
RFC 8785
JSON Canonicalization Scheme (JCS)

Abstract
Cryptographic operations like hashing and signing need the data to be expressed in an invariant
format so that the operations are reliably repeatable. One way to address this is to create a
canonical representation of the data. Canonicalization also permits data to be exchanged in its
original form on the "wire" while cryptographic operations performed on the canonicalized
counterpart of the data in the producer and consumer endpoints generate consistent results.

This document describes the JSON Canonicalization Scheme (JCS). This specification defines how
to create a canonical representation of JSON data by building on the strict serialization methods
for JSON primitives defined by ECMAScript, constraining JSON data to the Internet JSON (I-JSON)
subset, and by using deterministic property sorting.

Stream: Independent Submission
RFC: 8785
Category: Informational
Published: June 2020
ISSN: 2070-1721
Authors: A. Rundgren

Independent
B. Jordan
Broadcom

S. Erdtman
Spotify AB

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor
has chosen to publish this document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by the RFC Editor are not
candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8785

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

Rundgren, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc8785
https://www.rfc-editor.org/info/rfc8785

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Terminology

3. Detailed Operation

3.1. Creation of Input Data

3.2. Generation of Canonical JSON Data

3.2.1. Whitespace

3.2.2. Serialization of Primitive Data Types

3.2.2.1. Serialization of Literals

3.2.2.2. Serialization of Strings

3.2.2.3. Serialization of Numbers

3.2.3. Sorting of Object Properties

3.2.4. UTF-8 Generation

4. IANA Considerations

5. Security Considerations

6. References

6.1. Normative References

6.2. Informative References

Appendix A. ECMAScript Sample Canonicalizer

Appendix B. Number Serialization Samples

Appendix C. Canonicalized JSON as "Wire Format"

Appendix D. Dealing with Big Numbers

Appendix E. String Subtype Handling

E.1. Subtypes in Arrays

Appendix F. Implementation Guidelines

Appendix G. Open-Source Implementations

RFC 8785 JSON Canonicalization Scheme June 2020

Rundgren, et al. Informational Page 2

https://trustee.ietf.org/license-info

Appendix H. Other JSON Canonicalization Efforts

Appendix I. Development Portal

Acknowledgements

Authors' Addresses

1. Introduction
This document describes the JSON Canonicalization Scheme (JCS). This specification defines how
to create a canonical representation of JSON data by building on the strict serialization
methods for JSON primitives defined by ECMAScript , constraining JSON data to the I-
JSON subset, and by using deterministic property sorting. The output from JCS is a
"hashable" representation of JSON data that can be used by cryptographic methods. The
subsequent paragraphs outline the primary design considerations.

Cryptographic operations like hashing and signing need the data to be expressed in an invariant
format so that the operations are reliably repeatable. One way to accomplish this is to convert
the data into a format that has a simple and fixed representation, like base64url . This
is how JSON Web Signature (JWS) addressed this issue. Another solution is to create a
canonical version of the data, similar to what was done for the XML signature
standard.

The primary advantage with a canonicalizing scheme is that data can be kept in its original form.
This is the core rationale behind JCS. Put another way, using canonicalization enables a JSON
object to remain a JSON object even after being signed. This can simplify system design,
documentation, and logging.

To avoid "reinventing the wheel", JCS relies on the serialization of JSON primitives (strings,
numbers, and literals), as defined by ECMAScript (aka JavaScript) beginning with
version 6.

Seasoned XML developers may recall difficulties getting XML signatures to validate. This was
usually due to different interpretations of the quite intricate XML canonicalization rules as well
as of the equally complex Web Services security standards. The reasons why JCS should not
suffer from similar issues are:

JSON does not have a namespace concept and default values.
Data is constrained to the I‑JSON subset. This eliminates the need for specific
parsers for dealing with canonicalization.
JCS-compatible serialization of JSON primitives is currently supported by most web browsers
as well as by Node.js .
The full JCS specification is currently supported by multiple open-source implementations
(see Appendix G). See also Appendix F for implementation guidelines.

[RFC8259]
[ECMA-262]

[RFC7493]

[RFC4648]
[RFC7515]

[XMLDSIG]

[ECMA-262]

•
• [RFC7493]

•
[NODEJS]

•

RFC 8785 JSON Canonicalization Scheme June 2020

Rundgren, et al. Informational Page 3

JCS is compatible with some existing systems relying on JSON canonicalization such as JSON Web
Key (JWK) Thumbprint and Keybase .

For potential uses outside of cryptography, see .

The intended audiences of this document are JSON tool vendors as well as designers of JSON-
based cryptographic solutions. The reader is assumed to be knowledgeable in ECMAScript,
including the "JSON" object.

[RFC7638] [KEYBASE]

[JSONCOMP]

2. Terminology
Note that this document is not on the IETF standards track. However, a conformant
implementation is supposed to adhere to the specified behavior for security and interoperability
reasons. This text uses BCP 14 to describe that necessary behavior.

The key words " ", " ", " ", " ", " ", " ", "
", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. Detailed Operation
This section describes the details related to creating a canonical JSON representation and how
they are addressed by JCS.

Appendix F describes the way of adding JCS support to existing JSON tools.RECOMMENDED

3.1. Creation of Input Data
Data to be canonically serialized is usually created by:

Parsing previously generated JSON data.
Programmatically creating data.

Irrespective of the method used, the data to be serialized be adapted for I‑JSON
formatting, which implies the following:

JSON objects exhibit duplicate property names.
JSON string data be expressible as Unicode .
JSON number data be expressible as IEEE 754 double-precision values. For
applications needing higher precision or longer integers than offered by IEEE 754 double
precision, it is to represent such numbers as JSON strings; see Appendix D
for details on how this can be performed in an interoperable and extensible way.

An additional constraint is that parsed JSON string data be altered during subsequent
serializations. For more information, see Appendix E.

•
•

MUST [RFC7493]

• MUST NOT
• MUST [UNICODE]
• MUST [IEEE754]

RECOMMENDED

MUST NOT

RFC 8785 JSON Canonicalization Scheme June 2020

Rundgren, et al. Informational Page 4

Note: Although the Unicode standard offers the possibility of rearranging certain character
sequences, referred to as "Unicode Normalization" , JCS-compliant string processing
does not take this into consideration. That is, all components involved in a scheme depending on
JCS preserve Unicode string data "as is".

[UCNORM]

MUST

3.2. Generation of Canonical JSON Data
The following subsections describe the steps required to create a canonical JSON representation
of the data elaborated on in the previous section.

Appendix A shows sample code for an ECMAScript-based canonicalizer, matching the JCS
specification.

3.2.1. Whitespace

Whitespace between JSON tokens be emitted.MUST NOT

3.2.2. Serialization of Primitive Data Types

Assume the following JSON object is parsed:

If the parsed data is subsequently serialized using a serializer compliant with ECMAScript's
"JSON.stringify()", the result would (with a line wrap added for display purposes only) be rather
divergent with respect to the original data:

The reason for the difference between the parsed data and its serialized counterpart is due to a
wide tolerance on input data (as defined by JSON), while output data (as defined by
ECMAScript) has a fixed representation. As can be seen in the example, numbers are subject to
rounding as well.

