
Independent Submission P. Timmel
Request for Comments: 7906 National Security Agency
Category: Informational R. Housley
ISSN: 2070-1721 Vigil Security
 S. Turner
 IECA
 June 2016

 NSA’s Cryptographic Message Syntax (CMS) Key Management Attributes

Abstract

 This document defines key management attributes used by the National
 Security Agency (NSA). The attributes can appear in asymmetric
 and/or symmetric key packages as well as the Cryptographic Message
 Syntax (CMS) content types that subsequently envelope the key
 packages. Key packages described in RFCs 5958 and 6031 are examples
 of where these attributes can be used.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This is a contribution to the RFC Series, independently of any other
 RFC stream. The RFC Editor has chosen to publish this document at
 its discretion and makes no statement about its value for
 implementation or deployment. Documents approved for publication by
 the RFC Editor are not a candidate for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7906.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Timmel, et al. Informational [Page 1]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

Table of Contents

 1. Introduction ..3
 1.1. Attribute Locations ..3
 1.2. ASN.1 Notation ...4
 1.3. Terminology ..5
 2. CMS-Defined Attributes ..6
 3. Community Identifiers ...7
 4. Key Province Attribute ..8
 5. Binary Signing Time ...8
 6. Manifest ..9
 7. Key Algorithm ...9
 8. User Certificate ...11
 9. Key Package Receivers ..11
 10. TSEC Nomenclature ...13
 11. Key Purpose ...16
 12. Key Use ...17
 13. Transport Key ...20
 14. Key Distribution Period20
 15. Key Validity Period ...22
 16. Key Duration ..23
 17. Classification ..24
 17.1. Security Label ...25
 18. Split Key Identifier ..29
 19. Key Package Type ..30
 20. Signature Usage ...30
 21. Other Certificate Format33
 22. PKI Path ..34
 23. Useful Certificates ...35
 24. Key Wrap Algorithm ..35
 25. Content Decryption Key Identifier36
 25.1. Content Decryption Key Identifier: Symmetric Key
 and Symmetric ..36
 25.2. Content Decryption Key Identifier: Unprotected37
 26. Certificate Pointers ..37
 27. CRL Pointers ..38
 28. Key Package Identifier and Receipt Request38
 29. Additional Error Codes ..39
 30. Processing Key Package Attribute Values and CMS
 Content Constraints ...39
 31. Attribute Scope ...41
 32. Security Considerations48
 33. References ..48
 33.1. Normative References48
 33.2. Informative References51
 Appendix A. ASN.1 Module ..52
 Authors’ Addresses ..68

Timmel, et al. Informational [Page 2]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

1. Introduction

 This document defines key management attributes used by the National
 Security Agency (NSA). The attributes can appear in asymmetric
 and/or symmetric key packages as well as the Cryptographic Message
 Syntax (CMS) content types that subsequently envelope the key
 packages.

 This document contains definitions for new attributes as well as
 previously defined attributes. References are provided to the
 previously defined attributes; however, their definitions are
 included herein for convenience.

 CMS allows for arbitrary nesting of content types. Attributes are
 also supported in various locations in content types and key
 packages, which are themselves content types (see Section 1.1). An
 implementation that supports all of the possibilities would be
 extremely complex. Instead of implementing the full flexibility
 supported by this document, some devices may choose to support one or
 more templates, which is a profile for a combination of CMS content
 type(s), key package, and attribute(s); see Section 19.

1.1. Attribute Locations

 There are a number of CMS content types that support attributes
 SignedData [RFC5652], EnvelopedData [RFC5652], EncryptedData
 [RFC5652], AuthenticatedData [RFC5652], and AuthEnvelopedData
 [RFC5083] as well as ContentWithAttributes [RFC4073]. There are also
 a number of other content types defined with CONTENT-TYPE [RFC6268]
 that support attributes including AsymmetricKeyPackage [RFC5958] and
 SymmetricKeyPackage [RFC6031].

 CMS defines a number of "protecting content types" -- SignedData
 [RFC5652], EnvelopedData [RFC5652], EncryptedData [RFC5652],
 AuthenticatedData [RFC5652], and AuthEnvelopedData [RFC5083] -- that
 provide some type of security service. There are also other CMS
 content types -- Data [RFC5652], ContentWithAttributes [RFC4073], and
 ContentCollection [RFC4073] -- that provide no security service.

 There are also different kinds of attributes in these content types:

 o SignedData supports two kinds of attributes: signed and
 unsigned attributes in the signedAttrs and unsignedAttrs
 fields, respectively.

 o EnvelopedData and EncryptedData each support one kind of
 attribute: unprotected attributes in the unprotectedAttrs
 field.

Timmel, et al. Informational [Page 3]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 o AuthEnvelopedData supports two kinds of attributes:
 authenticated and unauthenticated attributes in the authAttrs
 and unauthAttrs fields, respectively. Both of these attributes
 are also unprotected (i.e., they are not encrypted); therefore,
 when referring to AuthEnvelopedData attributes, they are
 authenticated&unprotected and unauthenticated&unprotected. For
 this specification, unauthenticated attributes MUST NOT be
 included.

 o AuthenticatedData supports two kinds of attributes:
 authenticated and unauthenticated attributes in the authAttrs
 and unauthAttrs fields, respectively. For this specification,
 unauthenticated attributes MUST NOT be included.

 o ContentWithAttributes supports one kind of attribute: content
 attributes in the attrs field.

 o AsymmetricKeyPackage supports one kind of attribute: asymmetric
 key attributes in the attributes field. If an attribute
 appears as part of an asymmetric key package, it SHOULD appear
 in the attributes field of the AsymmetricKeyPackage.

 o SymmetricKeyPackage supports two kinds of attributes: symmetric
 key and symmetric key package attributes in the sKeyAttrs and
 sKeyPkgAttrs fields, respectively. Note that [RFC6031]
 prohibits the same attribute from appearing in both locations
 in the same SymmetricKeyPackage.

 Note that this specification updates the following information object
 sets SignedAttributesSet, UnsignedAttributes,
 UnprotectedEnvAttributes, UnprotectedEncAttributes, AuthAttributeSet,
 UnauthAttributeSet, AuthEnvDataAttributeSet,
 UnauthEnvDataAttributeSet, and ContentAttributeSet from [RFC6268] as
 well as OneAsymmetricKeyAttributes from [RFC5958], SKeyPkgAttributes
 from [RFC6031], and SKeyAttributes from [RFC6031] to constrain the
 permissible locations for attributes. See Appendix A for the ASN.1
 for the information object sets.

1.2. ASN.1 Notation

 The attributes defined in this document use 2002 ASN.1 [X.680]
 [X.681] [X.682] [X.683]. The attributes MUST be DER [X.690] encoded.

 Each of the attributes has a single attribute value instance in the
 values set. Even though the syntax is defined as a set, there MUST
 be exactly one instance of AttributeValue present. Further, the
 SignedAttributes, UnsignedAttributes, UnprotectedAttributes,
 AuthAttributes, and UnauthAttributes are also defined as a set, and

Timmel, et al. Informational [Page 4]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 this set MUST include only one instance of any particular type of
 attribute. That is, any object identifier appearing in AttributeType
 MUST only appear one time in the set of attributes.

 SignedData, EnvelopedData, EncryptedData, AuthenticatedData,
 AuthEnvelopedData, and ContentWithAttributes were originally defined
 using the 1988 version of ASN.1. These definitions were updated to
 the 2008 version of ASN.1 by [RFC6268]. None of the new 2008 ASN.1
 tokens are used; this allows 2002 compilers to compile 2008 ASN.1.
 AsymmetricKeyPackage and SymmetricKeyPackage are defined using the
 2002 ASN.1.

 [RFC5652] and [RFC2634] define generally useful attributes for CMS
 using the 1988 version of ASN.1. These definitions were updated to
 the 2008 version of ASN.1 by [RFC6268] and the 2002 version of ASN.1
 by [RFC5911], respectively. [RFC4108] and [RFC6019] also defined
 attributes using the 1988 version of ASN.1, which this document uses.
 Both were updated by [RFC5911] to the 2002 ASN.1. Refer to
 [RFC2634], [RFC4108], [RFC5652], and [RFC6019] for the attribute’s
 semantics, but refer to [RFC5911] or [RFC6268] for the attribute’s
 ASN.1 syntax.

1.3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

 Attribute Scope: The scope of an attribute is the compilation of
 keying material to which the attribute value is assigned. The scope
 of each attribute is determined by its placement within the key
 package or content collection. See Section 31.

 SIR: Source Intermediary Receiver is a model with three entities:

 o A source initiates the delivery of a key to one or more
 receivers. It may wrap or encrypt the key for delivery. This
 is expected to be the common case, since a cleartext key is
 vulnerable to exposure and compromise. If the sender is to
 encrypt the key for delivery, it must know how to encrypt the
 key so that the receiver(s) can decrypt it. A sender may also
 carry out any of the functions of an intermediary.

 * The original key package creators are sometimes referred to
 as key source authorities. These entities create the
 symmetric and/or asymmetric key package and apply the
 initial CMS protecting layer, which is normally a SignedData

Timmel, et al. Informational [Page 5]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 but sometimes an AuthenticatedData. This initial CMS
 protecting layer is maintained through any intermediary for
 the receivers of the key package to ensure that receivers
 can validate the key source authority.

 o An intermediary does not have access to the cleartext key. An
 intermediary may perform source authentication on key packages
 and may append or remove management information related to the
 package. It may encapsulate the encrypted key packages in
 larger packages that contain other user data destined for later
 intermediaries or receivers.

 o A receiver has access to the cleartext key. If the received key
 package is encrypted, it can unwrap or decrypt the encrypted
 key to obtain the cleartext key. A receiver may be the final
 destination of the cryptographic product. An element that acts
 as a receiver and is not the final destination of the key
 package may also act as a sender or as an intermediary. After
 receiving a key, a receiver may encrypt the received key for
 local storage.

 NOTE: As noted in Section 1, a receiver can be tailored to support a
 particular combination of CMS content type(s), key package, and
 attribute(s) resulting in less-complex implementations. All of these
 tailored receivers can be supported by a common key management
 infrastructure that uses this specification; this also can yield
 efficiencies in generation and provisioning. Senders and
 intermediaries that have to understand multiple tailored receivers
 get the efficiency of a common specification language and modular
 implementation, as opposed to needing stove-piped processing for each
 different receiver.

2. CMS-Defined Attributes

 The following attributes are defined for [RFC5652]:

 o content-type [RFC5652] [RFC5911] [RFC6268] uniquely specifies
 the CMS content type. This attribute MUST be included as a
 signed, authenticated, or authenticated&unprotected attribute.

 o message-digest [RFC5652] [RFC5911] [RFC6268] is the message
 digest of the encapsulated content calculated using the
 signer’s message digest algorithm. As specified in [RFC5652],
 it must be included as a signed attribute and an authenticated
 attribute; as specified in [RFC5652], it must not be an
 unsigned attribute, unauthenticated attribute, or unprotected

Timmel, et al. Informational [Page 6]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 attribute; as specified in [RFC5083], it should not be included
 as an authenticated&unprotected attribute in AuthEnvelopedData.
 This attribute MUST NOT be included elsewhere.

 o content-hints [RFC2634] [RFC5911] [RFC6268] identifies the
 innermost content when multiple layers of encapsulation have
 been applied. Every instance of SignedData, AuthenticatedData,
 and AuthEnvelopedData that does not directly encapsulate a
 SymmetricKeyPackage, an AsymmetricKeyPackage, or an
 EncryptedKeyPackage [RFC6032] MUST include this attribute.

3. Community Identifiers

 The community-identifiers attribute, defined in [RFC4108] and
 [RFC5911], lists the communities that are authorized recipients of
 the signed content. It can appear as a signed, authenticated,
 authenticated&unprotected, or content attribute. This attribute MUST
 be supported.

 The 2002 ASN.1 syntax for the community-identifiers attribute is
 included for convenience:

 aa-communityIdentifiers ATTRIBUTE ::= {
 TYPE CommunityIdentifiers
 IDENTIFIED BY id-aa-communityIdentifiers }

 id-aa-communityIdentifiers OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 40 }

 CommunityIdentifiers ::= SEQUENCE OF CommunityIdentifier

 CommunityIdentifier ::= CHOICE {
 communityOID OBJECT IDENTIFIER,
 hwModuleList HardwareModules }

 HardwareModules ::= SEQUENCE {
 hwType OBJECT IDENTIFIER,
 hwSerialEntries SEQUENCE OF HardwareSerialEntry }

 HardwareSerialEntry ::= CHOICE {
 all NULL,
 single OCTET STRING,
 block SEQUENCE {
 low OCTET STRING,
 high OCTET STRING } }

 Consult [RFC4108] for the attribute’s semantics.

Timmel, et al. Informational [Page 7]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

4. Key Province Attribute

 The key-province-v2 attribute identifies the scope, range, or
 jurisdiction in which the key is to be used. The key-province-v2
 attribute MUST be present as a signed attribute or an authenticated
 attribute in the innermost CMS protection content type that provides
 authentication (i.e., SignedData, AuthEnvelopedData, or
 AuthenticatedData) and encapsulates a symmetric key package or an
 asymmetric key package.

 The key-province attribute has the following syntax:

 aa-keyProvince-v2 ATTRIBUTE ::= {
 TYPE KeyProvinceV2
 IDENTIFIED BY id-aa-KP-keyProvinceV2 }

 id-aa-KP-keyProvinceV2 OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) attributes(5) 71 }

 KeyProvinceV2 ::= OBJECT IDENTIFIER

5. Binary Signing Time

 The binary-signing-time attribute, defined in [RFC6019] and
 [RFC6268], specifies the time at which the signature or the Message
 Authentication Code (MAC) was applied to the encapsulated content.
 It can appear as a signed, authenticated, or
 authenticated&unprotected attribute.

 The 2002 ASN.1 syntax is included for convenience:

 aa-binarySigningTime ATTRIBUTE ::= {
 TYPE BinarySigningTime
 IDENTIFIED BY id-aa-binarySigningTime }

 id-aa-binarySigningTime OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 46 }

 BinarySigningTime ::= BinaryTime

 BinaryTime ::= INTEGER (0..MAX)

 Consult [RFC6019] for the binary-signing-time attribute’s semantics.

