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Abstract
Requirements for providing the End-to-End (E2E) performance assurance are emerging within
the service provider networks. While there are various technology solutions, there is no single
solution that can fulfill these requirements for a native IP network. In particular, there is a need
for a universal E2E solution that can cover both intra- and inter-domain scenarios.

One feasible E2E traffic-engineering solution is the addition of central control in a native IP
network. This document describes various complex scenarios and simulation results when
applying the Path Computation Element (PCE) in a native IP network. This solution, referred to as
Centralized Control Dynamic Routing (CCDR), integrates the advantage of using distributed
protocols and the power of a centralized control technology, providing traffic engineering for
native IP networks in a manner that applies equally to intra- and inter-domain scenarios.
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1. Introduction 
A service provider network is composed of thousands of routers that run distributed protocols to
exchange reachability information. The path for the destination network is mainly calculated,
and controlled, by the distributed protocols. These distributed protocols are robust enough to
support most applications; however, they have some difficulties supporting the complexities
needed for traffic-engineering applications, e.g., E2E performance assurance, or maximizing the
link utilization within an IP network.

Multiprotocol Label Switching (MPLS) using Traffic-Engineering (TE) technology (MPLS-TE) 
 is one solution for TE networks, but it introduces an MPLS network along with related

technology, which would be an overlay of the IP network. MPLS-TE technology is often used for
Label Switched Path (LSP) protection and setting up complex paths within a domain. It has not
been widely deployed for meeting E2E (especially in inter-domain) dynamic performance
assurance requirements for an IP network.

Segment Routing  is another solution that integrates some advantages of using a
distributed protocol and central control technology, but it requires the underlying network,
especially the provider edge router, to do an in-depth label push and pop action while adding
complexity when coexisting with the non-segment routing network. Additionally, it can only
maneuver the E2E paths for MPLS and IPv6 traffic via different mechanisms.

Deterministic Networking (DetNet)  is another possible solution. It is primarily focused
on providing bounded latency for a flow and introduces additional requirements on the domain
edge router. The current DetNet scope is within one domain. The use cases defined in this
document do not require the additional complexity of deterministic properties and so differ from
the DetNet use cases.

This document describes several scenarios for a native IP network where a Centralized Control
Dynamic Routing (CCDR) framework can produce qualitative improvement in efficiency without
requiring a change to the data-plane behavior on the router. Using knowledge of the Border
Gateway Protocol (BGP) session-specific prefixes advertised by a router, the network topology
and the near-real-time link-utilization information from network management systems, a central
PCE is able to compute an optimal path and give the underlying routers the destination address
to use to reach the BGP nexthop, such that the distributed routing protocol will use the computed
path via traditional recursive lookup procedure. Some results from simulations of path
optimization are also presented to concretely illustrate a variety of scenarios where CCDR shows
significant improvement over traditional distributed routing protocols.

This document is the base document of the following two documents: the universal solution
document, which is suitable for intra-domain and inter-domain TE scenario, is described in 

; and the related protocol extension contents is described in .

[RFC3209]

[RFC8402]

[RFC8578]

[PCE-
NATIVE-IP] [PCEP-NATIVE-IP-EXT]

RFC 8735 CCDR Scenario and Simulation Results February 2020

Wang, et al. Informational Page 4



BRAS:

CD:

CR:

CCDR:

E2E:

IDC:

MAN:

QoS:

SR:

TE:

UID:

WAN:

2. Terminology 
In this document, PCE is used as defined in . The following terms are used as described
here:

Broadband Remote Access Server 

Congestion Degree 

Core Router 

Centralized Control Dynamic Routing 

End to End 

Internet Data Center 

Metro Area Network 

Quality of Service 

Service Router 

Traffic Engineering 

Utilization Increment Degree 

Wide Area Network 

3. CCDR Scenarios 
The following sections describe various deployment scenarios where applying the CCDR
framework is intuitively expected to produce improvements based on the macro-scale properties
of the framework and the scenario.

3.1. QoS Assurance for Hybrid Cloud-Based Application 
With the emergence of cloud computing technologies, enterprises are putting more and more
services on a public-oriented cloud environment while keeping core business within their
private cloud. The communication between the private and public cloud sites spans the WAN.
The bandwidth requirements between them are variable, and the background traffic between
these two sites varies over time. Enterprise applications require assurance of the E2E QoS
performance on demand for variable bandwidth services.

CCDR, which integrates the merits of distributed protocols and the power of centralized control,
is suitable for this scenario. The possible solution framework is illustrated below:

[RFC5440]
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As illustrated in Figure 1, the source and destination of the "Cloud-Based Application" traffic are
located at "Private Cloud Site" and "Public Cloud Site", respectively.

By default, the traffic path between the private and public cloud site is determined by the
distributed control network. When an application requires E2E QoS assurance, it can send these
requirements to the PCE and let the PCE compute one E2E path, which is based on the underlying
network topology and real traffic information, in order to accommodate the application's QoS
requirements. Section 4.4 of this document describes the simulation results for this use case.