The following subsections describe the serialization of primitive JSON data types according to
JCS. This part is identical to that of ECMAScript. In the (unlikely) event that a future version of
ECMAScript would invalidate any of the following serialization methods, it will be up to the
developer community to either stick to this specification or create a new specification.

 {
 "numbers": [333333333.33333329, 1E30, 4.50,
 2e-3, 0.000000000000000000000000001],
 "string": "\u20ac$\u000F\u000aA'\u0042\u0022\u005c\\\"\/",
 "literals": [null, true, false]
 }

 {"numbers":[333333333.3333333,1e+30,4.5,0.002,1e-27],"string":
 "€$\u000f\nA'B\"\\\\\"/","literals":[null,true,false]}

[RFC8259]

3.2.2.1. Serialization of Literals
In accordance with JSON , the literals "null", "true", and "false" be serialized as
null, true, and false, respectively.

[RFC8259] MUST

RFC 8785 JSON Canonicalization Scheme June 2020

Rundgren, et al. Informational Page 5

3.2.2.2. Serialization of Strings
For JSON string data (which includes JSON object property names as well), each Unicode code
point be serialized as described below (see Section 24.3.2.2 of):

If the Unicode value falls within the traditional ASCII control character range (U+0000
through U+001F), it be serialized using lowercase hexadecimal Unicode notation
(\uhhhh) unless it is in the set of predefined JSON control characters U+0008, U+0009, U
+000A, U+000C, or U+000D, which be serialized as \b, \t, \n, \f, and \r, respectively.
If the Unicode value is outside of the ASCII control character range, it be serialized
"as is" unless it is equivalent to U+005C (\) or U+0022 ("), which be serialized as \\ and \",
respectively.

Finally, the resulting sequence of Unicode code points be enclosed in double quotes (").

Note: Since invalid Unicode data like "lone surrogates" (e.g., U+DEAD) may lead to
interoperability issues including broken signatures, occurrences of such data cause a
compliant JCS implementation to terminate with an appropriate error.

MUST [ECMA-262]

•
MUST

MUST
• MUST

MUST

MUST

MUST

3.2.2.3. Serialization of Numbers
ECMAScript builds on the IEEE 754 double-precision standard for representing JSON
number data. Such data be serialized according to Section 7.1.12.1 of , including
the "Note 2" enhancement.

Due to the relative complexity of this part, the algorithm itself is not included in this document.
For implementers of JCS-compliant number serialization, Google's implementation in V8
may serve as a reference. Another compatible number serialization reference implementation is
Ryu , which is used by the JCS open-source Java implementation mentioned in Appendix G.
Appendix B holds a set of IEEE 754 sample values and their corresponding JSON serialization.

Note: Since Not a Number (NaN) and Infinity are not permitted in JSON, occurrences of NaN or
Infinity cause a compliant JCS implementation to terminate with an appropriate error.

[IEEE754]
MUST [ECMA-262]

[V8]

[RYU]

MUST

3.2.3. Sorting of Object Properties

Although the previous step normalized the representation of primitive JSON data types, the
result would not yet qualify as "canonical" since JSON object properties are not in lexicographic
(alphabetical) order.

Applied to the sample in Section 3.2.2, a properly canonicalized version should (with a line wrap
added for display purposes only) read as:

 {"literals":[null,true,false],"numbers":[333333333.3333333,
 1e+30,4.5,0.002,1e-27],"string":"€$\u000f\nA'B\"\\\\\"/"}

RFC 8785 JSON Canonicalization Scheme June 2020

Rundgren, et al. Informational Page 6

The rules for lexicographic sorting of JSON object properties according to JCS are as follows:

JSON object properties be sorted recursively, which means that JSON child Objects
 have their properties sorted as well.

JSON array data also be scanned for the presence of JSON objects (if an object is found,
then its properties be sorted), but array element order be changed.

When a JSON object is about to have its properties sorted, the following measures be
adhered to:

The sorting process is applied to property name strings in their "raw" (unescaped) form. That
is, a newline character is treated as U+000A.
Property name strings to be sorted are formatted as arrays of UTF-16 code units.
The sorting is based on pure value comparisons, where code units are treated as unsigned
integers, independent of locale settings.
Property name strings either have different values at some index that is a valid index for
both strings, or their lengths are different, or both. If they have different values at one or
more index positions, let k be the smallest such index; then, the string whose value at
position k has the smaller value, as determined by using the "<" operator, lexicographically
precedes the other string. If there is no index position at which they differ, then the shorter
string lexicographically precedes the longer string.

In plain English, this means that property names are sorted in ascending order like the
following:

The rationale for basing the sorting algorithm on UTF-16 code units is that it maps directly to the
string type in ECMAScript (featured in web browsers and Node.js), Java, and .NET. In addition,
JSON only supports escape sequences expressed as UTF-16 code units, making knowledge and
handling of such data a necessity anyway. Systems using another internal representation of
string data will need to convert JSON property name strings into arrays of UTF-16 code units
before sorting. The conversion from UTF-8 or UTF-32 to UTF-16 is defined by the Unicode

 standard.

• MUST
MUST

• MUST
MUST MUST NOT

MUST

•

• [UNICODE]

•

 ""
 "a"
 "aa"
 "ab"

[UNICODE]

RFC 8785 JSON Canonicalization Scheme June 2020

Rundgren, et al. Informational Page 7

The following JSON test data can be used for verifying the correctness of the sorting scheme in a
JCS implementation:

Expected argument order after sorting property strings:

Note: For the purpose of obtaining a deterministic property order, sorting of data encoded in
UTF-8 or UTF-32 would also work, but the outcome for JSON data like above would differ and
thus be incompatible with this specification. However, in practice, property names are rarely
defined outside of 7-bit ASCII, making it possible to sort string data in UTF-8 or UTF-32 format
without conversion to UTF-16 and still be compatible with JCS. Whether or not this is a viable
option depends on the environment JCS is used in.

 {
 "\u20ac": "Euro Sign",
 "\r": "Carriage Return",
 "\ufb33": "Hebrew Letter Dalet With Dagesh",
 "1": "One",
 "\ud83d\ude00": "Emoji: Grinning Face",
 "\u0080": "Control",
 "\u00f6": "Latin Small Letter O With Diaeresis"
 }

 "Carriage Return"
 "One"
 "Control"
 "Latin Small Letter O With Diaeresis"
 "Euro Sign"
 "Emoji: Grinning Face"
 "Hebrew Letter Dalet With Dagesh"

3.2.4. UTF-8 Generation

Finally, in order to create a platform-independent representation, the result of the preceding step
 be encoded in UTF-8.

Applied to the sample in Section 3.2.3, this should yield the following bytes, here shown in
hexadecimal notation:

This data is intended to be usable as input to cryptographic methods.

