

Internet Engineering Task Force (IETF) P. Saint-Andre
Request for Comments: 8264 Jabber.org
Obsoletes: 7564 M. Blanchet
Category: Standards Track Viagenie
ISSN: 2070-1721 October 2017

 PRECIS Framework: Preparation, Enforcement, and Comparison of
Internationalized Strings in Application Protocols

Abstract

 Application protocols using Unicode code points in protocol strings
need to properly handle such strings in order to enforce
internationalization rules for strings placed in various protocol
slots (such as addresses and identifiers) and to perform valid
comparison operations (e.g., for purposes of authentication or
authorization). This document defines a framework enabling
application protocols to perform the preparation, enforcement, and
comparison of internationalized strings ("PRECIS") in a way that
depends on the properties of Unicode code points and thus is more
agile with respect to versions of Unicode. As a result, this
 framework provides a more sustainable approach to the handling of
internationalized strings than the previous framework, known as
Stringprep (RFC 3454). This document obsoletes RFC 7564.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8264.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of

Saint-Andre & Blanchet Standards Track [Page 1]

https://trustee.ietf.org/license-info
https://www.rfc-editor.org/info/rfc8264
http:Jabber.org

RFC 8264 PRECIS Framework October 2017

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 6
 3. Preparation, Enforcement, and Comparison 6
 4. String Classes . 8
 4.1. Overview . 8
 4.2. IdentifierClass . 9
 4.2.1. Valid . 9
 4.2.2. Contextual Rule Required 10
 4.2.3. Disallowed . 10
 4.2.4. Unassigned . 10
 4.2.5. Examples . 11

 4.3. FreeformClass . 11
 4.3.1. Valid . 11
 4.3.2. Contextual Rule Required 12
 4.3.3. Disallowed . 12
 4.3.4. Unassigned . 12
 4.3.5. Examples . 12

 4.4. Summary . 12
 5. Profiles . 14
 5.1. Profiles Must Not Be Multiplied beyond Necessity 14
 5.2. Rules . 15
 5.2.1. Width Mapping Rule 15
 5.2.2. Additional Mapping Rule 15
 5.2.3. Case Mapping Rule 16
 5.2.4. Normalization Rule 16
 5.2.5. Directionality Rule 17

 5.3. A Note about Spaces 18
 6. Applications . 18
 6.1. How to Use PRECIS in Applications 18
 6.2. Further Excluded Characters 20
 6.3. Building Application-Layer Constructs 20

 7. Order of Operations . 21
 8. Code Point Properties . 21
 9. Category Definitions Used to Calculate Derived Property . . . 24
 9.1. LetterDigits (A) . 25
 9.2. Unstable (B) . 25
 9.3. IgnorableProperties (C) 25
 9.4. IgnorableBlocks (D) 25
 9.5. LDH (E) . 25

Saint-Andre & Blanchet Standards Track [Page 2]

RFC 8264 PRECIS Framework October 2017

 9.6. Exceptions (F) . 25
 9.7. BackwardCompatible (G) 25
 9.8. JoinControl (H) . 26
 9.9. OldHangulJamo (I) . 26
 9.10. Unassigned (J) . 26
 9.11. ASCII7 (K) . 26
 9.12. Controls (L) . 27
 9.13. PrecisIgnorableProperties (M) 27
 9.14. Spaces (N) . 27
 9.15. Symbols (O) . 27
 9.16. Punctuation (P) . 27
 9.17. HasCompat (Q) . 28
 9.18. OtherLetterDigits (R) 28

 10. Guidelines for Designated Experts 28
 11. IANA Considerations . 29
 11.1. PRECIS Derived Property Value Registry 29
 11.2. PRECIS Base Classes Registry 29
 11.3. PRECIS Profiles Registry 30

 12. Security Considerations 32
 12.1. General Issues . 32
 12.2. Use of the IdentifierClass 33
 12.3. Use of the FreeformClass 33
 12.4. Local Character Set Issues 33
 12.5. Visually Similar Characters 33
 12.6. Security of Passwords 35

 13. Interoperability Considerations 36
 13.1. Coded Character Sets 36
 13.2. Dependency on Unicode 37
 13.3. Encoding . 37
 13.4. Unicode Versions . 37
 13.5. Potential Changes to Handling of Certain Unicode Code

Points . 37
 14. References . 38
 14.1. Normative References 38
 14.2. Informative References 39

 Appendix A. Changes from RFC 7564 43
 Acknowledgements . 43
 Authors' Addresses . 43

1. Introduction

 Application protocols using Unicode code points [Unicode] in protocol
strings need to properly handle such strings in order to enforce
internationalization rules for strings placed in various protocol
slots (such as addresses and identifiers) and to perform valid
comparison operations (e.g., for purposes of authentication or
authorization). This document defines a framework enabling
application protocols to perform the preparation, enforcement, and

Saint-Andre & Blanchet Standards Track [Page 3]

RFC 8264 PRECIS Framework October 2017

 comparison of internationalized strings ("PRECIS") in a way that
depends on the properties of Unicode code points and thus is more
agile with respect to versions of Unicode. (Note: PRECIS is
restricted to Unicode and does not support any other coded character
set [RFC6365].)

 As described in the PRECIS problem statement [RFC6885], many IETF
protocols have used the Stringprep framework [RFC3454] as the basis
for preparing, enforcing, and comparing protocol strings that contain
Unicode code points, especially code points outside the ASCII range
[RFC20]. The Stringprep framework was developed during work on the
original technology for internationalized domain names (IDNs), here
called "IDNA2003" [RFC3490], and Nameprep [RFC3491] was the
Stringprep profile for IDNs. At the time, Stringprep was designed as
a general framework so that other application protocols could define
their own Stringprep profiles. Indeed, a number of application
protocols defined such profiles.

 After the publication of [RFC3454] in 2002, several significant
issues arose with the use of Stringprep in the IDN case, as
documented in the IAB's recommendations regarding IDNs [RFC4690]
(most significantly, Stringprep was tied to Unicode version 3.2).
Therefore, the newer IDNA specifications, here called "IDNA2008"
[RFC5890] [RFC5891] [RFC5892] [RFC5893] [RFC5894], no longer use
Stringprep and Nameprep. This migration away from Stringprep for
IDNs prompted other "customers" of Stringprep to consider new
approaches to the preparation, enforcement, and comparison of
internationalized strings, as described in [RFC6885].

 This document defines a framework for a post-Stringprep approach to
the preparation, enforcement, and comparison of internationalized
strings in application protocols, based on several principles:

 1. Define a small set of string classes that specify the Unicode
code points appropriate for common application-protocol
constructs (where possible, maintaining compatibility with
IDNA2008 to help ensure a more consistent user experience).

 2. Define each PRECIS string class in terms of Unicode code points
and their properties so that an algorithm can be used to
determine whether each code point or character category is
(a) valid, (b) allowed in certain contexts, (c) disallowed, or
(d) unassigned.

 3. Use an "inclusion model" such that a string class consists only
of code points that are explicitly allowed, with the result that
any code point not explicitly allowed is forbidden.

Saint-Andre & Blanchet Standards Track [Page 4]

RFC 8264 PRECIS Framework October 2017

 4. Enable application protocols to define profiles of the PRECIS
string classes if necessary (addressing matters such as width
mapping, case mapping, Unicode normalization, and
directionality), but strongly discourage the multiplication of
profiles beyond necessity in order to avoid violations of the
"Principle of Least Astonishment".

 It is expected that this framework will yield the following benefits:

 o Application protocols will be more agile with regard to Unicode
versions (recognizing that complete agility cannot be realized in
practice).

 o Implementers will be able to share code point tables and software
code across application protocols, most likely by means of
software libraries.

 o End users will be able to acquire more accurate expectations about
the code points that are acceptable in various contexts. Given
 this more uniform set of string classes, it is also expected that
copy/paste operations between software implementing different
application protocols will be more predictable and coherent.

 Whereas the string classes define the "baseline" code points for a
range of applications, profiling enables application protocols to
apply the string classes in ways that are appropriate for common
constructs such as usernames [RFC8265], opaque strings such as
passwords [RFC8265], and nicknames [RFC8266]. Profiles are
 responsible for defining the handling of right-to-left code points as
well as various mapping operations of the kind also discussed for
IDNs in [RFC5895], such as case preservation or lowercasing, Unicode
normalization, mapping of certain code points to other code points or
to nothing, and mapping of fullwidth and halfwidth code points.

 When an application applies a profile of a PRECIS string class, it
transforms an input string (which might or might not be conforming)
into an output string that definitively conforms to the profile. In
 particular, this document focuses on the resulting ability to achieve
the following objectives:

 a. Enforcing all the rules of a profile for a single output string
to check whether the output string conforms to the rules of the
profile and thus determine if a string can be included in a
protocol slot, communicated to another entity within a protocol,
stored in a retrieval system, etc.

 b. Comparing two output strings to determine if they are equivalent,
typically through octet-for-octet matching to test for

Saint-Andre & Blanchet Standards Track [Page 5]

RFC 8264 PRECIS Framework October 2017

 "bit-string identity" (e.g., to make an access decision for
purposes of authentication or authorization as further described
in [RFC6943]).

 The opportunity to define profiles naturally introduces the
possibility of a proliferation of profiles, thus potentially
mitigating the benefits of common code and violating user
expectations. See Section 5 for a discussion of this important
topic.

 In addition, it is extremely important for protocol designers and
application developers to understand that the transformation of an
input string to an output string is rarely reversible. As one
 relatively simple example, case mapping would transform an input
string of "StPeter" to an output string of "stpeter", thus leading to
a loss of information about the capitalization of the first and third
characters. Similar considerations apply to other forms of mapping
and normalization.

 Although this framework is similar to IDNA2008 and includes by
reference some of the character categories defined in [RFC5892], it
defines additional character categories to meet the needs of common
application protocols other than DNS.

 The character categories and calculation rules defined under
Sections 8 and 9 are normative and apply to all Unicode code points.
The code point table that results from applying the character
categories and calculation rules to the latest version of Unicode can
be found in an IANA registry (see Section 11).