Timmel, et al. Informational [Page 8]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

6. Manifest

 The manifest attribute lists the short titles of all the Transmission
 Security Nomenclature (TSEC-Nomenclature) attributes from inner key
 packages. It MUST only appear as an outermost signed, authenticated,
 or authenticated&unprotected attribute. If a short title is repeated
 in inner packages, it need only appear once in the manifest
 attribute. The manifest attribute MUST NOT appear in the same level
 as the TSEC-Nomenclature from Section 10.

 The manifest attribute has the following syntax:

 aa-manifest ATTRIBUTE ::= {
 TYPE Manifest
 IDENTIFIED BY id-aa-KP-manifest }

 id-aa-KP-manifest OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1)
 gov(101) dod(2) infosec(1) attributes(5) 72 }

 Manifest ::= SEQUENCE SIZE (1..MAX) OF ShortTitle

7. Key Algorithm

 The key-algorithm attribute indirectly specifies the size and format
 of the keying material in the skey field of a symmetric key package,
 which is defined in [RFC6031]. It can appear as a symmetric key,
 symmetric key package, signed, authenticated,
 authenticated&unprotected, or content attribute. If this attribute
 appears as a signed attribute, then all of the keying material within
 the SignedData content MUST be associated with the same algorithm.
 If this attribute appears as an authenticated or
 authenticated&unprotected attribute, then all of the keying material
 within the AuthenticatedData or AuthEnvelopedData content type MUST
 be associated with the same algorithm. If this attribute appears as
 a content attribute, then all of the keying material within the
 collection MUST be associated with the same algorithm. If both the
 key-wrap-algorithm (Section 24) and key-algorithm attributes apply to
 an sKey, then the key-algorithm attribute refers to the decrypted
 value of sKey rather than to the content of sKey itself. This
 attribute MUST be supported.

 The key-algorithm attribute has the following syntax:

 aa-keyAlgorithm ATTRIBUTE ::= {
 TYPE KeyAlgorithm
 IDENTIFIED BY id-kma-keyAlgorithm }

Timmel, et al. Informational [Page 9]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 id-kma-keyAlgorithm OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1)
 gov(101) dod(2) infosec(1) keying-material-attributes(13) 1 }

 KeyAlgorithm ::= SEQUENCE {
 keyAlg OBJECT IDENTIFIER,
 checkWordAlg [1] OBJECT IDENTIFIER OPTIONAL,
 crcAlg [2] OBJECT IDENTIFIER OPTIONAL }

 The fields in the key-algorithm attribute have the following
 semantics:

 o keyAlg specifies the size and format of the keying material.

 o If the particular key format supports more than one check-word
 algorithm, then the OPTIONAL checkWordAlg identifier indicates
 which check-word algorithm was used to generate the check word
 that is present. If the check-word algorithm is implied by the
 key algorithm, then the checkWordAlg field SHOULD be omitted.

 o If the particular key format supports more than one Cyclic
 Redundancy Check (CRC) algorithm, then the OPTIONAL crcAlg
 identifier indicates which CRC algorithm was used to generate
 the value that is present. If the CRC algorithm is implied by
 the key algorithm, then the crcAlg field SHOULD be omitted.

 The keyAlg identifier, the checkWordAlg identifier, and the crcAlg
 identifier are object identifiers. The use of an object identifier
 accommodates any algorithm from any registry.

 The format of the keying material in the skey field of a symmetric
 key package will not match this attribute if the keying material is
 split (see Section 18 for a discussion of the split-identifier
 attribute). In this situation, this attribute identifies the format
 of the keying material once the two splits are combined.

 Due to multiple layers of encapsulation or the use of content
 collections, the key-algorithm attribute can appear in more than one
 location in the overall key package. When there are multiple
 occurrences of the key-algorithm attribute within the same scope, the
 keyAlg field MUST match in all instances. The OPTIONAL checkWordAlg
 and crcAlg fields can be omitted in the key-algorithm attribute when
 it appears as a signed, authenticated, authenticated&unprotected, or
 content attribute. However, if these optional fields are present,
 they MUST also match the other occurrences within the same scope.
 Receivers MUST reject any key package that fails these consistency
 checks.

Timmel, et al. Informational [Page 10]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

8. User Certificate

 The user-certificate attribute specifies the type, format, and value
 of an X.509 certificate and is used in asymmetric key package’s
 attributes field. This attribute can appear as an asymmetric key
 attribute. This attribute MUST NOT appear in an asymmetric key
 package attributes field that includes the other-certificate-formats
 attribute. Symmetric key packages do not contain any certificates,
 so the user-certificate attribute MUST NOT appear in a symmetric key
 package. The user-certificate attribute MUST NOT appear as a signed,
 authenticated, authenticated&unprotected, or content attribute. This
 attribute MUST be supported.

 The syntax is taken from [X.509] but redefined using the ATTRIBUTE
 CLASS from [RFC5912]. The user-certificate attribute has the
 following syntax:

 aa-userCertificate ATTRIBUTE ::= {
 TYPE Certificate
 EQUALITY MATCHING RULE certificateExactMatch
 IDENTIFIED BY id-at-userCertificate }

 id-at-userCertificate OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) ds(5) attributes(4) 36 }

 Since the user-certificate attribute MUST NOT appear as a signed,
 authenticated, authenticated&unprotected, or content attribute, an
 asymmetric key package cannot include multiple occurrences of the
 user-certificate attribute within the same scope. Receivers MUST
 reject any asymmetric key package in which the user-certificate
 attribute appears as a signed, authenticated,
 authenticated&unprotected, or content attribute.

9. Key Package Receivers

 The key-package-receivers-v2 attribute indicates the intended
 audience for the key package. The key-package-receivers-v2 attribute
 is not intended for access control decisions; rather, intermediate
 systems may use this attribute to make routing and relaying
 decisions. If the receiver is not listed, it will not be able to
 decrypt the package; therefore, the receiver SHOULD reject the key
 package if the key-package-receivers-v2 attribute is present and they
 are not listed as an intended receiver. The key-package-receivers-v2
 attribute can be used as a signed, authenticated,
 authenticated&unprotected, or content attribute. If the key-package-
 receivers-v2 attribute is associated with a collection, then the
 named receivers MUST be able to receive all of the key packages
 within the collection. This attribute MUST be supported.

Timmel, et al. Informational [Page 11]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 The key-package-receivers-v2 attribute has the following syntax:

 aa-keyPackageReceivers-v2 ATTRIBUTE ::= {
 TYPE KeyPkgReceiversV2
 IDENTIFIED BY id-kma-keyPkgReceiversV2 }

 id-kma-keyPkgReceiversV2 OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 16 }

 KeyPkgReceiversV2 ::= SEQUENCE SIZE (1..MAX) OF KeyPkgReceiver

 KeyPkgReceiver ::= CHOICE {
 sirEntity [0] SIREntityName,
 community [1] CommunityIdentifier }

 The key-package-receivers-v2 attribute contains a list of receiver
 identifiers. The receiver identifier is either a SIREntityName
 [RFC7191] or a CommunityIdentifier (see Section 3). The
 SIREntityName syntax does not impose any particular structure on the
 receiver identifier, but it does require registration of receiver
 identifier types. The nameType ensures that two receiver identifiers
 of different types that contain the same values are not interpreted
 as equivalent. Name types are expected to be defined that represent
 several different granularities. For example, one name type will
 represent the receiver organization. At a finer granularity, the
 name type will identify a specific cryptographic device, perhaps
 using a manufacturer identifier and serial number.

 If a receiver does not recognize a particular nameType or a community
 identifier, then keying material within the scope of the unrecognized
 nameType or community identifier MUST NOT be used in any manner.
 However, the receiver need not discard the associated key package.
 Since many cryptographic devices are programmable, a different
 firmware load may recognize the nameType. Likewise, a change in the
 configuration may lead to the recognition of a previously
 unrecognized community identifier. Therefore, the receiver may
 retain the key package, but refuse to use it for anything with a
 firmware load that does not recognize the nameType or a configuration
 that does not recognize the community identifier.

 Whenever a key package is saved for later processing due to an
 unrecognized nameType or community identifier, subsequent processing
 MUST NOT rely on any checks that were made the first time the key
 package processing was attempted. That is, the subsequent processing
 MUST include the full complement of checks. Further, a receipt for
 the packages MUST NOT be generated unless all of these checks are
 successfully completed.

Timmel, et al. Informational [Page 12]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 Due to multiple layers of encapsulation or the use of content
 collections, the key-package-receivers-v2 attribute can appear in
 more than one location in the overall key package. When that
 happens, each occurrence is evaluated independently.

 In a content collection, each member of the collection might contain
 its own signed, authenticated, authenticated&unprotected, or content
 attribute that includes a key-package-receivers-v2 attribute. In
 this situation, each member of the collection is evaluated
 separately, and any member that includes an acceptable receiver
 SHOULD be retained. Other members can be rejected or retained for
 later processing with a different firmware load.

10. TSEC Nomenclature

 The Telecommunications Security Nomenclature (TSEC-Nomenclature)
 attribute provides the name for a piece of keying material, which
 always includes a printable string called a "short title" (see
 below). The TSEC-Nomenclature attribute also contains other
 identifiers when the shortTitle is insufficient to uniquely name a
 particular piece of keying material. This attribute can appear as a
 symmetric key, symmetric key package, asymmetric key, signed,
 authenticated, authenticated&unprotected, or content attribute. If
 this attribute appears in the sKeyAttrs field, the editionID,
 registerID, and segmentID attribute fields MUST NOT be ranges. If
 this attribute appears as a signed, authenticated,
 authenticated&unprotected, or content attribute, all of the keying
 material within the associated content MUST have the same shortTitle,
 and the attribute value MUST contain only a shortTitle. That is,
 when this attribute appears as a signed, authenticated,
 authenticated&unprotected, or content attribute, all of the optional
 fields MUST be absent. If this attribute is associated with a
 collection, all of the keying material within the collection MUST
 have the same shortTitle; however, the editionID, registerID, and
 segmentID will be different for each key package in the collection.
 This attribute MUST be supported.

 The TSEC-Nomenclature attribute has the following syntax:

 aa-tsecNomenclature ATTRIBUTE ::= {
 TYPE TSECNomenclature
 IDENTIFIED BY id-kma-TSECNomenclature }

 id-kma-TSECNomenclature OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 3 }

Timmel, et al. Informational [Page 13]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 TSECNomenclature ::= SEQUENCE {
 shortTitle ShortTitle,
 editionID EditionID OPTIONAL,
 registerID RegisterID OPTIONAL,
 segmentID SegmentID OPTIONAL }

 ShortTitle ::= PrintableString

 EditionID ::= CHOICE {
 char CHOICE {
 charEdition [1] CharEdition,
 charEditionRange [2] CharEditionRange }
 num CHOICE {
 numEdition [3] NumEdition,
 numEditionRange [4] NumEditionRange } }

 CharEdition ::= PrintableString

 CharEditionRange ::= SEQUENCE {
 firstCharEdition CharEdition,
 lastCharEdition CharEdition }

 NumEdition ::= INTEGER (0..308915776)

 NumEditionRange ::= SEQUENCE {
 firstNumEdition NumEdition,
 lastNumEdition NumEdition }

 RegisterID ::= CHOICE {
 register [5] Register,
 registerRange [6] RegisterRange }

 Register ::= INTEGER (0..2147483647)

 RegisterRange ::= SEQUENCE {
 firstRegister Register,
 lastRegister Register }

 SegmentID ::= CHOICE {
 segmentNumber [7] SegmentNumber,
 segmentRange [8] SegmentRange }

 SegmentNumber ::= INTEGER (1..127)

 SegmentRange ::= SEQUENCE {
 firstSegment SegmentNumber,
 lastSegment SegmentNumber }

Timmel, et al. Informational [Page 14]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 The fields in the TSEC-Nomenclature attribute have the following
 semantics:

 o The shortTitle consists of up to 32 alphanumeric characters.
 shortTitle processing always uses the value in its entirety.

 o The editionID is OPTIONAL, and the editionIdentifier is used to
 distinguish accountable items. The editionID consists of
 either six alphanumeric characters or an integer. When
 present, the editionID is either a single value or a range.
 The integer encoding should be used when it is important to
 keep key package size to a minimum.

 o The registerID is OPTIONAL. For electronic keying material,
 the registerID is usually omitted. The registerID is an
 accounting number assigned to identify Communications Security
 (COMSEC) material. The registerID is either a single value or
 a range.

 o The segmentID is OPTIONAL, and it distinguishes the individual
 symmetric keys delivered in one edition. A unique
 segmentNumber is assigned to each key in an edition. The
 segmentNumber is set to one for the first item in each edition,
 and it is incremented by one for each additional item within
 that edition. The segmentID is either a single value or a
 range.

 The order that the keying material will appear in the key package is
 illustrated by the following example: a cryptographic device may
 require fresh keying material every day, an edition represents the
 keying material for a single month, and the segments represent the
 keying material for a day within that month. Consider a key package
 that contains the keying material for July and August; it will
 contain keying material for 62 days. The keying material will appear
 in the following order: Edition 1, Segment 1; Edition 1, Segment 2;
 Edition 1, Segment 3; ...; Edition 1, Segment 31; Edition 2,
 Segment 1; Edition 2, Segment 2; Edition 2, Segment 3; ...;
 Edition 2, Segment 31.

 Due to multiple layers of encapsulation or the use of content
 collections, the TSEC-Nomenclature attribute can appear in more than
 one location in the overall key package. When there are multiple
 occurrences of the TSEC-Nomenclature attribute within the same scope,
 the shortTitle field MUST match in all instances. Receivers MUST
 reject any key package that fails these consistency checks.

Timmel, et al. Informational [Page 15]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 When the manifest attribute from Section 6 is included in an outer
 layer, the ShortTitle field values present in TSEC-Nomenclature
 attributes MUST be one of the values in the manifest attribute.
 Receivers MUST reject any key package that fails this consistency
 check.

11. Key Purpose

 The key-purpose attribute specifies the intended purpose of the key
 material. It can appear as a symmetric key, symmetric key package,
 asymmetric key, signed, authenticated, authenticated&unprotected, or
 content attribute. If the key-purpose attribute appears as a signed,
 authenticated, authenticated&unprotected, or content attribute, then
 all of the keying material within the associated content MUST have
 the same key purpose value.

