
Internet Engineering Task Force (IETF) Y. Collet
Request for Comments: 8478 M. Kucherawy, Ed.
Category: Informational Facebook
ISSN: 2070-1721 October 2018

 Zstandard Compression and the application/zstd Media Type

Abstract

 Zstandard, or "zstd" (pronounced "zee standard"), is a data
 compression mechanism. This document describes the mechanism and
 registers a media type and content encoding to be used when
 transporting zstd-compressed content via Multipurpose Internet Mail
 Extensions (MIME).

 Despite use of the word "standard" as part of its name, readers are
 advised that this document is not an Internet Standards Track
 specification; it is being published for informational purposes only.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8478.

Collet & Kucherawy Informational [Page 1]

RFC 8478 application/zstd October 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Collet & Kucherawy Informational [Page 2]

RFC 8478 application/zstd October 2018

Table of Contents

 1. Introduction . 4
 2. Definitions . 4
 3. Compression Algorithm . 5
 3.1. Frames . 6
 3.1.1. Zstandard Frames 6
 3.1.1.1. Frame Header 7
 3.1.1.2. Blocks . 12
 3.1.1.3. Compressed Blocks 14
 3.1.1.4. Sequence Execution 28
 3.1.1.5. Repeat Offsets 29
 3.1.2. Skippable Frames 30
 4. Entropy Encoding . 30
 4.1. FSE . 31
 4.1.1. FSE Table Description 31
 4.2. Huffman Coding . 34
 4.2.1. Huffman Tree Description 35
 4.2.1.1. Huffman Tree Header 36
 4.2.1.2. FSE Compression of Huffman Weights 37
 4.2.1.3. Conversion from Weights to Huffman Prefix Codes . 38
 4.2.2. Huffman-Coded Streams 39
 5. Dictionary Format . 40
 6. IANA Considerations . 42
 6.1. The ’application/zstd’ Media Type 42
 6.2. Content Encoding . 43
 6.3. Dictionaries . 43
 7. Security Considerations 43
 8. Implementation Status . 44
 9. References . 45
 9.1. Normative References 45
 9.2. Informative References 45
 Appendix A. Decoding Tables for Predefined Codes 46
 A.1. Literal Length Code Table 46
 A.2. Match Length Code Table 49
 A.3. Offset Code Table . 52
 Acknowledgments . 53
 Authors’ Addresses . 54

Collet & Kucherawy Informational [Page 3]

RFC 8478 application/zstd October 2018

1. Introduction

 Zstandard, or "zstd" (pronounced "zee standard"), is a data
 compression mechanism, akin to gzip [RFC1952].

 Despite use of the word "standard" as part of its name, readers are
 advised that this document is not an Internet Standards Track
 specification; it is being published for informational purposes only.

 This document describes the Zstandard format. Also, to enable the
 transport of a data object compressed with Zstandard, this document
 registers a media type that can be used to identify such content when
 it is used in a payload encoded using Multipurpose Internet Mail
 Extensions (MIME).

2. Definitions

 Some terms used elsewhere in this document are defined here for
 clarity.

 uncompressed: Describes an arbitrary set of bytes in their original
 form, prior to being subjected to compression.

 compress, compression: The act of processing a set of bytes via the
 compression mechanism described here.

 compressed: Describes the result of passing a set of bytes through
 this mechanism. The original input has thus been compressed.

 decompress, decompression: The act of processing a set of bytes
 through the inverse of the compression mechanism described here,
 in an attempt to recover the original set of bytes prior to
 compression.

 decompressed: Describes the result of passing a set of bytes through
 the reverse of this mechanism. When this is successful, the
 decompressed payload and the uncompressed payload are
 indistinguishable.

 encode: The process of translating data from one form to another;
 this may include compression or it may refer to other translations
 done as part of this specification.

 decode: The reverse of "encode"; describes a process of reversing a
 prior encoding to recover the original content.

Collet & Kucherawy Informational [Page 4]

RFC 8478 application/zstd October 2018

 frame: Content compressed by Zstandard is transformed into a
 Zstandard frame. Multiple frames can be appended into a single
 file or stream. A frame is completely independent, has a defined
 beginning and end, and has a set of parameters that tells the
 decoder how to decompress it.

 block: A frame encapsulates one or multiple blocks. Each block
 contains arbitrary content, which is described by its header, and
 has a guaranteed maximum content size that depends upon frame
 parameters. Unlike frames, each block depends on previous blocks
 for proper decoding. However, each block can be decompressed
 without waiting for its successor, allowing streaming operations.

 natural order: A sequence or ordering of objects or values that is
 typical of that type of object or value. A set of unique
 integers, for example, is in "natural order" if when progressing
 from one element in the set or sequence to the next, there is
 never a decrease in value.

 The naming convention for identifiers within the specification is
 Mixed_Case_With_Underscores. Identifiers inside square brackets
 indicate that the identifier is optional in the presented context.

3. Compression Algorithm

 This section describes the Zstandard algorithm.

 The purpose of this document is to define a lossless compressed data
 format that is a) independent of the CPU type, operating system, file
 system, and character set and b) is suitable for file compression and
 pipe and streaming compression, using the Zstandard algorithm. The
 text of the specification assumes a basic background in programming
 at the level of bits and other primitive data representations.

 The data can be produced or consumed, even for an arbitrarily long
 sequentially presented input data stream, using only an a priori
 bounded amount of intermediate storage, and hence can be used in data
 communications. The format uses the Zstandard compression method,
 and an optional xxHash-64 checksum method [XXHASH], for detection of
 data corruption.

 The data format defined by this specification does not attempt to
 allow random access to compressed data.

 Unless otherwise indicated below, a compliant compressor must produce
 data sets that conform to the specifications presented here.
 However, it does not need to support all options.

Collet & Kucherawy Informational [Page 5]

RFC 8478 application/zstd October 2018

 A compliant decompressor must be able to decompress at least one
 working set of parameters that conforms to the specifications
 presented here. It may also ignore informative fields, such as the
 checksum. Whenever it does not support a parameter defined in the
 compressed stream, it must produce a non-ambiguous error code and
 associated error message explaining which parameter is unsupported.

 This specification is intended for use by implementers of software to
 compress data into Zstandard format and/or decompress data from
 Zstandard format. The Zstandard format is supported by an open
 source reference implementation, written in portable C, and available
 at [ZSTD].

3.1. Frames

 Zstandard compressed data is made up of one or more frames. Each
 frame is independent and can be decompressed independently of other
 frames. The decompressed content of multiple concatenated frames is
 the concatenation of each frame’s decompressed content.

 There are two frame formats defined for Zstandard: Zstandard frames
 and skippable frames. Zstandard frames contain compressed data,
 while skippable frames contain custom user metadata.

3.1.1. Zstandard Frames

 The structure of a single Zstandard frame is as follows:

 +--------------------+------------+
 | Magic_Number | 4 bytes |
 +--------------------+------------+
 | Frame_Header | 2-14 bytes |
 +--------------------+------------+
 | Data_Block | n bytes |
 +--------------------+------------+
 | [More Data_Blocks] | |
 +--------------------+------------+
 | [Content_Checksum] | 0-4 bytes |
 +--------------------+------------+

 Magic_Number: 4 bytes, little-endian format. Value: 0xFD2FB528.

 Frame_Header: 2 to 14 bytes, detailed in Section 3.1.1.1.

 Data_Block: Detailed in Section 3.1.1.2. This is where data
 appears.

Collet & Kucherawy Informational [Page 6]

RFC 8478 application/zstd October 2018

 Content_Checksum: An optional 32-bit checksum, only present if
 Content_Checksum_Flag is set. The content checksum is the result
 of the XXH64() hash function [XXHASH] digesting the original
 (decoded) data as input, and a seed of zero. The low 4 bytes of
 the checksum are stored in little-endian format.

 The magic number was selected to be less probable to find at the
 beginning of an arbitrary file. It avoids trivial patterns (0x00,
 0xFF, repeated bytes, increasing bytes, etc.), contains byte values
 outside of ASCII range, and doesn’t map into UTF-8 space, all of
 which reduce the likelihood of its appearance at the top of a text
 file.

3.1.1.1. Frame Header

 The frame header has a variable size, with a minimum of 2 bytes and
 up to 14 bytes depending on optional parameters. The structure of
 Frame_Header is as follows:

 +-------------------------+-----------+
 | Frame_Header_Descriptor | 1 byte |
 +-------------------------+-----------+
 | [Window_Descriptor] | 0-1 byte |
 +-------------------------+-----------+
 | [Dictionary_ID] | 0-4 bytes |
 +-------------------------+-----------+
 | [Frame_Content_Size] | 0-8 bytes |
 +-------------------------+-----------+

Collet & Kucherawy Informational [Page 7]

RFC 8478 application/zstd October 2018

3.1.1.1.1. Frame_Header_Descriptor

 The first header’s byte is called the Frame_Header_Descriptor. It
 describes which other fields are present. Decoding this byte is
 enough to tell the size of Frame_Header.

 +------------+-------------------------+
 | Bit Number | Field Name |
 +------------+-------------------------+
 | 7-6 | Frame_Content_Size_Flag |
 +------------+-------------------------+
 | 5 | Single_Segment_Flag |
 +------------+-------------------------+
 | 4 | (unused) |
 +------------+-------------------------+
 | 3 | (reserved) |
 +------------+-------------------------+
 | 2 | Content_Checksum_Flag |
 +------------+-------------------------+
 | 1-0 | Dictionary_ID_Flag |
 +------------+-------------------------+

 In this table, bit 7 is the highest bit, while bit 0 is the lowest
 one.

3.1.1.1.1.1. Frame_Content_Size_Flag

 This is a 2-bit flag (equivalent to Frame_Header_Descriptor right-
 shifted 6 bits) specifying whether Frame_Content_Size (the
 decompressed data size) is provided within the header. Flag_Value
 provides FCS_Field_Size, which is the number of bytes used by
 Frame_Content_Size according to the following table:

 +----------------+--------+---+---+---+
 | Flag_Value | 0 | 1 | 2 | 3 |
 +----------------+--------+---+---+---+
 | FCS_Field_Size | 0 or 1 | 2 | 4 | 8 |
 +----------------+--------+---+---+---+

 When Flag_Value is 0, FCS_Field_Size depends on Single_Segment_Flag:
 If Single_Segment_Flag is set, FCS_Field_Size is 1. Otherwise,
 FCS_Field_Size is 0; Frame_Content_Size is not provided.

Collet & Kucherawy Informational [Page 8]

RFC 8478 application/zstd October 2018

3.1.1.1.1.2. Single_Segment_Flag

 If this flag is set, data must be regenerated within a single
 continuous memory segment.

 In this case, Window_Descriptor byte is skipped, but
 Frame_Content_Size is necessarily present. As a consequence, the
 decoder must allocate a memory segment of size equal or larger than
 Frame_Content_Size.

