUST be performed before the actual duplicate
 verification:

 o Unfold the header line as described in Section 2.2.3 of RFC 5322
 [IMAIL] (see also Section 2.4.2.2 of RFC 5228 [SIEVE]).

 o If possible, convert the header value to Unicode, encoded as UTF-8
 (see Section 2.7.2 of RFC 5228 [SIEVE]). If conversion is not
 possible, the value is left unchanged.

 o Trim leading and trailing whitespace from the header value (see
 Section 2.2 of RFC 5228 [SIEVE]).

Bosch Standards Track [Page 5]

RFC 7352 Sieve: Detecting Duplicate Deliveries September 2014

 Note that these rules also apply to the Message-ID header field used
 by the basic "duplicate" test without a ":header" or ":uniqueid"
 argument. When the ":uniqueid" argument is used, any normalization
 needs to be done in the Sieve script itself as the unique ID is
 created.

 If the header field specified using the ":header" argument exists
 multiple times in the message, extraction of the unique ID MUST use
 only the first occurrence. This is true whether or not multiple
 occurrences are allowed by Section 3.6 of RFC 5322 [IMAIL]. If the
 specified header field is not present in the message, the "duplicate"
 test MUST yield "false" unconditionally. In that case, the
 duplicate-tracking list is left unmodified by this test, since no
 unique ID value is available. The same rules apply with respect to
 the Message-ID header field for the basic "duplicate" test without a
 ":header" or ":uniqueid" argument, since that header field could also
 be missing or occur multiple times.

 The string parameter of the ":uniqueid" argument can be composed from
 arbitrary text extracted from the message using the "variables"
 [VARIABLES] extension. To extract text from the message body, the
 "foreverypart" and "extracttext" [SIEVE-MIME] extensions need to be
 used as well. This provides the user with detailed control over how
 the message’s unique ID is created.

 The unique ID MUST be matched case-sensitively with the contents of
 the duplicate-tracking list, irrespective of how the unique ID was
 determined. To achieve case-insensitive behavior when the
 ":uniqueid" argument is used, the "set" command added by the
 "variables" [VARIABLES] extension can be used to normalize the unique
 ID value to upper or lower case.

Bosch Standards Track [Page 6]

RFC 7352 Sieve: Detecting Duplicate Deliveries September 2014

3.2. Argument ":handle"

 The "duplicate" test MUST track a unique ID value independent of its
 source. This means that all values in the duplicate-tracking list
 should be used for duplicate testing, regardless of whether they were
 obtained from the Message-ID header field, from an arbitrary header
 specified using the ":header" argument, or explicitly from the
 ":uniqueid" argument. The following three examples are equivalent
 and match the same entry in the duplicate-tracking list:

 require "duplicate";
 if duplicate {
 discard;
 }

 require "duplicate";
 if duplicate :header "message-id" {
 discard;
 }

 require ["duplicate", "variables"];
 if header :matches "message-id" "*" {
 if duplicate :uniqueid "${0}" {
 discard;
 }
 }

 The ":handle" argument can be used to override this default behavior.
 The ":handle" argument separates a "duplicate" test from other
 "duplicate" tests with a different or omitted ":handle" argument.
 Using the ":handle" argument, unrelated "duplicate" tests can be
 prevented from interfering with each other: a message is only
 recognized as a duplicate when the tracked unique ID was seen before
 in an earlier script execution by a "duplicate" test with the same
 ":handle" argument.

 NOTE: The necessary mechanism to track duplicate messages is very
 similar to the mechanism that is needed for tracking duplicate
 responses for the "vacation" action [VACATION]. One way to
 implement the necessary mechanism for the "duplicate" test is
 therefore to store a hash of the tracked unique ID and, if
 provided, the ":handle" argument.

Bosch Standards Track [Page 7]

RFC 7352 Sieve: Detecting Duplicate Deliveries September 2014

3.3. Arguments ":seconds" and ":last"

 Implementations SHOULD let entries in the tracking list expire after
 a short period of time. The user can explicitly control the length
 of this expiration time by means of the ":seconds" argument, which
 accepts an integer value specifying the timeout value in seconds. If
 the ":seconds" argument is omitted, an appropriate default value MUST
 be used. A default expiration time of around 7 days is usually
 appropriate. Sites SHOULD impose a maximum limit on the expiration
 time. If that limit is exceeded by the ":seconds" argument, the
 maximum value MUST be silently substituted; exceeding the limit MUST
 NOT produce an error. If the ":seconds" argument is zero, the
 "duplicate" test MUST yield "false" unconditionally.