 The key-purpose attribute has the following syntax:

 aa-keyPurpose ATTRIBUTE ::= {
 TYPE KeyPurpose
 IDENTIFIED BY id-kma-keyPurpose }

 id-kma-keyPurpose OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 13 }

 KeyPurpose ::= ENUMERATED {
 n-a (0), -- Not Applicable
 A (65), -- Operational
 B (66), -- Compatible Multiple Key
 L (76), -- Logistics Combinations
 M (77), -- Maintenance
 R (82), -- Reference
 S (83), -- Sample
 T (84), -- Training
 V (86), -- Developmental
 X (88), -- Exercise
 Z (90), -- "On the Air" Testing
 ... -- Expect additional key purpose values -- }

 Due to multiple layers of encapsulation or the use of content
 collections, the key-purpose attribute can appear in more than one
 location in the overall key package. When there are multiple
 occurrences of the key-purpose attribute within the same scope, all
 fields within the attribute MUST contain exactly the same values.
 Receivers MUST reject any key package that fails these consistency
 checks.

Timmel, et al. Informational [Page 16]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

12. Key Use

 The key-use attribute specifies the intended use of the key material.
 It can appear as a symmetric key, symmetric key package, asymmetric,
 signed, authenticated, authenticated&unprotected, or content
 attribute. If the key-use attribute appears as a signed,
 authenticated, authenticated&unprotected, or content attribute, then
 all of the keying material within the associated content MUST have
 the same key use value.

 The key-use attribute has the following syntax:

 aa-key-Use ATTRIBUTE ::= {
 TYPE KeyUse
 IDENTIFIED BY id-kma-keyUse }

 id-kma-keyUse OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 14 }

 KeyUse ::= ENUMERATED {
 n-a (0), -- Not applicable
 ffk (1), -- FIREFLY/CROSSTALK Key (Basic Format)
 kek (2), -- Key Encryption Key
 kpk (3), -- Key Production Key
 msk (4), -- Message Signature Key
 qkek (5), -- QUADRANT Key Encryption Key
 tek (6), -- Traffic Encryption Key
 tsk (7), -- Transmission Security Key
 trkek (8), -- Transfer Key Encryption Key
 nfk (9), -- Netted FIREFLY Key
 effk (10), -- FIREFLY Key (Enhanced Format)
 ebfk (11), -- FIREFLY Key (Enhanceable Basic Format)
 aek (12), -- Algorithm Encryption Key
 wod (13), -- Word of Day
 kesk (246), -- Key Establishment Key
 eik (247), -- Entity Identification Key
 ask (248), -- Authority Signature Key
 kmk (249), -- Key Modifier Key
 rsk (250), -- Revocation Signature Key
 csk (251), -- Certificate Signature Key
 sak (252), -- Symmetric Authentication Key
 rgk (253), -- Random Generation Key
 cek (254), -- Certificate Encryption Key
 exk (255), -- Exclusion Key
 ... -- Expect additional key use values -- }

Timmel, et al. Informational [Page 17]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 The values for the key-use attribute have the following semantics:

 o ffk: A FIREFLY/CROSSTALK key is used to establish a Key
 Establishment Key (KEK) or a Transmission Encryption Key (TEK)
 between two parties. The KEK or TEK generated from the
 exchange is used with a symmetric encryption algorithm. This
 key use value is associated with keys in the basic format.

 o kek: A Key Encryption Key is used to encrypt or decrypt other
 keys for transmission or storage.

 o kpk: A Key Production Key is used to initialize a keystream
 generator for the production of other electronically generated
 keys.

 o msk: A Message Signature Key is used in a digital signature
 process that operates on a message to assure message source
 authentication, message integrity, and non-repudiation.

 o qkek: QUADRANT Key Encryption Key is one part of a tamper-
 resistance solution.

 o tek: A Traffic Encryption Key is used to encrypt plaintext, to
 superencrypt previously encrypted data, and/or to decrypt
 ciphertext.

 o tsk: A Transmission Security Key is used to protect
 transmissions from interception and exploitation by means other
 than cryptanalysis.

 o trkek: Transfer Key Encryption Key. The keys used to protect
 communications with an intermediary.

 o nfk: A Netted FIREFLY Key is a FIREFLY key that has an edition
 number associated with it. When rekeyed, it is incremented,
 preventing communications with FIREFLY key of previous
 editions. This edition number is maintained within a universal
 edition.

 o effk: Enhanced FIREFLY Key is used to establish a KEK or a TEK
 between two parties. The KEK or TEK generated from an exchange
 is used with a symmetric encryption algorithm. This key use
 value is associated with keys in the enhanced format.

Timmel, et al. Informational [Page 18]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 o ebfk: Enhanceable Basic FIREFLY Key is used to establish a KEK
 or a TEK between two parties. The KEK or TEK generated from an
 exchange is used with a symmetric encryption algorithm. This
 key use value is associated with keys in the enhanceable basic
 format.

 o aek: An Algorithm Encryption Key is used to encrypt or decrypt
 an algorithm implementation as well as other functionality in
 the implementation.

 o wod: A key used to generate the Word of the Day (WOD).

 o kesk: A Key Establishment Key is an asymmetric key set (e.g.,
 public/private/parameters) used to enable the establishment of
 symmetric key(s) between entities.

 o eik: An Entity Identification Key is an asymmetric key set
 (e.g., public/private/parameters) used to identify one entity
 to another for access control and other similar purposes.

 o ask: An Authority Signature Key is an asymmetric key set (e.g.,
 public/private/parameters) used by designated authorities to
 sign objects such as Trust Anchor Management Protocol (TAMP)
 messages and firmware packages.

 o kmk: A Key Modifier Key is a symmetric key used to modify the
 results of the process that forms a symmetric key from a public
 key exchange process.

 o rsk: A Revocation Signature Key is an asymmetric key set (e.g.,
 public/private/parameters) used to sign and authenticate
 revocation lists and compromised key lists.

 o csk: A Certificate Signature Key is an asymmetric key set
 (e.g., public/private/parameters) used to sign and authenticate
 public key certificates.

 o sak: A Symmetric Authentication Key is used in a MAC algorithm
 to provide message integrity. Differs from a Message Signature
 Key in that it is symmetric key material and it does not
 provide source authentication or non-repudiation.

 o rgk: Random Generation Key is a key used to seed a
 deterministic pseudorandom number generator.

 o cek: A Certificate Encryption Key is used to encrypt public key
 certificates to support privacy.

Timmel, et al. Informational [Page 19]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 o exk: An Exclusion Key is a symmetric key used to
 cryptographically subdivide a single large security domain into
 smaller segregated domains.

 Due to multiple layers of encapsulation or the use of content
 collections, the key-use attribute can appear in more than one
 location in the overall key package. When there are multiple
 occurrences of the key-use attribute within the same scope, all
 fields within the attribute MUST contain exactly the same values.
 Receivers MUST reject any key package that fails these consistency
 checks.

13. Transport Key

 The transport-key attribute identifies whether an asymmetric key is a
 transport key or an operational key (i.e., whether or not the key can
 be used as is). It can appear as an asymmetric key, signed,
 authenticated, authenticated&unprotected, or content attribute. If
 the transport-key attribute appears as a signed, authenticated,
 authenticated&unprotected, or content attribute, then all of the
 keying material within the associated content MUST have the same
 operational/transport key material.

 aa-transportKey ATTRIBUTE ::= {
 TYPE TransOp
 IDENTIFIED BY id-kma-transportKey }

 id-kma-transportKey OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 15 }

 TransOp ::= ENUMERATED {
 transport (1),
 operational (2) }

 Due to multiple layers of encapsulation or the use of content
 collections, the transport-key attribute can appear in more than one
 location in the overall key package. When there are multiple
 occurrences of the transport-key attribute within the same scope, all
 fields within the attribute MUST contain exactly the same values.
 Receivers MUST reject any key package that fails these consistency
 checks.

14. Key Distribution Period

 The key-distribution-period attribute indicates the period of time
 that the keying material is intended for distribution. Keying
 material is often distributed before it is intended to be used. Time

Timmel, et al. Informational [Page 20]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 of day must be represented in Coordinated Universal Time (UTC). It
 can appear as a symmetric key, symmetric key package, asymmetric key,
 signed, authenticated, authenticated&unprotected, or content
 attribute. If the key-distribution-period attribute appears as a
 signed, authenticated, authenticated&unprotected, or content
 attribute, then all of the keying material within the content MUST
 have the same key distribution period.

 The key-distribution-period attribute has the following syntax:

 aa-keyDistributionPeriod ATTRIBUTE ::= {
 TYPE KeyDistPeriod
 IDENTIFIED BY id-kma-keyDistPeriod }

 id-kma-keyDistPeriod OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 5 }

 KeyDistPeriod ::= SEQUENCE {
 doNotDistBefore [0] BinaryTime OPTIONAL,
 doNotDistAfter BinaryTime }

 BinaryTime ::= INTEGER

 The fields in the key-distribution-period attribute have the
 following semantics:

 o The doNotDistBefore field is OPTIONAL, and when it is present,
 the keying material SHOULD NOT be distributed before the date
 and time provided.

 o The doNotDistAfter field is REQUIRED, and the keying material
 SHOULD NOT be distributed after the date and time provided.

 When the key-distribution-period attribute is associated with a
 collection of keying material, the distribution period applies to all
 of the keys in the collection. None of the keying material in the
 collection SHOULD be distributed outside the indicated period.

 Due to multiple layers of encapsulation or the use of content
 collections, the key-distribution-period attribute can appear in more
 than one location in the overall key package. When there are
 multiple occurrences of the key-distribution-period attribute within
 the same scope, all of the included attribute fields MUST contain
 exactly the same value. However, if the doNotDistBefore field is
 absent in an inner layer, a value MAY appear in an outer layer
 because the outer layer constrains the inner layer. Receivers MUST
 reject any key package that fails these consistency checks.

Timmel, et al. Informational [Page 21]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

15. Key Validity Period

 The key-validity-period attribute indicates the period of time that
 the keying material is intended for use. Time of day MUST be
 represented in Coordinated Universal Time (UTC). It can appear as a
 symmetric key, symmetric key package, asymmetric key, signed,
 authenticated, authenticated&unprotected, or content attribute. If
 the key-validity-period attribute appears as a signed, authenticated,
 authenticated&unprotected, or content attribute, then all of the
 keying material within the content MUST have the same key validity
 period.

 The key-validity-period attribute has the following syntax:

 aa-keyValidityPeriod ATTRIBUTE ::= {
 TYPE KeyValidityPeriod
 IDENTIFIED BY id-kma-keyValidityPeriod }

 id-kma-keyValidityPeriod OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 6 }

 KeyValidityPeriod ::= SEQUENCE {
 doNotUseBefore BinaryTime,
 doNotUseAfter BinaryTime OPTIONAL }

 BinaryTime ::= INTEGER

 The fields in the key-validity-period attribute have the following
 semantics:

 o The doNotUseBefore field is REQUIRED, and the keying material
 SHOULD NOT be used before the date and time provided.

 o The doNotUseAfter field is OPTIONAL, and when it is present,
 the keying material SHOULD NOT be used after the date and time
 provided.

 For a key package that is being used for rekey, the doNotUseAfter
 field MAY be required by some templates even though the syntax is
 OPTIONAL.

 When the key-validity-period attribute is associated with a
 collection of keying material, the validity period applies to all of
 the keys in the collection. None of the keying material in the
 collection SHOULD be used outside the indicated period.

Timmel, et al. Informational [Page 22]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 The key-validity-period attribute described in this section and the
 key-duration attribute described in the next section provide
 complementary functions. The key-validity-period attribute provides
 explicit date and time values, which indicate the beginning and
 ending of the keying material usage period. The key-duration
 attribute provides the maximum length of time that the keying
 material SHOULD be used. If both attributes are provided, this
 duration MAY occur at any time within the specified period, but the
 limits imposed by both attributes SHOULD be honored.

 Due to multiple layers of encapsulation or the use of content
 collections, the key-validity-period attribute can appear in more
 than one location in the overall key package. When there are
 multiple occurrences of the key-validity-period attribute within the
 same scope, all of the included attribute fields MUST contain exactly
 the same value. However, if the doNotUseAfter field is absent in an
 inner layer, a value MAY appear in an outer layer. Receivers MUST
 reject any key package that fails these consistency checks.

16. Key Duration

 The key-duration attribute indicates the maximum period of time that
 the keying material is intended for use. The date and time that the
 duration begins is not specified, but the maximum amount of time that
 the keying material can be used to provide security services is
 specified. It can appear as a symmetric key, symmetric key package,
 asymmetric key, signed, authenticated, authenticated&unprotected, or
 content attribute. If the key-duration attribute appears as a
 signed, authenticated, authenticated&unprotected, or content
 attribute, then all of the keying material within the content MUST
 have the same key duration.

 The key-duration attribute has the following syntax:

 aa-keyDurationPeriod ATTRIBUTE ::= {
 TYPE KeyDuration
 IDENTIFIED BY id-kma-keyDuration }

 id-kma-keyDuration OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 7 }

 KeyDuration ::= CHOICE {
 hours [0] INTEGER (1..ub-KeyDuration-hours),
 days INTEGER (1..ub-KeyDuration-days),
 weeks [1] INTEGER (1..ub-KeyDuration-weeks),
 months [2] INTEGER (1..ub-KeyDuration-months),
 years [3] INTEGER (1..ub-KeyDuration-years) }

Timmel, et al. Informational [Page 23]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 ub-KeyDuration-hours INTEGER ::= 96
 ub-KeyDuration-days INTEGER ::= 732
 ub-KeyDuration-weeks INTEGER ::= 104
 ub-KeyDuration-months INTEGER ::= 72
 ub-KeyDuration-years INTEGER ::= 100

 The key-validity-period attribute described in the previous section
 and the key-duration attribute described in this section provide a
 complementary function. The relationship between these attributes is
 described in the previous section.