MUST

 7b 22 6c 69 74 65 72 61 6c 73 22 3a 5b 6e 75 6c 6c 2c 74 72
 75 65 2c 66 61 6c 73 65 5d 2c 22 6e 75 6d 62 65 72 73 22 3a
 5b 33 33 33 33 33 33 33 33 33 2e 33 33 33 33 33 33 33 2c 31
 65 2b 33 30 2c 34 2e 35 2c 30 2e 30 30 32 2c 31 65 2d 32 37
 5d 2c 22 73 74 72 69 6e 67 22 3a 22 e2 82 ac 24 5c 75 30 30
 30 66 5c 6e 41 27 42 5c 22 5c 5c 5c 5c 5c 22 2f 22 7d

4. IANA Considerations
This document has no IANA actions.

RFC 8785 JSON Canonicalization Scheme June 2020

Rundgren, et al. Informational Page 8

[ECMA-262]

[IEEE754]

[RFC2119]

[RFC7493]

[RFC8174]

[RFC8259]

[UCNORM]

[UNICODE]

6. References

6.1. Normative References

, ,
, June 2019,

.

, , ,
, .

, , ,
, , March 1997,
.

, , , ,
March 2015, .

, ,
, , , May 2017,

.

, ,
, , , December 2017,

.

, ,
.

, ,
.

5. Security Considerations
It is crucial to perform sanity checks on input data to avoid overflowing buffers and similar
things that could affect the integrity of the system.

When JCS is applied to signature schemes like the one described in Appendix F, applications
 perform the following operations before acting upon received data:

Parse the JSON data and verify that it adheres to I-JSON.
Verify the data for correctness according to the conventions defined by the ecosystem where
it is to be used. This also includes locating the property holding the signature data.
Verify the signature.

If any of these steps fail, the operation in progress be aborted.

MUST

1.
2.

3.

MUST

ECMA International "ECMAScript 2019 Language Specification" Standard
ECMA-262 10th Edition <https://www.ecma-international.org/
ecma-262/10.0/index.html>

IEEE "IEEE Standard for Floating-Point Arithmetic" IEEE 754-2019 DOI 10.1109/
IEEESTD.2019.8766229 <https://ieeexplore.ieee.org/document/8766229>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Bray, T., Ed. "The I-JSON Message Format" RFC 7493 DOI 10.17487/RFC7493
<https://www.rfc-editor.org/info/rfc7493>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

The Unicode Consortium "Unicode Normalization Forms" <https://
www.unicode.org/reports/tr15/>

The Unicode Consortium "The Unicode Standard" <https://www.unicode.org/
versions/latest/>

RFC 8785 JSON Canonicalization Scheme June 2020

Rundgren, et al. Informational Page 9

https://www.ecma-international.org/ecma-262/10.0/index.html
https://www.ecma-international.org/ecma-262/10.0/index.html
https://ieeexplore.ieee.org/document/8766229
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.unicode.org/reports/tr15/
https://www.unicode.org/reports/tr15/
https://www.unicode.org/versions/latest/
https://www.unicode.org/versions/latest/

[JSONCOMP]

[KEYBASE]

[NODEJS]

[OPENAPI]

[RFC4648]

[RFC7515]

[RFC7638]

[RYU]

[V8]

[XMLDSIG]

6.2. Informative References

, , ,
, 13 February 2019,

.

, ,
.

, , .

,
, .

, , ,
, October 2006, .

, , ,
, May 2015, .

, , ,
, September 2015, .

, , May 2020,
.

, , .

, ,
, April 2013, .

Rundgren, A. ""Comparable" JSON (JSONCOMP)" Work in Progress Internet-
Draft, draft-rundgren-comparable-json-04 <https://
tools.ietf.org/html/draft-rundgren-comparable-json-04>

Keybase "Canonical Packings for JSON and Msgpack" <https://keybase.io/docs/
api/1.0/canonical_packings>

OpenJS Foundation "Node.js" <https://nodejs.org>

OpenAPI Initiative "The OpenAPI Specification: a broadly adopted industry
standard for describing modern APIs" <https://www.openapis.org/>

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI
10.17487/RFC4648 <https://www.rfc-editor.org/info/rfc4648>

Jones, M., Bradley, J., and N. Sakimura "JSON Web Signature (JWS)" RFC 7515
DOI 10.17487/RFC7515 <https://www.rfc-editor.org/info/rfc7515>

Jones, M. and N. Sakimura "JSON Web Key (JWK) Thumbprint" RFC 7638 DOI
10.17487/RFC7638 <https://www.rfc-editor.org/info/rfc7638>

"Ryu floating point number serializing algorithm" commit 27d3c55
<https://github.com/ulfjack/ryu>

Google LLC "What is V8?" <https://v8.dev/>

W3C "XML Signature Syntax and Processing Version 1.1" W3C
Recommendation <https://www.w3.org/TR/xmldsig-core1/>

RFC 8785 JSON Canonicalization Scheme June 2020

Rundgren, et al. Informational Page 10

https://tools.ietf.org/html/draft-rundgren-comparable-json-04
https://tools.ietf.org/html/draft-rundgren-comparable-json-04
https://keybase.io/docs/api/1.0/canonical_packings
https://keybase.io/docs/api/1.0/canonical_packings
https://nodejs.org
https://www.openapis.org/
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7638
https://github.com/ulfjack/ryu
https://v8.dev/
https://www.w3.org/TR/xmldsig-core1/

Appendix A. ECMAScript Sample Canonicalizer
Below is an example of a JCS canonicalizer for usage with ECMAScript-based systems:

RFC 8785 JSON Canonicalization Scheme June 2020

Rundgren, et al. Informational Page 11

 //
 // Since the primary purpose of this code is highlighting //
 // the core of the JCS algorithm, error handling and //
 // UTF-8 generation were not implemented. //
 //
 var canonicalize = function(object) {

 var buffer = '';
 serialize(object);
 return buffer;

 function serialize(object) {
 if (object === null || typeof object !== 'object' ||
 object.toJSON != null) {
 ///
 // Primitive type or toJSON, use "JSON" //
 ///
 buffer += JSON.stringify(object);

 } else if (Array.isArray(object)) {
 ///
 // Array - Maintain element order //
 ///
 buffer += '[';
 let next = false;
 object.forEach((element) => {
 if (next) {
 buffer += ',';
 }
 next = true;
 ///
 // Array element - Recursive expansion //
 ///
 serialize(element);
 });
 buffer += ']';

 } else {
 ///
 // Object - Sort properties before serializing //
 ///
 buffer += '{';
 let next = false;
 Object.keys(object).sort().forEach((property) => {
 if (next) {
 buffer += ',';
 }
 next = true;
 ///
 // Property names are strings, use "JSON" //
 ///
 buffer += JSON.stringify(property);
 buffer += ':';
 //
 // Property value - Recursive expansion //
 //
 serialize(object[property]);

RFC 8785 JSON Canonicalization Scheme June 2020

Rundgren, et al. Informational Page 12

 });
 buffer += '}';
 }
 }
 };

Appendix B. Number Serialization Samples
The following table holds a set of ECMAScript-compatible number serialization samples,
including some edge cases. The column "IEEE 754" refers to the internal ECMAScript
representation of the "Number" data type, which is based on the IEEE 754 standard
using 64-bit (double-precision) values, here expressed in hexadecimal.