 When the ":last" argument is omitted, the expiration time for entries
 in the duplicate-tracking list MUST be measured relative to the
 moment at which the entry was first created (i.e., at the end of the
 successful script execution during which the "duplicate" test
 returned "false" for a message with that particular unique ID value).
 This means that subsequent duplicate messages have no influence on
 the time at which the entry in the duplicate-tracking list finally
 expires.

 In contrast, when the ":last" argument is specified, the expiration
 time MUST be measured relative to the last script execution during
 which the "duplicate" test was used to check the entry’s unique ID
 value. This effectively means that the entry in the duplicate-
 tracking list will not expire while duplicate messages with the
 corresponding unique ID keep being delivered within intervals smaller
 than the expiration time.

 It is possible to write Sieve scripts where, during a single
 execution, more than one "duplicate" test is evaluated with the same
 unique ID value and ":handle" argument but different ":seconds" or
 ":last" arguments. The resulting behavior is left undefined by this
 specification, so such constructs should be avoided. Implementations
 MAY choose to use the ":seconds" and ":last" arguments from the
 "duplicate" test that was evaluated last.

Bosch Standards Track [Page 8]

RFC 7352 Sieve: Detecting Duplicate Deliveries September 2014

3.4. Interaction with Other Sieve Extensions

 The "duplicate" test does not support either the "index" [DATE-INDEX]
 or "mime" [SIEVE-MIME] extensions directly, meaning that none of the
 ":index", ":mime", or associated arguments are added to the
 "duplicate" test when these extensions are active. The ":uniqueid"
 argument can be used in combination with the "variables" [VARIABLES]
 extension to achieve the same result indirectly.

 Normally, Sieve scripts are executed at final delivery. However,
 with the "imapsieve" [IMAPSIEVE] extension, Sieve scripts are invoked
 when the IMAP [IMAP] server performs operations on the message store
 (e.g., when messages are uploaded, flagged, or moved to another
 location). The "duplicate" test is devised for use at final
 delivery, and the semantics in the "imapsieve" context are left
 undefined. Therefore, implementations SHOULD NOT allow the
 "duplicate" test to be used in the context of "imapsieve".

4. Sieve Capability Strings

 A Sieve implementation that defines the "duplicate" test command will
 advertise the capability string "duplicate".

5. Examples

5.1. Example 1

 In this basic example, message duplicates are detected by tracking
 the Message-ID header field. Duplicate deliveries are stored in a
 special folder contained in the user’s Trash folder. If the folder
 does not exist, it is created automatically using the "mailbox"
 [MAILBOX] extension. This way, the user has a chance to recover
 messages when necessary. Messages that are not recognized as
 duplicates are stored in the user’s inbox as normal.

 require ["duplicate", "fileinto", "mailbox"];

 if duplicate {
 fileinto :create "Trash/Duplicate";
 }

Bosch Standards Track [Page 9]

RFC 7352 Sieve: Detecting Duplicate Deliveries September 2014

5.2. Example 2

 This example shows a more complex use of the "duplicate" test. The
 user gets network alerts from a set of remote automated monitoring
 systems. Several notifications can be received about the same event
 from different monitoring systems. The Message-ID header field of
 these messages is different, because these are all distinct messages
 from different senders. To avoid being notified more than a single
 time about the same event, the user writes the following script:

 require ["duplicate", "variables", "imap4flags",
 "fileinto"];

 if header :matches "subject" "ALERT: *" {
 if duplicate :seconds 60 :uniqueid "${1}" {
 setflag "\\seen";
 }
 fileinto "Alerts";
 }

 The subjects of the notification message are structured with a
 predictable pattern that includes a description of the event. In the
 script above, the "duplicate" test is used to detect duplicate alert
 events. The message subject is matched against a pattern, and the
 event description is extracted using the "variables" [VARIABLES]
 extension. If a message with that event in the subject was received
 before, but more than a minute ago, it is not detected as a duplicate
 due to the specified ":seconds" argument. In the event of a
 duplicate, the message is marked as "seen" using the "imap4flags"
 [IMAP4FLAGS] extension. All alert messages are put into the "Alerts"
 mailbox, irrespective of whether those messages are duplicates
 or not.