 Due to multiple layers of encapsulation or the use of content
 collections, the key-duration attribute can appear in more than one
 location in the overall key package. When there are multiple
 occurrences of the key-duration attribute within the same scope, all
 of the included attribute fields MUST contain exactly the same value.
 Receivers MUST reject any key package that fails these consistency
 checks.

17. Classification

 The classification attribute indicates level of classification. The
 classification attribute specifies the aggregate classification of
 the package content. It can appear as a symmetric key, symmetric key
 package, asymmetric key, signed, authenticated,
 authenticated&unprotected, or content attribute. If the
 classification attribute appears as a signed, authenticated,
 authenticated&unprotected, or content attribute, then the value MUST
 represent the classification of all of the keying material within the
 content. Encrypted layers MAY contain content at a higher
 classification that will be revealed once they are decrypted. If the
 classification attribute is associated with a collection, then the
 sensitivity of all the data within the collection MUST be dominated
 by the classification carried in this attribute.

 The classification attribute makes use of the ESSSecurityLabel
 defined in Section 17.1 as well as [RFC2634] and [RFC5911]. The term
 "classification" is used in this document, but the term "security
 label" is used in [RFC2634]. The two terms have the same meaning.

 [RFC2634] and [RFC5911] specify an object identifier and syntax for
 the security label attribute. The same values are used for the
 classification attribute:

 aa-classificationAttribute ATTRIBUTE ::= {
 TYPE Classification
 IDENTIFIED BY id-aa-KP-classification }

Timmel, et al. Informational [Page 24]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 id-aa-KP-classification OBJECT IDENTIFIER ::= id-aa-securityLabel

 -- id-aa-securityLabel OBJECT IDENTIFIER ::= {
 -- iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 -- pkcs-9(9) smime(16) id-aa(2) 2 }

 Classification ::= ESSSecurityLabel

 The syntax of ESSSecurityLabel is not repeated here; however, see
 Section 17.1 for security label conventions that MUST be followed by
 implementations of this specification. See [RFC2634] for a complete
 discussion of the semantics and syntax.

 When the classification attribute appears in more than one location
 in the overall key package, each occurrence is evaluated
 independently. The content originator MUST ensure that the
 classification attribute represents the sensitivity of the plaintext
 within the content. That is, the classification MUST dominate any
 other plaintext classification attribute value that is present
 elsewhere in the overall key package. Note that the classification
 attribute value may exceed these other plaintext classification
 attribute values if the other attribute values within the SignerInfo,
 AuthEnvelopedData, or AuthenticatedData are themselves classified and
 warrant the higher-security label value.

 When the classification attribute appears in more than one location
 in the overall key package, each security label might be associated
 with a different security policy. Content originators SHOULD avoid
 mixing multiple security policies in the same key package whenever
 possible, since this requires that receivers and intermediaries that
 check the classification attribute values include support for the
 union of the security policies that are present. Failure to
 recognize an included security policy MUST result in rejection of the
 key package.

 Receivers MUST reject any key package that includes a classification
 for which the receiver’s processing environment is not authorized.

17.1. Security Label

 The ESSSecurityLabel ASN.1 type is used to represent the
 classification. The ESSSecurityLabel is defined in Section 3.2 of
 [RFC2634]. The syntax definition is repeated here to facilitate
 discussion:

Timmel, et al. Informational [Page 25]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 ESSSecurityLabel ::= SET {
 security-policy-identifier SecurityPolicyIdentifier,
 security-classification SecurityClassification OPTIONAL,
 privacy-mark ESSPrivacyMark OPTIONAL,
 security-categories SecurityCategories OPTIONAL }

 ESSPrivacyMark ::= CHOICE {
 pString PrintableString (SIZE (1..ub-privacy-mark-length)),
 utf8String UTF8String (SIZE (1..MAX)) }

 A security policy is a set of criteria for the provision of security
 services. The security-policy-identifier, which is an object
 identifier, is used to identify the security policy associated with
 the security label. It indicates the semantics of the other security
 label components.

 If the key package receiver does not recognize the object identifier
 in the security-policy-identifier field and the security label
 includes a security-categories field, then the key package contents
 MUST NOT be accepted and the enclosed keying material MUST NOT be
 used. If the key package receiver does not recognize the object
 identifier in the security-policy-identifier field and the security
 label does not include a security-categories field, then the key
 package contents MAY be accepted only if the security-classification
 field is present and it contains a value from the basic hierarchy as
 described below.

 This specification defines the use of the SecurityClassification
 field exactly as is it specified in the 1988 edition of ITU-T
 Recommendation X.411 [X.411], which states in part:

 If present, a security-classification may have one of a
 hierarchical list of values. The basic security-classification
 hierarchy is defined in this Recommendation, but the use of these
 values is defined by the security-policy in force. Additional
 values of security-classification, and their position in the
 hierarchy, may also be defined by a security-policy as a local
 matter or by bilateral agreement. The basic security-
 classification hierarchy is, in ascending order: unmarked,
 unclassified, restricted, confidential, secret, top-secret.

 Implementations MUST support the basic security classification
 hierarchy. Such implementations MAY also support other security-
 classification values; however, the placement of additional values in
 the hierarchy MUST be specified by the security policy.

Timmel, et al. Informational [Page 26]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 Implementations MUST NOT make access control decisions based on the
 privacy-mark. However, information in the privacy-mark can be
 displayed to human users by devices that have displays to do so. The
 privacy-mark length MUST NOT exceed 128 characters. The privacy-mark
 SHALL use the PrintableString choice if all of the characters in the
 privacy-mark are members of the printable string character set.

 If present, security-categories provide further granularity for the
 keying material. The security policy in force indicates the
 permitted syntaxes of any entries in the set of security categories.
 At most, 64 security categories may be present. The security-
 categories have ASN.1 type SecurityCategories and further
 SecurityCategory [RFC5912], which are both repeated here to
 facilitate discussion:

 SecurityCategories ::= SET SIZE (1..ub-security-categories) OF
 SecurityCategory
 {{SupportedSecurityCategories}}

 SecurityCategory {SECURITY-CATEGORY:Supported} ::= SEQUENCE {
 type [0] IMPLICIT SECURITY-CATEGORY.
 &id({Supported}),
 value [1] EXPLICIT SECURITY-CATEGORY.
 &Type({Supported}{@type})
 }

 Four security categories are defined and are referred to as the
 Restrictive Tag, the Enumerated Tag, the Permissive Tag, and the
 Informative Tag. Only the Enumerated Tag and Informative Tag are
 permitted in the classification attribute.

 The Enumerated Tag is composed of one or more non-negative integers.
 Each non-negative integer represents a non-hierarchical security
 attribute that applies to the labeled content. A security policy
 might define a large set of security categories attributes, but a
 particular key package generally contains only a few security
 categories attributes. In this case, use of the integer
 representation is intended to minimize the size of the label.
 Security attributes enumerated by tags of this type could be
 restrictive (such as compartments) or permissive (such as release
 permissions). Two object identifiers for the SecurityCategory type
 field have been defined, one for restrictive and one for permissive.
 The object identifiers are:

Timmel, et al. Informational [Page 27]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 id-enumeratedRestrictiveAttributes OBJECT IDENTIFIER ::= {
 2 16 840 1 101 2 1 8 3 4 }

 id-enumeratedPermissiveAttributes OBJECT IDENTIFIER ::= {
 2 16 840 1 101 2 1 8 3 1 }

 With both the restrictive and permissive security category types, the
 corresponding SecurityCategory value has the following ASN.1
 definition:

 EnumeratedTag ::= SEQUENCE {
 tagName OBJECT IDENTIFIER,
 attributeList SET OF SecurityAttribute }

 SecurityAttribute ::= INTEGER (0..MAX)

 Any security policy that makes use of security categories MUST assign
 object identifiers for each tagName, assign the set of integer values
 associated with each tagName, and specify the semantic meaning for
 each integer value. Restrictive security attributes and permissive
 security attributes SHOULD be associated with different tagName
 object identifiers.

 The Informative Tag is composed of either a) one or more non-negative
 integers or b) a bit string. Only the integer choice is allowed in
 this specification. Each non-negative integer represents a non-
 hierarchical security attribute that applies to the labeled content.
 Use of the integer representation is intended to minimize the size of
 the label since a particular key package generally contains only a
 few security categories attributes, even though a security policy
 might define a large set of security categories attributes. Security
 attributes enumerated by tags of this type are informative (i.e., no
 access control is performed). One object identifier for the
 SecurityCategory type field has been defined and is as follows:

 id-informativeAttributes OBJECT IDENTIFIER ::= {
 2 16 840 1 101 2 1 8 3 3 }

 The corresponding SecurityCategory value has the following ASN.1
 definition:

 InformativeTag ::= SEQUENCE {
 tagName OBJECT IDENTIFIER,
 attributes FreeFormField }

 FreeFormField ::= CHOICE {
 bitSetAttributes BIT STRING,
 securityAttributes SET OF SecurityAttribute }

Timmel, et al. Informational [Page 28]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 Any security policy that makes use of security categories MUST assign
 object identifiers for each tagName, assign the set of integer values
 associated with each tagName, and specify the semantic meaning for
 each integer value.

18. Split Identifier

 The key package originator may include a split-identifier attribute
 to designate that the keying material contains a split rather than a
 complete key. It may appear as a symmetric and asymmetric key
 attribute. The split-identifier attribute MUST NOT appear as a
 symmetric key package, signed, authenticated,
 authenticated&unprotected, or content attribute. Split keys have two
 halves, which are called "A" and "B". The split-identifier attribute
 indicates which half is included in the key package, and it
 optionally indicates the algorithm that is needed to combine the two
 halves. The combine algorithm is OPTIONAL since each key algorithm
 has a default mechanism for this purpose, and the combine algorithm
 is present only if the default mechanism is not employed.

 The split-identifier attribute has the following syntax:

 aa-splitIdentifier ATTRIBUTE ::= {
 TYPE SplitID
 IDENTIFIED BY id-kma-splitID }

 id-kma-splitID OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 11 }

 SplitID ::= SEQUENCE {
 ENUMERATED { a(0), b(1) },
 combineAlg AlgorithmIdentifier
 {COMBINE-ALGORITHM, {CombineAlgorithms}} OPTIONAL }

 In most cases, the default combine algorithm will be employed; it
 makes this attribute a simple constant that identifies either the "A"
 or "B" half of the split key. This supports implementation of some
 key distribution policies.

 Note that each split might have its own CRC, but the key and the
 check word are both recovered when the two splits are combined.

 Since the split-identifier attribute MUST NOT appear as a signed,
 authenticated, authenticated&unprotected, or content attribute, a key
 package cannot include multiple occurrences of the split-identifier

Timmel, et al. Informational [Page 29]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 attribute within the same scope. Receivers MUST reject any key
 package in which the split-identifier attribute appears as a signed,
 authenticated, authenticated&unprotected, or content attribute.

19. Key Package Type

 The key-package-type attribute is a shorthand method for specifying
 all aspects of the key package format, including which attributes are
 present and the structure of the encapsulated content or collection.
 The key-package-type attribute can be used as a signed,
 authenticated, authenticated&unprotected, or content attribute.

 Rather than implementing the full flexibility of this specification,
 some devices may implement support for one or more specific key
 package formats instantiating this specification. Those specific
 formats are called templates and can be identified using a key-
 package-type attribute.

 The key-package-type attribute has the following syntax:

 aa-keyPackageType ATTRIBUTE ::= {
 TYPE KeyPkgType
 IDENTIFIED BY id-kma-keyPkgType }

 id-kma-keyPkgType OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 12 }

 KeyPkgType ::= OBJECT IDENTIFIER

 Due to multiple layers of encapsulation or the use of content
 collections, the key-package-type attribute can appear in more than
 one location in the overall key package. When that happens, each
 occurrence is used independently. Since the receiver is likely to
 use the key-package-type attribute value as a decoding aid, any error
 will most likely lead to parsing problems, and these problems could
 result in many different errors being reported.

20. Signature Usage

 The signature-usage attribute identifies the CMS content types that
 this key can be used to sign, or that are permitted to be signed by
 the end-entity key in a cert path validated by this key. Symmetric
 key packages do not contain signature generation or signature
 validation keying material, so the signature-usage attribute MUST NOT
 appear in a symmetric key package. For an asymmetric key package,
 the signature-usage attribute indicates the kind of objects that are
 to be signed with the private key in the package. However, if the

Timmel, et al. Informational [Page 30]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 asymmetric key package contains a Certificate Signature Key, then the
 signature-usage attribute also indicates what signed objects can be
 validated using certificates that are signed by the private key in
 the asymmetric key package. Therefore, the signature-usage attribute
 also indicates what kind of objects can be signed by the private keys
 associated with these certificates. The signature-usage attribute
 MUST NOT appear as a signed, authenticated,
 authenticated&unprotected, or content attribute.

 The signature-usage attribute has the following syntax:

 aa-signatureUsage-v3 ATTRIBUTE ::= {
 TYPE SignatureUsage
 IDENTIFIED BY id-kma-sigUsageV3 }

 id-kma-sigUsageV3 OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 22 }

 SignatureUsage ::= CMSContentConstraints

 The SignatureUsage structure has the same syntax as the
 CMSContentConstraints structure from [RFC6010], and it is repeated
 here for convenience.

 CMSContentConstraints ::= SEQUENCE SIZE (1..MAX) OF
 ContentTypeConstraint

 ContentTypeGeneration ::= ENUMERATED {
 canSource(0),
 cannotSource(1)}

 ContentTypeConstraint ::= SEQUENCE {
 contentType CONTENT-TYPE.&id ({ContentSet|ct-Any,...}),
 canSource ContentTypeGeneration DEFAULT canSource,
 attrConstraints AttrConstraintList OPTIONAL }

 Constraint { ATTRIBUTE:ConstraintList } ::= SEQUENCE {
 attrType ATTRIBUTE.&id({ConstraintList}),
 attrValues SET SIZE (1..MAX) OF ATTRIBUTE.
 &Type({ConstraintList}{@attrType}) }

 SupportedConstraints ATTRIBUTE ::= {SignedAttributesSet, ... }

 AttrConstraintList ::= SEQUENCE SIZE (1..MAX) OF
 Constraint {{ SupportedConstraints }}

 NOTE: SignedAttributesSet is updated by this specification.