2. Terminology

 Many important terms used in this document are defined in [RFC5890],
[RFC6365], [RFC6885], and [Unicode]. The terms "left-to-right" (LTR)
and "right-to-left" (RTL) are defined in Unicode Standard Annex #9
[UAX9].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

3. Preparation, Enforcement, and Comparison

 This document distinguishes between three different actions that an
entity can take with regard to a string:

Saint-Andre & Blanchet Standards Track [Page 6]

RFC 8264 PRECIS Framework October 2017

 o Enforcement entails applying all of the rules specified for a
particular string class, or profile thereof, to a single input
string, for the purpose of checking whether the string conforms to
all of the rules and thus determining if the string can be used in
a given protocol slot.

 o Comparison entails applying all of the rules specified for a
particular string class, or profile thereof, to two separate input
strings, for the purpose of determining if the two strings are
equivalent.

 o Preparation primarily entails ensuring that the code points in a
single input string are allowed by the underlying PRECIS string
class, and sometimes also entails applying one or more of the
rules specified for a particular string class or profile thereof.
Preparation can be appropriate for constrained devices that can to
some extent restrict the code points in a string to a limited
repertoire of characters but that do not have the processing power
or onboard memory to perform operations such as Unicode
normalization. However, preparation does not ensure that an input
string conforms to all of the rules for a string class or profile
thereof.

 Note: The term "preparation" as used in this specification and
related documents has a much more limited scope than it did in
Stringprep; it essentially refers to a kind of preprocessing of
an input string, not the actual operations that apply
internationalization rules to produce an output string (here
termed "enforcement") or to compare two output strings (here
termed "comparison").

 In most cases, authoritative entities such as servers are responsible
for enforcement, whereas subsidiary entities such as clients are
responsible only for preparation. The rationale for this distinction
 is that clients might not have the facilities (in terms of device
memory and processing power) to enforce all the rules regarding
internationalized strings (such as width mapping and Unicode
normalization), although they can more easily limit the repertoire of
characters they offer to an end user. By contrast, it is assumed
that a server would have more capacity to enforce the rules, and in
any case a server acts as an authority regarding allowable strings in
protocol slots such as addresses and endpoint identifiers. In
 addition, a client cannot necessarily be trusted to properly generate
such strings, especially for security-sensitive contexts such as
authentication and authorization.

Saint-Andre & Blanchet Standards Track [Page 7]

RFC 8264 PRECIS Framework October 2017

4. String Classes

4.1. Overview

 Starting in 2010, various "customers" of Stringprep began to discuss
the need to define a post-Stringprep approach to the preparation and
comparison of internationalized strings other than IDNs. This
 community analyzed the existing Stringprep profiles and also weighed
the costs and benefits of defining a relatively small set of Unicode
code points that would minimize the potential for user confusion
caused by visually similar code points (and thus be relatively
"safe") vs. defining a much larger set of Unicode code points that
would maximize the potential for user creativity (and thus be
relatively "expressive"). As a result, the community concluded that
most existing uses could be addressed by two string classes:

 IdentifierClass: a sequence of letters, numbers, and some symbols
that is used to identify or address a network entity such as a
user account, a venue (e.g., a chat room), an information source
(e.g., a data feed), or a collection of data (e.g., a file); the
intent is that this class will minimize user confusion in a wide
 variety of application protocols, with the result that safety has
been prioritized over expressiveness for this class.

 FreeformClass: a sequence of letters, numbers, symbols, spaces, and
other code points that is used for free-form strings, including
passwords as well as display elements such as human-friendly
nicknames for devices or for participants in a chat room; the
intent is that this class will allow nearly any Unicode code
point, with the result that expressiveness has been prioritized
over safety for this class. Note well that protocol designers,
application developers, service providers, and end users might not
understand or be able to enter all of the code points that can be
included in the FreeformClass (see Section 12.3 for details).

 Future specifications might define additional PRECIS string classes,
such as a class that falls somewhere between the IdentifierClass and
 the FreeformClass. At this time, it is not clear how useful such a
 class would be. In any case, because application developers are able
to define profiles of PRECIS string classes, a protocol needing a
construct between the IdentifierClass and the FreeformClass could
 define a restricted profile of the FreeformClass if needed.

 The following subsections discuss the IdentifierClass and
FreeformClass in more detail, with reference to the dimensions
 described in Section 5 of [RFC6885]. Each string class is defined by
the following behavioral rules:

Saint-Andre & Blanchet Standards Track [Page 8]

RFC 8264 PRECIS Framework October 2017

 Valid: Defines which code points are treated as valid for the
string.

 Contextual Rule Required: Defines which code points are treated as
allowed only if the requirements of a contextual rule are met
(i.e., either CONTEXTJ or CONTEXTO as originally defined in the
IDNA2008 specifications).

 Disallowed: Defines which code points need to be excluded from the
string.

 Unassigned: Defines application behavior in the presence of code
points that are unknown (i.e., not yet designated) for the version
of Unicode used by the application.

 This document defines the valid, contextual rule required,
disallowed, and unassigned rules for the IdentifierClass and
FreeformClass. As described under Section 5, profiles of these
string classes are responsible for defining the width mapping,
additional mapping, case mapping, normalization, and directionality
rules.

4.2. IdentifierClass

 Most application technologies need strings that can be used to refer
to, include, or communicate protocol strings like usernames,
filenames, data feed identifiers, and chat room names. We group such
strings into a class called "IdentifierClass" having the following
features.

4.2.1. Valid

 o Code points traditionally used as letters and numbers in writing
systems, i.e., the LetterDigits ("A") category first defined in
[RFC5892] and listed here under Section 9.1.

 o Code points in the range U+0021 through U+007E, i.e., the
(printable) ASCII7 ("K") category defined under Section 9.11.
These code points are "grandfathered" into PRECIS and thus are
valid even if they would otherwise be disallowed according to the
property-based rules specified in the next section.

 Note: Although the PRECIS IdentifierClass reuses the LetterDigits
category from IDNA2008, the range of code points allowed in the
IdentifierClass is wider than the range of code points allowed in
IDNA2008. The main reason is that IDNA2008 applies the
Unstable ("B") category (Section 9.2) before the LetterDigits

Saint-Andre & Blanchet Standards Track [Page 9]

RFC 8264 PRECIS Framework October 2017

 category, thus disallowing uppercase code points, whereas the
IdentifierClass does not apply the Unstable category.

4.2.2. Contextual Rule Required

 o A number of code points from the Exceptions ("F") category defined
under Section 9.6.

 o Joining code points, i.e., the JoinControl ("H") category defined
under Section 9.8.

4.2.3. Disallowed

 o Old Hangul Jamo code points, i.e., the OldHangulJamo ("I")
category defined under Section 9.9.

 o Control code points, i.e., the Controls ("L") category defined
under Section 9.12.

 o Ignorable code points, i.e., the PrecisIgnorableProperties ("M")
category defined under Section 9.13.

 o Space code points, i.e., the Spaces ("N") category defined under
Section 9.14.

 o Symbol code points, i.e., the Symbols ("O") category defined under
Section 9.15.

 o Punctuation code points, i.e., the Punctuation ("P") category
defined under Section 9.16.

 o Any code point that is decomposed and recomposed into something
other than itself under Unicode Normalization Form KC, i.e., the
 HasCompat ("Q") category defined under Section 9.17. These code
 points are disallowed even if they would otherwise be valid
according to the property-based rules specified in the previous
section.

 o Letters and digits other than the "traditional" letters and digits
allowed in IDNs, i.e., the OtherLetterDigits ("R") category
defined under Section 9.18.

4.2.4. Unassigned

 Any code points that are not yet designated in the Unicode coded
character set are considered unassigned for purposes of the
IdentifierClass, and such code points are to be treated as
disallowed. See Section 9.10.

Saint-Andre & Blanchet Standards Track [Page 10]

RFC 8264 PRECIS Framework October 2017

4.2.5. Examples

 As described in the Introduction to this document, the string classes
do not handle all issues related to string preparation and comparison
(such as case mapping); instead, such issues are handled at the level
of profiles. Examples for profiles of the IdentifierClass can be
found in [RFC8265] (the UsernameCaseMapped and UsernameCasePreserved
profiles).

4.3. FreeformClass

 Some application technologies need strings that can be used in a
free-form way, e.g., as a password in an authentication exchange (see
[RFC8265]) or a nickname in a chat room (see [RFC8266]). We group
such things into a class called "FreeformClass" having the following
features.

 Security Warning: As mentioned, the FreeformClass prioritizes
expressiveness over safety; Section 12.3 describes some of the
security hazards involved with using or profiling the
FreeformClass.

 Security Warning: Consult Section 12.6 for relevant security
considerations when strings conforming to the FreeformClass, or a
profile thereof, are used as passwords.

4.3.1. Valid

 o Traditional letters and numbers, i.e., the LetterDigits ("A")
category first defined in [RFC5892] and listed here under
Section 9.1.

 o Code points in the range U+0021 through U+007E, i.e., the
(printable) ASCII7 ("K") category defined under Section 9.11.

 o Space code points, i.e., the Spaces ("N") category defined under
Section 9.14.

 o Symbol code points, i.e., the Symbols ("O") category defined under
Section 9.15.

 o Punctuation code points, i.e., the Punctuation ("P") category
defined under Section 9.16.

 o Any code point that is decomposed and recomposed into something
other than itself under Unicode Normalization Form KC, i.e., the
 HasCompat ("Q") category defined under Section 9.17.

Saint-Andre & Blanchet Standards Track [Page 11]

RFC 8264 PRECIS Framework October 2017

 o Letters and digits other than the "traditional" letters and digits
allowed in IDNs, i.e., the OtherLetterDigits ("R") category
defined under Section 9.18.

4.3.2. Contextual Rule Required

 o A number of code points from the Exceptions ("F") category defined
under Section 9.6.

 o Joining code points, i.e., the JoinControl ("H") category defined
under Section 9.8.

4.3.3. Disallowed

 o Old Hangul Jamo code points, i.e., the OldHangulJamo ("I")
category defined under Section 9.9.

 o Control code points, i.e., the Controls ("L") category defined
under Section 9.12.

 o Ignorable code points, i.e., the PrecisIgnorableProperties ("M")
category defined under Section 9.13.