 In order to protect the decoder from unreasonable memory
 requirements, a decoder is allowed to reject a compressed frame that
 requests a memory size beyond the decoder’s authorized range.

 For broader compatibility, decoders are recommended to support memory
 sizes of at least 8 MB. This is only a recommendation; each decoder
 is free to support higher or lower limits, depending on local
 limitations.

3.1.1.1.1.3. Unused Bit

 A decoder compliant with this specification version shall not
 interpret this bit. It might be used in a future version, to signal
 a property that is not mandatory to properly decode the frame. An
 encoder compliant with this specification must set this bit to zero.

3.1.1.1.1.4. Reserved Bit

 This bit is reserved for some future feature. Its value must be
 zero. A decoder compliant with this specification version must
 ensure it is not set. This bit may be used in a future revision, to
 signal a feature that must be interpreted to decode the frame
 correctly.

3.1.1.1.1.5. Content_Checksum_Flag

 If this flag is set, a 32-bit Content_Checksum will be present at the
 frame’s end. See the description of Content_Checksum above.

Collet & Kucherawy Informational [Page 9]

RFC 8478 application/zstd October 2018

3.1.1.1.1.6. Dictionary_ID_Flag

 This is a 2-bit flag (= Frame_Header_Descriptor & 0x3) indicating
 whether a dictionary ID is provided within the header. It also
 specifies the size of this field as DID_Field_Size:

 +----------------+---+---+---+---+
 | Flag_Value | 0 | 1 | 2 | 3 |
 +----------------+---+---+---+---+
 | DID_Field_Size | 0 | 1 | 2 | 4 |
 +----------------+---+---+---+---+

3.1.1.1.2. Window Descriptor

 This provides guarantees about the minimum memory buffer required to
 decompress a frame. This information is important for decoders to
 allocate enough memory.

 The Window_Descriptor byte is optional. When Single_Segment_Flag is
 set, Window_Descriptor is not present. In this case, Window_Size is
 Frame_Content_Size, which can be any value from 0 to 2^64-1 bytes (16
 ExaBytes).

 +------------+----------+----------+
 | Bit Number | 7-3 | 2-0 |
 +------------+----------+----------+
 | Field Name | Exponent | Mantissa |
 +------------+----------+----------+

 The minimum memory buffer size is called Window_Size. It is
 described by the following formulae:

 windowLog = 10 + Exponent;
 windowBase = 1 << windowLog;
 windowAdd = (windowBase / 8) * Mantissa;
 Window_Size = windowBase + windowAdd;

 The minimum Window_Size is 1 KB. The maximum Window_Size is (1<<41)
 + 7*(1<<38) bytes, which is 3.75 TB.

 In general, larger Window_Size values tend to improve the compression
 ratio, but at the cost of increased memory usage.

 To properly decode compressed data, a decoder will need to allocate a
 buffer of at least Window_Size bytes.

Collet & Kucherawy Informational [Page 10]

RFC 8478 application/zstd October 2018

 In order to protect decoders from unreasonable memory requirements, a
 decoder is allowed to reject a compressed frame that requests a
 memory size beyond decoder’s authorized range.

 For improved interoperability, it’s recommended for decoders to
 support values of Window_Size up to 8 MB and for encoders not to
 generate frames requiring a Window_Size larger than 8 MB. It’s
 merely a recommendation though, and decoders are free to support
 larger or lower limits, depending on local limitations.

3.1.1.1.3. Dictionary_ID

 This is a variable size field, which contains the ID of the
 dictionary required to properly decode the frame. This field is
 optional. When it’s not present, it’s up to the decoder to know
 which dictionary to use.

 Dictionary_ID field size is provided by DID_Field_Size.
 DID_Field_Size is directly derived from the value of
 Dictionary_ID_Flag. One byte can represent an ID 0-255; 2 bytes can
 represent an ID 0-65535; 4 bytes can represent an ID 0-4294967295.
 Format is little-endian.

 It is permitted to represent a small ID (for example, 13) with a
 large 4-byte dictionary ID, even if it is less efficient.

 Within private environments, any dictionary ID can be used. However,
 for frames and dictionaries distributed in public space,
 Dictionary_ID must be attributed carefully. The following ranges are
 reserved for use only with dictionaries that have been registered
 with IANA (see Section 6.3):

 low range: <= 32767
 high range: >= (1 << 31)

 Any other value for Dictionary_ID can be used by private arrangement
 between participants.

 Any payload presented for decompression that references an
 unregistered reserved dictionary ID results in an error.

Collet & Kucherawy Informational [Page 11]

RFC 8478 application/zstd October 2018

3.1.1.1.4. Frame Content Size

 This is the original (uncompressed) size. This information is
 optional. Frame_Content_Size uses a variable number of bytes,
 provided by FCS_Field_Size. FCS_Field_Size is provided by the value
 of Frame_Content_Size_Flag. FCS_Field_Size can be equal to 0 (not
 present), 1, 2, 4, or 8 bytes.

 +----------------+--------------+
 | FCS Field Size | Range |
 +----------------+--------------+
 | 0 | unknown |
 +----------------+--------------+
 | 1 | 0 - 255 |
 +----------------+--------------+
 | 2 | 256 - 65791 |
 +----------------+--------------+
 | 4 | 0 - 2^32 - 1 |
 +----------------+--------------+
 | 8 | 0 - 2^64 - 1 |
 +----------------+--------------+

 Frame_Content_Size format is little-endian. When FCS_Field_Size is
 1, 4, or 8 bytes, the value is read directly. When FCS_Field_Size is
 2, the offset of 256 is added. It’s allowed to represent a small
 size (for example 18) using any compatible variant.

3.1.1.2. Blocks

 After Magic_Number and Frame_Header, there are some number of blocks.
 Each frame must have at least 1 block, but there is no upper limit on
 the number of blocks per frame.

 The structure of a block is as follows:

 +--------------+---------------+
 | Block_Header | Block_Content |
 +--------------+---------------+
 | 3 bytes | n bytes |
 +--------------+---------------+

Collet & Kucherawy Informational [Page 12]

RFC 8478 application/zstd October 2018

 Block_Header uses 3 bytes, written using little-endian convention.
 It contains three fields:

 +------------+------------+------------+
 | Last_Block | Block_Type | Block_Size |
 +------------+------------+------------+
 | bit 0 | bits 1-2 | bits 3-23 |
 +------------+------------+------------+

3.1.1.2.1. Last_Block

 The lowest bit (Last_Block) signals whether this block is the last
 one. The frame will end after this last block. It may be followed
 by an optional Content_Checksum (see Section 3.1.1).

3.1.1.2.2. Block_Type

 The next 2 bits represent the Block_Type. There are four block
 types:

 +-----------+------------------+
 | Value | Block_Type |
 +-----------+------------------+
 | 0 | Raw_Block |
 +-----------+------------------+
 | 1 | RLE_Block |
 +-----------+------------------+
 | 2 | Compressed_Block |
 +-----------+------------------+
 | 3 | Reserved |
 +-----------+------------------+

 Raw_Block: This is an uncompressed block. Block_Content contains
 Block_Size bytes.

 RLE_Block: This is a single byte, repeated Block_Size times.
 Block_Content consists of a single byte. On the decompression
 side, this byte must be repeated Block_Size times.

 Compressed_Block: This is a compressed block as described in
 Section 3.1.1.3. Block_Size is the length of Block_Content,
 namely the compressed data. The decompressed size is not known,
 but its maximum possible value is guaranteed (see below).

 Reserved: This is not a block. This value cannot be used with the
 current specification. If such a value is present, it is
 considered to be corrupt data.

Collet & Kucherawy Informational [Page 13]

RFC 8478 application/zstd October 2018

3.1.1.2.3. Block_Size

 The upper 21 bits of Block_Header represent the Block_Size.
 Block_Size is the size of the block excluding the header. A block
 can contain any number of bytes (even zero), up to
 Block_Maximum_Decompressed_Size, which is the smallest of:

 o Window_Size

 o 128 KB

 A Compressed_Block has the extra restriction that Block_Size is
 always strictly less than the decompressed size. If this condition
 cannot be respected, the block must be sent uncompressed instead
 (i.e., treated as a Raw_Block).

3.1.1.3. Compressed Blocks

 To decompress a compressed block, the compressed size must be
 provided from the Block_Size field within Block_Header.

 A compressed block consists of two sections: a Literals
 Section (Section 3.1.1.3.1) and a
 Sequences_Section (Section 3.1.1.3.2). The results of the two
 sections are then combined to produce the decompressed data in
 Sequence Execution (Section 3.1.1.4).

 To decode a compressed block, the following elements are necessary:

 o Previous decoded data, up to a distance of Window_Size, or the
 beginning of the Frame, whichever is smaller. Single_Segment_Flag
 will be set in the latter case.

 o List of "recent offsets" from the previous Compressed_Block.

 o The previous Huffman tree, required by Treeless_Literals_Block
 type.

 o Previous Finite State Entropy (FSE) decoding tables, required by
 Repeat_Mode, for each symbol type (literals lengths, match
 lengths, offsets).

 Note that decoding tables are not always from the previous
 Compressed_Block:

 o Every decoding table can come from a dictionary.

Collet & Kucherawy Informational [Page 14]

RFC 8478 application/zstd October 2018

 o The Huffman tree comes from the previous
 Compressed_Literals_Block.

3.1.1.3.1. Literals_Section_Header

 All literals are regrouped in the first part of the block. They can
 be decoded first and then copied during Sequence Execution (see
 Section 3.1.1.4), or they can be decoded on the flow during Sequence
 Execution.

 Literals can be stored uncompressed or compressed using Huffman
 prefix codes. When compressed, an optional tree description can be
 present, followed by 1 or 4 streams.

 +----------------------------+
 | Literals_Section_Header |
 +----------------------------+
 | [Huffman_Tree_Description] |
 +----------------------------+
 | [Jump_Table] |
 +----------------------------+
 | Stream_1 |
 +----------------------------+
 | [Stream_2] |
 +----------------------------+
 | [Stream_3] |
 +----------------------------+
 | [Stream_4] |
 +----------------------------+

3.1.1.3.1.1. Literals_Section_Header

 This field describes how literals are packed. It’s a byte-aligned
 variable-size bit field, ranging from 1 to 5 bytes, using little-
 endian convention.

 +---------------------+-----------+
 | Literals_Block_Type | 2 bits |
 +---------------------+-----------+
 | Size_Format | 1-2 bits |
 +---------------------+-----------+
 | Regenerated_Size | 5-20 bits |
 +---------------------+-----------+
 | [Compressed_Size] | 0-18 bits |
 +---------------------+-----------+

 In this representation, bits at the top are the lowest bits.