3.2. Link Utilization Maximization 
Network topology within a Metro Area Network (MAN) is generally in a star mode as illustrated
in Figure 2, with different devices connected to different customer types. The traffic from these
customers is often in a tidal pattern with the links between the Core Router (CR) / Broadband
Remote Access Server (BRAS) and CR/Service Router (SR) experiencing congestion in different
periods due to subscribers under BRAS often using the network at night and the leased line users
under SR often using the network during the daytime. The link between BRAS/SR and CR must
satisfy the maximum traffic volume between them, respectively, which causes these links to
often be underutilized.

Figure 1: Hybrid Cloud Communication Scenario 

                         +------------------------+
                         | Cloud-Based Application|
                         +------------------------+
                                     |
                               +-----------+
                               |    PCE    |
                               +-----------+
                                     |
                                     |
                            //--------------\\
                       /////                  \\\\\
  Private Cloud Site ||       Distributed          |Public Cloud Site
                      |       Control Network      |
                       \\\\\                  /////
                            \\--------------//

Figure 2: Star-Mode Network Topology within MAN 

                         +--------+
                         |   CR   |
                         +----|---+
                              |
                  |-------|--------|-------|
                  |       |        |       |
               +--|-+   +-|+    +--|-+   +-|+
               |BRAS|   |SR|    |BRAS|   |SR|
               +----+   +--+    +----+   +--+
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If we consider connecting the BRAS/SR with a local link loop (which is usually lower cost) and
control the overall MAN topology with the CCDR framework, we can exploit the tidal phenomena
between the BRAS/CR and SR/CR links, maximizing the utilization of these central trunk links
(which are usually higher cost than the local loops).

3.3. Traffic Engineering for Multi-domain 
Service provider networks are often comprised of different domains, interconnected with each
other, forming a very complex topology as illustrated in Figure 4. Due to the traffic pattern to/
from the MAN and IDC, the utilization of the links between them are often asymmetric. It is
almost impossible to balance the utilization of these links via a distributed protocol, but this
unbalance can be overcome utilizing the CCDR framework.

A solution for this scenario requires the gathering of NetFlow information, analysis of the source/
destination autonomous system (AS), and determining what the main cause of the congested link
(s) is. After this, the operator can use the external Border Gateway Protocol (eBGP) sessions to
schedule the traffic among the different domains according to the solution described in the CCDR
framework.

Figure 3: Link Utilization Maximization via CCDR 

                                  +-------+
                              -----  PCE  |
                              |   +-------+
                         +----|---+
                         |   CR   |
                         +----|---+
                              |
                  |-------|--------|-------|
                  |       |        |       |
               +--|-+   +-|+    +--|-+   +-|+
               |BRAS-----SR|    |BRAS-----SR|
               +----+   +--+    +----+   +--+

Figure 4: Tra�c Engineering for Complex Multi-domain Topology 

               +---+                +---+
               |MAN|----------------|IDC|
               +---+       |        +---+
                 |     ----------     |
                 |-----|Backbone|-----|
                 |     ----|-----     |
                 |         |          |
               +---+       |        +---+
               |IDC|----------------|MAN|
               +---+                +---+
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3.4. Network Temporal Congestion Elimination 
In more general situations, there is often temporal congestion within the service provider's
network, for example, due to daily or weekly periodic bursts or large events that are scheduled
well in advance. Such congestion phenomena often appear regularly, and if the service provider
has methods to mitigate it, it will certainly improve their network operation capabilities and
increase satisfaction for customers. CCDR is also suitable for such scenarios, as the controller can
schedule traffic out of the congested links, lowering their utilization during these times. Section
4.5 describes the simulation results of this scenario.

4. CCDR Simulation 
The following sections describe a specific case study to illustrate the workings of the CCDR
algorithm with concrete paths/metrics, as well as a procedure for generating topology and traffic
matrices and the results from simulations applying CCDR for E2E QoS (assured path and
congestion elimination) over the generated topologies and traffic matrices. In all cases examined,
the CCDR algorithm produces qualitatively significant improvement over the reference (OSPF)
algorithm, suggesting that CCDR will have broad applicability.

The structure and scale of the simulated topology is similar to that of the real networks. Multiple
different traffic matrices were generated to simulate different congestion conditions in the
network. Only one of them is illustrated since the others produce similar results.

4.1. Case Study for CCDR Algorithm 
In this section, we consider a specific network topology for case study: examining the path
selected by OSPF and CCDR and evaluating how and why the paths differ. Figure 5 depicts the
topology of the network in this case. There are eight forwarding devices in the network. The
original cost and utilization are marked on it as shown in the figure. For example, the original
cost and utilization for the link (1, 2) are 3 and 50%, respectively. There are two flows: f1 and f2.
Both of these two flows are from node 1 to node 8. For simplicity, it is assumed that the
bandwidth of the link in the network is 10 Mb/s. The flow rate of f1 is 1 Mb/s and the flow rate of
f2 is 2 Mb/s. The threshold of the link in congestion is 90%.