Bosch Standards Track [Page 10]

RFC 7352 Sieve: Detecting Duplicate Deliveries September 2014

5.3. Example 3

 This example shows how the "duplicate" test can be used to limit the
 frequency of notifications sent using the "enotify" [NOTIFY]
 extension. Consider the following scenario: a mail user receives
 Extensible Messaging and Presence Protocol (XMPP) notifications
 [NOTIFY-XMPP] about new mail through Sieve, but sometimes a single
 contact sends many messages in a short period of time. Now the user
 wants to prevent being notified of all of those messages. The user
 wants to be notified about messages from each person at most once per
 30 minutes and writes the following script:

 require ["variables", "envelope", "enotify", "duplicate"];

 if envelope :matches "from" "*" { set "sender" "${1}"; }
 if header :matches "subject" "*" { set "subject" "${1}"; }

 if not duplicate :seconds 1800 :uniqueid "${sender}"
 {
 notify :message "[SIEVE] ${sender}: ${subject}"
 "xmpp:user@im.example.com";
 }

 The example shown above uses the message envelope sender rather than
 the Message-ID header field as the unique ID for duplicate tracking.

 The example can be extended to allow more messages from the same
 sender in close succession as long as the discussed subject is
 different. This can be achieved as follows:

 require ["variables", "envelope", "enotify", "duplicate"];

 if envelope :matches "from" "*" { set "sender" "${1}"; }
 if header :matches "subject" "*" { set "subject" "${1}"; }

 # account for ’Re:’ prefix
 if string :comparator "i;ascii-casemap"
 :matches "${subject}" "Re:*"
 {
 set "subject" "${1}";
 }
 if not duplicate :seconds 1800
 :uniqueid "${sender} ${subject}"
 {
 notify :message "[SIEVE] ${sender}: ${subject}"
 "xmpp:user@im.example.com";
 }

Bosch Standards Track [Page 11]

RFC 7352 Sieve: Detecting Duplicate Deliveries September 2014

 This uses a combination of the message envelope sender and the
 subject of the message as the unique ID for duplicate tracking.

5.4. Example 4

 For this example, the mail user uses the "duplicate" test for two
 separate applications: for discarding duplicate events from a
 notification system and for marking certain follow-up messages in a
 software support mailing as "seen" using the "imap4flags"
 [IMAP4FLAGS] extension.

 The two "duplicate" tests in the following example each use a
 different header to identify messages. However, these "X-Event-ID"
 and "X-Ticket-ID" headers can have similar values in this case (e.g.,
 both based on a time stamp), meaning that one "duplicate" test can
 erroneously detect duplicates based on ID values tracked by the
 other. Therefore, the user wants to prevent the second "duplicate"
 test from matching ID values tracked by the first "duplicate" test
 and vice versa. This is achieved by specifying different ":handle"
 arguments for these tests.

 require ["duplicate", "imap4flags"];

 if duplicate :header "X-Event-ID" :handle "notifier" {
 discard;
 }
 if allof (
 duplicate :header "X-Ticket-ID" :handle "support",
 address "to" "support@example.com",
 header :contains "subject" "fileserver")
 {
 setflag "\\seen";
 }

6. Security Considerations

 A flood of unique messages could cause the duplicate-tracking list to
 grow indefinitely. Therefore, implementations SHOULD limit the
 number of entries in the duplicate-tracking list. When limiting the
 number of entries, implementations SHOULD discard the oldest ones
 first.

 Scripts using the "duplicate" test evaluation should be aware that
 message IDs are not necessarily unique, either through the fault of
 benign generators or attackers injecting a message with the
 properties used by the duplicate Sieve filter at some point prior to

Bosch Standards Track [Page 12]

RFC 7352 Sieve: Detecting Duplicate Deliveries September 2014

 the Sieve filter. Therefore, scripts are well advised to be
 conservative with respect to actions taken when duplicate messages
 are identified only by message ID.

 The list of unique IDs used for duplicate tracking can include
 privacy-sensitive information, such as message ID values, content of
 subject lines, and content extracted from message bodies.
 Implementations SHOULD protect that information by obscuring it
 through hashing (see the note at the end of Section 3.2) and/or by
 storing it with a level of access control equivalent to that of the
 messages themselves.