4.3.4. Unassigned

 Any code points that are not yet designated in the Unicode coded
character set are considered unassigned for purposes of the
FreeformClass, and such code points are to be treated as disallowed.

4.3.5. Examples

 As described in the Introduction to this document, the string classes
do not handle all issues related to string preparation and comparison
(such as case mapping); instead, such issues are handled at the level
of profiles. Examples for profiles of the FreeformClass can be found
in [RFC8265] (the OpaqueString profile) and [RFC8266] (the Nickname
profile).

4.4. Summary

 The following table summarizes the differences between the
IdentifierClass and the FreeformClass (i.e., the disposition of a
code point as valid, contextual rule required, disallowed, or
unassigned), depending on its PRECIS category.

Saint-Andre & Blanchet Standards Track [Page 12]

RFC 8264 PRECIS Framework October 2017

 +===============================+=================+===============+
 | CATEGORY | IDENTIFIERCLASS | FREEFORMCLASS |
 +===============================+=================+===============+
 | (A) LetterDigits | Valid | Valid |
 +-------------------------------+-----------------+---------------+
 | (B) Unstable | [N/A (unused)] |
 +-------------------------------+-----------------+---------------+
 | (C) IgnorableProperties | [N/A (unused)] |
 +-------------------------------+-----------------+---------------+
 | (D) IgnorableBlocks | [N/A (unused)] |
 +-------------------------------+-----------------+---------------+
 | (E) LDH | [N/A (unused)] |
 +-------------------------------+-----------------+---------------+
 | (F) Exceptions | Contextual | Contextual |
| | Rule Required | Rule Required |
 +-------------------------------+-----------------+---------------+
 | (G) BackwardCompatible | [Handled by IDNA Rules] |
 +-------------------------------+-----------------+---------------+
 | (H) JoinControl | Contextual | Contextual |
| | Rule Required | Rule Required |
 +-------------------------------+-----------------+---------------+
 | (I) OldHangulJamo | Disallowed | Disallowed |
 +-------------------------------+-----------------+---------------+
 | (J) Unassigned | Unassigned | Unassigned |
 +-------------------------------+-----------------+---------------+
 | (K) ASCII7 | Valid | Valid |
 +-------------------------------+-----------------+---------------+
 | (L) Controls | Disallowed | Disallowed |
 +-------------------------------+-----------------+---------------+
 | (M) PrecisIgnorableProperties | Disallowed | Disallowed |
 +-------------------------------+-----------------+---------------+
 | (N) Spaces | Disallowed | Valid |
 +-------------------------------+-----------------+---------------+
 | (O) Symbols | Disallowed | Valid |
 +-------------------------------+-----------------+---------------+
 | (P) Punctuation | Disallowed | Valid |
 +-------------------------------+-----------------+---------------+
 | (Q) HasCompat | Disallowed | Valid |
 +-------------------------------+-----------------+---------------+
 | (R) OtherLetterDigits | Disallowed | Valid |
 +-------------------------------+-----------------+---------------+

 Table 1: Comparative Disposition of Code Points

Saint-Andre & Blanchet Standards Track [Page 13]

RFC 8264 PRECIS Framework October 2017

5. Profiles

 This framework document defines the valid, contextual rule required,
disallowed, and unassigned rules for the IdentifierClass and the
FreeformClass. A profile of a PRECIS string class MUST define the
width mapping, additional mapping (if any), case mapping,
normalization, and directionality rules. A profile MAY also restrict
the allowable code points above and beyond the definition of the
relevant PRECIS string class (but MUST NOT add as valid any code
points that are disallowed by the relevant PRECIS string class).
These matters are discussed in the following subsections.

 Profiles of the PRECIS string classes are registered with the IANA as
described under Section 11.3. Profile names use the following
convention: they are of the form "Profilename of BaseClass", where
the "Profilename" string is a differentiator and "BaseClass" is the
name of the PRECIS string class being profiled; for example, the
profile used for opaque strings such as passwords is the OpaqueString
profile of the FreeformClass [RFC8265].

5.1. Profiles Must Not Be Multiplied beyond Necessity

 The risk of profile proliferation is significant because having too
many profiles will result in different behavior across various
applications, thus violating what is known in user interface design
as the "Principle of Least Astonishment".

 Indeed, we already have too many profiles. Ideally, we would have at
most two or three profiles. Unfortunately, numerous application
protocols exist with their own quirks regarding protocol strings.
Domain names, email addresses, instant messaging addresses, chat room
names, user nicknames or display names, filenames, authentication
identifiers, passwords, and other strings already exist in the wild
and need to be supported in existing application protocols such as
DNS, SMTP, the Extensible Messaging and Presence Protocol (XMPP),
Internet Relay Chat (IRC), NFS, the Internet Small Computer System
Interface (iSCSI), the Extensible Authentication Protocol (EAP), and
the Simple Authentication and Security Layer (SASL) [RFC4422], among
others.

 Nevertheless, profiles must not be multiplied beyond necessity.

 To help prevent profile proliferation, this document recommends
sensible defaults for the various options offered to profile creators
(such as width mapping and Unicode normalization). In addition, the
 guidelines for designated experts provided under Section 10 are meant
to encourage a high level of due diligence regarding new profiles.

Saint-Andre & Blanchet Standards Track [Page 14]

RFC 8264 PRECIS Framework October 2017

5.2. Rules

5.2.1. Width Mapping Rule

 The width mapping rule of a profile specifies whether width mapping
is performed on a string and how the mapping is done. Typically,
such mapping consists of mapping fullwidth and halfwidth code points,
i.e., code points with a Decomposition Type of Wide or Narrow, to
 their decomposition mappings; as an example, " " (FULLWIDTH DIGIT
 ZERO, U+FF10) would be mapped to "0" (DIGIT ZERO U+0030).

 The normalization form specified by a profile (see below) has an
impact on the need for width mapping. Because width mapping is
performed as a part of compatibility decomposition, a profile
employing either Normalization Form KD (NFKD) or Normalization
Form KC (NFKC) does not need to specify width mapping. However, if
 Unicode Normalization Form C (NFC) is used (as is recommended), then
the profile needs to specify whether to apply width mapping; in this
case, width mapping is in general RECOMMENDED because allowing
fullwidth and halfwidth code points to remain unmapped to their
compatibility variants would violate the "Principle of Least
Astonishment". For more information about the concept of width in
East Asian scripts within Unicode, see Unicode Standard Annex #11
[UAX11].

 Note: Because the East Asian width property is not guaranteed to
be stable by the Unicode Standard (see
<http://unicode.org/policies/stability_policy.html> for details),
the results of applying a given width mapping rule might not be
consistent across different versions of Unicode.

5.2.2. Additional Mapping Rule

 The additional mapping rule of a profile specifies whether additional
mappings are performed on a string, such as:

 o Mapping of delimiter code points (such as '@', ':', '/', '+',
and '-').

 o Mapping of special code points (e.g., non-ASCII space code points
to SPACE (U+0020) or control code points to nothing).

 The PRECIS mappings document [RFC7790] describes such mappings in
more detail.

Saint-Andre & Blanchet Standards Track [Page 15]

http://unicode.org/policies/stability_policy.html

RFC 8264 PRECIS Framework October 2017

5.2.3. Case Mapping Rule

 The case mapping rule of a profile specifies whether case mapping
(instead of case preservation) is performed on a string and how the
mapping is applied (e.g., mapping uppercase and titlecase code points
to their lowercase equivalents).

 If case mapping is desired (instead of case preservation), it is
RECOMMENDED to use the Unicode toLowerCase() operation defined in the
Unicode Standard [Unicode]. In contrast to the Unicode toCaseFold()
operation, the toLowerCase() operation is less likely to violate the
"Principle of Least Astonishment", especially when an application
merely wishes to convert uppercase and titlecase code points to their
lowercase equivalents while preserving lowercase code points.
Although the toCaseFold() operation can be appropriate when an
application needs to compare two strings (such as in search
operations), in general few application developers and even fewer
users understand its implications, so toLowerCase() is almost always
the safer choice.

 Note: Neither toLowerCase() nor toCaseFold() is designed to handle
various language-specific issues, such as the character "ı" (LATIN
SMALL LETTER DOTLESS I, U+0131) in several Turkic languages. The
 reader is referred to the PRECIS mappings document [RFC7790],
which describes these issues in greater detail.

 In order to maximize entropy and minimize the potential for false
accepts, it is NOT RECOMMENDED for application protocols to map
uppercase and titlecase code points to their lowercase equivalents
when strings conforming to the FreeformClass, or a profile thereof,
are used in passwords; instead, it is RECOMMENDED to preserve the
case of all code points contained in such strings and then perform
case-sensitive comparison. See also the related discussion in
 Section 12.6 of this document and in [RFC8265].

5.2.4. Normalization Rule

 The normalization rule of a profile specifies which Unicode
Normalization Form (D, KD, C, or KC) is to be applied (see Unicode
Standard Annex #15 [UAX15] for background information).

 In accordance with [RFC5198], Normalization Form C (NFC) is
RECOMMENDED.

 Protocol designers and application developers need to understand that
certain Unicode normalization forms, especially NFKC and NFKD, can
result in significant loss of information in various circumstances
and that these circumstances can depend on the language and script of

Saint-Andre & Blanchet Standards Track [Page 16]

RFC 8264 PRECIS Framework October 2017

 the strings to which the normalization forms are applied. Extreme
 care should be taken when specifying the use of these normalization
forms.

5.2.5. Directionality Rule

 The directionality rule of a profile specifies how to treat strings
containing what are often called "right-to-left" (RTL) code points
(see Unicode Standard Annex #9 [UAX9]). RTL code points come from
scripts that are normally written from right to left and are
considered by Unicode to, themselves, have right-to-left
directionality. Some strings containing RTL code points also contain
"left-to-right" (LTR) code points, such as ASCII numerals, as well as
code points without directional properties. Consequently, such
strings are known as "bidirectional strings".