If the OSPF protocol, which adopts Dijkstra's algorithm (IS-IS is similar because it also uses
Dijkstra's algorithm), is applied in the network, the two flows from node 1 to node 8 can only use
the OSPF path (p1: 1->2->3->8). This is because Dijkstra's algorithm mainly considers the original
cost of the link. Since CCDR considers cost and utilization simultaneously, the same path as OSPF
will not be selected due to the severe congestion of the link (2, 3). In this case, f1 will select the
path (p2: 1->5->6->7->8) since the new cost of this path is better than that of the OSPF path.
Moreover, the path p2 is also better than the path (p3: 1->2->4->7->8) for flow f1. However, f2 will
not select the same path since it will cause new congestion in the link (6, 7). As a result, f2 will
select the path (p3: 1->2->4->7->8).
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4.2. Topology Simulation 
Moving on from the specific case study, we now consider a class of networks more representative
of real deployments, with a fully linked core network that serves to connect edge nodes, which
themselves connect to only a subset of the core. An example of such a topology is shown in 
Figure 6 for the case of 4 core nodes and 5 edge nodes. The CCDR simulations presented in this
work use topologies involving 100 core nodes and 400 edge nodes. While the resulting graph
does not fit on this page, this scale of network is similar to what is deployed in production
environments.

Figure 5: Case Study for CCDR's Algorithm 

      +----+      f1                +-------> +-----+ ----> +-----+
      |Edge|-----------+            |+--------|  3  |-------|  8  |
      |Node|---------+ |            ||+-----> +-----+ ----> +-----+
      +----+         | |       4/95%|||              6/50%     |
                     | |            |||                   5/60%|
                     | v            |||                        |
      +----+       +-----+ -----> +-----+      +-----+      +-----+
      |Edge|-------|  1  |--------|  2  |------|  4  |------|  7  |
      |Node|-----> +-----+ -----> +-----+7/60% +-----+5/45% +-----+
      +----+  f2      |     3/50%                              |
                      |                                        |
                      |   3/60%   +-----+ 5/55%+-----+   3/75% |
                      +-----------|  5  |------|  6  |---------+
                                  +-----+      +-----+
                (a) Dijkstra's Algorithm (OSPF/IS-IS)

      +----+      f1                          +-----+ ----> +-----+
      |Edge|-----------+             +--------|  3  |-------|  8  |
      |Node|---------+ |             |        +-----+ ----> +-----+
      +----+         | |       4/95% |               6/50%    ^|^
                     | |             |                   5/60%|||
                     | v             |                        |||
      +----+       +-----+ -----> +-----+ ---> +-----+ ---> +-----+
      |Edge|-------|  1  |--------|  2  |------|  4  |------|  7  |
      |Node|-----> +-----+        +-----+7/60% +-----+5/45% +-----+
      +----+  f2     ||     3/50%                              |^
                     ||                                        ||
                     ||   3/60%   +-----+5/55% +-----+   3/75% ||
                     |+-----------|  5  |------|  6  |---------+|
                     +----------> +-----+ ---> +-----+ ---------+
                   (b) CCDR Algorithm
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For the simulations, the number of links connecting one edge node to the set of core nodes is
randomly chosen between two and thirty, and the total number of links is more than 20,000.
Each link has a congestion threshold, which can be arbitrarily set, for example, to 90% of the
nominal link capacity without affecting the simulation results.

4.3. Traffic Matrix Simulation 
For each topology, a traffic matrix is generated based on the link capacity of the topology. It can
result in many kinds of situations such as congestion, mild congestion, and non-congestion.

In the CCDR simulation, the dimension of the traffic matrix is 500*500 (100 core nodes plus 400
edge nodes). About 20% of links are overloaded when the Open Shortest Path First (OSPF)
protocol is used in the network.

Figure 6: Topology of Simulation 

                                +----+
                               /|Edge|\
                              | +----+ |
                              |        |
                              |        |
                +----+    +----+     +----+
                |Edge|----|Core|-----|Core|---------+
                +----+    +----+     +----+         |
                        /  |    \   /   |           |
                  +----+   |     \ /    |           |
                  |Edge|   |      X     |           |
                  +----+   |     / \    |           |
                        \  |    /   \   |           |
                +----+    +----+     +----+         |
                |Edge|----|Core|-----|Core|         |
                +----+    +----+     +----+         |
                            |          |            |
                            |          +------\   +----+
                            |                  ---|Edge|
                            +-----------------/   +----+

4.4. CCDR End-to-End Path Optimization 
The CCDR E2E path optimization entails finding the best path, which is the lowest in metric
value, as well as having utilization far below the congestion threshold for each link of the path.
Based on the current state of the network, the PCE within CCDR framework combines the
shortest path algorithm with a penalty theory of classical optimization and graph theory.

Given a background traffic matrix, which is unscheduled, when a set of new flows comes into the
network, the E2E path optimization finds the optimal paths for them. The selected paths bring
the least congestion degree to the network.
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The link Utilization Increment Degree (UID), when the new flows are added into the network, is
shown in Figure 7. The first graph in Figure 7 is the UID with OSPF, and the second graph is the
UID with CCDR E2E path optimization. The average UID of the first graph is more than 30%. After
path optimization, the average UID is less than 5%. The results show that the CCDR E2E path
optimization has an eye-catching decrease in UID relative to the path chosen based on OSPF.

While real-world results invariably differ from simulations (for example, real-world topologies
are likely to exhibit correlation in the attachment patterns for edge nodes to the core, which are
not reflected in these results), the dramatic nature of the improvement in UID and the choice of
simulated topology to resemble real-world conditions suggest that real-world deployments will
also experience significant improvement in UID results.