[IEEE754]

IEEE 754 JSON Representation Comment

0000000000000000 0 Zero

8000000000000000 0 Minus zero

0000000000000001 5e-324 Min pos number

8000000000000001 -5e-324 Min neg number

7fefffffffffffff 1.7976931348623157e+308 Max pos number

ffefffffffffffff -1.7976931348623157e+308 Max neg number

4340000000000000 9007199254740992 Max pos int (1)

c340000000000000 -9007199254740992 Max neg int (1)

4430000000000000 295147905179352830000 ~2**68 (2)

7fffffffffffffff NaN (3)

7ff0000000000000 Infinity (3)

44b52d02c7e14af5 9.999999999999997e+22

44b52d02c7e14af6 1e+23

44b52d02c7e14af7 1.0000000000000001e+23

444b1ae4d6e2ef4e 999999999999999700000

444b1ae4d6e2ef4f 999999999999999900000

444b1ae4d6e2ef50 1e+21

RFC 8785 JSON Canonicalization Scheme June 2020

Rundgren, et al. Informational Page 13

(1)

(2)

(3)
(4)

Notes:

For maximum compliance with the ECMAScript "JSON" object, values that are to be
interpreted as true integers be in the range -9007199254740991 to
9007199254740991. However, how numbers are used in applications does not affect the JCS
algorithm.
Although a set of specific integers like 2**68 could be regarded as having extended
precision, the JCS/ECMAScript number serialization algorithm does not take this into
consideration.
Values out of range are not permitted in JSON. See Section 3.2.2.3.
This number is exactly 1424953923781206.25 but will, after the "Note 2" rule mentioned in
Section 3.2.2.3, be truncated and rounded to the closest even value.

For a more exhaustive validation of a JCS number serializer, you may test against a file
(currently) available in the development portal (see Appendix I) containing a large set of sample
values. Another option is running V8 as a live reference together with a program generating
a substantial amount of random IEEE 754 values.

IEEE 754 JSON Representation Comment

3eb0c6f7a0b5ed8c 9.999999999999997e-7

3eb0c6f7a0b5ed8d 0.000001

41b3de4355555553 333333333.3333332

41b3de4355555554 333333333.33333325

41b3de4355555555 333333333.3333333

41b3de4355555556 333333333.3333334

41b3de4355555557 333333333.33333343

becbf647612f3696 -0.0000033333333333333333

43143ff3c1cb0959 1424953923781206.2 Round to even (4)

Table 1: ECMAScript-Compatible JSON Number Serialization Samples

SHOULD

[V8]

Appendix C. Canonicalized JSON as "Wire Format"
Since the result from the canonicalization process (see Section 3.2.4) is fully valid JSON, it can
also be used as "Wire Format". However, this is just an option since cryptographic schemes based
on JCS, in most cases, would not depend on that externally supplied JSON data already being
canonicalized.

RFC 8785 JSON Canonicalization Scheme June 2020

Rundgren, et al. Informational Page 14

In fact, the ECMAScript standard way of serializing objects using "JSON.stringify()" produces a
more "logical" format, where properties are kept in the order they were created or received. The
example below shows an address record that could benefit from ECMAScript standard
serialization:

Using canonicalization, the properties above would be output in the order "address", "city",
"name", "state", and "zip", which adds fuzziness to the data from a human (developer or technical
support) perspective. Canonicalization also converts JSON data into a single line of text, which
may be less than ideal for debugging and logging.

 {
 "name": "John Doe",
 "address": "2000 Sunset Boulevard",
 "city": "Los Angeles",
 "zip": "90001",
 "state": "CA"
 }

Appendix D. Dealing with Big Numbers
There are several issues associated with the JSON number type, here illustrated by the following
sample object:

Although the sample above conforms to JSON , applications would normally use
different native data types for storing "giantNumber" and "int64Max". In addition, monetary data
like "payMeThis" would presumably not rely on floating-point data types due to rounding issues
with respect to decimal arithmetic.

The established way of handling this kind of "overloading" of the JSON number type (at least in
an extensible manner) is through mapping mechanisms, instructing parsers what to do with
different properties based on their name. However, this greatly limits the value of using the JSON
number type outside of its original, somewhat constrained JavaScript context. The ECMAScript
"JSON" object does not support mappings to the JSON number type either.

Due to the above, numbers that do not have a natural place in the current JSON ecosystem
be wrapped using the JSON string type. This is close to a de facto standard for open systems. This
is also applicable for other data types that do not have direct support in JSON, like "DateTime"
objects as described in Appendix E.

 {
 "giantNumber": 1.4e+9999,
 "payMeThis": 26000.33,
 "int64Max": 9223372036854775807
 }

[RFC8259]

MUST

RFC 8785 JSON Canonicalization Scheme June 2020

Rundgren, et al. Informational Page 15

Aided by a system using the JSON string type, be it programmatic like

or declarative schemes like OpenAPI , JCS imposes no limits on applications, including
when using ECMAScript.

 var obj = JSON.parse('{"giantNumber": "1.4e+9999"}');
 var biggie = new BigNumber(obj.giantNumber);

[OPENAPI]

Appendix E. String Subtype Handling
Due to the limited set of data types featured in JSON, the JSON string type is commonly used for
holding subtypes. This can, depending on JSON parsing method, lead to interoperability
problems, which be dealt with by JCS-compliant applications targeting a wider audience.

Assume you want to parse a JSON object where the schema designer assigned the property "big"
for holding a "BigInt" subtype and "time" for holding a "DateTime" subtype, while "val" is
supposed to be a JSON number compliant with JCS. The following example shows such an object:

Parsing of this object can be accomplished by the following ECMAScript statement:

After parsing, the actual data can be extracted, which for subtypes, also involves a conversion
step using the result of the parsing process (an ECMAScript object) as input:

Note that the "BigInt" data type is currently only natively supported by V8 .

Canonicalization of "object" using the sample code in Appendix A would return the following
string:

MUST

 {
 "time": "2019-01-28T07:45:10Z",
 "big": "055",
 "val": 3.5
 }

 var object = JSON.parse(JSON_object_featured_as_a_string);

 ... = new Date(object.time); // Date object
 ... = BigInt(object.big); // Big integer
 ... = object.val; // JSON/JS number

[V8]

 {"big":"055","time":"2019-01-28T07:45:10Z","val":3.5}

RFC 8785 JSON Canonicalization Scheme June 2020

Rundgren, et al. Informational Page 16

Although this is (with respect to JCS) technically correct, there is another way of parsing JSON
data, which also can be used with ECMAScript as shown below:

If you now apply the canonicalizer in Appendix A to "object", the following string would be
generated:

In this case, the string arguments for "big" and "time" have changed with respect to the original,
presumably making an application depending on JCS fail.

The reason for the deviation is that in stream- and schema-based JSON parsers, the original
string argument is typically replaced on the fly by the native subtype that, when serialized, may
exhibit a different and platform-dependent pattern.

That is, stream- and schema-based parsing treat subtypes as "pure" (immutable) JSON
string types and perform the actual conversion to the designated native type in a subsequent
step. In modern programming platforms like Go, Java, and C#, this can be achieved with
moderate efforts by combining annotations, getters, and setters. Below is an example in C#/
Json.NET showing a part of a class that is serializable as a JSON object:

In an application, "Amount" can be accessed as any other property while it is actually
represented by a quoted string in JSON contexts.