Timmel, et al. Informational [Page 31]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 The SignatureUsage contains a type of CMSContentConstraints. One or
 more ContentTypeConstraint MUST appear in CMSContentConstraints.

 Within ContentTypeConstraint, the contentType field indicates the
 encapsulated content type identifier that can be signed with the
 signature key. A particular content type MUST NOT appear more than
 once in the list. The CMS protecting content types need not be
 included in the list of permitted content types as the use of CMS is
 always authorized (see [RFC6010]).

 Within ContentTypeConstraint, the canSource enumeration indicates
 whether the signature key can be used to directly sign the indicated
 content type. If the ContentTypeConstraint is canSource (the default
 value), then the signature key can be used to directly sign the
 specified content type. If the ContentTypeConstraint is
 cannotSource, then the signature key can only be used with the
 specified content type if it encapsulates a signature that was
 generated by an originator with a ContentTypeConstraint that is
 canSource.

 Within ContentTypeList, the attrConstraints OPTIONAL field contains a
 sequence of constraints specific to the content type. If the
 attrConstraints field is absent, the signature key can be used to
 sign the specified content type, without any further checking. If
 the attrConstraints field is present, then the signature key can only
 be used to sign the specified content type if all of the constraints
 for that content type are satisfied. Content type constraints are
 checked by matching the attribute values in the attrConstraint field
 against the attribute value in the content. The constraints succeed
 if the attribute is not present; they fail if the attribute is
 present and the value is not one of the values provided in
 attrConstraint.

 The fields of attrConstraints implement constraints specific to the
 content type. The attrType field is an AttributeType, which is an
 object identifier of a signed attribute carried in the SignerInfo of
 the content. The attrValues field provides one or more acceptable
 signed attribute values. It is a set of AttributeValue. For a
 signed content to satisfy the constraint, the SignerInfo MUST include
 a signed attribute of the type identified in the attrType field, and
 the signed attribute MUST contain one of the values in the set
 carried in attrValues.

 Since the signature-usage attribute MUST NOT appear as a signed,
 authenticated, authenticated&unprotected, or content attribute, an
 asymmetric key package cannot include multiple occurrences of the
 signature-usage attribute within the same scope. Receivers MUST

Timmel, et al. Informational [Page 32]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 reject any asymmetric key package in which the signature-usage
 attribute appears as a signed, authenticated,
 authenticated&unprotected, or content attribute.

21. Other Certificate Format

 The other-certificate-formats attribute specifies the type, format,
 and value of certificates that are not X.509 public key certificates.
 Symmetric key packages do not contain any certificates, so the other-
 certificate-formats attribute MUST NOT appear in a symmetric key
 package. It SHOULD appear in the attributes field, when the
 publicKey field is absent and the certificate format is not X.509.
 This attribute MUST NOT appear in an attributes field that includes
 the user-certificate attribute from Section 8. The other-
 certificate-formats attribute MUST NOT appear as a signed,
 authenticated, authenticated&unprotected, or content attribute.

 The other-certificate-formats attribute has the following syntax:

 aa-otherCertificateFormats ATTRIBUTE ::= {
 TYPE CertificateChoices
 IDENTIFIED BY id-kma-otherCertFormats }

 id-kma-otherCertFormats OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 19 }

 CertificateChoices ::= CHOICE {
 certificate Certificate,
 extendedCertificate [0] IMPLICIT ExtendedCertificate,
 -- Obsolete
 v1AttrCert [1] IMPLICIT AttributeCertificateV1,
 -- Obsolete
 v2AttrCert [2] IMPLICIT AttributeCertificateV2,
 other [3] IMPLICIT OtherCertificateFormat }

 OtherCertificateFormat ::= SEQUENCE {
 otherCertFormat OBJECT IDENTIFIER,
 otherCert ANY DEFINED BY otherCertFormat }

 The other-certificate-formats attribute makes use of the
 CertificateChoices field defined in Section 10.2.2 of [RFC5652]. The
 certificate, extendedCertificate, and v1AttrCert fields MUST be
 omitted. The v2AttrCert field can include Version 2 Attribute
 Certificates. The other field can include Enhanced FIREFLY
 certificates and other as yet undefined certificate formats.

Timmel, et al. Informational [Page 33]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 Since the other-certificate-formats attribute MUST NOT appear as a
 signed, authenticated, authenticated&unprotected, or content
 attribute, an asymmetric key package cannot include multiple
 occurrences of the other-certificate-formats attribute within the
 same scope. Receivers MUST reject any asymmetric key package in
 which the other-certificate-formats attribute appears as a signed,
 authenticated, authenticated&unprotected, or content attribute.

22. PKI Path

 The pki-path attribute includes certificates that can aid in the
 validation of the certificate carried in the user-certificate
 attribute. Symmetric key packages do not contain any certificates,
 so the pkiPath attribute MUST NOT appear in a symmetric key package.
 It can appear as an asymmetric key, signed, authenticated,
 authenticated&unprotected, or content attribute. It can appear in
 the attributes field, when the publicKey field is absent and the
 certificate format is X.509. This attribute MUST NOT appear in an
 AsymmetricKeyPackage that has an other-certificate-formats attribute
 in the attributes field. If the pki-path attribute appears as a
 signed, authenticated, authenticated&unprotected, or content
 attribute, then the value includes certificates that can be used to
 construct a certification path to all of the keying material within
 the content. This attribute MUST be supported.

 The syntax is taken from [X.509] but redefined using the ATTRIBUTE
 CLASS from [RFC5912]. The pki-path attribute has the following
 syntax:

 aa-pkiPath ATTRIBUTE ::= {
 TYPE PkiPath
 IDENTIFIED BY id-at-pkiPath }

 id-at-pkiPath OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) ds(5) attributes(4) 70 }

 PkiPath ::= SEQUENCE SIZE (1..MAX) OF Certificate

 The first certificate in the sequence is the subject’s parent
 Certification Authority (CA). The next certificate is that CA’s
 parent, and so on. The end-entity and trust anchor are not included
 in this attribute.

 Due to multiple layers of encapsulation or the use of content
 collections, the pki-path attribute can appear in more than one
 location in the overall key package. When that happens, each
 occurrence is evaluated independently.

Timmel, et al. Informational [Page 34]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

23. Useful Certificates

 The useful-certificates attribute includes certificates that can aid
 in the validation of certificates associated with other parties with
 whom secure communications are anticipated. It can appear as an
 asymmetric key, signed, authenticated, authenticated&unprotected, or
 content attribute. For an asymmetric key that has an other-
 certificate-formats attribute (Section 21) in the attributes field,
 the useful-certificates attribute MUST NOT appear. If the useful-
 certificates attribute appears as a signed, authenticated,
 authenticated&unprotected, or content attribute, then the value
 includes certificates that may be used to validate certificates of
 others with whom the receiver communicates. This attribute MUST be
 supported.

 The useful-certificates attribute has the following syntax:

 aa-usefulCertificates ATTRIBUTE ::= {
 TYPE CertificateSet
 IDENTIFIED BY id-kma-usefulCerts }

 id-kma-usefulCerts OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 20 }

 CertificateSet ::= SET OF CertificateChoices

 The useful-certificates attribute makes use of the CertificateSet
 field defined in Section 10.2.3 of [RFC5652]. Within the
 CertificateChoices field, the extendedCertificate and v1AttrCert
 fields MUST always be omitted. If the userCertificate attribute from
 Section 8 is included, the other field MUST NOT be present. If the
 other-certificate-formats attribute (Section 21) is included, the
 certificate field MUST NOT be present.

 Due to multiple layers of encapsulation or the use of content
 collections, the useful-certificates attribute can appear in more
 than one location in the overall key package. When the useful-
 certificates attribute appears in more than one location in the
 overall key package, each occurrence is evaluated independently.

24. Key Wrap Algorithm

 The key-wrap-algorithm attribute identifies a key wrap algorithm with
 an algorithm identifier. It can appear as a symmetric key or
 symmetric key package attribute. When this attribute is present in
 sKeyAttrs, it indicates that the associated sKey field contains a
 black key, which is an encrypted key, that was wrapped by the

Timmel, et al. Informational [Page 35]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 identified algorithm. When this attribute is present in
 sKeyPkgAttrs, it indicates that every sKey field in that symmetric
 key package contains a black key and that all keys are wrapped by the
 same designated algorithm.

 The key-wrap-algorithm attribute has the following syntax:

 aa-keyWrapAlgorithm ATTRIBUTE ::= {
 TYPE AlgorithmIdentifier{KEY-WRAP, {KeyEncryptionAlgorithmSet}}
 IDENTIFIED BY id-kma-keyWrapAlgorithm }

 id-kma-keyWrapAlgorithm OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 21 }

 KeyEncryptionAlgorithmSet KEY-WRAP ::= { ... }

25. Content Decryption Key Identifier

 The content-decryption-key-identifier attribute can appear as an
 unprotected attribute as well as a symmetric and symmetric key
 package attribute. The attribute’s semantics differ based on the
 location.

25.1. Content Decryption Key Identifier: Symmetric Key and Symmetric
 Key Package

 The content-decryption-key-identifier attribute [RFC6032] identifies
 the keying material needed to decrypt the sKey. It can appear as a
 symmetric key and symmetric key package attribute. If the key-wrap-
 algorithm attribute appears in sKeyPkgAttrs, then the corresponding
 content-decryption-identifier attribute can appear in either
 sKeyPkgAttrs or sKeyAttrs. If the key-wrap-algorithm attribute
 (Section 24) appears in sKeyAttrs, then the corresponding content-
 decryption-identifier attribute MUST appear in sKeyAttrs.

 The content-decryption-key-identifier attribute in included for
 convenience:

 aa-contentDecryptKeyIdentifier ATTRIBUTE ::= {
 TYPE ContentDecryptKeyID
 IDENTIFIED BY id-aa-KP-contentDecryptKeyID }

 id-aa-KP-contentDecryptKeyID OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) attributes(5) 66 }

 ContentDecryptKeyID ::= OCTET STRING

Timmel, et al. Informational [Page 36]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 The content decryption key identifier contains an octet string, and
 this syntax does not impose any particular structure on the
 identifier value.

25.2. Content Decryption Key Identifier: Unprotected

 The content-decryption-key-identifier attribute can be used to
 identify the keying material that is needed for decryption of the
 EncryptedData content if there is any ambiguity.

 The content-decryption-key-identifier attribute syntax is found in
 Section 25.1. The content decryption key identifier contains an
 octet string, and this syntax does not impose any particular
 structure on the identifier value.

 Due to multiple layers of encryption, the content-decryption-key-
 identifier attribute can appear in more than one location in the
 overall key package. When that happens, each occurrence is evaluated
 independently. Each one is used to identify the needed keying
 material for that layer of encryption.

26. Certificate Pointers

 The certificate-pointers attribute can be used to reference one or
 more certificates that may be helpful in the processing of the
 content once it is decrypted. Sometimes certificates are omitted if
 they can be easily fetched. However, an intermediary may have better
 facilities to perform the fetching than the receiver. The
 certificate-pointers attribute may be useful in some environments.
 This attribute can appear as an unprotected and an
 unauthenticated&unprotected attribute.

 The certificate-pointers attribute uses the same syntax and semantics
 as the subject information access certificate extension [RFC5280].
 The certificate-pointers attribute has the following syntax:

 aa-certificatePointers ATTRIBUTE ::= {
 TYPE SubjectInfoAccessSyntax
 IDENTIFIED BY id-pe-subjectInfoAccess }

 id-pe-subjectInfoAccess OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) pe(1) 11 }

 SubjectInfoAccessSyntax ::= SEQUENCE SIZE (1..MAX) OF
 AccessDescription

Timmel, et al. Informational [Page 37]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 AccessDescription ::= SEQUENCE {
 accessMethod OBJECT IDENTIFIER,
 accessLocation GeneralName }

 As specified in [RFC5280], the id-ad-caRepository access method can
 be used to point to a repository where a Certification Authority
 publishes certificates and Certificate Revocation Lists (CRLs). In
 this case, the accessLocation field tells how to access the
 repository. Where the information is available via HTTP, FTP, or the
 Lightweight Directory Access Protocol (LDAP), accessLocation contains
 a Uniform Resource Identifier (URI). Where the information is
 available via the Directory Access Protocol (DAP), accessLocation
 contains a directory name.

27. CRL Pointers

 The CRL-pointers attribute can be used to reference one or more CRLs
 that may be helpful in the processing of the content once it is
 decrypted. Sometimes CRLs are omitted to conserve space or to ensure
 that the most recent CRL is obtained when the certificate is
 validated. However, an intermediary may have better facilities to
 perform the fetching than the receiver. The CRL-pointers attribute
 may be useful in some environments. This attribute can appear as an
 unprotected and unauthenticated&unprotected attribute.

 The CRL-pointers attribute has the following syntax:

 aa-crlPointers ATTRIBUTE ::= {
 TYPE GeneralNames
 IDENTIFIED BY id-aa-KP-crlPointers }

 id-aa-KP-crlPointers OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) attributes(5) 70 }

 The CRL-pointers attribute uses the GeneralNames syntax from
 [RFC5280]. Each name describes a different mechanism to obtain the
 same CRL. Where the information is available via HTTP, FTP, or LDAP,
 GeneralNames contains a URI. Where the information is available via
 DAP, GeneralNames contains a directory name.

28. Key Package Identifier and Receipt Request

 The key-package-identifier-and-receipt-request attribute from
 [RFC7191] is also supported. It can appear as a signed attribute,
 authenticated, authenticated&unprotected, or content attribute.

Timmel, et al. Informational [Page 38]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

29. Additional Error Codes

 This specification also defines three additional extended
 ErrorCodeChoice object identifiers for the oid field [RFC7191]:

 id-errorCodes OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) errorCodes(22) }

 id-missingKeyType OBJECT IDENTIFIER ::= {
 id-errorCodes 1 }

 id-privacyMarkTooLong OBJECT IDENTIFIER ::= {
 id-errorCodes 2 }

 id-unrecognizedSecurityPolicy OBJECT IDENTIFIER ::= {
 id-errorCodes 3 }

 id-incorrectKeyProvince OBJECT IDENTIFIER ::= {
 id-errorCodes 4 }

 missingKeyType indicates that all keying material within a package is
 of the same type; however, the key-package-type attribute is not
 specified in sKeyPkgAttrs [RFC6031].

 privacyMarkTooLong indicates that a classification attribute includes
 a privacy-mark that exceeds 128 characters in length.

 unrecognizedSecurityPolicy indicates that a security-policy-
 identifier is not supported.

 incorrectKeyProvince indicates that the value of the key-province-v2
 attribute in a key package does not match the key province constraint
 of the trust anchor used to validate the key package.