 These measures will not prevent an entity that has access to the
 duplicate-tracking list from querying whether messages with certain
 unique ID values were received. As this operation is the essence of
 the "duplicate" test, this cannot be prevented and may violate the
 expectations of the user. For example, a user who deletes a message
 from the server may expect that no record of it remains on the
 server, but that will not be true if its message ID is persisted on
 the server in the duplicate-tracking list.

 It’s notable, however, that server logs will often store the
 information present on the duplicate-tracking list anyway and
 probably would expose plaintext message IDs for a much longer period
 than this mechanism would. Users of email services that
 intentionally delete such logs with the intent of limiting
 traceability should be made aware that use of the duplicate-tracking
 mechanism re-exposes this information for the duration of the expiry
 interval. Therefore, a shorter default expiry interval may be
 appropriate in those situations.

7. IANA Considerations

 The following template specifies the IANA registration of the Sieve
 extension specified in this document:

 To: iana@iana.org
 Subject: Registration of new Sieve extension

 Capability name: duplicate
 Description: Adds test ’duplicate’ that can be used to test
 whether a particular message is a duplicate,
 i.e., whether a copy of it was seen before by
 the delivery agent that is executing the Sieve
 script.
 RFC number: RFC 7352
 Contact address: Sieve mailing list <sieve@ietf.org>

Bosch Standards Track [Page 13]

RFC 7352 Sieve: Detecting Duplicate Deliveries September 2014

 This information has been added to the list of Sieve extensions given
 on <http://www.iana.org/assignments/sieve-extensions>.

8. Acknowledgements

 Thanks to Brian Carpenter, Cyrus Daboo, Arnt Gulbrandsen, Tony
 Hansen, Kristin Hubner, Barry Leiba, Alexey Melnikov, Subramanian
 Moonesamy, Tom Petch, Hector Santos, Robert Sparks, Aaron Stone, and
 Stefan Winter for reviews and suggestions. Special thanks to Ned
 Freed for his guidance and support.

9. References

9.1. Normative References

 [DATE-INDEX]
 Freed, N., "Sieve Email Filtering: Date and Index
 Extensions", RFC 5260, July 2008.

 [IMAIL] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 October 2008.

 [IMAPSIEVE]
 Leiba, B., "Support for Internet Message Access Protocol
 (IMAP) Events in Sieve", RFC 6785, November 2012.

 [INCLUDE] Daboo, C. and A. Stone, "Sieve Email Filtering: Include
 Extension", RFC 6609, May 2012.

 [KEYWORDS]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [SIEVE] Guenther, P. and T. Showalter, "Sieve: An Email Filtering
 Language", RFC 5228, January 2008.

 [SIEVE-MIME]
 Hansen, T. and C. Daboo, "Sieve Email Filtering: MIME Part
 Tests, Iteration, Extraction, Replacement, and Enclosure",
 RFC 5703, October 2009.

 [VARIABLES]
 Homme, K., "Sieve Email Filtering: Variables Extension",
 RFC 5229, January 2008.

Bosch Standards Track [Page 14]

RFC 7352 Sieve: Detecting Duplicate Deliveries September 2014

9.2. Informative References

 [IMAP] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL -
 VERSION 4rev1", RFC 3501, March 2003.

 [IMAP4FLAGS]
 Melnikov, A., "Sieve Email Filtering: Imap4flags
 Extension", RFC 5232, January 2008.

 [MAILBOX] Melnikov, A., "The Sieve Mail-Filtering Language --
 Extensions for Checking Mailbox Status and Accessing
 Mailbox Metadata", RFC 5490, March 2009.

 [NOTIFY] Melnikov, A., Leiba, B., Segmuller, W., and T. Martin,
 "Sieve Email Filtering: Extension for Notifications",
 RFC 5435, January 2009.

 [NOTIFY-XMPP]
 Saint-Andre, P. and A. Melnikov, "Sieve Notification
 Mechanism: Extensible Messaging and Presence Protocol
 (XMPP)", RFC 5437, January 2009.

 [VACATION] Showalter, T. and N. Freed, "Sieve Email Filtering:
 Vacation Extension", RFC 5230, January 2008.

Author’s Address

 Stephan Bosch
 Enschede
 NL

 EMail: stephan@rename-it.nl

Bosch Standards Track [Page 15]