 // "BigInt" requires the following code to become JSON serializable
 BigInt.prototype.toJSON = function() {
 return this.toString();
 };

 // JSON parsing using a "stream"-based method
 var object = JSON.parse(JSON_object_featured_as_a_string,
 (k,v) => k == 'time' ? new Date(v) : k == 'big' ? BigInt(v) : v
);

 {"big":"55","time":"2019-01-28T07:45:10.000Z","val":3.5}

MUST

 // The "pure" string solution uses a local
 // string variable for JSON serialization while
 // exposing another type to the application
 [JsonProperty("amount")]
 private string _amount;

 [JsonIgnore]
 public decimal Amount {
 get { return decimal.Parse(_amount); }
 set { _amount = value.ToString(); }
 }

RFC 8785 JSON Canonicalization Scheme June 2020

Rundgren, et al. Informational Page 17

Note: The example above also addresses the constraints on numeric data implied by I-JSON (the
C# "decimal" data type has quite different characteristics compared to IEEE 754 double
precision).

E.1. Subtypes in Arrays
Since the JSON array construct permits mixing arbitrary JSON data types, custom parsing and
serialization code may be required to cope with subtypes anyway.

Appendix F. Implementation Guidelines
The optimal solution is integrating support for JCS directly in JSON serializers (parsers need no
changes). That is, canonicalization would just be an additional "mode" for a JSON serializer.
However, this is currently not the case. Fortunately, JCS support can be introduced through
externally supplied canonicalizer software acting as a post processor to existing JSON serializers.
This arrangement also relieves the JCS implementer from having to deal with how underlying
data is to be represented in JSON.

The post processor concept enables signature creation schemes like the following:

Create the data to be signed.
Serialize the data using existing JSON tools.
Let the external canonicalizer process the serialized data and return canonicalized result
data.
Sign the canonicalized data.
Add the resulting signature value to the original JSON data through a designated signature
property.
Serialize the completed (now signed) JSON object using existing JSON tools.

A compatible signature verification scheme would then be as follows:

Parse the signed JSON data using existing JSON tools.
Read and save the signature value from the designated signature property.
Remove the signature property from the parsed JSON object.
Serialize the remaining JSON data using existing JSON tools.
Let the external canonicalizer process the serialized data and return canonicalized result
data.
Verify that the canonicalized data matches the saved signature value using the algorithm
and key used for creating the signature.

A canonicalizer like above is effectively only a "filter", potentially usable with a multitude of
quite different cryptographic schemes.

Using a JSON serializer with integrated JCS support, the serialization performed before the
canonicalization step could be eliminated for both processes.

1.
2.
3.

4.
5.

6.

1.
2.
3.
4.
5.

6.

RFC 8785 JSON Canonicalization Scheme June 2020

Rundgren, et al. Informational Page 18

Appendix G. Open-Source Implementations
The following open-source implementations have been verified to be compatible with JCS:

JavaScript:
Java:
Go:
.NET/C#:
Python:

• <https://www.npmjs.com/package/canonicalize>
• <https://github.com/erdtman/java-json-canonicalization>
• <https://github.com/cyberphone/json-canonicalization/tree/master/go>
• <https://github.com/cyberphone/json-canonicalization/tree/master/dotnet>
• <https://github.com/cyberphone/json-canonicalization/tree/master/python3>

Appendix H. Other JSON Canonicalization Efforts
There are (and have been) other efforts creating "Canonical JSON". Below is a list of URLs to some
of them:

The listed efforts all build on text-level JSON-to-JSON transformations. The primary feature of
text-level canonicalization is that it can be made neutral to the flavor of JSON used. However,
such schemes also imply major changes to the JSON parsing process, which is a likely hurdle for
adoption. Albeit at the expense of certain JSON and application constraints, JCS was designed to
be compatible with existing JSON tools.

• <https://tools.ietf.org/html/draft-staykov-hu-json-canonical-form-00>
• <https://gibson042.github.io/canonicaljson-spec/>
• <http://wiki.laptop.org/go/Canonical_JSON>

Appendix I. Development Portal
The JCS specification is currently developed at: .

JCS source code and extensive test data is available at:
.

<https://github.com/cyberphone/ietf-json-canon>

<https://github.com/cyberphone/json-
canonicalization>

Acknowledgements
Building on ECMAScript number serialization was originally proposed by . This
ultimately led to the adoption of the entire ECMAScript serialization scheme for JSON primitives.

Other people who have contributed with valuable input to this specification include
, , , , , ,

, , , , , ,
, , and .

For carrying out real-world concept verification, the software and support for number
serialization provided by , , and was very helpful.

James Manger

Scott
Ananian Tim Bray Ben Campbell Adrian Farell Richard Gibson Bron Gondwana John-Mark
Gurney Mike Jones, John Levine Mark Miller Matthew Miller Mark Nottingham Mike Samuel
Jim Schaad Robert Tupelo-Schneck Michal Wadas

Ulf Adams Tanner Gooding Remy Oudompheng

RFC 8785 JSON Canonicalization Scheme June 2020

Rundgren, et al. Informational Page 19

https://www.npmjs.com/package/canonicalize
https://github.com/erdtman/java-json-canonicalization
https://github.com/cyberphone/json-canonicalization/tree/master/go
https://github.com/cyberphone/json-canonicalization/tree/master/dotnet
https://github.com/cyberphone/json-canonicalization/tree/master/python3
https://tools.ietf.org/html/draft-staykov-hu-json-canonical-form-00
https://gibson042.github.io/canonicaljson-spec/
http://wiki.laptop.org/go/Canonical_JSON
https://github.com/cyberphone/ietf-json-canon
https://github.com/cyberphone/json-canonicalization
https://github.com/cyberphone/json-canonicalization

Authors' Addresses
Anders Rundgren
Independent
Montpellier
France

 anders.rundgren.net@gmail.com Email:
 https://www.linkedin.com/in/andersrundgren/ URI:

Bret Jordan
Broadcom
1320 Ridder Park Drive

, San Jose CA 95131
United States of America

 bret.jordan@broadcom.com Email:

Samuel Erdtman
Spotify AB
Birger Jarlsgatan 61, 4tr
SE- 113 56 Stockholm
Sweden

 erdtman@spotify.com Email:

RFC 8785 JSON Canonicalization Scheme June 2020

Rundgren, et al. Informational Page 20

mailto:anders.rundgren.net@gmail.com
https://www.linkedin.com/in/andersrundgren/
mailto:bret.jordan@broadcom.com
mailto:erdtman@spotify.com

	RFC 8785
	JSON Canonicalization Scheme (JCS)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Detailed Operation
	3.1. Creation of Input Data
	3.2. Generation of Canonical JSON Data
	3.2.1. Whitespace
	3.2.2. Serialization of Primitive Data Types
	3.2.2.1. Serialization of Literals
	3.2.2.2. Serialization of Strings
	3.2.2.3. Serialization of Numbers

	3.2.3. Sorting of Object Properties
	3.2.4. UTF-8 Generation

	4. IANA Considerations
	5. Security Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. ECMAScript Sample Canonicalizer
	Appendix B. Number Serialization Samples
	Appendix C. Canonicalized JSON as "Wire Format"
	Appendix D. Dealing with Big Numbers
	Appendix E. String Subtype Handling
	E.1. Subtypes in Arrays
	Appendix F. Implementation Guidelines
	Appendix G. Open-Source Implementations
	Appendix H. Other JSON Canonicalization Efforts
	Appendix I. Development Portal
	Acknowledgements
	Authors' Addresses

 JSON Canonicalization Scheme (JCS)

 Independent

 Montpellier
 France

 anders.rundgren.net@gmail.com
 https://www.linkedin.com/in/andersrundgren/

 Broadcom

 1320 Ridder Park Drive
 CA
 95131
 San Jose
 United States of America

 bret.jordan@broadcom.com

 Spotify AB

 Birger Jarlsgatan 61, 4tr
 113 56
 Stockholm
 Sweden

 erdtman@spotify.com

 Security

 JSON
 ECMAScript
 Signatures
 Cryptography
 Canonicalization

 Cryptographic operations like hashing and signing need the data to be
 expressed in an invariant format so that the operations are reliably
 repeatable.