30. Processing Key Package Attribute Values and CMS Content Constraints

 Trust anchors may contain constraints for any content type [RFC5934].
 When the trust anchor contains constraints for the symmetric key
 package content type or the asymmetric key package content type, then
 the constraints provide default values for key package attributes
 that are not present in the key package and define the set of
 acceptable values for key package attributes that are present.

 When a trust anchor delegates authority by issuing an X.509
 certificate, the CMS content constraints certificate extension
 [RFC6010] may be included to constrain the authorizations. The trust

Timmel, et al. Informational [Page 39]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 anchor and the X.509 certification path provide default values for
 key package attributes that are not present in the key package and
 define the set of acceptable of values for key package attributes
 that are present.

 Constraints on content type usage are represented as attributes.

 The processing procedures for the CMS content constraints certificate
 extension [RFC6010] are part of the validation of a signed or
 authenticated object, and the procedures yield three output values:
 cms_constraints, cms_effective_attributes, and
 cms_default_attributes. Object validation MUST be performed before
 processing the key package contents, and these output values are used
 as part of key package processing. These same output values are
 easily generated directly from a trust anchor and the key package
 when no X.509 certification path is involved in validation.

 The cms_effective_attributes provides the set of acceptable values
 for attributes. Each attribute present in the key package that
 corresponds to an entry in cms_effective_attributes MUST contain a
 value that appears in cms_effective_attributes entry. Attributes
 that do not correspond to an entry in cms_effective_attributes are
 unconstrained and may contain any value. Correspondence between
 attributes and cms_effective_attributes is determined by comparing
 the attribute object identifier to object identifier for each entry
 in cms_effective_attributes.

 The cms_default_attributes provides values for attributes that do not
 appear in the key package. If cms_default_attributes includes only
 one attribute value for a particular attribute, then that value is
 used as if it were included in the key package itself. However, if
 cms_default_attributes includes more than one value for a particular
 attribute, then the appropriate value remains ambiguous and the key
 package should be rejected.

 Some attributes can appear in more than one place in the key package,
 and for this reason, the attribute definitions include consistency
 checks. These checks are independent of constraints checking. In
 addition to the consistency checks, each instance of the attribute
 MUST be checked against the set of cms_effective_attributes, and the
 key package MUST be rejected if any of the attributes values are not
 in the set of authorized set of values.

Timmel, et al. Informational [Page 40]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

31. Attribute Scope

 This section provides an example symmetric key package in order to
 provide a discussion of the scope of attributes. This is an
 informative section; it is not a normative portion of this
 specification. Figure 1 provides the example. All of the concepts
 apply to either a symmetric key package or an asymmetric key package,
 with the exception of the key-algorithm attribute, which is only
 applicable to a symmetric key package. Each of the components is
 labeled with a number inside parentheses for easy reference:

 (1) is the ContentInfo that must be present as the outermost layer
 of encapsulation. It contains no attributes. It is shown for
 completeness.

 (2) is a SignedData content type, which includes six signed
 attributes. Four of the signed attributes are keying material
 attributes.

 (3) is a ContentCollection that includes two encapsulated content
 types: a ContentWithAttributes and an EncryptedKeyPackage.
 This content type does not provide any attributes.

 (4) is a ContentWithAttributes content type. It encapsulates a
 SignedData content type. Four key material attributes are
 provided.

 (5) is a SignedData content type. It encapsulates a
 SymmetricKeyPackage content type. Six signed attributes are
 provided. Four attributes are key material attributes.

 (6) is a SymmetricKeyPackage content type, and it includes three
 key material attributes. Note that the contents of this key
 package are not encrypted, but the contents are covered by two
 digital signatures.

 (7) is an EncryptedKeyPackage content type. It encapsulates a
 SignedData content type. This content type provides one
 unprotected attribute.

 (8) is a SignedData content type. It encapsulates a
 SymmetricKeyPackage content type. Six signed attributes are
 provided. Four attributes are key material attributes.

Timmel, et al. Informational [Page 41]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 (9) is a SymmetricKeyPackage content type, and it includes three
 key material attributes. Note that the contents of this key
 package are encrypted; the plaintext keying material is
 covered by one digital signature, and the ciphertext keying
 material is covered by another digital signature.

 SignedData content type (2) includes six signed attributes:

 o The content-type attribute contains id-ct-contentCollection to
 indicate the type of the encapsulated content, and it has no
 further scope.

 o The message-digest attribute contains the one-way hash value of
 the encapsulated content; it is needed to validate the digital
 signature. It has no further scope.

 o The classification attribute contains the security label for
 all of the plaintext in the encapsulated content. Each
 classification attribute is evaluated separately; it has no
 further scope. In general, the values of this attribute will
 match or dominate the security label values in (4), (5), and
 (6). The value of this attribute might not match or dominate
 the security label values in (8) and (9) since they are
 encrypted. It is possible that these various security label
 values are associated with different security policies. To
 avoid the processing complexity associated with policy mapping,
 comparison is not required.

 o The key-package-receivers-v2 attribute indicates the authorized
 key package receivers, and it has no further scope. The
 additional instances of key-package-receivers-v2 attribute
 embedded in (4) are evaluated without regard to the value of
 the instance in (2).

 o The key-distribution-period attribute contains two date values:
 doNotDistBefore and doNotDistAfter. These values must match
 all others within the same scope, which in this example is the
 key-distribution-period within (4).

 o The key-package-type attributes indicates the format of the key
 package, and it has no further scope. The key-package-type
 attributes values within (5) and (8) are evaluated without
 regard to the value of this attribute.

Timmel, et al. Informational [Page 42]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 ContentWithAttributes content type (4) includes four attributes:

 o The classification attribute contains the security label for
 all of the plaintext in the encapsulated content. Each
 classification attribute is evaluated separately; it has no
 further scope.

 o The TSEC-Nomenclature attribute includes only the shortTitle
 field, and the value must match all other instances within the
 same scope, which appear in (5) and (6). Note that the TSEC-
 Nomenclature attribute values in (8) and (9) are not in the
 same scope as the TSEC-Nomenclature attribute that appears in
 (4).

 o The key-package-receivers-v2 attribute indicates the authorized
 key package receivers, and it has no further scope. The
 enveloping instance of key-package-receivers-v2 attribute value
 in (2) is evaluated without regard to the value of this
 instance in (4), and has no effect on the value of this
 instance in (4).

 o The key-distribution-period attribute contains two date values:
 doNotDistBefore and doNotDistAfter. These values must match
 all others within the same scope, which in this example is the
 key-distribution-period within (2).

 SignedData content type (5) includes six signed attributes:

 o The content-type attribute contains id-ct-KP-skeyPackage to
 indicate the type of the encapsulated content, and it has no
 further scope.

 o The message-digest attribute contains the one-way hash value of
 the encapsulated content; it is needed to validate the digital
 signature. It has no further scope.

 o The classification attribute contains the security label for
 all of the plaintext in the encapsulated content. Each
 classification attribute is evaluated separately; it has no
 further scope.

 o The TSEC-Nomenclature attribute includes only the shortTitle
 field, and the value must match all other instances within the
 same scope, which appear in (6). Since this is within the
 scope of (4), these shortTitle field values must match as well.
 Note that the TSEC-Nomenclature attribute values in (8) and (9)
 are not in the same scope.

Timmel, et al. Informational [Page 43]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 o The key-purpose attribute specifies the purpose of the key
 material. All occurrences within the scope must have the same
 value; however, in this example, there are no other occurrences
 within the scope. The key-purpose attribute value within (8)
 is evaluated without regard to the value of this attribute.

 o The key-package-type attribute indicates the format of the key
 package, and it has no further scope. The key-package-type
 attribute values within (2) and (8) are evaluated without
 regard to the value of this attribute.

 SymmetricKeyPackage content type (6) includes three keying material
 attributes, which could appear in the sKeyPkgAttrs or sKeyAttrs
 fields:

 o The key-algorithm attribute includes only the keyAlg field, and
 it must match all other occurrences within the same scope.
 However, there are no other key-algorithm attribute occurrences
 in the same scope; the key-algorithm attribute value in (9) is
 not in the same scope.

 o The classification attribute contains the security label for
 all of the plaintext in the key package. Each classification
 attribute is evaluated separately; it has no further scope.

 o The TSEC-Nomenclature attribute includes the shortTitle field
 as well as some of the optional fields. The shortTitle field
 value must match the values in (4) and (5), since this content
 type is within their scope. Note that the TSEC-Nomenclature
 attribute values in (8) and (9) are not in the same scope.

 EncryptedKeyPackage content type (7) includes one unprotected
 attribute, and the encryption will prevent any intermediary that does
 not have the ability to decrypt the content from making any
 consistency checks on (8) and (9):

 o The content-decryption-key-identifier attribute identifies the
 key that is needed to decrypt the encapsulated content; it has
 no further scope.

 SignedData content type (8) includes six signed attributes:

 o The content-type attribute contains id-ct-KP-skeyPackage to
 indicate the type of the encapsulated content, and it has no
 further scope.

Timmel, et al. Informational [Page 44]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 o The message-digest attribute contains the one-way hash value of
 the encapsulated content; it is needed to validate the digital
 signature. It has no further scope.

 o The classification attribute contains the security label for
 content. Each classification attribute is evaluated
 separately; it has no further scope.

 o The TSEC-Nomenclature attribute includes only the shortTitle
 field, and the value must match all other instances within the
 same scope, which appear in (9). Note that the TSEC-
 Nomenclature attribute values in (4), (5), and (6) are not in
 the same scope.

 o The key-purpose attribute specifies the purpose of the key
 material. All occurrences within the scope must have the same
 value; however, in this example, there are no other occurrences
 within the scope. The key-purpose attribute value within (5)
 is evaluated without regard to the value of this attribute.

 o The key-package-type attribute indicates the format of the key
 package, and it has no further scope. The key-package-type
 attribute values within (2) and (5) are evaluated without
 regard to the value of this attribute.

 SymmetricKeyPackage content type (9) includes three keying material
 attributes, which could appear in the sKeyPkgAttrs or sKeyAttrs
 fields:

 o The key-algorithm attribute includes only the keyAlg field, and
 it must match all other occurrences within the same scope.
 However, there are no other key-algorithm attribute occurrences
 in the same scope; the key-algorithm attribute value in (6) is
 not in the same scope.

 o The classification attribute contains the security label for
 all of the plaintext in the key package. Each classification
 attribute is evaluated separately; it has no further scope.

 o The TSEC-Nomenclature attribute includes the shortTitle field
 as well as some of the optional fields. The shortTitle field
 value must match the values in (8), since this content type is
 within its scope. Note that the TSEC-Nomenclature attributes
 values in (4), (5), and (6) are not in the same scope.

Timmel, et al. Informational [Page 45]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 In summary, the scope of an attribute includes the encapsulated
 content of the CMS content type in which it appears, and some
 attributes also require consistency checks with other instances that
 appear within the encapsulated content. Proper recognition of scope
 is required to accurately perform attribute processing.

Timmel, et al. Informational [Page 46]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 +--+
 | ContentInfo (1) |
 |+--+|
	SignedData (2)															
	+--+															
		ContentCollection (3)														
		+-----------------------------++-----------------------------+														
			ContentWithAttributes (4)		EncryptedKeyPackage (7)											
			+---------------------------+		+---------------------------+											
				SignedData (5)				SignedData (8)								
				+-------------------------+				+-------------------------+								
					SymmetricKeyPackage (6)						SymmetricKeyPackage (9)					
					Attributes:						Attributes:					
					Key Algorithm						Key Algorithm					
					Classification						Classification					
					TSEC-Nomenclature						TSEC-Nomenclature					
				+-------------------------+				+-------------------------+								
				Attributes:				Attributes:								
				Content Type				Content Type								
				Message Digest				Message Digest								
				Classification				Classification								
				TSEC-Nomenclature				TSEC-Nomenclature								
				Key Purpose				Key Purpose								
				Key Package Type				Key Package Type								
			+-------------------------- +		+---------------------------+											
			Attributes:		Unprotect Attributes:											
			Classification		Content Decrypt Key ID											
			TSEC-Nomenclature	+-----------------------------+												
			Key Package Receivers													
			Key Distribution Period													
		+-----------------------------+														
	+--+															
	Attributes:															
	Content Type															
	Message Digest															
	Classification															
	Key Package Receivers															
	Key Distribution Period															
	Key Package Type															
+--+																
 +--+

 Figure 1: Example Illustrating Scope of Attributes

Timmel, et al. Informational [Page 47]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

32. Security Considerations

 The majority of this specification is devoted to the syntax and
 semantics of key package attributes. It relies on other
 specifications, especially [RFC2634], [RFC4073], [RFC4108],
 [RFC5652], [RFC5911], [RFC5912], [RFC5958], [RFC6010], and [RFC6031];
 their security considerations apply here. Additionally,
 cryptographic algorithms are used with CMS protecting content types
 as specified in [RFC5959], [RFC6160], [RFC6161], and [RFC6162]; the
 security considerations from those documents apply here as well.

 This specification also relies upon [RFC5280] for the syntax and
 semantics of X.509 certificates. Digital signatures provide data
 integrity or data origin authentication, and encryption provides
 confidentiality.

 Security factors outside the scope of this specification greatly
 affect the assurance provided. The procedures used by Certification
 Authorities (CAs) to validate the binding of the subject identity to
 their public key greatly affect the assurance that ought to be placed
 in the certificate. This is particularly important when issuing
 certificates to other CAs.

 The CMS AuthenticatedData content type MUST be used with care since a
 Message Authentication Code (MAC) is used. The same key is needed to
 generate the MAC or validate the MAC. Thus, any party with access to
 the key needed to validate the MAC can generate a replacement that
 will be acceptable to other recipients.