 Presenting bidirectional strings in different layout systems (e.g., a
user interface that is configured to handle primarily an RTL script
vs. an interface that is configured to handle primarily an LTR
script) can yield display results that, while predictable to those
who understand the display rules, are counterintuitive to casual
 users. In particular, the same bidirectional string (in PRECIS
terms) might not be presented in the same way to users of those
different layout systems, even though the presentation is consistent
within any particular layout system. In some applications, these
presentation differences might be considered problematic and thus the
application designers might wish to restrict the use of bidirectional
strings by specifying a directionality rule. In other applications,
these presentation differences might not be considered problematic
(this especially tends to be true of more "free-form" strings) and
thus no directionality rule is needed.

 The PRECIS framework does not directly address how to deal with
bidirectional strings across all string classes and profiles nor does
it define any new directionality rules, because at present there is
no widely accepted and implemented solution for the safe display of
arbitrary bidirectional strings beyond the Unicode bidirectional
algorithm [UAX9]. Although rules for management and display of
bidirectional strings have been defined for domain name labels and
similar identifiers through the "Bidi Rule" specified in the IDNA2008
specification on right-to-left scripts [RFC5893], those rules are
quite restrictive and are not necessarily applicable to all
bidirectional strings.

 The authors of a PRECIS profile might believe that they need to
define a new directionality rule of their own. Because of the

 complexity of the issues involved, such a belief is almost always
misguided, even if the authors have done a great deal of careful

Saint-Andre & Blanchet Standards Track [Page 17]

RFC 8264 PRECIS Framework October 2017

 research into the challenges of displaying bidirectional strings.
This document strongly suggests that profile authors who are thinking
about defining a new directionality rule should think again and
instead consider using the "Bidi Rule" [RFC5893] (for profiles based
on the IdentifierClass) or following the Unicode bidirectional
algorithm [UAX9] (for profiles based on the FreeformClass or in
situations where the IdentifierClass is not appropriate).

5.3. A Note about Spaces

 With regard to the IdentifierClass, the consensus of the PRECIS
Working Group was that spaces are problematic for many reasons,
including the following:

 o Many Unicode code points are confusable with SPACE (U+0020).

 o Even if non-ASCII space code points are mapped to SPACE (U+0020),
space code points are often not rendered in user interfaces,
leading to the possibility that a human user might consider a
string containing spaces to be equivalent to the same string
without spaces.

 o In some locales, some devices are known to generate a code point
other than SPACE (U+0020), such as ZERO WIDTH JOINER (U+200D),
when a user performs an action like pressing the space bar on a
keyboard.

 One consequence of disallowing space code points in the
IdentifierClass might be to effectively discourage their use within
identifiers created in newer application protocols; given the
challenges involved with properly handling space code points
(especially non-ASCII space code points) in identifiers and other
protocol strings, the PRECIS Working Group considered this to be a
feature, not a bug.

 However, the FreeformClass does allow spaces; this in turn enables
application protocols to define profiles of the FreeformClass that
are more flexible than any profiles of the IdentifierClass. In
 addition, as explained in Section 6.3, application protocols can also
define application-layer constructs containing spaces.

6. Applications

6.1. How to Use PRECIS in Applications

 Although PRECIS has been designed with applications in mind,
internationalization is not suddenly made easy through the use of
PRECIS. Indeed, because it is extremely difficult for protocol

Saint-Andre & Blanchet Standards Track [Page 18]

RFC 8264 PRECIS Framework October 2017

 designers and application developers to do the right thing for all
users when supporting internationalized strings, often the safest
option is to support only the ASCII range [RFC20] in various protocol
slots. This state of affairs is unfortunate but is the direct result
 of the complexities involved with human languages (e.g., the vast
number of code points, scripts, user communities, and rules with
their inevitable exceptions), which kinds of strings application
developers and their users wish to support, the wide range of devices
that users employ to access services enabled by various Internet
protocols, and so on.

 Despite these significant challenges, application and protocol
developers sometimes persevere in attempting to support
internationalized strings in their systems. These developers need to
think carefully about how they will use the PRECIS string classes, or
profiles thereof, in their applications. This section provides some
guidelines to application developers (and to expert reviewers of
application-protocol specifications).

 o Don't define your own profile unless absolutely necessary (see
Section 5.1). Existing profiles have been designed for wide
 reuse. It is highly likely that an existing profile will meet
your needs, especially given the ability to specify further
excluded code points (Section 6.2) and to build application-layer
constructs (see Section 6.3).

 o Do specify:

 * Exactly which entities are responsible for preparation,
enforcement, and comparison of internationalized strings (e.g.,
servers or clients).

 * Exactly when those entities need to complete their tasks (e.g.,
a server might need to enforce the rules of a profile before
allowing a client to gain network access).

 * Exactly which protocol slots need to be checked against which
profiles (e.g., checking the address of a message's intended
recipient against the UsernameCaseMapped profile [RFC8265] of
the IdentifierClass or checking the password of a user against
the OpaqueString profile [RFC8265] of the FreeformClass).

 See [RFC8265] and [RFC7622] for definitions of these matters for
several applications.

Saint-Andre & Blanchet Standards Track [Page 19]

RFC 8264 PRECIS Framework October 2017

6.2. Further Excluded Characters

 An application protocol that uses a profile MAY specify particular
code points that are not allowed in relevant slots within that
application protocol, above and beyond those excluded by the string
class or profile.

 That is, an application protocol MAY do either of the following:

 1. Exclude specific code points that are allowed by the relevant
string class.

 2. Exclude code points matching certain Unicode properties (e.g.,
math symbols) that are included in the relevant PRECIS string
class.

 As a result of such exclusions, code points that are defined as valid
for the PRECIS string class or profile will be defined as disallowed
for the relevant protocol slot.

 Typically, such exclusions are defined for the purpose of backward
compatibility with legacy formats within an application protocol.
These are defined for application protocols, not profiles, in order
to prevent multiplication of profiles beyond necessity (see
Section 5.1).

6.3. Building Application-Layer Constructs

 Sometimes, an application-layer construct does not map in a
straightforward manner to one of the PRECIS string classes or a
profile thereof. Consider, for example, the "simple username"
construct in SASL [RFC4422]. Depending on the deployment, a simple
username might take the form of a user's full name (e.g., the user's
personal name followed by a space and then the user's family name).
Such a simple username cannot be defined as an instance of the
IdentifierClass or a profile thereof, because space code points are
not allowed in the IdentifierClass; however, it could be defined
 using a space-separated sequence of IdentifierClass instances, as in
the following ABNF [RFC5234] from [RFC8265]:

 username = userpart *(1*SP userpart)
 userpart = 1*(idpoint)

 ;
 ; an "idpoint" is a Unicode code point that
; can be contained in a string conforming to
; the PRECIS IdentifierClass
 ;

Saint-Andre & Blanchet Standards Track [Page 20]

RFC 8264 PRECIS Framework October 2017

 Similar techniques could be used to define many application-layer
constructs, say of the form "user@domain" or "/path/to/file".

7. Order of Operations

 To ensure proper comparison, the rules specified for a particular
string class or profile MUST be applied in the following order:

 1. Width Mapping Rule

 2. Additional Mapping Rule

 3. Case Mapping Rule

 4. Normalization Rule

 5. Directionality Rule

 6. Behavioral rules for determining whether a code point is valid,
allowed under a contextual rule, disallowed, or unassigned

 As already described, the width mapping, additional mapping, case
mapping, normalization, and directionality rules are specified for
each profile, whereas the behavioral rules are specified for each
string class. Some of the logic behind this order is provided under
Section 5.2.1 (see also the PRECIS mappings document [RFC7790]). In
 addition, this order is consistent with IDNA2008, and with both
 IDNA2003 and Stringprep before then, for the purpose of enabling code
reuse and of ensuring as much continuity as possible with the
Stringprep profiles that are obsoleted by several PRECIS profiles.

 Because of the order of operations specified here, applying the rules
for any given PRECIS profile is not necessarily an idempotent
procedure (e.g., under certain circumstances, such as when Unicode
Normalization Form KC is used, performing Unicode normalization after
case mapping can still yield uppercase characters for certain code
points). Therefore, an implementation SHOULD apply the rules
repeatedly until the output string is stable; if the output string
does not stabilize after reapplying the rules three (3) additional
times after the first application, the implementation SHOULD
terminate application of the rules and reject the input string as
invalid.

8. Code Point Properties

 In order to implement the string classes described above, this
document does the following:

Saint-Andre & Blanchet Standards Track [Page 21]

RFC 8264 PRECIS Framework October 2017

 1. Reviews and classifies the collections of code points in the
Unicode coded character set by examining various code point
properties.

 2. Defines an algorithm for determining a derived property value,
which can depend on the string class being used by the relevant
application protocol.

 This document is not intended to specify precisely how derived
property values are to be applied in protocol strings. That
 information is the responsibility of the protocol specification that
uses or profiles a PRECIS string class from this document. The value
 of the property is to be interpreted as follows.

 PROTOCOL VALID Those code points that are allowed to be used in any
PRECIS string class (currently, IdentifierClass and
FreeformClass). The abbreviated term "PVALID" is used to refer to
 this value in the remainder of this document.

 SPECIFIC CLASS PROTOCOL VALID Those code points that are allowed to
be used in specific string classes. In the remainder of this
 document, the abbreviated term *_PVAL is used, where * = (ID |
FREE), i.e., either "FREE_PVAL" for the FreeformClass or "ID_PVAL"
for the IdentifierClass. In practice, the derived property
ID_PVAL is not used in this specification, because every ID_PVAL
code point is PVALID.

 CONTEXTUAL RULE REQUIRED Some characteristics of the code point,
such as its being invisible in certain contexts or problematic in
others, require that it not be used in a string unless specific
other code points or properties are present in the string. As in
 IDNA2008, there are two subdivisions of CONTEXTUAL RULE REQUIRED:
 the first for Join_controls (called "CONTEXTJ") and the second for
other code points (called "CONTEXTO"). A string MUST NOT contain
any characters whose validity is context-dependent, unless the
validity is positively confirmed by a contextual rule. To check
 this, each code point identified as CONTEXTJ or CONTEXTO in the
"PRECIS Derived Property Value" registry (Section 11.1) MUST have
a non-null rule. If such a code point is missing a rule, the
string is invalid. If the rule exists but the result of applying
the rule is negative or inconclusive, the proposed string is
invalid. The most notable of the CONTEXTUAL RULE REQUIRED code
 points are the Join Control code points ZERO WIDTH JOINER (U+200D)
and ZERO WIDTH NON-JOINER (U+200C), which have a derived property
value of CONTEXTJ. See Appendix A of [RFC5892] for more
information.