Collet & Kucherawy Informational [Page 15]

RFC 8478 application/zstd October 2018

 The Literals_Block_Type field uses the two lowest bits of the first
 byte, describing four different block types:

 +---------------------------+-------+
 | Literals_Block_Type | Value |
 +---------------------------+-------+
 | Raw_Literals_Block | 0 |
 +---------------------------+-------+
 | RLE_Literals_Block | 1 |
 +---------------------------+-------+
 | Compressed_Literals_Block | 2 |
 +---------------------------+-------+
 | Treeless_Literals_Block | 3 |
 +---------------------------+-------+

 Raw_Literals_Block: Literals are stored uncompressed.
 Literals_Section_Content is Regenerated_Size.

 RLE_Literals_Block: Literals consist of a single-byte value repeated
 Regenerated_Size times. Literals_Section_Content is 1.

 Compressed_Literals_Block: This is a standard Huffman-compressed
 block, starting with a Huffman tree description. See details
 below. Literals_Section_Content is Compressed_Size.

 Treeless_Literals_Block: This is a Huffman-compressed block, using
 the Huffman tree from the previous Compressed_Literals_Block, or a
 dictionary if there is no previous Huffman-compressed literals
 block. Huffman_Tree_Description will be skipped. Note that if
 this mode is triggered without any previous Huffman-table in the
 frame (or dictionary, per Section 5), it should be treated as data
 corruption. Literals_Section_Content is Compressed_Size.

 The Size_Format is divided into two families:

 o For Raw_Literals_Block and RLE_Literals_Block, it’s only necessary
 to decode Regenerated_Size. There is no Compressed_Size field.

 o For Compressed_Block and Treeless_Literals_Block, it’s required to
 decode both Compressed_Size and Regenerated_Size (the decompressed
 size). It’s also necessary to decode the number of streams (1 or
 4).

 For values spanning several bytes, the convention is little endian.

 Size_Format for Raw_Literals_Block and RLE_Literals_Block uses 1 or 2
 bits. Its value is (Literals_Section_Header[0]>>2) & 0x3.

Collet & Kucherawy Informational [Page 16]

RFC 8478 application/zstd October 2018

 Size_Format == 00 or 10: Size_Format uses 1 bit. Regenerated_Size
 uses 5 bits (value 0-31). Literals_Section_Header uses 1 byte.
 Regenerated_Size = Literal_Section_Header[0]>>3.

 Size_Format == 01: Size_Format uses 2 bits. Regenerated_Size uses
 12 bits (values 0-4095). Literals_Section_Header uses 2 bytes.
 Regenerated_Size = (Literals_Section_Header[0]>>4) +
 (Literals_Section_Header[1]<<4).

 Size_Format == 11: Size_Format uses 2 bits. Regenerated_Size uses
 20 bits (values 0-1048575). Literals_Section_Header uses 3 bytes.
 Regenerated_Size = (Literals_Section_Header[0]>>4) +
 (Literals_Section_Header[1]<<4) + (Literals_Section_Header[2]<<12)

 Only Stream_1 is present for these cases. Note that it is permitted
 to represent a short value (for example, 13) using a long format,
 even if it’s less efficient.

 Size_Format for Compressed_Literals_Block and Treeless_Literals_Block
 always uses 2 bits.

 Size_Format == 00: A single stream. Both Regenerated_Size and
 Compressed_Size use 10 bits (values 0-1023).
 Literals_Section_Header uses 3 bytes.

 Size_Format == 01: 4 streams. Both Regenerated_Size and
 Compressed_Size use 10 bits (values 0-1023).
 Literals_Section_Header uses 3 bytes.

 Size_Format == 10: 4 streams. Both Regenerated_Size and
 Compressed_Size use 14 bits (values 0-16383).
 Literals_Section_Header uses 4 bytes.

 Size_Format == 11: 4 streams. Both Regenerated_Size and
 Compressed_Size use 18 bits (values 0-262143).
 Literals_Section_Header uses 5 bytes.

 Both the Compressed_Size and Regenerated_Size fields follow little-
 endian convention. Note that Compressed_Size includes the size of
 the Huffman_Tree_Description when it is present.

3.1.1.3.1.2. Raw_Literals_Block

 The data in Stream_1 is Regenerated_Size bytes long. It contains the
 raw literals data to be used during Sequence Execution
 (Section 3.1.1.3.2).

Collet & Kucherawy Informational [Page 17]

RFC 8478 application/zstd October 2018

3.1.1.3.1.3. RLE_Literals_Block

 Stream_1 consists of a single byte that should be repeated
 Regenerated_Size times to generate the decoded literals.

3.1.1.3.1.4. Compressed_Literals_Block and Treeless_Literals_Block

 Both of these modes contain Huffman-encoded data. For
 Treeless_Literals_Block, the Huffman table comes from the previously
 compressed literals block, or from a dictionary; see Section 5.

3.1.1.3.1.5. Huffman_Tree_Description

 This section is only present when the Literals_Block_Type type is
 Compressed_Literals_Block (2). The format of
 Huffman_Tree_Description can be found in Section 4.2.1. The size of
 Huffman_Tree_Description is determined during the decoding process.
 It must be used to determine where streams begin.

 Total_Streams_Size = Compressed_Size
 - Huffman_Tree_Description_Size

3.1.1.3.1.6. Jump_Table

 The Jump_Table is only present when there are 4 Huffman-coded
 streams.

 (Reminder: Huffman-compressed data consists of either 1 or 4 Huffman-
 coded streams.)

 If only 1 stream is present, it is a single bitstream occupying the
 entire remaining portion of the literals block, encoded as described
 within Section 4.2.2.

 If there are 4 streams, Literals_Section_Header only provides enough
 information to know the decompressed and compressed sizes of all 4
 streams combined. The decompressed size of each stream is equal to
 (Regenerated_Size+3)/4, except for the last stream, which may be up
 to 3 bytes smaller, to reach a total decompressed size as specified
 in Regenerated_Size.

 The compressed size of each stream is provided explicitly in the
 Jump_Table. The Jump_Table is 6 bytes long and consists of three
 2-byte little-endian fields, describing the compressed sizes of the
 first 3 streams. Stream4_Size is computed from Total_Streams_Size
 minus sizes of other streams.

Collet & Kucherawy Informational [Page 18]

RFC 8478 application/zstd October 2018

 Stream4_Size = Total_Streams_Size - 6
 - Stream1_Size - Stream2_Size
 - Stream3_Size

 Note that if Stream1_Size + Stream2_Size + Stream3_Size exceeds
 Total_Streams_Size, the data are considered corrupted.

 Each of these 4 bitstreams is then decoded independently as a
 Huffman-Coded stream, as described in Section 4.2.2.

3.1.1.3.2. Sequences_Section

 A compressed block is a succession of sequences. A sequence is a
 literal copy command, followed by a match copy command. A literal
 copy command specifies a length. It is the number of bytes to be
 copied (or extracted) from the Literals Section. A match copy
 command specifies an offset and a length.

 When all sequences are decoded, if there are literals left in the
 literals section, these bytes are added at the end of the block.

 This is described in more detail in Section 3.1.1.4.

 The Sequences_Section regroups all symbols required to decode
 commands. There are three symbol types: literals lengths, offsets,
 and match lengths. They are encoded together, interleaved, in a
 single "bitstream".

 The Sequences_Section starts by a header, followed by optional
 probability tables for each symbol type, followed by the bitstream.

 Sequences_Section_Header
 [Literals_Length_Table]
 [Offset_Table]
 [Match_Length_Table]
 bitStream

 To decode the Sequences_Section, it’s necessary to know its size.
 This size is deduced from the size of the Literals_Section:
 Sequences_Section_Size = Block_Size - Literals_Section_Header -
 Literals_Section_Content

Collet & Kucherawy Informational [Page 19]

RFC 8478 application/zstd October 2018

3.1.1.3.2.1. Sequences_Section_Header

 This header consists of two items:

 o Number_of_Sequences

 o Symbol_Compression_Modes

 Number_of_Sequences is a variable size field using between 1 and 3
 bytes. If the first byte is "byte0":

 o if (byte0 == 0): there are no sequences. The sequence section
 stops here. Decompressed content is defined entirely as Literals
 Section content. The FSE tables used in Repeat_Mode are not
 updated.

 o if (byte0 < 128): Number_of_Sequences = byte0. Uses 1 byte.

 o if (byte0 < 255): Number_of_Sequences = ((byte0 - 128) << 8) +
 byte1. Uses 2 bytes.

 o if (byte0 == 255): Number_of_Sequences = byte1 + (byte2 << 8) +
 0x7F00. Uses 3 bytes.

 Symbol_Compression_Modes is a single byte, defining the compression
 mode of each symbol type.

 +-------------+----------------------+
 | Bit Number | Field Name |
 +-------------+----------------------+
 | 7-6 | Literal_Lengths_Mode |
 +-------------+----------------------+
 | 5-4 | Offsets_Mode |
 +-------------+----------------------+
 | 3-2 | Match_Lengths_Mode |
 +-------------+----------------------+
 | 1-0 | Reserved |
 +-------------+----------------------+

 The last field, Reserved, must be all zeroes.

Collet & Kucherawy Informational [Page 20]

RFC 8478 application/zstd October 2018

 Literals_Lengths_Mode, Offsets_Mode, and Match_Lengths_Mode define
 the Compression_Mode of literals lengths, offsets, and match lengths
 symbols, respectively. They follow the same enumeration:

 +-------+---------------------+
 | Value | Compression_Mode |
 +-------+---------------------+
 | 0 | Predefined_Mode |
 +-------+---------------------+
 | 1 | RLE_Mode |
 +-------+---------------------+
 | 2 | FSE_Compressed_Mode |
 +-------+---------------------+
 | 3 | Repeat_Mode |
 +-------+---------------------+

 Predefined_Mode: A predefined FSE (see Section 4.1) distribution
 table is used, as defined in Section 3.1.1.3.2.2. No distribution
 table will be present.

 RLE_Mode: The table description consists of a single byte, which
 contains the symbol’s value. This symbol will be used for all
 sequences.

 FSE_Compressed_Mode: Standard FSE compression. A distribution table
 will be present. The format of this distribution table is
 described in Section 4.1.1. Note that the maximum allowed
 accuracy log for literals length and match length tables is 9, and
 the maximum accuracy log for the offsets table is 8. This mode
 must not be used when only one symbol is present; RLE_Mode should
 be used instead (although any other mode will work).

 Repeat_Mode: The table used in the previous Compressed_Block with
 Number_Of_Sequences > 0 will be used again, or if this is the
 first block, the table in the dictionary will be used. Note that
 this includes RLE_Mode, so if Repeat_Mode follows RLE_Mode, the
 same symbol will be repeated. It also includes Predefined_Mode,
 in which case Repeat_Mode will have the same outcome as
 Predefined_Mode. No distribution table will be present. If this
 mode is used without any previous sequence table in the frame (or
 dictionary; see Section 5) to repeat, this should be treated as
 corruption.