 In some situations, returning very detailed error information can
 provide an attacker with insight into the security processing. Where
 this is a concern, the implementation should return the most generic
 error code that is appropriate. However, detailed error codes are
 very helpful during development, debugging, and interoperability
 testing. For this reason, implementations may want to have a way to
 configure the use of generic or detailed error codes.

33. References

33.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

Timmel, et al. Informational [Page 48]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 [RFC2634] Hoffman, P., Ed., "Enhanced Security Services for S/MIME",
 RFC 2634, DOI 10.17487/RFC2634, June 1999,
 <http://www.rfc-editor.org/info/rfc2634>.

 [RFC4073] Housley, R., "Protecting Multiple Contents with the
 Cryptographic Message Syntax (CMS)", RFC 4073,
 DOI 10.17487/RFC4073, May 2005,
 <http://www.rfc-editor.org/info/rfc4073>.

 [RFC4108] Housley, R., "Using Cryptographic Message Syntax (CMS) to
 Protect Firmware Packages", RFC 4108,
 DOI 10.17487/RFC4108, August 2005,
 <http://www.rfc-editor.org/info/rfc4108>.

 [RFC5083] Housley, R., "Cryptographic Message Syntax (CMS)
 Authenticated-Enveloped-Data Content Type", RFC 5083,
 DOI 10.17487/RFC5083, November 2007,
 <http://www.rfc-editor.org/info/rfc5083>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <http://www.rfc-editor.org/info/rfc5652>.

 [RFC5911] Hoffman, P. and J. Schaad, "New ASN.1 Modules for
 Cryptographic Message Syntax (CMS) and S/MIME", RFC 5911,
 DOI 10.17487/RFC5911, June 2010,
 <http://www.rfc-editor.org/info/rfc5911>.

 [RFC5912] Hoffman, P. and J. Schaad, "New ASN.1 Modules for the
 Public Key Infrastructure Using X.509 (PKIX)", RFC 5912,
 DOI 10.17487/RFC5912, June 2010,
 <http://www.rfc-editor.org/info/rfc5912>.

 [RFC5958] Turner, S., "Asymmetric Key Packages", RFC 5958,
 DOI 10.17487/RFC5958, August 2010,
 <http://www.rfc-editor.org/info/rfc5958>.

 [RFC5959] Turner, S., "Algorithms for Asymmetric Key Package Content
 Type", RFC 5959, DOI 10.17487/RFC5959, August 2010,
 <http://www.rfc-editor.org/info/rfc5959>.

Timmel, et al. Informational [Page 49]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 [RFC6010] Housley, R., Ashmore, S., and C. Wallace, "Cryptographic
 Message Syntax (CMS) Content Constraints Extension",
 RFC 6010, DOI 10.17487/RFC6010, September 2010,
 <http://www.rfc-editor.org/info/rfc6010>.

 [RFC6019] Housley, R., "BinaryTime: An Alternate Format for
 Representing Date and Time in ASN.1", RFC 6019,
 DOI 10.17487/RFC6019, September 2010,
 <http://www.rfc-editor.org/info/rfc6019>.

 [RFC6031] Turner, S. and R. Housley, "Cryptographic Message Syntax
 (CMS) Symmetric Key Package Content Type", RFC 6031,
 DOI 10.17487/RFC6031, December 2010,
 <http://www.rfc-editor.org/info/rfc6031>.

 [RFC6032] Turner, S. and R. Housley, "Cryptographic Message Syntax
 (CMS) Encrypted Key Package Content Type", RFC 6032,
 DOI 10.17487/RFC6032, December 2010,
 <http://www.rfc-editor.org/info/rfc6032>.

 [RFC6160] Turner, S., "Algorithms for Cryptographic Message Syntax
 (CMS) Protection of Symmetric Key Package Content Types",
 RFC 6160, DOI 10.17487/RFC6160, April 2011,
 <http://www.rfc-editor.org/info/rfc6160>.

 [RFC6162] Turner, S., "Elliptic Curve Algorithms for Cryptographic
 Message Syntax (CMS) Asymmetric Key Package Content Type",
 RFC 6162, DOI 10.17487/RFC6162, April 2011,
 <http://www.rfc-editor.org/info/rfc6162>.

 [RFC6268] Schaad, J. and S. Turner, "Additional New ASN.1 Modules
 for the Cryptographic Message Syntax (CMS) and the Public
 Key Infrastructure Using X.509 (PKIX)", RFC 6268,
 DOI 10.17487/RFC6268, July 2011,
 <http://www.rfc-editor.org/info/rfc6268>.

 [RFC7191] Housley, R., "Cryptographic Message Syntax (CMS) Key
 Package Receipt and Error Content Types", RFC 7191,
 DOI 10.17487/RFC7191, April 2014,
 <http://www.rfc-editor.org/info/rfc7191>.

 [X.509] ITU-T, "Information technology - Open Systems
 Interconnection - The Directory: Public-key and attribute
 certificate frameworks", ITU-T Recommendation X.509 |
 ISO/IEC 9594-8:2005, 2005.

Timmel, et al. Informational [Page 50]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 [X.680] ITU-T, "Information Technology - Abstract Syntax Notation
 One", ITU-T Recommendation X.680 | ISO/IEC 8824-1:2002,
 2002.

 [X.681] ITU-T, "Information Technology - Abstract Syntax Notation
 One: Information Object Specification", ITU-T
 Recommendation X.681 | ISO/IEC 8824-2:2002, 2002.

 [X.682] ITU-T, "Information Technology - Abstract Syntax Notation
 One: Constraint Specification", ITU-T Recommendation X.682
 | ISO/IEC 8824-3:2002, 2002.

 [X.683] ITU-T, "Information Technology - Abstract Syntax Notation
 One: Parameterization of ASN.1 Specifications", ITU-T
 Recommendation X.683 | ISO/IEC 8824-4:2002, 2002.

 [X.690] ITU-T, "Information Technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ITU-T Recommendation X.690 | ISO/IEC 8825-1:2002,
 2002.

33.2. Informative References

 [RFC5934] Housley, R., Ashmore, S., and C. Wallace, "Trust Anchor
 Management Protocol (TAMP)", RFC 5934,
 DOI 10.17487/RFC5934, August 2010,
 <http://www.rfc-editor.org/info/rfc5934>.

 [X.411] ITU-T, "Information technology - Message Handling Systems
 (MHS): Message Transfer System: Abstract Service
 Definition and Procedures", ITU-T Recommendation X.411 |
 ISO/IEC 10021-4:1999, 1999.

Timmel, et al. Informational [Page 51]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

Appendix A. ASN.1 Module

 KMAttributes2012
 { joint-iso-itu-t(2) country(16) us(840) organization(1)
 gov(101) dod(2) infosec(1) modules(0) 39 }

 DEFINITIONS IMPLICIT TAGS ::=

 BEGIN

 -- EXPORT ALL

 IMPORTS

 -- From [RFC5911]

 aa-communityIdentifiers, CommunityIdentifier
 FROM CMSFirmwareWrapper-2009
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-cms-firmware-wrap-02(40) }

 -- From [RFC5911]

 aa-contentHint, ESSSecurityLabel, id-aa-securityLabel
 FROM ExtendedSecurityServices-2009
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-ess-2006-02(42) }

 -- From [RFC5911] [RFC5912]

 AlgorithmIdentifier{}, SMIME-CAPS, ParamOptions, KEY-WRAP
 FROM AlgorithmInformation-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58) }

 -- From [RFC5912]

 Name, Certificate
 FROM PKIX1Explicit-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-explicit-02(51) }

Timmel, et al. Informational [Page 52]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 -- From [RFC5912]

 GeneralNames, SubjectInfoAccessSyntax, id-pe-subjectInfoAccess
 FROM PKIX1Implicit-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-implicit-02(59) }

 -- FROM [RFC5912]

 ATTRIBUTE
 FROM PKIX-CommonTypes-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkixCommon-02(57) }

 -- From [RFC6010]

 CMSContentConstraints
 FROM CMSContentConstraintsCertExtn
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 cmsContentConstr-93(42) }

 -- From [RFC6268]

 aa-binarySigningTime, BinaryTime
 FROM BinarySigningTimeModule-2010
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-binSigningTime-2009(55) }

 -- From [RFC6268]

 CertificateChoices, CertificateSet, Attribute {},
 aa-contentType, aa-messageDigest
 FROM CryptographicMessageSyntax-2010
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-cms-2009(58) }

 -- From [RFC7191]

 aa-keyPackageIdentifierAndReceiptRequest, SIREntityName
 FROM KeyPackageReceiptAndErrorModuleV2
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) modules(0) id-mod-keyPkgReceiptAndErrV2(63) }

Timmel, et al. Informational [Page 53]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 -- From [X.509]

 certificateExactMatch
 FROM CertificateExtensions
 { joint-iso-itu-t ds(5) module(1) certificateExtensions(26) 4 }

 ;

 -- ATTRIBUTES

 -- Replaces SignedAttributesSet information object set from
 -- [RFC6268].

 SignedAttributesSet ATTRIBUTE ::= {
 aa-contentType |
 aa-messageDigest |
 aa-contentHint |
 aa-communityIdentifiers |
 aa-binarySigningTime |
 aa-keyProvince-v2 |
 aa-keyPackageIdentifierAndReceiptRequest |
 aa-manifest |
 aa-keyAlgorithm |
 aa-userCertificate |
 aa-keyPackageReceivers-v2 |
 aa-tsecNomenclature |
 aa-keyPurpose |
 aa-keyUse |
 aa-transportKey |
 aa-keyDistributionPeriod |
 aa-keyValidityPeriod |
 aa-keyDurationPeriod |
 aa-classificationAttribute |
 aa-keyPackageType |
 aa-pkiPath |
 aa-usefulCertificates,
 ... }

 -- Replaces UnsignedAttributes from [RFC6268].

 UnsignedAttributes ATTRIBUTE ::= {
 ...
 }

Timmel, et al. Informational [Page 54]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 -- Replaces UnprotectedEnvAttributes from [RFC6268].

 UnprotectedEnvAttributes ATTRIBUTE ::= {
 aa-contentDecryptKeyIdentifier |
 aa-certificatePointers |
 aa-cRLDistributionPoints,
 ...
 }

 -- Replaces UnprotectedEncAttributes from [RFC6268].

 UnprotectedEncAttributes ATTRIBUTE ::= {
 aa-certificatePointers |
 aa-cRLDistributionPoints,
 ...
 }

 -- Replaces AuthAttributeSet from [RFC6268]

 AuthAttributeSet ATTRIBUTE ::= {
 aa-contentType |
 aa-messageDigest |
 aa-contentHint |
 aa-communityIdentifiers |
 aa-keyProvince-v2 |
 aa-binarySigningTime |
 aa-keyPackageIdentifierAndReceiptRequest |
 aa-manifest |
 aa-keyAlgorithm |
 aa-userCertificate |
 aa-keyPackageReceivers-v2 |
 aa-tsecNomenclature |
 aa-keyPurpose |
 aa-keyUse |
 aa-transportKey |
 aa-keyDistributionPeriod |
 aa-keyValidityPeriod |
 aa-keyDurationPeriod |
 aa-classificationAttribute |
 aa-keyPackageType |
 aa-pkiPath |
 aa-usefulCertificates,
 ... }

Timmel, et al. Informational [Page 55]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 -- Replaces UnauthAttributeSet from [RFC6268]

 UnauthAttributeSet ATTRIBUTE ::= {
 ...
 }

 -- Replaces AuthEnvDataAttributeSet from [RFC6268]

 AuthEnvDataAttributeSet ATTRIBUTE ::= {
 aa-certificatePointers |
 aa-cRLDistributionPoints,
 ...
 }

 -- Replaces UnauthEnvDataAttributeSet from [RFC6268]

 UnauthEnvDataAttributeSet ATTRIBUTE ::= {
 ...
 }

 -- Replaces OneAsymmetricKeyAttributes from [RFC5958]

 OneAsymmetricKeyAttributes ATTRIBUTE ::= {
 aa-userCertificate |
 aa-tsecNomenclature |
 aa-keyPurpose |
 aa-keyUse |
 aa-transportKey |
 aa-keyDistributionPeriod |
 aa-keyValidityPeriod |
 aa-keyDurationPeriod |
 aa-classificationAttribute |
 aa-splitIdentifier |
 aa-signatureUsage-v3 |
 aa-otherCertificateFormats |
 aa-pkiPath |
 aa-usefulCertificates,
 ... }

Timmel, et al. Informational [Page 56]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 -- Replaces SKeyPkgAttributes from [RFC6031]

 SKeyPkgAttributes ATTRIBUTE ::= {
 aa-keyAlgorithm |
 aa-tsecNomenclature |
 aa-keyPurpose |
 aa-keyUse |
 aa-keyDistributionPeriod |
 aa-keyValidityPeriod |
 aa-keyDurationPeriod |
 aa-classificationAttribute |
 aa-keyWrapAlgorithm |
 aa-contentDecryptKeyIdentifier,
 ... }

 -- Replaces SKeyAttributes from [RFC6031]

 SKeyAttributes ATTRIBUTE ::= {
 aa-keyAlgorithm |
 aa-tsecNomenclature |
 aa-keyPurpose |
 aa-keyUse |
 aa-keyDistributionPeriod |
 aa-keyValidityPeriod |
 aa-keyDurationPeriod |
 aa-classificationAttribute |
 aa-splitIdentifier |
 aa-keyWrapAlgorithm |
 aa-contentDecryptKeyIdentifier,
 ... }

Timmel, et al. Informational [Page 57]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 -- Replaces ContentAttributeSet from [RFC6268]

 ContentAttributeSet ATTRIBUTE ::= {
 aa-communityIdentifiers |
 aa-keyPackageIdentifierAndReceiptRequest |
 aa-keyAlgorithm |
 aa-keyPackageReceivers-v2 |
 aa-tsecNomenclature |
 aa-keyPurpose |
 aa-keyUse |
 aa-transportKey |
 aa-keyDistributionPeriod |
 aa-transportKey |
 aa-keyDistributionPeriod |
 aa-keyValidityPeriod |
 aa-keyDurationPeriod |
 aa-classificationAttribute |
 aa-keyPackageType |
 aa-pkiPath |
 aa-usefulCertificates,
 ... }

 -- Content Type, Message Digest, Content Hint, and Binary Signing
 -- Time are imported from [RFC6268].
 -- Community Identifiers is imported from [RFC5911].