 One way to address this is to create a canonical representation of
 the data. Canonicalization also permits data to be exchanged in its
 original form on the "wire" while cryptographic operations
 performed on the canonicalized counterpart of the data in the
 producer and consumer endpoints generate consistent results.

 This document describes the JSON Canonicalization Scheme (JCS).
 This specification defines how to create a canonical representation
 of JSON data by building on the strict serialization methods for
 JSON primitives defined by ECMAScript, constraining JSON data to
 the Internet JSON (I-JSON) subset, and by using deterministic property
	sorting.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This is a contribution to the RFC Series, independently of any
 other RFC stream. The RFC Editor has chosen to publish this
 document at its discretion and makes no statement about its value
 for implementation or deployment. Documents approved for
 publication by the RFC Editor are not candidates for any level of
 Internet Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document.

 Table of Contents

 . Introduction

 . Terminology

 . Detailed Operation

 . Creation of Input Data

 . Generation of Canonical JSON Data

 . Whitespace

 . Serialization of Primitive Data Types

 . Serialization of Literals

 . Serialization of Strings

 . Serialization of Numbers

 . Sorting of Object Properties

 . UTF-8 Generation

 . IANA Considerations

 . Security Considerations

 . References

 . Normative References

 . Informative References

 . ECMAScript Sample Canonicalizer

 . Number Serialization Samples

 . Canonicalized JSON as "Wire Format"

 . Dealing with Big Numbers

 . String Subtype Handling

 . Subtypes in Arrays

 . Implementation Guidelines

 . Open-Source Implementations

 . Other JSON Canonicalization Efforts

 . Development Portal

 Acknowledgements

 Authors' Addresses

 Introduction

 This document describes the JSON Canonicalization Scheme (JCS).
 This specification defines how to create a canonical representation
 of JSON data by building
 on the strict serialization methods for
 JSON primitives defined by ECMAScript ,
 constraining JSON data to the I-JSON
 subset, and by using deterministic property sorting. The output from
	JCS is a
 "hashable" representation of JSON data that can be used by
	cryptographic methods.
 The subsequent paragraphs outline the primary design considerations.

 Cryptographic operations like hashing and signing need the data to be
 expressed in an invariant format so that the operations are reliably
 repeatable.
 One way to accomplish this is to convert the data into
 a format that has a simple and fixed representation,
 like base64url .
 This is how JSON Web Signature (JWS) addressed this issue.
 Another solution is to create a canonical version of the data,
 similar to what was done for the XML signature standard.

 The primary advantage with a canonicalizing scheme is that data
 can be kept in its original form. This is the core rationale behind
	JCS.
 Put another way, using canonicalization enables a JSON object to
	remain a JSON object
 even after being signed. This can simplify system design,
	documentation, and logging.

 To avoid "reinventing the wheel", JCS relies on the serialization of
	JSON primitives
 (strings, numbers, and literals), as defined by ECMAScript (aka
	JavaScript)
 beginning with version 6.

 Seasoned XML developers may recall difficulties getting XML signatures
 to validate. This was usually due to different interpretations of the
	quite intricate
 XML canonicalization rules as well as of the equally complex
 Web Services security standards.
 The reasons why JCS should not suffer from similar issues are:

 JSON does not have a namespace concept and default values.

 Data is constrained to the I‑JSON subset.
 This eliminates the need for specific parsers for dealing with
	 canonicalization.

 JCS-compatible serialization of JSON primitives is currently
	 supported
 by most web browsers as well as by Node.js .

 The full JCS specification is currently supported by multiple
 open-source implementations (see).
 See also for
	 implementation
 guidelines.

 JCS is compatible with some existing systems relying on JSON
 canonicalization such as JSON Web Key (JWK) Thumbprint and Keybase .

 For potential uses outside of cryptography, see .

 The intended audiences of this document are JSON tool vendors as
 well as designers of JSON-based cryptographic solutions.
 The reader is assumed to be knowledgeable in ECMAScript, including the
	"JSON" object.

 Terminology

 Note that this document is not on the IETF standards track. However, a
	conformant
 implementation is supposed to adhere to the specified behavior for
 security and interoperability reasons. This text uses BCP 14 to
 describe that necessary behavior.

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are
 to be interpreted as described in BCP 14
 when, and only when, they appear in all capitals,
 as shown here.

 Detailed Operation

 This section describes the details related to creating
 a canonical JSON representation and how they are addressed by JCS.

 describes
 the RECOMMENDED way of adding JCS support to existing
	JSON tools.

 Creation of Input Data

 Data to be canonically serialized is usually created by:

 Parsing previously generated JSON data.

 Programmatically creating data.

 Irrespective of the method used, the data to be serialized
	 MUST be adapted
 for I‑JSON
	 formatting, which implies the following:

 JSON objects MUST NOT exhibit duplicate property
	 names.

 JSON string data MUST be expressible
 as Unicode .

 JSON number data MUST be expressible
 as IEEE 754
	 double-precision values.
 For applications needing higher precision or longer integers than
 offered by IEEE 754 double precision, it is
	 RECOMMENDED to represent such
 numbers as JSON strings; see for
 details on how this can be performed in an interoperable and
	 extensible way.

 An additional constraint is that parsed JSON string data MUST NOT be altered during subsequent serializations. For more
 information, see .

 Note: Although the Unicode standard offers the possibility of
 rearranging certain character sequences, referred to as "Unicode
 Normalization" ,
 JCS-compliant string processing does not take this into
 consideration. That is, all components involved in a scheme
 depending on JCS MUST preserve Unicode string data
 "as is".

 Generation of Canonical JSON Data

 The following subsections describe the steps required to create a
	 canonical
 JSON representation of the data elaborated on in the previous
	 section.

 shows sample code
 for an ECMAScript-based canonicalizer, matching the JCS
	 specification.

 Whitespace

 Whitespace between JSON tokens MUST NOT be emitted.