Collet & Kucherawy Informational [Page 21]

RFC 8478 application/zstd October 2018

3.1.1.3.2.1.1. Sequence Codes for Lengths and Offsets

 Each symbol is a code in its own context, which specifies Baseline
 and Number_of_Bits to add. Codes are FSE compressed and interleaved
 with raw additional bits in the same bitstream.

 Literals length codes are values ranging from 0 to 35 inclusive.
 They define lengths from 0 to 131071 bytes. The literals length is
 equal to the decoded Baseline plus the result of reading
 Number_of_Bits bits from the bitstream, as a little-endian value.

Collet & Kucherawy Informational [Page 22]

RFC 8478 application/zstd October 2018

 +----------------------+----------+----------------+
 | Literals_Length_Code | Baseline | Number_of_Bits |
 +----------------------+----------+----------------+
 | 0-15 | length | 0 |
 +----------------------+----------+----------------+
 | 16 | 16 | 1 |
 +----------------------+----------+----------------+
 | 17 | 18 | 1 |
 +----------------------+----------+----------------+
 | 18 | 20 | 1 |
 +----------------------+----------+----------------+
 | 19 | 22 | 1 |
 +----------------------+----------+----------------+
 | 20 | 24 | 2 |
 +----------------------+----------+----------------+
 | 21 | 28 | 2 |
 +----------------------+----------+----------------+
 | 22 | 32 | 3 |
 +----------------------+----------+----------------+
 | 23 | 40 | 3 |
 +----------------------+----------+----------------+
 | 24 | 48 | 4 |
 +----------------------+----------+----------------+
 | 25 | 64 | 6 |
 +----------------------+----------+----------------+
 | 26 | 128 | 7 |
 +----------------------+----------+----------------+
 | 27 | 256 | 8 |
 +----------------------+----------+----------------+
 | 28 | 512 | 9 |
 +----------------------+----------+----------------+
 | 29 | 1024 | 10 |
 +----------------------+----------+----------------+
 | 30 | 2048 | 11 |
 +----------------------+----------+----------------+
 | 31 | 4096 | 12 |
 +----------------------+----------+----------------+
 | 32 | 8192 | 13 |
 +----------------------+----------+----------------+
 | 33 | 16384 | 14 |
 +----------------------+----------+----------------+
 | 34 | 32768 | 15 |
 +----------------------+----------+----------------+
 | 35 | 65536 | 16 |
 +----------------------+----------+----------------+

Collet & Kucherawy Informational [Page 23]

RFC 8478 application/zstd October 2018

 Match length codes are values ranging from 0 to 52 inclusive. They
 define lengths from 3 to 131074 bytes. The match length is equal to
 the decoded Baseline plus the result of reading Number_of_Bits bits
 from the bitstream, as a little-endian value.

Collet & Kucherawy Informational [Page 24]

RFC 8478 application/zstd October 2018

 +-------------------+-----------------------+----------------+
 | Match_Length_Code | Baseline | Number_of_Bits |
 +-------------------+-----------------------+----------------+
 | 0-31 | Match_Length_Code + 3 | 0 |
 +-------------------+-----------------------+----------------+
 | 32 | 35 | 1 |
 +-------------------+-----------------------+----------------+
 | 33 | 37 | 1 |
 +-------------------+-----------------------+----------------+
 | 34 | 39 | 1 |
 +-------------------+-----------------------+----------------+
 | 35 | 41 | 1 |
 +-------------------+-----------------------+----------------+
 | 36 | 43 | 2 |
 +-------------------+-----------------------+----------------+
 | 37 | 47 | 2 |
 +-------------------+-----------------------+----------------+
 | 38 | 51 | 3 |
 +-------------------+-----------------------+----------------+
 | 39 | 59 | 3 |
 +-------------------+-----------------------+----------------+
 | 40 | 67 | 4 |
 +-------------------+-----------------------+----------------+
 | 41 | 83 | 4 |
 +-------------------+-----------------------+----------------+
 | 42 | 99 | 5 |
 +-------------------+-----------------------+----------------+
 | 43 | 131 | 7 |
 +-------------------+-----------------------+----------------+
 | 44 | 259 | 8 |
 +-------------------+-----------------------+----------------+
 | 45 | 515 | 9 |
 +-------------------+-----------------------+----------------+
 | 46 | 1027 | 10 |
 +-------------------+-----------------------+----------------+
 | 47 | 2051 | 11 |
 +-------------------+-----------------------+----------------+
 | 48 | 4099 | 12 |
 +-------------------+-----------------------+----------------+
 | 49 | 8195 | 13 |
 +-------------------+-----------------------+----------------+
 | 50 | 16387 | 14 |
 +-------------------+-----------------------+----------------+
 | 51 | 32771 | 15 |
 +-------------------+-----------------------+----------------+
 | 52 | 65539 | 16 |
 +-------------------+-----------------------+----------------+

Collet & Kucherawy Informational [Page 25]

RFC 8478 application/zstd October 2018

 Offset codes are values ranging from 0 to N.

 A decoder is free to limit its maximum supported value for N.
 Support for values of at least 22 is recommended. At the time of
 this writing, the reference decoder supports a maximum N value of 31.

 An offset code is also the number of additional bits to read in
 little-endian fashion and can be translated into an Offset_Value
 using the following formulas:

 Offset_Value = (1 << offsetCode) + readNBits(offsetCode);
 if (Offset_Value > 3) Offset = Offset_Value - 3;

 This means that maximum Offset_Value is (2^(N+1))-1, supporting back-
 reference distance up to (2^(N+1))-4, but it is limited by the
 maximum back-reference distance (see Section 3.1.1.1.2).

 Offset_Value from 1 to 3 are special: they define "repeat codes".
 This is described in more detail in Section 3.1.1.5.

3.1.1.3.2.1.2. Decoding Sequences

 FSE bitstreams are read in reverse of the direction they are written.
 In zstd, the compressor writes bits forward into a block, and the
 decompressor must read the bitstream backwards.

 To find the start of the bitstream, it is therefore necessary to know
 the offset of the last byte of the block, which can be found by
 counting Block_Size bytes after the block header.

 After writing the last bit containing information, the compressor
 writes a single 1 bit and then fills the byte with 0-7 zero bits of
 padding. The last byte of the compressed bitstream cannot be zero
 for that reason.

 When decompressing, the last byte containing the padding is the first
 byte to read. The decompressor needs to skip 0-7 initial zero bits
 until the first 1 bit occurs. Afterwards, the useful part of the
 bitstream begins.

 FSE decoding requires a ’state’ to be carried from symbol to symbol.
 For more explanation on FSE decoding, see Section 4.1.

 For sequence decoding, a separate state keeps track of each literal
 lengths, offsets, and match lengths symbols. Some FSE primitives are
 also used. For more details on the operation of these primitives,
 see Section 4.1.

Collet & Kucherawy Informational [Page 26]

RFC 8478 application/zstd October 2018

 The bitstream starts with initial FSE state values, each using the
 required number of bits in their respective accuracy, decoded
 previously from their normalized distribution. It starts with
 Literals_Length_State, followed by Offset_State, and finally
 Match_Length_State.

 Note that all values are read backward, so the ’start’ of the
 bitstream is at the highest position in memory, immediately before
 the last 1 bit for padding.

 After decoding the starting states, a single sequence is decoded
 Number_Of_Sequences times. These sequences are decoded in order from
 first to last. Since the compressor writes the bitstream in the
 forward direction, this means the compressor must encode the
 sequences starting with the last one and ending with the first.

 For each of the symbol types, the FSE state can be used to determine
 the appropriate code. The code then defines the Baseline and
 Number_of_Bits to read for each type. The description of the codes
 for how to determine these values can be found in
 Section 3.1.1.3.2.1.

 Decoding starts by reading the Number_of_Bits required to decode
 offset. It does the same for Match_Length and then for
 Literals_Length. This sequence is then used for Sequence Execution
 (see Section 3.1.1.4).

 If it is not the last sequence in the block, the next operation is to
 update states. Using the rules pre-calculated in the decoding
 tables, Literals_Length_State is updated, followed by
 Match_Length_State, and then Offset_State. See Section 4.1 for
 details on how to update states from the bitstream.

 This operation will be repeated Number_of_Sequences times. At the
 end, the bitstream shall be entirely consumed; otherwise, the
 bitstream is considered corrupted.

3.1.1.3.2.2. Default Distributions

 If Predefined_Mode is selected for a symbol type, its FSE decoding
 table is generated from a predefined distribution table defined here.
 For details on how to convert this distribution into a decoding
 table, see Section 4.1.

Collet & Kucherawy Informational [Page 27]

RFC 8478 application/zstd October 2018

3.1.1.3.2.2.1. Literals Length

 The decoding table uses an accuracy log of 6 bits (64 states).

 short literalsLength_defaultDistribution[36] =
 { 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1,
 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1,
 -1,-1,-1,-1
 };

3.1.1.3.2.2.2. Match Length

 The decoding table uses an accuracy log of 6 bits (64 states).

 short matchLengths_defaultDistribution[53] =
 { 1, 4, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,
 -1,-1,-1,-1,-1
 };

3.1.1.3.2.2.3. Offset Codes

 The decoding table uses an accuracy log of 5 bits (32 states), and
 supports a maximum N value of 28, allowing offset values up to
 536,870,908.

 If any sequence in the compressed block requires a larger offset than
 this, it’s not possible to use the default distribution to represent
 it.

 short offsetCodes_defaultDistribution[29] =
 { 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,-1,-1,-1
 };

3.1.1.4. Sequence Execution

 Once literals and sequences have been decoded, they are combined to
 produce the decoded content of a block.

 Each sequence consists of a tuple of (literals_length, offset_value,
 match_length), decoded as described in the
 Sequences_Section (Section 3.1.1.3.2). To execute a sequence, first
 copy literals_length bytes from the decoded literals to the output.

Collet & Kucherawy Informational [Page 28]

RFC 8478 application/zstd October 2018

 Then, match_length bytes are copied from previous decoded data. The
 offset to copy from is determined by offset_value:

 o if Offset_Value > 3, then the offset is Offset_Value - 3;

 o if Offset_Value is from 1-3, the offset is a special repeat offset
 value. See Section 3.1.1.5 for how the offset is determined in
 this case.

 The offset is defined as from the current position (after copying the
 literals), so an offset of 6 and a match length of 3 means that 3
 bytes should be copied from 6 bytes back. Note that all offsets
 leading to previously decoded data must be smaller than Window_Size
 defined in Frame_Header_Descriptor (Section 3.1.1.1.1).

3.1.1.5. Repeat Offsets

 As seen above, the first three values define a repeated offset; we
 will call them Repeated_Offset1, Repeated_Offset2, and
 Repeated_Offset3. They are sorted in recency order, with
 Repeated_Offset1 meaning "most recent one".

 If offset_value is 1, then the offset used is Repeated_Offset1, etc.

 There is one exception: When the current sequence’s literals_length
 is 0, repeated offsets are shifted by 1, so an offset_value of 1
 means Repeated_Offset2, an offset_value of 2 means Repeated_Offset3,
 and an offset_value of 3 means Repeated_Offset1 - 1_byte.