Saint-Andre & Blanchet Standards Track [Page 22]

RFC 8264 PRECIS Framework October 2017

 DISALLOWED Those code points that are not permitted in any PRECIS
string class.

 SPECIFIC CLASS DISALLOWED Those code points that are not to be
included in one of the string classes but that might be permitted
in others. In the remainder of this document, the abbreviated
 term *_DIS is used, where * = (ID | FREE), i.e., either "FREE_DIS"
for the FreeformClass or "ID_DIS" for the IdentifierClass. In
 practice, the derived property FREE_DIS is not used in this
specification, because every FREE_DIS code point is DISALLOWED.

 UNASSIGNED Those code points that are not designated (i.e., are
unassigned) in the Unicode Standard.

 The algorithm to calculate the value of the derived property is as
follows (implementations MUST NOT modify the order of operations
within this algorithm, because doing so would cause inconsistent
results across implementations):

 If .cp. .in. Exceptions Then Exceptions(cp);
Else If .cp. .in. BackwardCompatible Then BackwardCompatible(cp);
Else If .cp. .in. Unassigned Then UNASSIGNED;
Else If .cp. .in. ASCII7 Then PVALID;
Else If .cp. .in. JoinControl Then CONTEXTJ;
Else If .cp. .in. OldHangulJamo Then DISALLOWED;
Else If .cp. .in. PrecisIgnorableProperties Then DISALLOWED;
Else If .cp. .in. Controls Then DISALLOWED;
Else If .cp. .in. HasCompat Then ID_DIS or FREE_PVAL;
Else If .cp. .in. LetterDigits Then PVALID;
Else If .cp. .in. OtherLetterDigits Then ID_DIS or FREE_PVAL;
Else If .cp. .in. Spaces Then ID_DIS or FREE_PVAL;
Else If .cp. .in. Symbols Then ID_DIS or FREE_PVAL;
Else If .cp. .in. Punctuation Then ID_DIS or FREE_PVAL;
Else DISALLOWED;

 The value of the derived property calculated can depend on the string
class; for example, if an identifier used in an application protocol
is defined as profiling the PRECIS IdentifierClass then a space
character such as SPACE (U+0020) would be assigned to ID_DIS, whereas
if an identifier is defined as profiling the PRECIS FreeformClass
then the character would be assigned to FREE_PVAL. For the sake of
 brevity, the designation "FREE_PVAL" is used herein, instead of the
longer designation "ID_DIS or FREE_PVAL". In practice, the derived
properties ID_PVAL and FREE_DIS are not used in this specification,
because every ID_PVAL code point is PVALID and every FREE_DIS code
point is DISALLOWED.

Saint-Andre & Blanchet Standards Track [Page 23]

RFC 8264 PRECIS Framework October 2017

 Use of the name of a rule (such as "Exceptions") implies the set of
code points that the rule defines, whereas the same name as a
function call (such as "Exceptions(cp)") implies the value that the
code point has in the Exceptions table.

 The mechanisms described here allow determination of the value of the
 property for future versions of Unicode (including code points added
after Unicode 5.2 or 7.0, depending on the category, because some
categories mentioned in this document are simply pointers to IDNA2008
and therefore were defined at the time of Unicode 5.2). Changes in
Unicode properties that do not affect the outcome of this process
therefore do not affect this framework. For example, a code point
can have its Unicode General_Category value change from So to Sm, or
from Lo to Ll, without affecting the algorithm results. Moreover,
 even if such changes were to result, the BackwardCompatible list
(Section 9.7) can be adjusted to ensure the stability of the results.

9. Category Definitions Used to Calculate Derived Property

 The derived property obtains its value based on a two-step procedure:

 1. Code points are placed in one or more character categories either
(1) based on core properties defined by the Unicode Standard or
(2) by treating the code point as an exception and addressing the
code point based on its code point value. These categories are
not mutually exclusive.

 2. Set operations are used with these categories to determine the
values for a property specific to a given string class. These
 operations are specified under Section 8.

 Note: Unicode property names and property value names might have
short abbreviations, such as "gc" for the General_Category
property and "Ll" for the Lowercase_Letter property value of the
 gc property.

 In the following specification of character categories, the operation
that returns the value of a particular Unicode code point property
for a code point is designated by using the formal name of that
property (from the Unicode PropertyAliases.txt file [PropertyAliases]
followed by "(cp)" for "code point". For example, the value of the
General_Category property for a code point is indicated by
General_Category(cp).

 The first ten categories (A-J) shown below were previously defined
for IDNA2008 and are referenced from [RFC5892] to ease the
understanding of how PRECIS handles various code points. Some of
 these categories are reused in PRECIS, and some of them are not;

Saint-Andre & Blanchet Standards Track [Page 24]

RFC 8264 PRECIS Framework October 2017

 however, the lettering of categories is retained to prevent overlap
and to ease implementation of both IDNA2008 and PRECIS in a single
software application. The next eight categories (K-R) are specific
to PRECIS.

9.1. LetterDigits (A)

 This category is defined in Section 2.1 of [RFC5892] and is included
by reference for use in PRECIS.

9.2. Unstable (B)

 This category is defined in Section 2.2 of [RFC5892]. However, it is
 not used in PRECIS.

9.3. IgnorableProperties (C)

 This category is defined in Section 2.3 of [RFC5892]. However, it is
 not used in PRECIS.

 Note: See the PrecisIgnorableProperties ("M") category below for a
more inclusive category used in PRECIS identifiers.

9.4. IgnorableBlocks (D)

 This category is defined in Section 2.4 of [RFC5892]. However, it is
 not used in PRECIS.

9.5. LDH (E)

 This category is defined in Section 2.5 of [RFC5892]. However, it is
 not used in PRECIS.

 Note: See the ASCII7 ("K") category below for a more inclusive
category used in PRECIS identifiers.

9.6. Exceptions (F)

 This category is defined in Section 2.6 of [RFC5892] and is included
by reference for use in PRECIS.

9.7. BackwardCompatible (G)

 This category is defined in Section 2.7 of [RFC5892] and is included
by reference for use in PRECIS.

 Note: Management of this category is handled via the processes
specified in [RFC5892]. At the time of this writing (and also at the

Saint-Andre & Blanchet Standards Track [Page 25]

RFC 8264 PRECIS Framework October 2017

 time that RFC 5892 was published), this category consisted of the
empty set; however, that is subject to change as described in
RFC 5892.

9.8. JoinControl (H)

 This category is defined in Section 2.8 of [RFC5892] and is included
by reference for use in PRECIS.

 Note: In particular, the code points ZERO WIDTH JOINER (U+200D) and
ZERO WIDTH NON-JOINER (U+200C) are necessary to produce certain
combinations of characters in certain scripts (e.g., Arabic, Persian,
and Indic scripts), but if used in other contexts, they can have
consequences that violate the "Principle of Least Astonishment".
Therefore, these code points are allowed only in contexts where they
are appropriate, specifically where the relevant rule (CONTEXTJ or
CONTEXTO) has been defined. See [RFC5892] and [RFC5894] for further
discussion.

9.9. OldHangulJamo (I)

 This category is defined in Section 2.9 of [RFC5892] and is included
by reference for use in PRECIS.

 Note: Exclusion of these code points results in disallowing certain
archaic Korean syllables and in restricting supported Korean
syllables to preformed, modern Hangul characters.

9.10. Unassigned (J)

 This category is defined in Section 2.10 of [RFC5892] and is included
by reference for use in PRECIS.

9.11. ASCII7 (K)

 This PRECIS-specific category consists of all printable, non-space
code points from the 7-bit ASCII range. By applying this category,
the algorithm specified under Section 8 exempts these code points
from other rules that might be applied during PRECIS processing, on
the assumption that these code points are in such wide use that
disallowing them would be counterproductive.

 K: cp is in {0021..007E}

Saint-Andre & Blanchet Standards Track [Page 26]

RFC 8264 PRECIS Framework October 2017

9.12. Controls (L)

 This PRECIS-specific category consists of all control code points,
such as LINE FEED (U+000A).

 L: Control(cp) = True

9.13. PrecisIgnorableProperties (M)

 This PRECIS-specific category is used to group code points that are
discouraged from use in PRECIS string classes.

 M: Default_Ignorable_Code_Point(cp) = True or
Noncharacter_Code_Point(cp) = True

 The definition for Default_Ignorable_Code_Point can be found in the
DerivedCoreProperties.txt file [DerivedCoreProperties].

 Note: In general, these code points are constructs such as so-called
"soft hyphens", certain joining code points, various specialized code
points for use within Unicode itself (e.g., language tags and
variation selectors), and so on. Disallowing these code points in
PRECIS reduces the potential for unexpected results in the use of
internationalized strings.

9.14. Spaces (N)

 This PRECIS-specific category is used to group code points that are
 spaces.

 N: General_Category(cp) is in {Zs}

9.15. Symbols (O)

 This PRECIS-specific category is used to group code points that are
symbols.

 O: General_Category(cp) is in {Sm, Sc, Sk, So}

9.16. Punctuation (P)

 This PRECIS-specific category is used to group code points that are
punctuation.

 P: General_Category(cp) is in {Pc, Pd, Ps, Pe, Pi, Pf, Po}

Saint-Andre & Blanchet Standards Track [Page 27]

RFC 8264 PRECIS Framework October 2017

9.17. HasCompat (Q)

 This PRECIS-specific category is used to group any code point that is
decomposed and recomposed into something other than itself under
Unicode Normalization Form KC.

 Q: toNFKC(cp) != cp

 Typically, this category is true of code points that are
"compatibility decomposable characters" as defined in the Unicode
Standard.

 The toNFKC() operation returns the code point in Normalization
Form KC. For more information, see Unicode Standard Annex #15
 [UAX15].

9.18. OtherLetterDigits (R)

 This PRECIS-specific category is used to group code points that are
letters and digits other than the "traditional" letters and digits
grouped under the LetterDigits ("A") category (see Section 9.1).