Figure 7: Simulation Results with Congestion Elimination 

       +-----------------------------------------------------------+
       |                *                               *    *    *|
     60|                *                             * * *  *    *|
       |*      *       **     * *         *   *   *  ** * *  * * **|
       |*   * ** *   * **   *** **  *   * **  * * *  ** * *  *** **|
       |* * * ** *  ** **   *** *** **  **** ** ***  **** ** *** **|
     40|* * * ***** ** ***  *** *** **  **** ** *** ***** ****** **|
 UID(%)|* * ******* ** ***  *** ******* **** ** *** ***** *********|
       |*** ******* ** **** *********** *********** ***************|
       |******************* *********** *********** ***************|
     20|******************* ***************************************|
       |******************* ***************************************|
       |***********************************************************|
       |***********************************************************|
      0+-----------------------------------------------------------+
      0    100   200   300   400   500   600   700   800   900  1000
       +-----------------------------------------------------------+
       |                                                           |
     60|                                                           |
       |                                                           |
       |                                                           |
       |                                                           |
     40|                                                           |
 UID(%)|                                                           |
       |                                                           |
       |                                                           |
     20|                                                           |
       |                                                          *|
       |                                     *                    *|
       |        *         *  *    *       *  **                 * *|
      0+-----------------------------------------------------------+
      0    100   200   300   400   500   600   700   800   900  1000
                            Flow Number
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4.5. Network Temporal Congestion Elimination 
During the simulations, different degrees of network congestion were considered. To examine
the effect of CCDR on link congestion, we consider the Congestion Degree (CD) of a link, defined
as the link utilization beyond its threshold.

The CCDR congestion elimination performance is shown in Figure 8. The first graph is the CD
distribution before the process of congestion elimination. The average CD of all congested links is
about 20%. The second graph shown in Figure 8 is the CD distribution after using the congestion
elimination process. It shows that only twelve links among the total 20,000 exceed the threshold,
and all the CD values are less than 3%. Thus, after scheduling the traffic away from the congested
paths, the degree of network congestion is greatly eliminated and the network utilization is in
balance.
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5. CCDR Deployment Consideration 
The above CCDR scenarios and simulation results demonstrate that a single general solution can
be found that copes with multiple complex situations. The specific situations considered are not
known to have any special properties, so it is expected that the benefits demonstrated will have

It is clear that by using an active path-computation mechanism that is able to take into account
observed link traffic/congestion, the occurrence of congestion events can be greatly reduced.
Only when a preponderance of links in the network are near their congestion threshold will the
central controller be unable to find a clear path as opposed to when a static metric-based
procedure is used, which will produce congested paths once a single bottleneck approaches its
capacity. More detailed information about the algorithm can be found in .

Figure 8: Simulation Results with Congestion Elimination 

            Before congestion elimination
        +-----------------------------------------------------------+
        |                *                            ** *   ** ** *|
      20|                *                     *      **** * ** ** *|
        |*      *       **     * **       **  **** * ***** *********|
        |*   *  * *   * **** ****** *  ** *** **********************|
      15|* * * ** *  ** **** ********* *****************************|
        |* * ******  ******* ********* *****************************|
  CD(%) |* ********* ******* ***************************************|
      10|* ********* ***********************************************|
        |*********** ***********************************************|
        |***********************************************************|
       5|***********************************************************|
        |***********************************************************|
        |***********************************************************|
       0+-----------------------------------------------------------+
           0            0.5            1            1.5            2

                     After congestion elimination
       +-----------------------------------------------------------+
       |                                                           |
     20|                                                           |
       |                                                           |
       |                                                           |
     15|                                                           |
       |                                                           |
 CD(%) |                                                           |
     10|                                                           |
       |                                                           |
       |                                                           |
     5 |                                                           |
       |                                                           |
       |        *        **  * *  *  **   *  **                 *  |
     0 +-----------------------------------------------------------+
        0            0.5            1            1.5            2
                         Link Number(*10000)

[PTCS]
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[RFC5440]

general applicability. Accordingly, the integrated use of a centralized controller for the more
complex optimal path computations in a native IP network should result in significant
improvements without impacting the underlying network infrastructure.

For intra-domain or inter-domain native IP TE scenarios, the deployment of a CCDR solution is
similar with the centralized controller being able to compute paths along with no changes being
required to the underlying network infrastructure. This universal deployment characteristic can
facilitate a generic traffic-engineering solution where operators do not need to differentiate
between intra-domain and inter-domain TE cases.

To deploy the CCDR solution, the PCE should collect the underlying network topology
dynamically, for example, via Border Gateway Protocol - Link State (BGP-LS) . It also
needs to gather the network traffic information periodically from the network management
platform. The simulation results show that the PCE can compute the E2E optimal path within
seconds; thus, it can cope with a change to the underlying network in a matter of minutes. More
agile requirements would need to increase the sample rate of the underlying network and
decrease the detection and notification interval of the underlying network. The methods of
gathering this information as well as decreasing its latency are out of the scope of this document.

6. Security Considerations 
This document considers mainly the integration of distributed protocols and the central control
capability of a PCE. While it can certainly simplify the management of a network in various
traffic-engineering scenarios as described in this document, the centralized control also brings a
new point that may be easily attacked. Solutions for CCDR scenarios need to consider protection
of the PCE and communication with the underlying devices.

 and  provide additional information.