 For the first block, the starting offset history is populated with
 the following values: Repeated_Offset1 (1), Repeated_Offset2 (4), and
 Repeated_Offset3 (8), unless a dictionary is used, in which case they
 come from the dictionary.

 Then each block gets its starting offset history from the ending
 values of the most recent Compressed_Block. Note that blocks that
 are not Compressed_Block are skipped; they do not contribute to
 offset history.

 The newest offset takes the lead in offset history, shifting others
 back (up to its previous place if it was already present). This
 means that when Repeated_Offset1 (most recent) is used, history is
 unmodified. When Repeated_Offset2 is used, it is swapped with
 Repeated_Offset1. If any other offset is used, it becomes
 Repeated_Offset1, and the rest are shifted back by 1.

Collet & Kucherawy Informational [Page 29]

RFC 8478 application/zstd October 2018

3.1.2. Skippable Frames

 +--------------+------------+-----------+
 | Magic_Number | Frame_Size | User_Data |
 +--------------+------------+-----------+
 | 4 bytes | 4 bytes | n bytes |
 +--------------+------------+-----------+

 Skippable frames allow the insertion of user-defined metadata into a
 flow of concatenated frames.

 Skippable frames defined in this specification are compatible with
 skippable frames in [LZ4].

 From a compliant decoder perspective, skippable frames simply need to
 be skipped, and their content ignored, resuming decoding after the
 skippable frame.

 It should be noted that a skippable frame can be used to watermark a
 stream of concatenated frames embedding any kind of tracking
 information (even just a Universally Unique Identifier (UUID)).
 Users wary of such possibility should scan the stream of concatenated
 frames in an attempt to detect such frames for analysis or removal.

 The fields are:

 Magic_Number: 4 bytes, little-endian format. Value: 0x184D2A5?,
 which means any value from 0x184D2A50 to 0x184D2A5F. All 16
 values are valid to identify a skippable frame. This
 specification does not detail any specific tagging methods for
 skippable frames.

 Frame_Size: This is the size, in bytes, of the following User_Data
 (without including the magic number nor the size field itself).
 This field is represented using 4 bytes, little-endian format,
 unsigned 32 bits. This means User_Data can’t be bigger than
 (2^32-1) bytes.

 User_Data: This field can be anything. Data will just be skipped by
 the decoder.

4. Entropy Encoding

 Two types of entropy encoding are used by the Zstandard format: FSE
 and Huffman coding. Huffman is used to compress literals, while FSE
 is used for all other symbols (Literals_Length_Code,
 Match_Length_Code, and offset codes) and to compress Huffman headers.

Collet & Kucherawy Informational [Page 30]

RFC 8478 application/zstd October 2018

4.1. FSE

 FSE, short for Finite State Entropy, is an entropy codec based on
 [ANS]. FSE encoding/decoding involves a state that is carried over
 between symbols, so decoding must be done in the opposite direction
 as encoding. Therefore, all FSE bitstreams are read from end to
 beginning. Note that the order of the bits in the stream is not
 reversed; they are simply read in the reverse order from which they
 were written.

 For additional details on FSE, see Finite State Entropy [FSE].

 FSE decoding involves a decoding table that has a power of 2 size and
 contains three elements: Symbol, Num_Bits, and Baseline. The base 2
 logarithm of the table size is its Accuracy_Log. An FSE state value
 represents an index in this table.

 To obtain the initial state value, consume Accuracy_Log bits from the
 stream as a little-endian value. The next symbol in the stream is
 the Symbol indicated in the table for that state. To obtain the next
 state value, the decoder should consume Num_Bits bits from the stream
 as a little-endian value and add it to Baseline.

4.1.1. FSE Table Description

 To decode FSE streams, it is necessary to construct the decoding
 table. The Zstandard format encodes FSE table descriptions as
 described here.

 An FSE distribution table describes the probabilities of all symbols
 from 0 to the last present one (included) on a normalized scale of
 (1 << Accuracy_Log). Note that there must be two or more symbols
 with non-zero probability.

 A bitstream is read forward, in little-endian fashion. It is not
 necessary to know its exact size, since the size will be discovered
 and reported by the decoding process. The bitstream starts by
 reporting on which scale it operates. If low4bits designates the
 lowest 4 bits of the first byte, then Accuracy_Log = low4bits + 5.

Collet & Kucherawy Informational [Page 31]

RFC 8478 application/zstd October 2018

 This is followed by each symbol value, from 0 to the last present
 one. The number of bits used by each field is variable and depends
 on:

 Remaining probabilities + 1: For example, presuming an Accuracy_Log
 of 8, and presuming 100 probabilities points have already been
 distributed, the decoder may read any value from 0 to
 (256 - 100 + 1) == 157, inclusive. Therefore, it must read
 log2sup(157) == 8 bits.

 Value decoded: Small values use 1 fewer bit. For example, presuming
 values from 0 to 157 (inclusive) are possible, 255 - 157 = 98
 values are remaining in an 8-bit field. The first 98 values
 (hence from 0 to 97) use only 7 bits, and values from 98 to 157
 use 8 bits. This is achieved through this scheme:

 +------------+---------------+-----------+
 | Value Read | Value Decoded | Bits Used |
 +------------+---------------+-----------+
 | 0 - 97 | 0 - 97 | 7 |
 +------------+---------------+-----------+
 | 98 - 127 | 98 - 127 | 8 |
 +------------+---------------+-----------+
 | 128 - 225 | 0 - 97 | 7 |
 +------------+---------------+-----------+
 | 226 - 255 | 128 - 157 | 8 |
 +------------+---------------+-----------+

 Symbol probabilities are read one by one, in order. The probability
 is obtained from Value decoded using the formula P = Value - 1. This
 means the value 0 becomes the negative probability -1. This is a
 special probability that means "less than 1". Its effect on the
 distribution table is described below. For the purpose of
 calculating total allocated probability points, it counts as 1.

 When a symbol has a probability of zero, it is followed by a 2-bit
 repeat flag. This repeat flag tells how many probabilities of zeroes
 follow the current one. It provides a number ranging from 0 to 3.
 If it is a 3, another 2-bit repeat flag follows, and so on.

 When the last symbol reaches a cumulated total of
 (1 << Accuracy_Log), decoding is complete. If the last symbol makes
 the cumulated total go above (1 << Accuracy_Log), distribution is
 considered corrupted.

Collet & Kucherawy Informational [Page 32]

RFC 8478 application/zstd October 2018

 Finally, the decoder can tell how many bytes were used in this
 process and how many symbols are present. The bitstream consumes a
 round number of bytes. Any remaining bit within the last byte is
 simply unused.

 The distribution of normalized probabilities is enough to create a
 unique decoding table. The table has a size of (1 << Accuracy_Log).
 Each cell describes the symbol decoded and instructions to get the
 next state.

 Symbols are scanned in their natural order for "less than 1"
 probabilities as described above. Symbols with this probability are
 being attributed a single cell, starting from the end of the table
 and retreating. These symbols define a full state reset, reading
 Accuracy_Log bits.

 All remaining symbols are allocated in their natural order. Starting
 from symbol 0 and table position 0, each symbol gets allocated as
 many cells as its probability. Cell allocation is spread, not
 linear; each successor position follows this rule:

 position += (tableSize >> 1) + (tableSize >> 3) + 3;
 position &= tableSize - 1;

 A position is skipped if it is already occupied by a "less than 1"
 probability symbol. Position does not reset between symbols; it
 simply iterates through each position in the table, switching to the
 next symbol when enough states have been allocated to the current
 one.

 The result is a list of state values. Each state will decode the
 current symbol.

 To get the Number_of_Bits and Baseline required for the next state,
 it is first necessary to sort all states in their natural order. The
 lower states will need 1 more bit than higher ones. The process is
 repeated for each symbol.

 For example, presuming a symbol has a probability of 5, it receives
 five state values. States are sorted in natural order. The next
 power of 2 is 8. The space of probabilities is divided into 8 equal
 parts. Presuming the Accuracy_Log is 7, this defines 128 states, and
 each share (divided by 8) is 16 in size. In order to reach 8, 8 - 5
 = 3 lowest states will count "double", doubling the number of shares
 (32 in width), requiring 1 more bit in the process.

Collet & Kucherawy Informational [Page 33]

RFC 8478 application/zstd October 2018

 Baseline is assigned starting from the higher states using fewer
 bits, and proceeding naturally, then resuming at the first state,
 each taking its allocated width from Baseline.

 +----------------+-------+-------+--------+------+-------+
 | state order | 0 | 1 | 2 | 3 | 4 |
 +----------------+-------+-------+--------+------+-------+
 | width | 32 | 32 | 32 | 16 | 16 |
 +----------------+-------+-------+--------+------+-------+
 | Number_of_Bits | 5 | 5 | 5 | 4 | 4 |
 +----------------+-------+-------+--------+------+-------+
 | range number | 2 | 4 | 6 | 0 | 1 |
 +----------------+-------+-------+--------+------+-------+
 | Baseline | 32 | 64 | 96 | 0 | 16 |
 +----------------+-------+-------+--------+------+-------+
 | range | 32-63 | 64-95 | 96-127 | 0-15 | 16-31 |
 +----------------+-------+-------+--------+------+-------+

 The next state is determined from the current state by reading the
 required Number_of_Bits and adding the specified Baseline.

 See Appendix A for the results of this process that are applied to
 the default distributions.

4.2. Huffman Coding

 Zstandard Huffman-coded streams are read backwards, similar to the
 FSE bitstreams. Therefore, to find the start of the bitstream, it is
 necessary to know the offset of the last byte of the Huffman-coded
 stream.

 After writing the last bit containing information, the compressor
 writes a single 1 bit and then fills the byte with 0-7 0 bits of
 padding. The last byte of the compressed bitstream cannot be 0 for
 that reason.

 When decompressing, the last byte containing the padding is the first
 byte to read. The decompressor needs to skip 0-7 initial 0 bits and
 the first 1 bit that occurs. Afterwards, the useful part of the
 bitstream begins.

 The bitstream contains Huffman-coded symbols in little-endian order,
 with the codes defined by the method below.

Collet & Kucherawy Informational [Page 34]

RFC 8478 application/zstd October 2018

4.2.1. Huffman Tree Description

 Prefix coding represents symbols from an a priori known alphabet by
 bit sequences (codewords), one codeword for each symbol, in a manner
 such that different symbols may be represented by bit sequences of
 different lengths, but a parser can always parse an encoded string
 unambiguously symbol by symbol.

 Given an alphabet with known symbol frequencies, the Huffman
 algorithm allows the construction of an optimal prefix code using the
 fewest bits of any possible prefix codes for that alphabet.

 The prefix code must not exceed a maximum code length. More bits
 improve accuracy but yield a larger header size and require more
 memory or more complex decoding operations. This specification
 limits the maximum code length to 11 bits.