 R: General_Category(cp) is in {Lt, Nl, No, Me}

10. Guidelines for Designated Experts

 Experience with internationalization in application protocols has
shown that protocol designers and application developers usually do
not understand the subtleties and trade-offs involved with
 internationalization and that they need considerable guidance in
making reasonable decisions with regard to the options before them.

 Therefore:

 o Protocol designers are strongly encouraged to question the
assumption that they need to define new profiles, because existing
profiles are designed for wide reuse (see Section 5 for further
discussion).

 o Those who persist in defining new profiles are strongly encouraged
to clearly explain a strong justification for doing so and to
publish a stable specification that provides all of the
information described under Section 11.3.

 o The designated experts for profile registration requests ought to
seek answers to all of the questions provided under Section 11.3
and ought to encourage applicants to provide a stable
specification documenting the profile (even though the

Saint-Andre & Blanchet Standards Track [Page 28]

RFC 8264 PRECIS Framework October 2017

 registration policy for PRECIS profiles is "Expert Review" and a
stable specification is not strictly required).

 o Developers of applications that use PRECIS are strongly encouraged
to apply the guidelines provided under Section 6 and to seek out
the advice of the designated experts or other knowledgeable
individuals in doing so.

 o All parties are strongly encouraged to help prevent the
multiplication of profiles beyond necessity, as described under
Section 5.1, and to use PRECIS in ways that will minimize user
confusion and insecure application behavior.

 Internationalization can be difficult and contentious; designated
experts, profile registrants, and application developers are strongly
encouraged to work together in a spirit of good faith and mutual
understanding to achieve rough consensus on profile registration
requests and the use of PRECIS in particular applications. They are
also encouraged to bring additional expertise into the discussion if
that would be helpful in adding perspective or otherwise resolving
issues.

11. IANA Considerations

11.1. PRECIS Derived Property Value Registry

 IANA has created and now maintains the "PRECIS Derived Property
Value" registry (<https://www.iana.org/assignments/precis-tables/>),
which records the derived properties for each version of Unicode
released starting from version 6.3. The derived property value is to
be calculated in cooperation with a designated expert [RFC8126]
according to the rules specified under Sections 8 and 9.

 The IESG is to be notified if backward-incompatible changes to the
table of derived properties are discovered or if other problems arise
during the process of creating the table of derived property values
or during Expert Review. Changes to the rules defined under
Sections 8 and 9 require IETF Review.

 Note: IANA is requested to not make further updates to this registry
until it receives notice from the IESG that the issues described in
 [IAB-Statement] and Section 13.5 of this document have been settled.

11.2. PRECIS Base Classes Registry

 IANA has created the "PRECIS Base Classes" registry
(<https://www.iana.org/assignments/precis-parameters/>). In
 accordance with [RFC8126], the registration policy is "RFC Required".

Saint-Andre & Blanchet Standards Track [Page 29]

https://www.iana.org/assignments/precis-parameters
https://www.iana.org/assignments/precis-tables

RFC 8264 PRECIS Framework October 2017

 The registration template is as follows:

 Base Class: [the name of the PRECIS string class]

 Description: [a brief description of the PRECIS string class and its
intended use, e.g., "A sequence of letters, numbers, and symbols
that is used to identify or address a network entity."]

 Reference: [the RFC number]

 The initial registrations are as follows:

 Base Class: FreeformClass
 Description: A sequence of letters, numbers, symbols, spaces, and

other code points that is used for free-form strings.
Specification: Section 4.3 of RFC 8264

 Base Class: IdentifierClass
 Description: A sequence of letters, numbers, and symbols that is

used to identify or address a network entity.
Specification: Section 4.2 of RFC 8264

11.3. PRECIS Profiles Registry

 IANA has created the "PRECIS Profiles" registry
(<https://www.iana.org/assignments/precis-parameters/>) to identify
profiles that use the PRECIS string classes. In accordance with
 [RFC8126], the registration policy is "Expert Review". This policy
was chosen in order to ease the burden of registration while ensuring
that "customers" of PRECIS receive appropriate guidance regarding the
sometimes complex and subtle internationalization issues related to
profiles of PRECIS string classes.

 The registration template is as follows:

 Name: [the name of the profile]

 Base Class: [which PRECIS string class is being profiled]

 Applicability: [the specific protocol elements to which this profile
applies, e.g., "Usernames in security and application protocols."]

 Replaces: [the Stringprep profile that this PRECIS profile replaces,
if any]

 Width Mapping Rule: [the behavioral rule for handling of width,
e.g., "Map fullwidth and halfwidth code points to their
compatibility variants."]

Saint-Andre & Blanchet Standards Track [Page 30]

https://www.iana.org/assignments/precis-parameters

RFC 8264 PRECIS Framework October 2017

 Additional Mapping Rule: [any additional mappings that are required
or recommended, e.g., "Map non-ASCII space code points to SPACE
(U+0020)."]

 Case Mapping Rule: [the behavioral rule for handling of case, e.g.,
"Apply the Unicode toLowerCase() operation."]

 Normalization Rule: [which Unicode normalization form is applied,
e.g., "NFC"]

 Directionality Rule: [the behavioral rule for handling of right-to-
left code points, e.g., "The 'Bidi Rule' defined in RFC 5893
applies."]

 Enforcement: [which entities enforce the rules, and when that
enforcement occurs during protocol operations]

 Specification: [a pointer to relevant documentation, such as an RFC
or Internet-Draft]

 In order to request a review, the registrant shall send a completed
template to the <precis@ietf.org> list or its designated successor.

 Factors to focus on while defining profiles and reviewing profile
registrations include the following:

 o Would an existing PRECIS string class or profile solve the
problem? If not, why not? (See Section 5.1 for related
considerations.)

 o Is the problem being addressed by this profile well defined?

 o Does the specification define what kinds of applications are
involved and the protocol elements to which this profile applies?

 o Is the profile clearly defined?

 o Is the profile based on an appropriate dividing line between user
interface (culture, context, intent, locale, device limitations,
etc.) and the use of conformant strings in protocol elements?

 o Are the width mapping, case mapping, additional mapping,
normalization, and directionality rules appropriate for the
intended use?

 o Does the profile explain which entities enforce the rules and when
such enforcement occurs during protocol operations?

Saint-Andre & Blanchet Standards Track [Page 31]

mailto:precis@ietf.org

RFC 8264 PRECIS Framework October 2017

 o Does the profile reduce the degree to which human users could be
surprised or confused by application behavior (the "Principle of
Least Astonishment")?

 o Does the profile introduce any new security concerns such as those
described under Section 12 of this document (e.g., false accepts
for authentication or authorization)?

12. Security Considerations

12.1. General Issues

 If input strings that appear "the same" to users are programmatically
considered to be distinct in different systems or if input strings
that appear distinct to users are programmatically considered to be
"the same" in different systems, then users can be confused. Such
 confusion can have security implications, such as the false accepts
and false rejects discussed in [RFC6943] (the terms "false positives"
and "false negatives" are used in that document). One starting goal
of work on the PRECIS framework was to limit the number of times that
 users are confused (consistent with the "Principle of Least
Astonishment"). Unfortunately, this goal has been difficult to
achieve given the large number of application protocols already in
existence. Despite these difficulties, profiles should not be
multiplied beyond necessity (see Section 5.1). In particular,
designers of application protocols should think long and hard before
defining a new profile instead of using one that has already been
defined, and if they decide to define a new profile then they should
clearly explain their reasons for doing so.

 The security of applications that use this framework can depend in
part on the proper preparation, enforcement, and comparison of
internationalized strings. For example, such strings can be used to
make authentication and authorization decisions, and the security of
an application could be compromised if an entity providing a given
string is connected to the wrong account or online resource based on
different interpretations of the string (again, see [RFC6943]).

 Specifications of application protocols that use this framework are
strongly encouraged to describe how internationalized strings are
used in the protocol, including the security implications of any
false accepts and false rejects that might result from various
enforcement and comparison operations. For some helpful guidelines,
refer to [RFC6943], [RFC5890], [UTR36], and [UTS39].

Saint-Andre & Blanchet Standards Track [Page 32]

RFC 8264 PRECIS Framework October 2017

12.2. Use of the IdentifierClass

 Strings that conform to the IdentifierClass, and any profile thereof,
are intended to be relatively safe for use in a broad range of
applications, primarily because they include only letters, digits,
and "grandfathered" non-space code points from the ASCII range; thus,
they exclude spaces, code points with compatibility equivalents, and
almost all symbols and punctuation marks. However, because such
 strings can still include so-called "confusable code points" (see
Section 12.5), protocol designers and implementers are encouraged to
pay close attention to the security considerations described
elsewhere in this document.

12.3. Use of the FreeformClass

 Strings that conform to the FreeformClass, and many profiles thereof,
can include virtually any Unicode code point. This makes the

 FreeformClass quite expressive, but also problematic from the
perspective of possible user confusion. Protocol designers are
hereby warned that the FreeformClass contains code points they might
not understand, and they are encouraged to profile the
IdentifierClass wherever feasible; however, if an application
protocol requires more code points than are allowed by the
IdentifierClass, protocol designers are encouraged to define a
profile of the FreeformClass that restricts the allowable code points
as tightly as possible. (The PRECIS Working Group considered the
option of allowing "superclasses" as well as profiles of PRECIS
string classes but decided against allowing superclasses to reduce
the likelihood of security and interoperability problems.)

12.4. Local Character Set Issues

 When systems use local character sets other than ASCII and Unicode,
this specification leaves the problem of converting between the local
character set and Unicode up to the application or local system. If
 different applications (or different versions of one application)
implement different rules for conversions among coded character sets,
they could interpret the same name differently and contact different
application servers or other network entities. This problem is not
solved by security protocols, such as Transport Layer Security (TLS)
[RFC5246] and SASL [RFC4422], that do not take local character sets
into account.

12.5. Visually Similar Characters

 Some code points are visually similar and thus can cause confusion
among humans. Such characters are often called "confusable
 characters" or "confusables".