The control priority and interaction process should also be carefully designed for the
combination of the distributed protocol and central control. Generally, the central control
instructions should have higher priority than the forwarding actions determined by the
distributed protocol. When communication between PCE and the underlying devices is
disrupted, the distributed protocol should take control of the underlying network. 

 provides more considerations corresponding to the solution.

7. IANA Considerations 
This document has no IANA actions.
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     RTG Area
     TEAS Working Group
     CCDR, Traffic Engineering
     
       Requirements for providing the End-to-End (E2E) performance assurance
      are emerging within the service provider networks. While there are
      various technology solutions, there is no single solution that can
      fulfill these requirements for a native IP network. In particular, there
      is a need for a universal E2E solution that can cover both intra- and
      inter-domain scenarios.
       One feasible E2E traffic-engineering solution is the addition of
      central control in a native IP network. This document describes various
      complex scenarios and simulation results when applying the Path
      Computation Element (PCE) in a native IP network. This solution,
      referred to as Centralized Control Dynamic Routing (CCDR), integrates
      the advantage of using distributed protocols and the power of a
      centralized control technology, providing traffic engineering for native
      IP networks in a manner that applies equally to intra- and inter-domain
      scenarios.
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       Introduction
       A service provider network is composed of thousands of routers that
      run distributed protocols to exchange reachability information. The path
      for the destination network is mainly calculated, and controlled, by the
      distributed protocols. These distributed protocols are robust enough to
      support most applications; however, they have some difficulties
      supporting the complexities needed for traffic-engineering applications,
      e.g., E2E performance assurance, or maximizing the link utilization
      within an IP network.
       Multiprotocol Label Switching (MPLS) using Traffic-Engineering (TE)
      technology (MPLS-TE)   is one
      solution for TE networks, but it introduces an MPLS network along with
      related technology, which would be an overlay of the IP network. MPLS-TE
      technology is often used for Label Switched Path (LSP) protection and
      setting up complex paths within a domain. It has not been widely
      deployed for meeting E2E (especially in inter-domain) dynamic
      performance assurance requirements for an IP network.
       Segment Routing   is another
      solution that integrates some advantages of using a distributed protocol
      and central control technology, but it requires the underlying network,
      especially the provider edge router, to do an in-depth label push and
      pop action while adding complexity when coexisting with the non-segment
      routing network. Additionally, it can only maneuver the E2E paths for
      MPLS and IPv6 traffic via different mechanisms.
       Deterministic Networking (DetNet)   is another possible solution. It is primarily focused
      on providing bounded latency for a flow and introduces additional
      requirements on the domain edge router. The current DetNet scope is
      within one domain. The use cases defined in this document do not require
      the additional complexity of deterministic properties and so differ from
      the DetNet use cases.
       This document describes several scenarios for a native IP network
      where a Centralized Control Dynamic Routing (CCDR) framework can produce
      qualitative improvement in efficiency without requiring a change to the
      data-plane behavior on the router. Using knowledge of the Border Gateway
      Protocol (BGP) session-specific prefixes advertised by a router, the
      network topology and the near-real-time link-utilization information
      from network management systems, a central PCE is able to compute an
      optimal path and give the underlying routers the destination address to
      use to reach the BGP nexthop, such that the distributed routing protocol
      will use the computed path via traditional recursive lookup procedure.
      Some results from simulations of path optimization are also presented to
      concretely illustrate a variety of scenarios where CCDR shows
      significant improvement over traditional distributed routing
      protocols.
       This document is the base document of the following two documents:
      the universal solution document, which is suitable for intra-domain and
      inter-domain TE scenario, is described in  ; and the related protocol
      extension contents is described in  .
    
     
       Terminology
       In this document, PCE is used as defined in  . The following terms are used as described here:
       
         BRAS:
         Broadband Remote Access Server
         CD:
         Congestion Degree
         CR:
         Core Router
         CCDR:
         Centralized Control Dynamic Routing
         E2E:
         End to End
         IDC:
         Internet Data Center
         MAN:
         Metro Area Network
         QoS:
         Quality of Service
         SR:
         Service Router
         TE:
         Traffic Engineering
         UID:
         Utilization Increment Degree
         WAN:
         Wide Area Network
      
    
     
       CCDR Scenarios
       The following sections describe various deployment scenarios where
      applying the CCDR framework is intuitively expected to produce
      improvements based on the macro-scale properties of the framework and
      the scenario.
       
         QoS Assurance for Hybrid Cloud-Based Application
         With the emergence of cloud computing technologies, enterprises are
        putting more and more services on a public-oriented cloud environment
        while keeping core business within their private cloud. The
        communication between the private and public cloud sites spans the
        WAN. The bandwidth requirements between them are variable, and the
        background traffic between these two sites varies over time.
        Enterprise applications require assurance of the E2E QoS performance
        on demand for variable bandwidth services.
         CCDR, which integrates the merits of distributed protocols and the
        power of centralized control, is suitable for this scenario. The
        possible solution framework is illustrated below:
         
           Hybrid Cloud Communication Scenario
           
                         +------------------------+
                         | Cloud-Based Application|
                         +------------------------+
                                     |
                               +-----------+
                               |    PCE    |
                               +-----------+
                                     |
                                     |
                            //--------------\\
                       /////                  \\\\\
  Private Cloud Site ||       Distributed          |Public Cloud Site
                      |       Control Network      |
                       \\\\\                  /////
                            \\--------------//

        
         As illustrated in  , the source
        and destination of the "Cloud-Based Application" traffic are located
        at "Private Cloud Site" and "Public Cloud Site", respectively.
         By default, the traffic path between the private and public cloud
        site is determined by the distributed control network. When an
        application requires E2E QoS assurance, it can send these requirements
        to the PCE and let the PCE compute one E2E path, which is based on the
        underlying network topology and real traffic information, in order to
        accommodate the application's QoS requirements.   of this document describes the simulation
        results for this use case.
      