 All literal values from zero (included) to the last present one
 (excluded) are represented by Weight with values from 0 to
 Max_Number_of_Bits. Transformation from Weight to Number_of_Bits
 follows this pseudocode:

 if Weight == 0
 Number_of_Bits = 0
 else
 Number_of_Bits = Max_Number_of_Bits + 1 - Weight

 The last symbol’s Weight is deduced from previously decoded ones, by
 completing to the nearest power of 2. This power of 2 gives
 Max_Number_of_Bits the depth of the current tree.

 For example, presume the following Huffman tree must be described:

 +---------------+----------------+
 | Literal Value | Number_of_Bits |
 +---------------+----------------+
 | 0 | 1 |
 +---------------+----------------+
 | 1 | 2 |
 +---------------+----------------+
 | 2 | 3 |
 +---------------+----------------+
 | 3 | 0 |
 +---------------+----------------+
 | 4 | 4 |
 +---------------+----------------+
 | 5 | 4 |
 +---------------+----------------+

Collet & Kucherawy Informational [Page 35]

RFC 8478 application/zstd October 2018

 The tree depth is 4, since its longest element uses 4 bits. (The
 longest elements are those with the smallest frequencies.) Value 5
 will not be listed as it can be determined from the values for 0-4,
 nor will values above 5 as they are all 0. Values from 0 to 4 will
 be listed using Weight instead of Number_of_Bits. The pseudocode to
 determine Weight is:

 if Number_of_Bits == 0
 Weight = 0
 else
 Weight = Max_Number_of_Bits + 1 - Number_of_Bits

 It gives the following series of weights:

 +---------------+--------+
 | Literal Value | Weight |
 +---------------+--------+
 | 0 | 4 |
 +---------------+--------+
 | 1 | 3 |
 +---------------+--------+
 | 2 | 2 |
 +---------------+--------+
 | 3 | 0 |
 +---------------+--------+
 | 4 | 1 |
 +---------------+--------+

 The decoder will do the inverse operation: having collected weights
 of literals from 0 to 4, it knows the last literal, 5, is present
 with a non-zero Weight. The Weight of 5 can be determined by
 advancing to the next power of 2. The sum of 2^(Weight-1) (excluding
 0’s) is 15. The nearest power of 2 is 16. Therefore,
 Max_Number_of_Bits = 4 and Weight[5] = 16 - 15 = 1.

4.2.1.1. Huffman Tree Header

 This is a single byte value (0-255), which describes how the series
 of weights is encoded.

 headerByte < 128: The series of weights is compressed using FSE (see
 below). The length of the FSE-compressed series is equal to
 headerByte (0-127).

Collet & Kucherawy Informational [Page 36]

RFC 8478 application/zstd October 2018

 headerByte >= 128: This is a direct representation, where each
 Weight is written directly as a 4-bit field (0-15). They are
 encoded forward, 2 weights to a byte with the first weight taking
 the top 4 bits and the second taking the bottom 4; for example,
 the following operations could be used to read the weights:

 Weight[0] = (Byte[0] >> 4)
 Weight[1] = (Byte[0] & 0xf),
 etc.

 The full representation occupies ceiling(Number_of_Symbols/2)
 bytes, meaning it uses only full bytes even if Number_of_Symbols
 is odd. Number_of_Symbols = headerByte - 127. Note that maximum
 Number_of_Symbols is 255 - 127 = 128. If any literal has a value
 over 128, raw header mode is not possible, and it is necessary to
 use FSE compression.

4.2.1.2. FSE Compression of Huffman Weights

 In this case, the series of Huffman weights is compressed using FSE
 compression. It is a single bitstream with two interleaved states,
 sharing a single distribution table.

 To decode an FSE bitstream, it is necessary to know its compressed
 size. Compressed size is provided by headerByte. It’s also
 necessary to know its maximum possible decompressed size, which is
 255, since literal values span from 0 to 255, and the last symbol’s
 Weight is not represented.

 An FSE bitstream starts by a header, describing probabilities
 distribution. It will create a decoding table. For a list of
 Huffman weights, the maximum accuracy log is 6 bits. For more
 details, see Section 4.1.1.

 The Huffman header compression uses two states, which share the same
 FSE distribution table. The first state (State1) encodes the even-
 numbered index symbols, and the second (State2) encodes the odd-
 numbered index symbols. State1 is initialized first, and then
 State2, and they take turns decoding a single symbol and updating
 their state. For more details on these FSE operations, see
 Section 4.1.

 The number of symbols to be decoded is determined by tracking the
 bitStream overflow condition: If updating state after decoding a
 symbol would require more bits than remain in the stream, it is
 assumed that extra bits are zero. Then, symbols for each of the
 final states are decoded and the process is complete.

Collet & Kucherawy Informational [Page 37]

RFC 8478 application/zstd October 2018

4.2.1.3. Conversion from Weights to Huffman Prefix Codes

 All present symbols will now have a Weight value. It is possible to
 transform weights into Number_of_Bits, using this formula:

 if Weight > 0
 Number_of_Bits = Max_Number_of_Bits + 1 - Weight
 else
 Number_of_Bits = 0

 Symbols are sorted by Weight. Within the same Weight, symbols keep
 natural sequential order. Symbols with a Weight of zero are removed.
 Then, starting from the lowest Weight, prefix codes are distributed
 in sequential order.

 For example, assume the following list of weights has been decoded:

 +---------+--------+
 | Literal | Weight |
 +---------+--------+
 | 0 | 4 |
 +---------+--------+
 | 1 | 3 |
 +---------+--------+
 | 2 | 2 |
 +---------+--------+
 | 3 | 0 |
 +---------+--------+
 | 4 | 1 |
 +---------+--------+
 | 5 | 1 |
 +---------+--------+

Collet & Kucherawy Informational [Page 38]

RFC 8478 application/zstd October 2018

 Sorting by weight and then the natural sequential order yields the
 following distribution:

 +---------+--------+----------------+--------------+
 | Literal | Weight | Number_Of_Bits | Prefix Codes |
 +---------+--------+----------------|--------------+
 | 3 | 0 | 0 | N/A |
 +---------+--------+----------------|--------------+
 | 4 | 1 | 4 | 0000 |
 +---------+--------+----------------|--------------+
 | 5 | 1 | 4 | 0001 |
 +---------+--------+----------------|--------------+
 | 2 | 2 | 3 | 001 |
 +---------+--------+----------------|--------------+
 | 1 | 3 | 2 | 01 |
 +---------+--------+----------------|--------------+
 | 0 | 4 | 1 | 1 |
 +---------+--------+----------------|--------------+

4.2.2. Huffman-Coded Streams

 Given a Huffman decoding table, it is possible to decode a Huffman-
 coded stream.

 Each bitstream must be read backward, which starts from the end and
 goes up to the beginning. Therefore, it is necessary to know the
 size of each bitstream.

 It is also necessary to know exactly which bit is the last. This is
 detected by a final bit flag: the highest bit of the last byte is a
 final-bit-flag. Consequently, a last byte of 0 is not possible. And
 the final-bit-flag itself is not part of the useful bitstream.
 Hence, the last byte contains between 0 and 7 useful bits.

 Starting from the end, it is possible to read the bitstream in a
 little-endian fashion, keeping track of already used bits. Since the
 bitstream is encoded in reverse order, starting from the end, read
 symbols in forward order.

Collet & Kucherawy Informational [Page 39]

RFC 8478 application/zstd October 2018

 For example, if the literal sequence "0145" was encoded using the
 above prefix code, it would be encoded (in reverse order) as:

 +---------+----------+
 | Symbol | Encoding |
 +---------+----------+
 | 5 | 0000 |
 +---------+----------+
 | 4 | 0001 |
 +---------+----------+
 | 1 | 01 |
 +---------+----------+
 | 0 | 1 |
 +---------+----------+
 | Padding | 00001 |
 +---------+----------+

 This results in the following 2-byte bitstream:

 00010000 00001101

 Here is an alternative representation with the symbol codes separated
 by underscores:

 0001_0000 00001_1_01

 Reading the highest Max_Number_of_Bits bits, it’s possible to compare
 the extracted value to the decoding table, determining the symbol to
 decode and number of bits to discard.

 The process continues reading up to the required number of symbols
 per stream. If a bitstream is not entirely and exactly consumed,
 hence reaching exactly its beginning position with all bits consumed,
 the decoding process is considered faulty.

5. Dictionary Format

 Zstandard is compatible with "raw content" dictionaries, free of any
 format restriction, except that they must be at least 8 bytes. These
 dictionaries function as if they were just the content part of a
 formatted dictionary.

 However, dictionaries created by "zstd --train" in the reference
 implementation follow a specific format, described here.

 Dictionaries are not included in the compressed content but rather
 are provided out of band. That is, the Dictionary_ID identifies
 which should be used, but this specification does not describe the

Collet & Kucherawy Informational [Page 40]

RFC 8478 application/zstd October 2018

 mechanism by which the dictionary is obtained prior to use during
 compression or decompression.

 A dictionary has a size, defined either by a buffer limit or a file
 size. The general format is:

 +--------------+---------------+----------------+---------+
 | Magic_Number | Dictionary_ID | Entropy_Tables | Content |
 +--------------+---------------+----------------+---------+

 Magic_Number: 4 bytes ID, value 0xEC30A437, little-endian format.

 Dictionary_ID: 4 bytes, stored in little-endian format.
 Dictionary_ID can be any value, except 0 (which means no
 Dictionary_ID). It is used by decoders to check if they use the
 correct dictionary. If the frame is going to be distributed in a
 private environment, any Dictionary_ID can be used. However, for
 public distribution of compressed frames, the following ranges are
 reserved and shall not be used:

 low range: <= 32767
 high range: >= (2^31)

 Entropy_Tables: Follow the same format as the tables in compressed
 blocks. See the relevant FSE and Huffman sections for how to
 decode these tables. They are stored in the following order:
 Huffman table for literals, FSE table for offsets, FSE table for
 match lengths, and FSE table for literals lengths. These tables
 populate the Repeat Stats literals mode and Repeat distribution
 mode for sequence decoding. It is finally followed by 3 offset
 values, populating repeat offsets (instead of using {1,4,8}),
 stored in order, 4-bytes little-endian each, for a total of 12
 bytes. Each repeat offset must have a value less than the
 dictionary size.

 Content: The rest of the dictionary is its content. The content
 acts as a "past" in front of data to be compressed or
 decompressed, so it can be referenced in sequence commands. As
 long as the amount of data decoded from this frame is less than or
 equal to Window_Size, sequence commands may specify offsets longer
 than the total length of decoded output so far to reference back
 to the dictionary, even parts of the dictionary with offsets
 larger than Window_Size. After the total output has surpassed
 Window_Size, however, this is no longer allowed, and the
 dictionary is no longer accessible.