Saint-Andre & Blanchet Standards Track [Page 33]

RFC 8264 PRECIS Framework October 2017

 The problem of confusable characters is not necessarily caused by the
use of Unicode code points outside the ASCII range. For example, in
some presentations and to some individuals the string "ju1iet"
(spelled with DIGIT ONE (U+0031) as the third character) might appear
to be the same as "juliet" (spelled with LATIN SMALL LETTER L
(U+006C)), especially on casual visual inspection. This phenomenon
is sometimes called "typejacking".

 However, the problem is made more serious by introducing the full
range of Unicode code points into protocol strings. A well-known
 example is confusion between "а" CYRILLIC SMALL LETTER A (U+0430) and
"a" LATIN SMALL LETTER A (U+0061). As another example, the
characters "ᏚᎢᎵᏋᎢᏋᏒ" (U+13DA U+13A2 U+13B5 U+13AC U+13A2 U+13AC
 U+13D2) from the Cherokee block look similar to the ASCII code points
representing "STPETER" as they might appear when presented using a
"creative" font family. Confusion among such characters is perhaps
not unexpected, given that the alphabetic writing systems involved
all bear a family resemblance or historical lineage. Perhaps more
surprising is confusion among characters from disparate writing
systems, such as "O" (LATIN CAPITAL LETTER O, U+004F), "0" (DIGIT
 ZERO, U+0030), "໐" (LAO DIGIT ZERO, U+0ED0), "ዐ" (ETHIOPIC SYLLABLE
 PHARYNGEAL A, U+12D0), and other graphemes that have the appearance
of open circles. And the reader needs to be aware that the foregoing
represent merely a small sample of characters that are confusable in
Unicode.

 In some instances of confusable characters, it is unlikely that the
average human could tell the difference between the real string and
the fake string. (Indeed, there is no programmatic way to
distinguish with full certainty which is the fake string and which is
the real string; in some contexts, the string formed of Cherokee code
points might be the real string and the string formed of ASCII code
points might be the fake string.) Because PRECIS-compliant strings
can contain almost any properly encoded Unicode code point, it can be
relatively easy to fake or mimic some strings in systems that use the
PRECIS framework. The fact that some strings are easily confused
introduces security vulnerabilities of the kind that have also
plagued the World Wide Web, specifically the phenomenon known as
phishing.

 Despite the fact that some specific suggestions about identification
and handling of confusable characters appear in the Unicode Security
Considerations [UTR36] and the Unicode Security Mechanisms [UTS39],
it is also true (as noted in [RFC5890]) that "there are no
comprehensive technical solutions to the problems of confusable
characters." Because it is impossible to map visually similar
characters without a great deal of context (such as knowing the font
families used), the PRECIS framework does nothing to map similar-

Saint-Andre & Blanchet Standards Track [Page 34]

RFC 8264 PRECIS Framework October 2017

 looking characters together, nor does it prohibit some characters
because they look like others.

 Nevertheless, specifications for application protocols that use this
framework are strongly encouraged to describe how confusable
characters can be abused to compromise the security of systems that
use the protocol in question, along with any protocol-specific
suggestions for overcoming those threats. In particular, software
implementations and service deployments that use PRECIS-based
technologies are strongly encouraged to define and implement
consistent policies regarding the registration, storage, and
presentation of visually similar characters. The following
recommendations are appropriate:

 1. An application service SHOULD define a policy that specifies the
scripts or blocks of code points that the service will allow to
be registered (e.g., in an account name) or stored (e.g., in a
filename). Such a policy SHOULD be informed by the languages and
scripts that are used to write registered account names; in
particular, to reduce confusion, the service SHOULD forbid
registration or storage of strings that contain code points from
more than one script and SHOULD restrict registrations to code
points drawn from a very small number of scripts (e.g., scripts
that are well understood by the administrators of the service, to
improve manageability).

 2. User-oriented application software SHOULD define a policy that
specifies how internationalized strings will be presented to a
human user. Because every human user of such software has a
preferred language or a small set of preferred languages, the
software SHOULD gather that information either explicitly from
the user or implicitly via the operating system of the user's
device.

 The challenges inherent in supporting the full range of Unicode code
points have in the past led some to hope for a way to
programmatically negotiate more restrictive ranges based on locale,
script, or other relevant factors; to tag the locale associated with
a particular string; etc. As a general-purpose internationalization
technology, the PRECIS framework does not include such mechanisms.

12.6. Security of Passwords

 Two goals of passwords are to maximize the amount of entropy and to
minimize the potential for false accepts. These goals can be
achieved in part by allowing a wide range of code points and by
ensuring that passwords are handled in such a way that code points
are not compared aggressively. Therefore, it is NOT RECOMMENDED for

Saint-Andre & Blanchet Standards Track [Page 35]

RFC 8264 PRECIS Framework October 2017

 application protocols to profile the FreeformClass for use in
passwords in a way that removes entire categories (e.g., by
disallowing symbols or punctuation). Furthermore, it is
 NOT RECOMMENDED for application protocols to map uppercase and
titlecase code points to their lowercase equivalents in such strings;
instead, it is RECOMMENDED to preserve the case of all code points
contained in such strings and to compare them in a case-sensitive
 manner.

 That said, software implementers need to be aware that there exist
trade-offs between entropy and usability. For example, allowing a
user to establish a password containing "uncommon" code points might
make it difficult for the user to access a service when using an
unfamiliar or constrained input device.

 Some application protocols use passwords directly, whereas others
reuse technologies that themselves process passwords (one example of
such a technology is SASL [RFC4422]). Moreover, passwords are often
carried by a sequence of protocols with backend authentication
systems or data storage systems such as RADIUS [RFC2865] and the
Lightweight Directory Access Protocol (LDAP) [RFC4510]. Developers
of application protocols are encouraged to look into reusing these
profiles instead of defining new ones, so that end-user expectations
about passwords are consistent no matter which application protocol
is used.

 In protocols that provide passwords as input to a cryptographic
algorithm such as a hash function, the client will need to perform
proper preparation of the password before applying the algorithm,
because the password is not available to the server in plaintext
form.

 Further discussion of password handling can be found in [RFC8265].

13. Interoperability Considerations

13.1. Coded Character Sets

 It is known that some existing applications and systems do not
support the full Unicode coded character set, or even any characters
outside the ASCII repertoire [RFC20]. If two (or more) applications
or systems need to interoperate when exchanging data (e.g., for the
purpose of authenticating the combination of a username and
password), naturally they will need to have in common at least one
coded character set and the repertoire of characters being exchanged
(see [RFC6365] for definitions of these terms). Establishing such a
baseline is a matter for the application or system that uses PRECIS,
not for the PRECIS framework.

Saint-Andre & Blanchet Standards Track [Page 36]

RFC 8264 PRECIS Framework October 2017

13.2. Dependency on Unicode

 The only coded character set supported by PRECIS is Unicode. If an
 application or system does not support Unicode or uses a different
coded character set [RFC6365], then the PRECIS rules cannot be
applied to that application or system.

13.3. Encoding

 Although strings that are consumed in PRECIS-based application
protocols are often encoded using UTF-8 [RFC3629], the exact encoding
is a matter for the application protocol that uses PRECIS, not for
the PRECIS framework or for specifications that define PRECIS string
classes or profiles thereof.

13.4. Unicode Versions

 It is extremely important for protocol designers and application
developers to understand that various changes can occur across
versions of the Unicode Standard, and such changes can result in
instability of PRECIS categories. The following are merely a few
examples:

 o As described in [RFC6452], between Unicode 5.2 (current at the
time IDNA2008 was originally published) and Unicode 6.0, three
code points underwent changes in their GeneralCategory, resulting
in modified handling, depending on which version of Unicode is
available on the underlying system.

 o The HasCompat() categorization of a given input string could
change if, for example, the string includes a precomposed
character that was added in a recent version of Unicode.

 o The East Asian width property, which is used in many PRECIS width
mapping rules, is not guaranteed to be stable across Unicode
versions.

13.5. Potential Changes to Handling of Certain Unicode Code Points

 As part of the review of Unicode 7.0 for IDNA, a question was raised
about a newly added code point that led to a re-analysis of the
normalization rules used by IDNA and inherited by this document
(Section 5.2.4). Some of the general issues are described in
[IAB-Statement] and pursued in more detail in [IDNA-Unicode].

 At the time of this writing, these issues have yet to be settled.
However, implementers need to be aware that this specification is

Saint-Andre & Blanchet Standards Track [Page 37]

RFC 8264 PRECIS Framework October 2017

 likely to be updated in the future to address these issues. The
 potential changes include but might not be limited to the following:

 o The range of code points in the LetterDigits category
(Sections 4.2.1 and 9.1) might be narrowed.

 o Some code points with special properties that are now allowed
might be excluded.

 o More additional mapping rules (Section 5.2.2) might be defined.

 o Alternative normalization methods might be added.

 As described in Section 11.1, until these issues are settled, it is
 reasonable for the IANA to apply the same precautionary principle
described in [IAB-Statement] to the "PRECIS Derived Property Value"
registry as is applied to the "IDNA Parameters" registry
<https://www.iana.org/assignments/idna-tables/>: that is, to not make
further updates to the registry.

 Nevertheless, implementations and deployments are unlikely to
encounter significant problems as a consequence of these issues or
potential changes if they follow the advice given in this
specification to use the more restrictive IdentifierClass whenever
possible or, if using the FreeformClass, to allow only a restricted
set of code points, particularly avoiding code points whose
implications they do not understand.

14. References

14.1. Normative References

 [RFC20] Cerf, V., "ASCII format for network interchange", STD 80,
RFC 20, DOI 10.17487/RFC0020, October 1969,
<https://www.rfc-editor.org/info/rfc20>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.

 [RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for Network
Interchange", RFC 5198, DOI 10.17487/RFC5198, March 2008,
<https://www.rfc-editor.org/info/rfc5198>.

Saint-Andre & Blanchet Standards Track [Page 38]

https://www.rfc-editor.org/info/rfc5198
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc20
https://www.iana.org/assignments/idna-tables

RFC 8264 PRECIS Framework October 2017

 [RFC6365] Hoffman, P. and J. Klensin, "Terminology Used in
Internationalization in the IETF", BCP 166, RFC 6365,
 DOI 10.17487/RFC6365, September 2011,
<https://www.rfc-editor.org/info/rfc6365>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [Unicode] The Unicode Consortium, "The Unicode Standard",
 <http://www.unicode.org/versions/latest/>.