 -- Key Province

 aa-keyProvince-v2 ATTRIBUTE ::= {
 TYPE KeyProvinceV2
 IDENTIFIED BY id-aa-KP-keyProvinceV2 }

 id-aa-KP-keyProvinceV2 OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) attributes(5) 71 }

 KeyProvinceV2 ::= OBJECT IDENTIFIER

 -- Manifest Attribute

 aa-manifest ATTRIBUTE ::= {
 TYPE Manifest
 IDENTIFIED BY id-aa-KP-manifest }

 id-aa-KP-manifest OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) attributes(5) 72 }

Timmel, et al. Informational [Page 58]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 Manifest ::= SEQUENCE SIZE (1..MAX) OF ShortTitle

 -- Key Algorithm Attribute

 aa-keyAlgorithm ATTRIBUTE ::= {
 TYPE KeyAlgorithm
 IDENTIFIED BY id-kma-keyAlgorithm }

 id-kma-keyAlgorithm OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 1 }

 KeyAlgorithm ::= SEQUENCE {
 keyAlg OBJECT IDENTIFIER,
 checkWordAlg [1] OBJECT IDENTIFIER OPTIONAL,
 crcAlg [2] OBJECT IDENTIFIER OPTIONAL }

 -- User Certificate Attribute

 aa-userCertificate ATTRIBUTE ::= {
 TYPE Certificate
 EQUALITY MATCHING RULE certificateExactMatch
 IDENTIFIED BY id-at-userCertificate }

 id-at-userCertificate OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) ds(5) attributes(4) 36 }

 -- Key Package Receivers Attribute

 aa-keyPackageReceivers-v2 ATTRIBUTE ::= {
 TYPE KeyPkgReceiversV2
 IDENTIFIED BY id-kma-keyPkgReceiversV2 }

 id-kma-keyPkgReceiversV2 OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 16 }

 KeyPkgReceiversV2 ::= SEQUENCE SIZE (1..MAX) OF KeyPkgReceiver

 KeyPkgReceiver ::= CHOICE {
 sirEntity [0] SIREntityName,
 community [1] CommunityIdentifier }

Timmel, et al. Informational [Page 59]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 -- TSEC Nomenclature Attribute

 aa-tsecNomenclature ATTRIBUTE ::= {
 TYPE TSECNomenclature
 IDENTIFIED BY id-kma-TSECNomenclature }

 id-kma-TSECNomenclature OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 3 }

 TSECNomenclature ::= SEQUENCE {
 shortTitle ShortTitle,
 editionID EditionID OPTIONAL,
 registerID RegisterID OPTIONAL,
 segmentID SegmentID OPTIONAL }

 ShortTitle ::= PrintableString

 EditionID ::= CHOICE {
 char CHOICE {
 charEdition [1] CharEdition,
 charEditionRange [2] CharEditionRange },
 num CHOICE {
 numEdition [3] NumEdition,
 numEditionRange [4] NumEditionRange } }

 CharEdition ::= PrintableString

 CharEditionRange ::= SEQUENCE {
 firstCharEdition CharEdition,
 lastCharEdition CharEdition }

 NumEdition ::= INTEGER (0..308915776)

 NumEditionRange ::= SEQUENCE {
 firstNumEdition NumEdition,
 lastNumEdition NumEdition }

 RegisterID ::= CHOICE {
 register [5] Register,
 registerRange [6] RegisterRange }

 Register ::= INTEGER (0..2147483647)

 RegisterRange ::= SEQUENCE {
 firstRegister Register,
 lastRegister Register }

Timmel, et al. Informational [Page 60]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 SegmentID ::= CHOICE {
 segmentNumber [7] SegmentNumber,
 segmentRange [8] SegmentRange }

 SegmentNumber ::= INTEGER (1..127)

 SegmentRange ::= SEQUENCE {
 firstSegment SegmentNumber,
 lastSegment SegmentNumber }

 -- Key Purpose Attribute

 aa-keyPurpose ATTRIBUTE ::= {
 TYPE KeyPurpose
 IDENTIFIED BY id-kma-keyPurpose }

 id-kma-keyPurpose OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 13 }

 KeyPurpose ::= ENUMERATED {
 n-a (0), -- Not Applicable
 a (65), -- Operational
 b (66), -- Compatible Multiple Key
 l (76), -- Logistics Combinations
 m (77), -- Maintenance
 r (82), -- Reference
 s (83), -- Sample
 t (84), -- Training
 v (86), -- Developmental
 x (88), -- Exercise
 z (90), -- "On the Air" Testing
 ... -- Expect additional key purpose values -- }

 -- Key Use Attribute

 aa-keyUse ATTRIBUTE ::= {
 TYPE KeyUse
 IDENTIFIED BY id-kma-keyUse }

 id-kma-keyUse OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 14 }

Timmel, et al. Informational [Page 61]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 KeyUse ::= ENUMERATED {
 n-a (0), -- Not Applicable
 ffk (1), -- FIREFLY/CROSSTALK Key (Basic Format)
 kek (2), -- Key Encryption Key
 kpk (3), -- Key Production Key
 msk (4), -- Message Signature Key
 qkek (5), -- QUADRANT Key Encryption Key
 tek (6), -- Traffic Encryption Key
 tsk (7), -- Transmission Security Key
 trkek (8), -- Transfer Key Encryption Key
 nfk (9), -- Netted FIREFLY Key
 effk (10), -- FIREFLY Key (Enhanced Format)
 ebfk (11), -- FIREFLY Key (Enhanceable Basic Format)
 aek (12), -- Algorithm Encryption Key
 wod (13), -- Word of Day
 kesk (246), -- Key Establishment Key
 eik (247), -- Entity Identification Key
 ask (248), -- Authority Signature Key
 kmk (249), -- Key Modifier Key
 rsk (250), -- Revocation Signature Key
 csk (251), -- Certificate Signature Key
 sak (252), -- Symmetric Authentication Key
 rgk (253), -- Random Generation Key
 cek (254), -- Certificate Encryption Key
 exk (255), -- Exclusion Key
 ... -- Expect additional key use values -- }

 -- Transport Key Attribute

 aa-transportKey ATTRIBUTE ::= {
 TYPE TransOp
 IDENTIFIED BY id-kma-transportKey }

 id-kma-transportKey OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 15 }

 TransOp ::= ENUMERATED {
 transport (1),
 operational (2) }

 -- Key Distribution Period Attribute

 aa-keyDistributionPeriod ATTRIBUTE ::= {
 TYPE KeyDistPeriod
 IDENTIFIED BY id-kma-keyDistPeriod }

Timmel, et al. Informational [Page 62]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 id-kma-keyDistPeriod OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 5 }

 KeyDistPeriod ::= SEQUENCE {
 doNotDistBefore [0] BinaryTime OPTIONAL,
 doNotDistAfter BinaryTime }

 -- Key Validity Period Attribute

 aa-keyValidityPeriod ATTRIBUTE ::= {
 TYPE KeyValidityPeriod
 IDENTIFIED BY id-kma-keyValidityPeriod }

 id-kma-keyValidityPeriod OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 6 }

 KeyValidityPeriod ::= SEQUENCE {
 doNotUseBefore BinaryTime,
 doNotUseAfter BinaryTime OPTIONAL }

 -- Key Duration Attribute

 aa-keyDurationPeriod ATTRIBUTE ::= {
 TYPE KeyDuration
 IDENTIFIED BY id-kma-keyDuration }

 id-kma-keyDuration OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 7 }

 KeyDuration ::= CHOICE {
 hours [0] INTEGER (1..ub-KeyDuration-hours),
 days INTEGER (1..ub-KeyDuration-days),
 weeks [1] INTEGER (1..ub-KeyDuration-weeks),
 months [2] INTEGER (1..ub-KeyDuration-months),
 years [3] INTEGER (1..ub-KeyDuration-years) }

 ub-KeyDuration-hours INTEGER ::= 96
 ub-KeyDuration-days INTEGER ::= 732
 ub-KeyDuration-weeks INTEGER ::= 104
 ub-KeyDuration-months INTEGER ::= 72
 ub-KeyDuration-years INTEGER ::= 100

Timmel, et al. Informational [Page 63]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 -- Classification Attribute

 -- The attribute syntax is imported from [RFC6268]. The term
 -- "classification" is used in this document, but the term "security
 -- label" is used in [RFC2634]. The terms have the same meaning.

 aa-classificationAttribute ATTRIBUTE ::= {
 TYPE Classification
 IDENTIFIED BY id-aa-KP-classification }

 id-aa-KP-classification OBJECT IDENTIFIER ::= id-aa-securityLabel

 Classification ::= ESSSecurityLabel

 id-enumeratedRestrictiveAttributes OBJECT IDENTIFIER ::=
 { 2 16 840 1 101 2 1 8 3 4 }

 id-enumeratedPermissiveAttributes OBJECT IDENTIFIER ::=
 { 2 16 840 1 101 2 1 8 3 1 }

 EnumeratedTag ::= SEQUENCE {
 tagName OBJECT IDENTIFIER,
 attributeList SET OF SecurityAttribute }

 SecurityAttribute ::= INTEGER (0..MAX)

 -- Split Identifier Attribute

 aa-splitIdentifier ATTRIBUTE ::= {
 TYPE SplitID
 IDENTIFIED BY id-kma-splitID }

 id-kma-splitID OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 11 }

 SplitID ::= SEQUENCE {
 half ENUMERATED { a(0), b(1) },
 combineAlg AlgorithmIdentifier
 {COMBINE-ALGORITHM, {CombineAlgorithms}} OPTIONAL }

Timmel, et al. Informational [Page 64]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 COMBINE-ALGORITHM ::= CLASS {
 &id OBJECT IDENTIFIER UNIQUE,
 &Params OPTIONAL,
 ¶mPresence ParamOptions DEFAULT absent,
 &smimeCaps SMIME-CAPS OPTIONAL
 }
 WITH SYNTAX {
 IDENTIFIER &id
 [PARAMS [TYPE &Params] ARE ¶mPresence]
 [SMIME-CAPS &smimeCaps]
 }

 CombineAlgorithms COMBINE-ALGORITHM ::= {
 ...
 }

 -- Key Package Type Attribute

 aa-keyPackageType ATTRIBUTE ::= {
 TYPE KeyPkgType
 IDENTIFIED BY id-kma-keyPkgType }

 id-kma-keyPkgType OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 12 }

 KeyPkgType ::= OBJECT IDENTIFIER

 -- Signature Usage Attribute

 aa-signatureUsage-v3 ATTRIBUTE ::= {
 TYPE SignatureUsage
 IDENTIFIED BY id-kma-sigUsageV3 }

 id-kma-sigUsageV3 OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 22 }

 SignatureUsage ::= CMSContentConstraints

 -- Other Certificate Format Attribute

 aa-otherCertificateFormats ATTRIBUTE ::= {
 TYPE CertificateChoices
 IDENTIFIED BY id-kma-otherCertFormats }

Timmel, et al. Informational [Page 65]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 id-kma-otherCertFormats OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 19 }

 -- PKI Path Attribute

 aa-pkiPath ATTRIBUTE ::= {
 TYPE PkiPath
 IDENTIFIED BY id-at-pkiPath }

 id-at-pkiPath OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) ds(5) attributes(4) 70 }

 PkiPath ::= SEQUENCE SIZE (1..MAX) OF Certificate

 -- Useful Certificates Attribute

 aa-usefulCertificates ATTRIBUTE ::= {
 TYPE CertificateSet
 IDENTIFIED BY id-kma-usefulCerts }

 id-kma-usefulCerts OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 20 }

 -- Key Wrap Attribute

 aa-keyWrapAlgorithm ATTRIBUTE ::= {
 TYPE AlgorithmIdentifier{KEY-WRAP, {KeyEncryptionAlgorithmSet}}
 IDENTIFIED BY id-kma-keyWrapAlgorithm }

 id-kma-keyWrapAlgorithm OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) keying-material-attributes(13) 21 }

 KeyEncryptionAlgorithmSet KEY-WRAP ::= { ... }

 -- Content Decryption Key Identifier Attribute

 aa-contentDecryptKeyIdentifier ATTRIBUTE ::= {
 TYPE ContentDecryptKeyID
 IDENTIFIED BY id-aa-KP-contentDecryptKeyID }

 id-aa-KP-contentDecryptKeyID OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) attributes(5) 66 }

 ContentDecryptKeyID::= OCTET STRING

Timmel, et al. Informational [Page 66]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

 -- Certificate Pointers Attribute

 aa-certificatePointers ATTRIBUTE ::= {
 TYPE SubjectInfoAccessSyntax
 IDENTIFIED BY id-pe-subjectInfoAccess }

 -- CRL Pointers Attribute

 aa-cRLDistributionPoints ATTRIBUTE ::= {
 TYPE GeneralNames
 IDENTIFIED BY id-aa-KP-crlPointers }

 id-aa-KP-crlPointers OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) attributes (5) 70 }

 -- ExtendedErrorCodes

 id-errorCodes OBJECT IDENTIFIER ::=
 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)
 dod(2) infosec(1) errorCodes(22) }

 id-missingKeyType OBJECT IDENTIFIER ::= {
 id-errorCodes 1 }

 id-privacyMarkTooLong OBJECT IDENTIFIER ::= {
 id-errorCodes 2 }

 id-unrecognizedSecurityPolicy OBJECT IDENTIFIER ::= {
 id-errorCodes 3 }

 END

Timmel, et al. Informational [Page 67]

RFC 7906 NSA’s CMS Key Management Attributes June 2016

Authors’ Addresses

 Paul Timmel
 National Information Assurance Research Laboratory
 National Security Agency

 Email: pstimme@nsa.gov

 Russ Housley
 Vigil Security, LLC
 918 Spring Knoll Drive
 Herndon, VA 20170
 United States

 Email: housley@vigilsec.com

 Sean Turner
 IECA, Inc.
 3057 Nutley Street, Suite 106
 Fairfax, VA 22031
 United States

 Email: turners@ieca.com

Timmel, et al. Informational [Page 68]