       
         Link Utilization Maximization
         Network topology within a Metro Area Network (MAN) is generally in
        a star mode as illustrated in  , with
        different devices connected to different customer types. The traffic
        from these customers is often in a tidal pattern with the links
        between the Core Router (CR) / Broadband Remote Access Server (BRAS)
        and CR/Service Router (SR) experiencing congestion in different
        periods due to subscribers under BRAS often using the network at night
        and the leased line users under SR often using the network during the
        daytime. The link between BRAS/SR and CR must satisfy the maximum
        traffic volume between them, respectively, which causes these links to
        often be underutilized.
         
           Star-Mode Network Topology within MAN
           
                         +--------+
                         |   CR   |
                         +----|---+
                              |
                  |-------|--------|-------|
                  |       |        |       |
               +--|-+   +-|+    +--|-+   +-|+
               |BRAS|   |SR|    |BRAS|   |SR|
               +----+   +--+    +----+   +--+

        
         If we consider connecting the BRAS/SR with a local link loop (which
        is usually lower cost) and control the overall MAN topology with the
        CCDR framework, we can exploit the tidal phenomena between the BRAS/CR
        and SR/CR links, maximizing the utilization of these central trunk
        links (which are usually higher cost than the local loops).
         
           Link Utilization Maximization via CCDR
           
                                  +-------+
                              -----  PCE  |
                              |   +-------+
                         +----|---+
                         |   CR   |
                         +----|---+
                              |
                  |-------|--------|-------|
                  |       |        |       |
               +--|-+   +-|+    +--|-+   +-|+
               |BRAS-----SR|    |BRAS-----SR|
               +----+   +--+    +----+   +--+

        
      
       
         Traffic Engineering for Multi-domain
         Service provider networks are often comprised of different domains,
        interconnected with each other, forming a very complex topology as
        illustrated in  . Due to the traffic
        pattern to/from the MAN and IDC, the utilization of the links between
        them are often asymmetric. It is almost impossible to balance the
        utilization of these links via a distributed protocol, but this
        unbalance can be overcome utilizing the CCDR framework.
         
           Traffic Engineering for Complex Multi-domain Topology
           
               +---+                +---+
               |MAN|----------------|IDC|
               +---+       |        +---+
                 |     ----------     |
                 |-----|Backbone|-----|
                 |     ----|-----     |
                 |         |          |
               +---+       |        +---+
               |IDC|----------------|MAN|
               +---+                +---+

        
         A solution for this scenario requires the gathering of NetFlow
        information, analysis of the source/destination autonomous system
        (AS), and determining what the main cause of the congested link(s) is.
        After this, the operator can use the external Border Gateway Protocol
        (eBGP) sessions to schedule the traffic among the different domains
        according to the solution described in the CCDR framework.
      
       
         Network Temporal Congestion Elimination
         In more general situations, there is often temporal congestion
        within the service provider's network, for example, due to daily or
        weekly periodic bursts or large events that are scheduled well in
        advance. Such congestion phenomena often appear regularly, and if the
        service provider has methods to mitigate it, it will certainly improve
        their network operation capabilities and increase satisfaction for
        customers. CCDR is also suitable for such scenarios, as the controller
        can schedule traffic out of the congested links, lowering their
        utilization during these times.   describes the simulation results of this
        scenario.
      
    
     
       CCDR Simulation
       The following sections describe a specific case study to illustrate
      the workings of the CCDR algorithm with concrete paths/metrics, as well
      as a procedure for generating topology and traffic matrices and the
      results from simulations applying CCDR for E2E QoS (assured path and
      congestion elimination) over the generated topologies and traffic
      matrices. In all cases examined, the CCDR algorithm produces
      qualitatively significant improvement over the reference (OSPF)
      algorithm, suggesting that CCDR will have broad applicability.
       The structure and scale of the simulated topology is similar to that
      of the real networks. Multiple different traffic matrices were generated
      to simulate different congestion conditions in the network. Only one of
      them is illustrated since the others produce similar results.
       