14.2. Informative References

 [DerivedCoreProperties]
The Unicode Consortium, "DerivedCoreProperties-
10.0.0.txt", Unicode Character Database, March 2017,
 <http://www.unicode.org/Public/UCD/latest/ucd/
DerivedCoreProperties.txt>.

 [Err4568] RFC Errata, Erratum ID 4568, RFC 7564,
 <https://www.rfc-editor.org/errata/eid4568>.

 [IAB-Statement]
Internet Architecture Board, "IAB Statement on Identifiers
 and Unicode 7.0.0", February 2015,
<https://www.iab.org/documents/
correspondence-reports-documents/2015-2/
iab-statement-on-identifiers-and-unicode-7-0-0/>.

 [IDNA-Unicode]
Klensin, J. and P. Faltstrom, "IDNA Update for Unicode
7.0.0", Work in Progress, draft-klensin-idna-5892upd-
unicode70-04, March 2015.

 [PropertyAliases]
The Unicode Consortium, "PropertyAliases-10.0.0.txt",
Unicode Character Database, February 2017,
<http://www.unicode.org/Public/UCD/latest/ucd/
PropertyAliases.txt>.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
"Remote Authentication Dial In User Service (RADIUS)",
RFC 2865, DOI 10.17487/RFC2865, June 2000,
<https://www.rfc-editor.org/info/rfc2865>.

Saint-Andre & Blanchet Standards Track [Page 39]

https://www.rfc-editor.org/info/rfc2865
http://www.unicode.org/Public/UCD/latest/ucd
https://www.iab.org/documents
https://www.rfc-editor.org/errata/eid4568
http://www.unicode.org/Public/UCD/latest/ucd
http://www.unicode.org/versions/latest
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc6365

RFC 8264 PRECIS Framework October 2017

 [RFC3454] Hoffman, P. and M. Blanchet, "Preparation of
Internationalized Strings ("stringprep")", RFC 3454,
DOI 10.17487/RFC3454, December 2002,
<https://www.rfc-editor.org/info/rfc3454>.

 [RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
 "Internationalizing Domain Names in Applications (IDNA)",
RFC 3490, DOI 10.17487/RFC3490, March 2003,
<https://www.rfc-editor.org/info/rfc3490>.

 [RFC3491] Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep
Profile for Internationalized Domain Names (IDN)",
RFC 3491, DOI 10.17487/RFC3491, March 2003,
<https://www.rfc-editor.org/info/rfc3491>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC4422] Melnikov, A., Ed. and K. Zeilenga, Ed., "Simple
Authentication and Security Layer (SASL)", RFC 4422,
DOI 10.17487/RFC4422, June 2006,
<https://www.rfc-editor.org/info/rfc4422>.

 [RFC4510] Zeilenga, K., Ed., "Lightweight Directory Access Protocol
(LDAP): Technical Specification Road Map", RFC 4510,
DOI 10.17487/RFC4510, June 2006,
<https://www.rfc-editor.org/info/rfc4510>.

 [RFC4690] Klensin, J., Faltstrom, P., Karp, C., and IAB, "Review and
Recommendations for Internationalized Domain Names
 (IDNs)", RFC 4690, DOI 10.17487/RFC4690, September 2006,
<https://www.rfc-editor.org/info/rfc4690>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", STD 68, RFC 5234,
DOI 10.17487/RFC5234, January 2008,
<https://www.rfc-editor.org/info/rfc5234>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,
DOI 10.17487/RFC5246, August 2008,
<https://www.rfc-editor.org/info/rfc5246>.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",
RFC 5890, DOI 10.17487/RFC5890, August 2010,
<https://www.rfc-editor.org/info/rfc5890>.

Saint-Andre & Blanchet Standards Track [Page 40]

RFC 8264 PRECIS Framework October 2017

 [RFC5891] Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891,
DOI 10.17487/RFC5891, August 2010,
<https://www.rfc-editor.org/info/rfc5891>.

 [RFC5892] Faltstrom, P., Ed., "The Unicode Code Points and
 Internationalized Domain Names for Applications (IDNA)",
RFC 5892, DOI 10.17487/RFC5892, August 2010,
<https://www.rfc-editor.org/info/rfc5892>.

 [RFC5893] Alvestrand, H., Ed. and C. Karp, "Right-to-Left Scripts
for Internationalized Domain Names for Applications
(IDNA)", RFC 5893, DOI 10.17487/RFC5893, August 2010,
<https://www.rfc-editor.org/info/rfc5893>.

 [RFC5894] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Background, Explanation, and
Rationale", RFC 5894, DOI 10.17487/RFC5894, August 2010,
<https://www.rfc-editor.org/info/rfc5894>.

 [RFC5895] Resnick, P. and P. Hoffman, "Mapping Characters for
Internationalized Domain Names in Applications (IDNA)
2008", RFC 5895, DOI 10.17487/RFC5895, September 2010,
<https://www.rfc-editor.org/info/rfc5895>.

 [RFC6452] Faltstrom, P., Ed. and P. Hoffman, Ed., "The Unicode Code
 Points and Internationalized Domain Names for Applications
(IDNA) - Unicode 6.0", RFC 6452, DOI 10.17487/RFC6452,
November 2011, <https://www.rfc-editor.org/info/rfc6452>.

 [RFC6885] Blanchet, M. and A. Sullivan, "Stringprep Revision and
Problem Statement for the Preparation and Comparison of
Internationalized Strings (PRECIS)", RFC 6885,
DOI 10.17487/RFC6885, March 2013,
<https://www.rfc-editor.org/info/rfc6885>.

 [RFC6943] Thaler, D., Ed., "Issues in Identifier Comparison for
Security Purposes", RFC 6943, DOI 10.17487/RFC6943, May
2013, <https://www.rfc-editor.org/info/rfc6943>.

 [RFC7564] Saint-Andre, P. and M. Blanchet, "PRECIS Framework:
 Preparation, Enforcement, and Comparison of
Internationalized Strings in Application Protocols",
RFC 7564, DOI 10.17487/RFC7564, May 2015,
<https://www.rfc-editor.org/info/rfc7564>.

Saint-Andre & Blanchet Standards Track [Page 41]

RFC 8264 PRECIS Framework October 2017

 [RFC7622] Saint-Andre, P., "Extensible Messaging and Presence
Protocol (XMPP): Address Format", RFC 7622,
DOI 10.17487/RFC7622, September 2015,
<https://www.rfc-editor.org/info/rfc7622>.

 [RFC7790] Yoneya, Y. and T. Nemoto, "Mapping Characters for Classes
of the Preparation, Enforcement, and Comparison of
Internationalized Strings (PRECIS)", RFC 7790,
DOI 10.17487/RFC7790, February 2016,
<https://www.rfc-editor.org/info/rfc7790>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
RFC 8126, DOI 10.17487/RFC8126, June 2017,
<https://www.rfc-editor.org/info/rfc8126>.

 [RFC8265] Saint-Andre, P. and A. Melnikov, "Preparation,
Enforcement, and Comparison of Internationalized Strings
Representing Usernames and Passwords", RFC 8265,
DOI 10.17487/RFC8265, October 2017,
<https://www.rfc-editor.org/info/rfc8265>.

 [RFC8266] Saint-Andre, P., "Preparation, Enforcement, and Comparison
of Internationalized Strings Representing Nicknames",
RFC 8266, DOI 10.17487/RFC8266, October 2017,
<https://www.rfc-editor.org/info/rfc8266>.

 [UAX11] Unicode Standard Annex #11, "East Asian Width", edited by
Ken Lunde. An integral part of The Unicode Standard,
<http://unicode.org/reports/tr11/>.

 [UAX15] Unicode Standard Annex #15, "Unicode Normalization Forms",
 edited by Mark Davis and Ken Whistler. An integral part
of The Unicode Standard,
 <http://unicode.org/reports/tr15/>.

 [UAX9] Unicode Standard Annex #9, "Unicode Bidirectional
 Algorithm", edited by Mark Davis, Aharon Lanin, and Andrew
Glass. An integral part of The Unicode Standard,
<http://unicode.org/reports/tr9/>.

 [UTR36] Unicode Technical Report #36, "Unicode Security
Considerations", edited by Mark Davis and Michel Suignard,
<http://unicode.org/reports/tr36/>.

 [UTS39] Unicode Technical Standard #39, "Unicode Security
Mechanisms", edited by Mark Davis and Michel Suignard,
<http://unicode.org/reports/tr39/>.

Saint-Andre & Blanchet Standards Track [Page 42]

RFC 8264 PRECIS Framework October 2017

Appendix A. Changes from RFC 7564

 The following changes were made from [RFC7564].

 o Recommended the Unicode toLowerCase() operation over the Unicode
toCaseFold() operation in most PRECIS applications.

 o Clarified the meaning of "preparation", and described the
motivation for including it in PRECIS.

 o Updated references.

 See [RFC7564] for a description of the differences from [RFC3454].

Acknowledgements

 Thanks to Martin Duerst, William Fisher, John Klensin, Christian
 Schudt, and Sam Whited for their feedback. Thanks to Sam Whited also
 for submitting [Err4568].

 See [RFC7564] for acknowledgements related to the specification that
this document supersedes.

 Some algorithms and textual descriptions have been borrowed from
[RFC5892]. Some text regarding security has been borrowed from
[RFC5890], [RFC8265], and [RFC7622].

Authors' Addresses

 Peter Saint-Andre
 Jabber.org
P.O. Box 787
 Parker, CO 80134
 United States of America

 Phone: +1 720 256 6756
 Email: stpeter@jabber.org
URI: https://www.jabber.org/

 Marc Blanchet
 Viagenie
246 Aberdeen
 Québec, QC G1R 2E1
 Canada

 Email: Marc.Blanchet@viagenie.ca
URI: http://www.viagenie.ca/

Saint-Andre & Blanchet Standards Track [Page 43]

http:http://www.viagenie.ca
mailto:Marc.Blanchet@viagenie.ca
http:https://www.jabber.org
mailto:stpeter@jabber.org
http:Jabber.org