 Serialization of Primitive Data Types

 Assume the following JSON object is parsed:

 {
 "numbers": [333333333.33333329, 1E30, 4.50,
 2e-3, 0.000000000000000000000000001],
 "string": "\u20ac$\u000F\u000aA'\u0042\u0022\u005c\\\"\/",
 "literals": [null, true, false]
 }

 If the parsed data is subsequently serialized using a serializer
 compliant with ECMAScript's "JSON.stringify()", the result would
 (with a line wrap added for display purposes only) be rather
 divergent with respect to the original data:

 {"numbers":[333333333.3333333,1e+30,4.5,0.002,1e-27],"string":
 "€$\u000f\nA'B\"\\\\\"/","literals":[null,true,false]}

 The reason for the difference between the parsed data and its
 serialized counterpart is due to a wide tolerance on input data
	 (as defined
 by JSON), while output
	 data (as defined by ECMAScript)
 has a fixed representation. As can be seen in the example,
 numbers are subject to rounding as well.

 The following subsections describe the serialization of primitive
	 JSON data types
 according to JCS. This part is identical to that of ECMAScript.
 In the (unlikely) event that a future version of ECMAScript would
 invalidate any of the following serialization methods, it will be
 up to the developer community to
 either stick to this specification or create a new specification.

 Serialization of Literals

 In accordance with JSON ,
 the literals "null", "true", and
 "false" MUST be serialized as null, true, and
	 false, respectively.

 Serialization of Strings

 For JSON string data (which includes JSON object property names
 as well), each Unicode code point MUST be
 serialized as described below (see Section 24.3.2.2 of):

 If the Unicode value falls within the traditional ASCII
 control character range (U+0000 through U+001F), it
 MUST be serialized using lowercase hexadecimal
 Unicode notation (\uhhhh) unless it is in the set of
 predefined JSON control characters U+0008, U+0009, U+000A,
 U+000C, or U+000D, which MUST be serialized as
 \b, \t, \n, \f, and \r, respectively.

 If the Unicode value is outside of the ASCII control character
 range, it MUST be serialized "as is"
 unless it is equivalent to U+005C (\) or U+0022 ("),
 which MUST be serialized as \\ and \",
 respectively.

 Finally, the resulting sequence of Unicode code points
	 MUST be enclosed in double quotes (").

 Note: Since invalid Unicode data like "lone surrogates" (e.g.,
	 U+DEAD)
 may lead to interoperability issues including broken signatures,
 occurrences of such data MUST cause a compliant
	 JCS implementation to terminate
 with an appropriate error.

 Serialization of Numbers

 ECMAScript builds on the IEEE 754 double-precision standard for representing
 JSON number data. Such data MUST be serialized
 according to Section 7.1.12.1 of , including the "Note 2" enhancement.

 Due to the relative complexity of this part, the algorithm
 itself is not included in this document.
 For implementers of JCS-compliant number serialization,
 Google's implementation in V8 may serve as a reference.
 Another compatible number serialization reference implementation
 is Ryu ,
 which is used by the JCS open-source Java implementation
 mentioned in .
 holds a set
	 of IEEE 754 sample values and their
 corresponding JSON serialization.

 Note: Since Not a Number (NaN) and Infinity
 are not permitted in JSON, occurrences of NaN or
 Infinity MUST cause a compliant JCS
 implementation to terminate with an appropriate error.

 Sorting of Object Properties

 Although the previous step normalized the representation of
 primitive JSON data types, the result would not yet qualify as
 "canonical" since JSON object properties are not in lexicographic
 (alphabetical) order.

 Applied to the sample in ,
 a properly canonicalized version should (with a
 line wrap added for display purposes only) read as:

 {"literals":[null,true,false],"numbers":[333333333.3333333,
 1e+30,4.5,0.002,1e-27],"string":"€$\u000f\nA'B\"\\\\\"/"}

 The rules for lexicographic sorting of JSON object
 properties according to JCS are as follows:

 JSON object properties MUST be sorted
		recursively,
 which means that JSON child Objects
 MUST have their properties sorted as well.

 JSON array data MUST also be scanned for the
 presence of JSON objects (if an object is found, then its
	 properties MUST be sorted),
 but array element order MUST NOT be changed.

 When a JSON object is about to have its properties
 sorted, the following measures MUST be adhered to:

 The sorting process is applied to property name strings in their
	 "raw" (unescaped) form.
 That is, a newline character is treated as U+000A.

 Property name strings to be sorted are formatted
 as arrays of UTF-16
	 code units.
 The sorting is based on pure value comparisons, where code units
	 are treated as
 unsigned integers, independent of locale settings.

 Property name strings either have different values at some
		index that is
 a valid index for both strings, or their lengths are
		different, or both.
 If they have different values at one or more index
 positions, let k be the smallest such index; then, the string
		whose
 value at position k has the smaller value, as determined by
		using
 the "<" operator, lexicographically precedes the other
		string.
 If there is no index position at which they differ,
 then the shorter string lexicographically precedes the longer
		string.

 In plain English, this means that property names are sorted in
		ascending order like the following:

 ""
 "a"
 "aa"
 "ab"

 The rationale for basing the sorting algorithm on UTF-16 code
	 units is that
 it maps directly to the string type in ECMAScript (featured in web
	 browsers
 and Node.js), Java, and .NET. In addition, JSON only supports
	 escape sequences
 expressed as UTF-16 code units, making knowledge and handling of
	 such data
 a necessity anyway.
 Systems using another internal representation of string data will
	 need to convert
 JSON property name strings into arrays of UTF-16 code units before
	 sorting.
 The conversion from UTF-8 or UTF-32 to UTF-16 is defined by the
 Unicode standard.

 The following JSON test data can be used for verifying the correctness of
 the sorting scheme in a JCS implementation:

 {
 "\u20ac": "Euro Sign",
 "\r": "Carriage Return",
 "\ufb33": "Hebrew Letter Dalet With Dagesh",
 "1": "One",
 "\ud83d\ude00": "Emoji: Grinning Face",
 "\u0080": "Control",
 "\u00f6": "Latin Small Letter O With Diaeresis"
 }

 Expected argument order after sorting property strings:

 "Carriage Return"
 "One"
 "Control"
 "Latin Small Letter O With Diaeresis"
 "Euro Sign"
 "Emoji: Grinning Face"
 "Hebrew Letter Dalet With Dagesh"

 Note: For the purpose of obtaining a deterministic property order,
 sorting of data encoded in UTF-8 or UTF-32 would also work, but
 the outcome for JSON data like above would differ and thus be
 incompatible with this specification.

 However, in practice, property names are rarely defined outside of
 7-bit ASCII, making it possible to sort string data in UTF-8 or
 UTF-32 format without conversion to UTF-16 and still be compatible
 with JCS. Whether or not this is a viable option depends on the
 environment JCS is used in.

 UTF-8 Generation

 Finally, in order to create a platform-independent representation,
 the result of the preceding step MUST be encoded in
	 UTF-8.

 Applied to the sample in , this
 should yield the following bytes, here shown in hexadecimal
	 notation:

 7b 22 6c 69 74 65 72 61 6c 73 22 3a 5b 6e 75 6c 6c 2c 74 72
 75 65 2c 66 61 6c 73 65 5d 2c 22 6e 75 6d 62 65 72 73 22 3a
 5b 33 33 33 33 33 33 33 33 33 2e 33 33 33 33 33 33 33 2c 31
 65 2b 33 30 2c 34 2e 35 2c 30 2e 30 30 32 2c 31 65 2d 32 37
 5d 2c 22 73 74 72 69 6e 67 22 3a 22 e2 82 ac 24 5c 75 30 30
 30 66 5c 6e 41 27 42 5c 22 5c 5c 5c 5c 5c 22 2f 22 7d

 This data is intended to be usable as input to cryptographic
	 methods.