Collet & Kucherawy Informational [Page 41]

RFC 8478 application/zstd October 2018

6. IANA Considerations

 IANA has made two registrations, as described below.

6.1. The ’application/zstd’ Media Type

 The ’application/zstd’ media type identifies a block of data that is
 compressed using zstd compression. The data is a stream of bytes as
 described in this document. IANA has added the following to the
 "Media Types" registry:

 Type name: application

 Subtype name: zstd

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: See Section 7 of RFC 8478

 Interoperability considerations: N/A

 Published specification: RFC 8478

 Applications that use this media type: anywhere data size is an
 issue

 Additional information:

 Magic number(s): 4 bytes, little-endian format.
 Value: 0xFD2FB528

 File extension(s): zst

 Macintosh file type code(s): N/A

 For further information: See [ZSTD]

 Intended usage: common

 Restrictions on usage: N/A

 Author: Murray S. Kucherawy

 Change Controller: IETF

Collet & Kucherawy Informational [Page 42]

RFC 8478 application/zstd October 2018

 Provisional registration: no

6.2. Content Encoding

 IANA has added the following entry to the "HTTP Content Coding
 Registry" within the "Hypertext Transfer Protocol (HTTP) Parameters"
 registry:

 Name: zstd

 Description: A stream of bytes compressed using the Zstandard
 protocol

 Pointer to specification text: RFC 8478

6.3. Dictionaries

 Work in progress includes development of dictionaries that will
 optimize compression and decompression of particular types of data.
 Specification of such dictionaries for public use will necessitate
 registration of a code point from the reserved range described in
 Section 3.1.1.1.3 and its association with a specific dictionary.

 However, there are at present no such dictionaries published for
 public use, so this document makes no immediate request of IANA to
 create such a registry.

7. Security Considerations

 Any data compression method involves the reduction of redundancy in
 the data. Zstandard is no exception, and the usual precautions
 apply.

 One should never compress a message whose content must remain secret
 with a message generated by a third party. Such a compression can be
 used to guess the content of the secret message through analysis of
 entropy reduction. This was demonstrated in the Compression Ratio
 Info-leak Made Easy (CRIME) attack [CRIME], for example.

 A decoder has to demonstrate capabilities to detect and prevent any
 kind of data tampering in the compressed frame from triggering system
 faults, such as reading or writing beyond allowed memory ranges.
 This can be guaranteed by either the implementation language or
 careful bound checkings. Of particular note is the encoding of
 Number_of_Sequences values that cause the decoder to read into the
 block header (and beyond), as well as the indication of a
 Frame_Content_Size that is smaller than the actual decompressed data,
 in an attempt to trigger a buffer overflow. It is highly recommended

Collet & Kucherawy Informational [Page 43]

RFC 8478 application/zstd October 2018

 to fuzz-test (i.e., provide invalid, unexpected, or random input and
 verify safe operation of) decoder implementations to test and harden
 their capability to detect bad frames and deal with them without any
 adverse system side effect.

 An attacker may provide correctly formed compressed frames with
 unreasonable memory requirements. A decoder must always control
 memory requirements and enforce some (system-specific) limits in
 order to protect memory usage from such scenarios.

 Compression can be optimized by training a dictionary on a variety of
 related content payloads. This dictionary must then be available at
 the decoder for decompression of the payload to be possible. While
 this document does not specify how to acquire a dictionary for a
 given compressed payload, it is worth noting that third-party
 dictionaries may interact unexpectedly with a decoder, leading to
 possible memory or other resource exhaustion attacks. We expect such
 topics to be discussed in further detail in the Security
 Considerations section of a forthcoming RFC for dictionary
 acquisition and transmission, but highlight this issue now out of an
 abundance of caution.

 As discussed in Section 3.1.2, it is possible to store arbitrary user
 metadata in skippable frames. While such frames are ignored during
 decompression of the data, they can be used as a watermark to track
 the path of the compressed payload.

8. Implementation Status

 Source code for a C language implementation of a Zstandard-compliant
 library is available at [ZSTD-GITHUB]. This implementation is
 considered to be the reference implementation and is production
 ready; it implements the full range of the specification. It is
 routinely tested against security hazards and widely deployed within
 Facebook infrastructure.

 The reference version is optimized for speed and is highly portable.
 It has been proven to run safely on multiple architectures (e.g.,
 x86, x64, ARM, MIPS, PowerPC, IA64) featuring 32- or 64-bit
 addressing schemes, a little- or big-endian storage scheme, a number
 of different operating systems (e.g., UNIX (including Linux, BSD,
 OS-X, and Solaris) and Windows), and a number of compilers (e.g.,
 gcc, clang, visual, and icc).

Collet & Kucherawy Informational [Page 44]

RFC 8478 application/zstd October 2018

9. References

9.1. Normative References

 [ZSTD] "Zstandard", <http://www.zstd.net>.

9.2. Informative References

 [ANS] Duda, J., "Asymmetric numeral systems: entropy coding
 combining speed of Huffman coding with compression rate of
 arithmetic coding", January 2014,
 <https://arxiv.org/pdf/1311.2540>.

 [CRIME] "CRIME", June 2018, <https://en.wikipedia.org/w/
 index.php?title=CRIME&oldid=844538656>.

 [FSE] "FiniteStateEntropy", commit 6efa78a, June 2018,
 <https://github.com/Cyan4973/FiniteStateEntropy/>.

 [LZ4] "LZ4 Frame Format Description", commit d03224b, January
 2018, <https://github.com/lz4/lz4/blob/master/doc/
 lz4_Frame_format.md>.

 [RFC1952] Deutsch, P., "GZIP file format specification version 4.3",
 RFC 1952, DOI 10.17487/RFC1952, May 1996,
 <https://www.rfc-editor.org/info/rfc1952>.

 [XXHASH] "XXHASH Algorithm", <http://www.xxhash.org>.

 [ZSTD-GITHUB]
 "zstd", commit 8514bd8, August 2018,
 <https://github.com/facebook/zstd>.

Collet & Kucherawy Informational [Page 45]

RFC 8478 application/zstd October 2018

Appendix A. Decoding Tables for Predefined Codes

 This appendix contains FSE decoding tables for the predefined literal
 length, match length, and offset codes. The tables have been
 constructed using the algorithm as given above in Section 4.1.1. The
 tables here can be used as examples to crosscheck that an
 implementation has built its decoding tables correctly.

A.1. Literal Length Code Table

 +-------+--------+----------------+------+
 | State | Symbol | Number_Of_Bits | Base |
 +-------+--------+----------------+------+
 | 0 | 0 | 0 | 0 |
 +-------+--------+----------------+------+
 | 0 | 0 | 4 | 0 |
 +-------+--------+----------------+------+
 | 1 | 0 | 4 | 16 |
 +-------+--------+----------------+------+
 | 2 | 1 | 5 | 32 |
 +-------+--------+----------------+------+
 | 3 | 3 | 5 | 0 |
 +-------+--------+----------------+------+
 | 4 | 4 | 5 | 0 |
 +-------+--------+----------------+------+
 | 5 | 6 | 5 | 0 |
 +-------+--------+----------------+------+
 | 6 | 7 | 5 | 0 |
 +-------+--------+----------------+------+
 | 7 | 9 | 5 | 0 |
 +-------+--------+----------------+------+
 | 8 | 10 | 5 | 0 |
 +-------+--------+----------------+------+
 | 9 | 12 | 5 | 0 |
 +-------+--------+----------------+------+
 | 10 | 14 | 6 | 0 |
 +-------+--------+----------------+------+
 | 11 | 16 | 5 | 0 |
 +-------+--------+----------------+------+
 | 12 | 18 | 5 | 0 |
 +-------+--------+----------------+------+
 | 13 | 19 | 5 | 0 |
 +-------+--------+----------------+------+
 | 14 | 21 | 5 | 0 |
 +-------+--------+----------------+------+
 | 15 | 22 | 5 | 0 |
 +-------+--------+----------------+------+
 | 16 | 24 | 5 | 0 |

Collet & Kucherawy Informational [Page 46]

RFC 8478 application/zstd October 2018

 +-------+--------+----------------+------+
 | 17 | 25 | 5 | 32 |
 +-------+--------+----------------+------+
 | 18 | 26 | 5 | 0 |
 +-------+--------+----------------+------+
 | 19 | 27 | 6 | 0 |
 +-------+--------+----------------+------+
 | 20 | 29 | 6 | 0 |
 +-------+--------+----------------+------+
 | 21 | 31 | 6 | 0 |
 +-------+--------+----------------+------+
 | 22 | 0 | 4 | 32 |
 +-------+--------+----------------+------+
 | 23 | 1 | 4 | 0 |
 +-------+--------+----------------+------+
 | 24 | 2 | 5 | 0 |
 +-------+--------+----------------+------+
 | 25 | 4 | 5 | 32 |
 +-------+--------+----------------+------+
 | 26 | 5 | 5 | 0 |
 +-------+--------+----------------+------+
 | 27 | 7 | 5 | 32 |
 +-------+--------+----------------+------+
 | 28 | 8 | 5 | 0 |
 +-------+--------+----------------+------+
 | 29 | 10 | 5 | 32 |
 +-------+--------+----------------+------+
 | 30 | 11 | 5 | 0 |
 +-------+--------+----------------+------+
 | 31 | 13 | 6 | 0 |
 +-------+--------+----------------+------+
 | 32 | 16 | 5 | 32 |
 +-------+--------+----------------+------+
 | 33 | 17 | 5 | 0 |
 +-------+--------+----------------+------+
 | 34 | 19 | 5 | 32 |
 +-------+--------+----------------+------+
 | 35 | 20 | 5 | 0 |
 +-------+--------+----------------+------+
 | 36 | 22 | 5 | 32 |
 +-------+--------+----------------+------+
 | 37 | 23 | 5 | 0 |
 +-------+--------+----------------+------+
 | 38 | 25 | 4 | 0 |
 +-------+--------+----------------+------+
 | 39 | 25 | 4 | 16 |
 +-------+--------+----------------+------+
 | 40 | 26 | 5 | 32 |

Collet & Kucherawy Informational [Page 47]