         Case Study for CCDR Algorithm
         In this section, we consider a specific network topology for case
        study: examining the path selected by OSPF and CCDR and evaluating how
        and why the paths differ.   depicts the
        topology of the network in this case. There are eight forwarding
        devices in the network. The original cost and utilization are marked
        on it as shown in the figure. For example, the original cost and
        utilization for the link (1, 2) are 3 and 50%, respectively. There are
        two flows: f1 and f2. Both of these two flows are from node 1 to node
        8. For simplicity, it is assumed that the bandwidth of the link in the
        network is 10 Mb/s. The flow rate of f1 is 1 Mb/s and the flow rate of
        f2 is 2 Mb/s. The threshold of the link in congestion is 90%.
         If the OSPF protocol, which adopts Dijkstra's algorithm (IS-IS is
        similar because it also uses Dijkstra's algorithm), is applied in the
        network, the two flows from node 1 to node 8 can only use the OSPF
        path (p1: 1->2->3->8). This is because Dijkstra's algorithm
        mainly considers the original cost of the link. Since CCDR considers
        cost and utilization simultaneously, the same path as OSPF will not be
        selected due to the severe congestion of the link (2, 3). In this
        case, f1 will select the path (p2: 1->5->6->7->8) since
        the new cost of this path is better than that of the OSPF path.
        Moreover, the path p2 is also better than the path (p3:
        1->2->4->7->8) for flow f1. However, f2 will not select
        the same path since it will cause new congestion in the link (6, 7).
        As a result, f2 will select the path (p3:
        1->2->4->7->8).
         
           Case Study for CCDR's Algorithm
            
      +----+      f1                +-------> +-----+ ----> +-----+
      |Edge|-----------+            |+--------|  3  |-------|  8  |
      |Node|---------+ |            ||+-----> +-----+ ----> +-----+
      +----+         | |       4/95%|||              6/50%     |
                     | |            |||                   5/60%|
                     | v            |||                        |
      +----+       +-----+ -----> +-----+      +-----+      +-----+
      |Edge|-------|  1  |--------|  2  |------|  4  |------|  7  |
      |Node|-----> +-----+ -----> +-----+7/60% +-----+5/45% +-----+
      +----+  f2      |     3/50%                              |
                      |                                        |
                      |   3/60%   +-----+ 5/55%+-----+   3/75% |
                      +-----------|  5  |------|  6  |---------+
                                  +-----+      +-----+
                (a) Dijkstra's Algorithm (OSPF/IS-IS)
                 
      
      +----+      f1                          +-----+ ----> +-----+
      |Edge|-----------+             +--------|  3  |-------|  8  |
      |Node|---------+ |             |        +-----+ ----> +-----+
      +----+         | |       4/95% |               6/50%    ^|^
                     | |             |                   5/60%|||
                     | v             |                        |||
      +----+       +-----+ -----> +-----+ ---> +-----+ ---> +-----+
      |Edge|-------|  1  |--------|  2  |------|  4  |------|  7  |
      |Node|-----> +-----+        +-----+7/60% +-----+5/45% +-----+
      +----+  f2     ||     3/50%                              |^
                     ||                                        ||
                     ||   3/60%   +-----+5/55% +-----+   3/75% ||
                     |+-----------|  5  |------|  6  |---------+|
                     +----------> +-----+ ---> +-----+ ---------+
                   (b) CCDR Algorithm

        
      
       
         Topology Simulation
         Moving on from the specific case study, we now consider a class of
        networks more representative of real deployments, with a fully linked
        core network that serves to connect edge nodes, which themselves
        connect to only a subset of the core. An example of such a topology is
        shown in   for the case of 4 core nodes and 5
        edge nodes. The CCDR simulations presented in this work use topologies
        involving 100 core nodes and 400 edge nodes. While the resulting graph
        does not fit on this page, this scale of network is similar to what is
        deployed in production environments.
         
           Topology of Simulation
           
                                +----+ 
                               /|Edge|\
                              | +----+ |
                              |        |
                              |        |
                +----+    +----+     +----+
                |Edge|----|Core|-----|Core|---------+
                +----+    +----+     +----+         |
                        /  |    \   /   |           |
                  +----+   |     \ /    |           |
                  |Edge|   |      X     |           |
                  +----+   |     / \    |           |
                        \  |    /   \   |           |
                +----+    +----+     +----+         |
                |Edge|----|Core|-----|Core|         |
                +----+    +----+     +----+         |
                            |          |            |
                            |          +------\   +----+
                            |                  ---|Edge|
                            +-----------------/   +----+

        
         For the simulations, the number of links connecting one edge node
        to the set of core nodes is randomly chosen between two and thirty,
        and the total number of links is more than 20,000. Each link has a
        congestion threshold, which can be arbitrarily set, for example, to
        90% of the nominal link capacity without affecting the simulation
        results.
      
       
         Traffic Matrix Simulation
         For each topology, a traffic matrix is generated based on the link
        capacity of the topology. It can result in many kinds of situations
        such as congestion, mild congestion, and non-congestion.
         In the CCDR simulation, the dimension of the traffic matrix is
        500*500 (100 core nodes plus 400 edge nodes). About 20% of links are
        overloaded when the Open Shortest Path First (OSPF) protocol is used
        in the network.
      
       
         CCDR End-to-End Path Optimization
         The CCDR E2E path optimization entails finding the best path, which
        is the lowest in metric value, as well as having utilization far below
        the congestion threshold for each link of the path. Based on the
        current state of the network, the PCE within CCDR framework combines
        the shortest path algorithm with a penalty theory of classical
        optimization and graph theory.
         Given a background traffic matrix, which is unscheduled, when a set
        of new flows comes into the network, the E2E path optimization finds
        the optimal paths for them. The selected paths bring the least
        congestion degree to the network.
         The link Utilization Increment Degree (UID), when the new flows are
        added into the network, is shown in  . The first graph in   is the UID with OSPF, and the
        second graph is the UID with CCDR E2E path optimization. The average
        UID of the first graph is more than 30%. After path optimization, the
        average UID is less than 5%. The results show that the CCDR E2E path
        optimization has an eye-catching decrease in UID relative to the path
        chosen based on OSPF.
         While real-world results invariably differ from simulations (for
        example, real-world topologies are likely to exhibit correlation in
        the attachment patterns for edge nodes to the core, which are not
        reflected in these results), the dramatic nature of the improvement in
        UID and the choice of simulated topology to resemble real-world
        conditions suggest that real-world deployments will also experience
        significant improvement in UID results.
         
           Simulation Results with Congestion Elimination
           
       +-----------------------------------------------------------+
       |                *                               *    *    *|
     60|                *                             * * *  *    *|
       |*      *       **     * *         *   *   *  ** * *  * * **|
       |*   * ** *   * **   *** **  *   * **  * * *  ** * *  *** **|
       |* * * ** *  ** **   *** *** **  **** ** ***  **** ** *** **|
     40|* * * ***** ** ***  *** *** **  **** ** *** ***** ****** **|
 UID(%)|* * ******* ** ***  *** ******* **** ** *** ***** *********|
       |*** ******* ** **** *********** *********** ***************|
       |******************* *********** *********** ***************|
     20|******************* ***************************************|
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         Network Temporal Congestion Elimination
         During the simulations, different degrees of network congestion
        were considered. To examine the effect of CCDR on link congestion, we
        consider the Congestion Degree (CD) of a link, defined as the link
        utilization beyond its threshold.
         The CCDR congestion elimination performance is shown in  . The first graph is the CD
        distribution before the process of congestion elimination. The average
        CD of all congested links is about 20%. The second graph shown in
          is the CD distribution
        after using the congestion elimination process. It shows that only
        twelve links among the total 20,000 exceed the threshold, and all the
        CD values are less than 3%. Thus, after scheduling the traffic away
        from the congested paths, the degree of network congestion is greatly
        eliminated and the network utilization is in balance.
         
           Simulation Results with Congestion Elimination
           
	    Before congestion elimination
        +-----------------------------------------------------------+
        |                *                            ** *   ** ** *|
      20|                *                     *      **** * ** ** *|
        |*      *       **     * **       **  **** * ***** *********|
        |*   *  * *   * **** ****** *  ** *** **********************|
      15|* * * ** *  ** **** ********* *****************************|
        |* * ******  ******* ********* *****************************|
  CD(%) |* ********* ******* ***************************************|
      10|* ********* ***********************************************|
        |*********** ***********************************************|
        |***********************************************************|
       5|***********************************************************|
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        |***********************************************************|
       0+-----------------------------------------------------------+
           0            0.5            1            1.5            2

                     After congestion elimination
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         It is clear that by using an active path-computation mechanism that
        is able to take into account observed link traffic/congestion, the
        occurrence of congestion events can be greatly reduced. Only when a
        preponderance of links in the network are near their congestion
        threshold will the central controller be unable to find a clear path
        as opposed to when a static metric-based procedure is used, which will
        produce congested paths once a single bottleneck approaches its
        capacity. More detailed information about the algorithm can be found
        in  .
      
    
     
       CCDR Deployment Consideration
       The above CCDR scenarios and simulation results demonstrate that a
      single general solution can be found that copes with multiple complex
      situations. The specific situations considered are not known to have any
      special properties, so it is expected that the benefits demonstrated
      will have general applicability. Accordingly, the integrated use of a
      centralized controller for the more complex optimal path computations in
      a native IP network should result in significant improvements without
      impacting the underlying network infrastructure.
       For intra-domain or inter-domain native IP TE scenarios, the
      deployment of a CCDR solution is similar with the centralized controller
      being able to compute paths along with no changes being required to the
      underlying network infrastructure. This universal deployment
      characteristic can facilitate a generic traffic-engineering solution
      where operators do not need to differentiate between intra-domain and
      inter-domain TE cases.
       To deploy the CCDR solution, the PCE should collect the underlying
      network topology dynamically, for example, via Border Gateway Protocol -
      Link State (BGP-LS)  . It also
      needs to gather the network traffic information periodically from the
      network management platform. The simulation results show that the PCE
      can compute the E2E optimal path within seconds; thus, it can cope with
      a change to the underlying network in a matter of minutes. More agile
      requirements would need to increase the sample rate of the underlying
      network and decrease the detection and notification interval of the
      underlying network. The methods of gathering this information as well as
      decreasing its latency are out of the scope of this document.
    
     
       Security Considerations
       This document considers mainly the integration of distributed
      protocols and the central control capability of a PCE. While it can
      certainly simplify the management of a network in various
      traffic-engineering scenarios as described in this document, the
      centralized control also brings a new point that may be easily attacked.
      Solutions for CCDR scenarios need to consider protection of the PCE and
      communication with the underlying devices.
         and   provide additional information.
       The control priority and interaction process should also be carefully
      designed for the combination of the distributed protocol and central
      control. Generally, the central control instructions should have higher
      priority than the forwarding actions determined by the distributed
      protocol. When communication between PCE and the underlying devices is
      disrupted, the distributed protocol should take control of the
      underlying network.   provides more considerations
      corresponding to the solution.
    
     
       IANA Considerations
       This document has no IANA actions.
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