RFC 8478 application/zstd October 2018

 +-------+--------+----------------+------+
 | 41 | 28 | 6 | 0 |
 +-------+--------+----------------+------+
 | 42 | 30 | 6 | 0 |
 +-------+--------+----------------+------+
 | 43 | 0 | 4 | 48 |
 +-------+--------+----------------+------+
 | 44 | 1 | 4 | 16 |
 +-------+--------+----------------+------+
 | 45 | 2 | 5 | 32 |
 +-------+--------+----------------+------+
 | 46 | 3 | 5 | 32 |
 +-------+--------+----------------+------+
 | 47 | 5 | 5 | 32 |
 +-------+--------+----------------+------+
 | 48 | 6 | 5 | 32 |
 +-------+--------+----------------+------+
 | 49 | 8 | 5 | 32 |
 +-------+--------+----------------+------+
 | 50 | 9 | 5 | 32 |
 +-------+--------+----------------+------+
 | 51 | 11 | 5 | 32 |
 +-------+--------+----------------+------+
 | 52 | 12 | 5 | 32 |
 +-------+--------+----------------+------+
 | 53 | 15 | 6 | 0 |
 +-------+--------+----------------+------+
 | 54 | 17 | 5 | 32 |
 +-------+--------+----------------+------+
 | 55 | 18 | 5 | 32 |
 +-------+--------+----------------+------+
 | 56 | 20 | 5 | 32 |
 +-------+--------+----------------+------+
 | 57 | 21 | 5 | 32 |
 +-------+--------+----------------+------+
 | 58 | 23 | 5 | 32 |
 +-------+--------+----------------+------+
 | 59 | 24 | 5 | 32 |
 +-------+--------+----------------+------+
 | 60 | 35 | 6 | 0 |
 +-------+--------+----------------+------+
 | 61 | 34 | 6 | 0 |
 +-------+--------+----------------+------+
 | 62 | 33 | 6 | 0 |
 +-------+--------+----------------+------+
 | 63 | 32 | 6 | 0 |
 +-------+--------+----------------+------+

Collet & Kucherawy Informational [Page 48]

RFC 8478 application/zstd October 2018

A.2. Match Length Code Table

 +-------+--------+----------------+------+
 | State | Symbol | Number_Of_Bits | Base |
 +-------+--------+----------------+------+
 | 0 | 0 | 0 | 0 |
 +-------+--------+----------------+------+
 | 0 | 0 | 6 | 0 |
 +-------+--------+----------------+------+
 | 1 | 1 | 4 | 0 |
 +-------+--------+----------------+------+
 | 2 | 2 | 5 | 32 |
 +-------+--------+----------------+------+
 | 3 | 3 | 5 | 0 |
 +-------+--------+----------------+------+
 | 4 | 5 | 5 | 0 |
 +-------+--------+----------------+------+
 | 5 | 6 | 5 | 0 |
 +-------+--------+----------------+------+
 | 6 | 8 | 5 | 0 |
 +-------+--------+----------------+------+
 | 7 | 10 | 6 | 0 |
 +-------+--------+----------------+------+
 | 8 | 13 | 6 | 0 |
 +-------+--------+----------------+------+
 | 9 | 16 | 6 | 0 |
 +-------+--------+----------------+------+
 | 10 | 19 | 6 | 0 |
 +-------+--------+----------------+------+
 | 11 | 22 | 6 | 0 |
 +-------+--------+----------------+------+
 | 12 | 25 | 6 | 0 |
 +-------+--------+----------------+------+
 | 13 | 28 | 6 | 0 |
 +-------+--------+----------------+------+
 | 14 | 31 | 6 | 0 |
 +-------+--------+----------------+------+
 | 15 | 33 | 6 | 0 |
 +-------+--------+----------------+------+
 | 16 | 35 | 6 | 0 |
 +-------+--------+----------------+------+
 | 17 | 37 | 6 | 0 |
 +-------+--------+----------------+------+
 | 18 | 39 | 6 | 0 |
 +-------+--------+----------------+------+
 | 19 | 41 | 6 | 0 |
 +-------+--------+----------------+------+
 | 20 | 43 | 6 | 0 |

Collet & Kucherawy Informational [Page 49]

RFC 8478 application/zstd October 2018

 +-------+--------+----------------+------+
 | 21 | 45 | 6 | 0 |
 +-------+--------+----------------+------+
 | 22 | 1 | 4 | 16 |
 +-------+--------+----------------+------+
 | 23 | 2 | 4 | 0 |
 +-------+--------+----------------+------+
 | 24 | 3 | 5 | 32 |
 +-------+--------+----------------+------+
 | 25 | 4 | 5 | 0 |
 +-------+--------+----------------+------+
 | 26 | 6 | 5 | 32 |
 +-------+--------+----------------+------+
 | 27 | 7 | 5 | 0 |
 +-------+--------+----------------+------+
 | 28 | 9 | 6 | 0 |
 +-------+--------+----------------+------+
 | 29 | 12 | 6 | 0 |
 +-------+--------+----------------+------+
 | 30 | 15 | 6 | 0 |
 +-------+--------+----------------+------+
 | 31 | 18 | 6 | 0 |
 +-------+--------+----------------+------+
 | 32 | 21 | 6 | 0 |
 +-------+--------+----------------+------+
 | 33 | 24 | 6 | 0 |
 +-------+--------+----------------+------+
 | 34 | 27 | 6 | 0 |
 +-------+--------+----------------+------+
 | 35 | 30 | 6 | 0 |
 +-------+--------+----------------+------+
 | 36 | 32 | 6 | 0 |
 +-------+--------+----------------+------+
 | 37 | 34 | 6 | 0 |
 +-------+--------+----------------+------+
 | 38 | 36 | 6 | 0 |
 +-------+--------+----------------+------+
 | 39 | 38 | 6 | 0 |
 +-------+--------+----------------+------+
 | 40 | 40 | 6 | 0 |
 +-------+--------+----------------+------+
 | 41 | 42 | 6 | 0 |
 +-------+--------+----------------+------+
 | 42 | 44 | 6 | 0 |
 +-------+--------+----------------+------+
 | 43 | 1 | 4 | 32 |
 +-------+--------+----------------+------+
 | 44 | 1 | 4 | 48 |

Collet & Kucherawy Informational [Page 50]

RFC 8478 application/zstd October 2018

 +-------+--------+----------------+------+
 | 45 | 2 | 4 | 16 |
 +-------+--------+----------------+------+
 | 46 | 4 | 5 | 32 |
 +-------+--------+----------------+------+
 | 47 | 5 | 5 | 32 |
 +-------+--------+----------------+------+
 | 48 | 7 | 5 | 32 |
 +-------+--------+----------------+------+
 | 49 | 8 | 5 | 32 |
 +-------+--------+----------------+------+
 | 50 | 11 | 6 | 0 |
 +-------+--------+----------------+------+
 | 51 | 14 | 6 | 0 |
 +-------+--------+----------------+------+
 | 52 | 17 | 6 | 0 |
 +-------+--------+----------------+------+
 | 53 | 20 | 6 | 0 |
 +-------+--------+----------------+------+
 | 54 | 23 | 6 | 0 |
 +-------+--------+----------------+------+
 | 55 | 26 | 6 | 0 |
 +-------+--------+----------------+------+
 | 56 | 29 | 6 | 0 |
 +-------+--------+----------------+------+
 | 57 | 52 | 6 | 0 |
 +-------+--------+----------------+------+
 | 58 | 51 | 6 | 0 |
 +-------+--------+----------------+------+
 | 59 | 50 | 6 | 0 |
 +-------+--------+----------------+------+
 | 60 | 49 | 6 | 0 |
 +-------+--------+----------------+------+
 | 61 | 48 | 6 | 0 |
 +-------+--------+----------------+------+
 | 62 | 47 | 6 | 0 |
 +-------+--------+----------------+------+
 | 63 | 46 | 6 | 0 |
 +-------+--------+----------------+------+

Collet & Kucherawy Informational [Page 51]

RFC 8478 application/zstd October 2018

A.3. Offset Code Table

 +-------+--------+----------------+------+
 | State | Symbol | Number_Of_Bits | Base |
 +-------+--------+----------------+------+
 | 0 | 0 | 0 | 0 |
 +-------+--------+----------------+------+
 | 0 | 0 | 5 | 0 |
 +-------+--------+----------------+------+
 | 1 | 6 | 4 | 0 |
 +-------+--------+----------------+------+
 | 2 | 9 | 5 | 0 |
 +-------+--------+----------------+------+
 | 3 | 15 | 5 | 0 |
 +-------+--------+----------------+------+
 | 4 | 21 | 5 | 0 |
 +-------+--------+----------------+------+
 | 5 | 3 | 5 | 0 |
 +-------+--------+----------------+------+
 | 6 | 7 | 4 | 0 |
 +-------+--------+----------------+------+
 | 7 | 12 | 5 | 0 |
 +-------+--------+----------------+------+
 | 8 | 18 | 5 | 0 |
 +-------+--------+----------------+------+
 | 9 | 23 | 5 | 0 |
 +-------+--------+----------------+------+
 | 10 | 5 | 5 | 0 |
 +-------+--------+----------------+------+
 | 11 | 8 | 4 | 0 |
 +-------+--------+----------------+------+
 | 12 | 14 | 5 | 0 |
 +-------+--------+----------------+------+
 | 13 | 20 | 5 | 0 |
 +-------+--------+----------------+------+
 | 14 | 2 | 5 | 0 |
 +-------+--------+----------------+------+
 | 15 | 7 | 4 | 16 |
 +-------+--------+----------------+------+
 | 16 | 11 | 5 | 0 |
 +-------+--------+----------------+------+
 | 17 | 17 | 5 | 0 |
 +-------+--------+----------------+------+
 | 18 | 22 | 5 | 0 |
 +-------+--------+----------------+------+
 | 19 | 4 | 5 | 0 |
 +-------+--------+----------------+------+
 | 20 | 8 | 4 | 16 |

Collet & Kucherawy Informational [Page 52]

RFC 8478 application/zstd October 2018

 +-------+--------+----------------+------+
 | 21 | 13 | 5 | 0 |
 +-------+--------+----------------+------+
 | 22 | 19 | 5 | 0 |
 +-------+--------+----------------+------+
 | 23 | 1 | 5 | 0 |
 +-------+--------+----------------+------+
 | 24 | 6 | 4 | 16 |
 +-------+--------+----------------+------+
 | 25 | 10 | 5 | 0 |
 +-------+--------+----------------+------+
 | 26 | 16 | 5 | 0 |
 +-------+--------+----------------+------+
 | 27 | 28 | 5 | 0 |
 +-------+--------+----------------+------+
 | 28 | 27 | 5 | 0 |
 +-------+--------+----------------+------+
 | 29 | 26 | 5 | 0 |
 +-------+--------+----------------+------+
 | 30 | 25 | 5 | 0 |
 +-------+--------+----------------+------+
 | 31 | 24 | 5 | 0 |
 +-------+--------+----------------+------+

Acknowledgments

 zstd was developed by Yann Collet.

 Bobo Bose-Kolanu, Felix Handte, Kyle Nekritz, Nick Terrell, and David
 Schleimer provided helpful feedback during the development of this
 document.

Collet & Kucherawy Informational [Page 53]

RFC 8478 application/zstd October 2018

Authors’ Addresses

 Yann Collet
 Facebook
 1 Hacker Way
 Menlo Park, CA 94025
 United States of America

 Email: cyan@fb.com

 Murray S. Kucherawy (editor)
 Facebook
 1 Hacker Way
 Menlo Park, CA 94025
 United States of America

 Email: msk@fb.com

Collet & Kucherawy Informational [Page 54]