 IANA Considerations

 This document has no IANA actions.

 Security Considerations

 It is crucial to perform sanity checks on input data to avoid
 overflowing buffers and similar things that could affect the
 integrity of the system.

 When JCS is applied to signature schemes like the one described
 in ,
 applications MUST perform the following operations
	before acting
 upon received data:

 Parse the JSON data and verify that it adheres to I-JSON.

 Verify the data for correctness according to the conventions defined
	 by the
 ecosystem where it is to be used. This also includes locating the
 property holding the signature data.

 Verify the signature.

 If any of these steps fail, the operation in progress
	 MUST be aborted.

 References

 Normative References

 ECMAScript 2019 Language Specification

 ECMA International

 Standard ECMA-262 10th Edition

 IEEE Standard for Floating-Point Arithmetic

 IEEE

 IEEE 754-2019

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The I-JSON Message Format

 I-JSON (short for "Internet JSON") is a restricted profile of JSON designed to maximize interoperability and increase confidence that software can process it successfully with predictable results.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 The JavaScript Object Notation (JSON) Data Interchange Format

 JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format. It was derived from the ECMAScript Programming Language Standard. JSON defines a small set of formatting rules for the portable representation of structured data.
 This document removes inconsistencies with other specifications of JSON, repairs specification errors, and offers experience-based interoperability guidance.

 Unicode Normalization Forms

 The Unicode Consortium

 The Unicode Standard

 The Unicode Consortium

 Informative References

 "Comparable" JSON (JSONCOMP)

 This application note describes how JCS [JCS] can be utilized to support applications needing canonicalization beyond the core JSON [RFC8259] level, with comparisons as the primary target.

 Work in Progress

 Canonical Packings for JSON and Msgpack

 Keybase

 Node.js

 OpenJS Foundation

 The OpenAPI Specification: a broadly adopted industry standard for describing modern APIs

 OpenAPI Initiative

 The Base16, Base32, and Base64 Data Encodings

 This document describes the commonly used base 64, base 32, and base 16 encoding schemes. It also discusses the use of line-feeds in encoded data, use of padding in encoded data, use of non-alphabet characters in encoded data, use of different encoding alphabets, and canonical encodings. [STANDARDS-TRACK]

 JSON Web Signature (JWS)

 JSON Web Signature (JWS) represents content secured with digital signatures or Message Authentication Codes (MACs) using JSON-based data structures. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and an IANA registry defined by that specification. Related encryption capabilities are described in the separate JSON Web Encryption (JWE) specification.

 JSON Web Key (JWK) Thumbprint

 This specification defines a method for computing a hash value over a JSON Web Key (JWK). It defines which fields in a JWK are used in the hash computation, the method of creating a canonical form for those fields, and how to convert the resulting Unicode string into a byte sequence to be hashed. The resulting hash value can be used for identifying or selecting the key represented by the JWK that is the subject of the thumbprint.

 Ryu floating point number serializing algorithm

 commit 27d3c55

 What is V8?

 Google LLC

 XML Signature Syntax and Processing Version 1.1

 W3C

 W3C Recommendation

 ECMAScript Sample Canonicalizer

 Below is an example of a JCS canonicalizer for usage with
	ECMAScript-based systems:

 //
 // Since the primary purpose of this code is highlighting //
 // the core of the JCS algorithm, error handling and //
 // UTF-8 generation were not implemented. //
 //
 var canonicalize = function(object) {

 var buffer = '';
 serialize(object);
 return buffer;

 function serialize(object) {
 if (object === null || typeof object !== 'object' ||
 object.toJSON != null) {
 ///
 // Primitive type or toJSON, use "JSON" //
 ///
 buffer += JSON.stringify(object);

 } else if (Array.isArray(object)) {
 ///
 // Array - Maintain element order //
 ///
 buffer += '[';
 let next = false;
 object.forEach((element) => {
 if (next) {
 buffer += ',';
 }
 next = true;
 ///
 // Array element - Recursive expansion //
 ///
 serialize(element);
 });
 buffer += ']';

 } else {
 ///
 // Object - Sort properties before serializing //
 ///
 buffer += '{';
 let next = false;
 Object.keys(object).sort().forEach((property) => {
 if (next) {
 buffer += ',';
 }
 next = true;
 ///
 // Property names are strings, use "JSON" //
 ///
 buffer += JSON.stringify(property);
 buffer += ':';
 //
 // Property value - Recursive expansion //
 //
 serialize(object[property]);
 });
 buffer += '}';
 }
 }
 };

 Number Serialization Samples

 The following table holds a set of ECMAScript-compatible number
	serialization samples,
 including some edge cases. The column
 "IEEE 754" refers to the internal
 ECMAScript representation of the "Number" data type, which is based on
	the
 IEEE 754 standard using
	64-bit (double-precision) values,
 here expressed in hexadecimal.

 ECMAScript-Compatible JSON Number Serialization Samples

 IEEE 754
 JSON Representation
 Comment

 0000000000000000

 0

 Zero

 8000000000000000

 0

 Minus zero

 0000000000000001

 5e-324

 Min pos number

 8000000000000001

 -5e-324

 Min neg number

 7fefffffffffffff

 1.7976931348623157e+308

 Max pos number

 ffefffffffffffff

 -1.7976931348623157e+308

 Max neg number

 4340000000000000

 9007199254740992

 Max pos
int (1)

 c340000000000000

 -9007199254740992

 Max neg
int (1)

 4430000000000000

 295147905179352830000

 ~2**68 (2)

 7fffffffffffffff

 NaN (3)

 7ff0000000000000

 Infinity (3)

 44b52d02c7e14af5

 9.999999999999997e+22

 44b52d02c7e14af6

 1e+23

 44b52d02c7e14af7

 1.0000000000000001e+23

 444b1ae4d6e2ef4e

 999999999999999700000

 444b1ae4d6e2ef4f

 999999999999999900000

 444b1ae4d6e2ef50

 1e+21

 3eb0c6f7a0b5ed8c

 9.999999999999997e-7

 3eb0c6f7a0b5ed8d

 0.000001

 41b3de4355555553

 333333333.3333332

 41b3de4355555554

 333333333.33333325

 41b3de4355555555

 333333333.3333333

 41b3de4355555556

 333333333.3333334

 41b3de4355555557

 333333333.33333343

 becbf647612f3696

 -0.0000033333333333333333

 43143ff3c1cb0959

 1424953923781206.2

 Round to even (4)

 Notes:

 For maximum compliance with the ECMAScript "JSON" object,
 values that are to be interpreted as true integers
 SHOULD be in the range -9007199254740991 to
	 9007199254740991.
 However, how numbers are used in applications does not affect the
	 JCS algorithm.

 Although a set of specific integers like 2**68 could be regarded as
	 having
 extended precision, the JCS/ECMAScript number serialization
 algorithm does not take this into consideration.

 Values out of range are not permitted in JSON.
 See .

 This number is exactly 1424953923781206.25 but will, after the "Note
	 2" rule
 mentioned in , be
	 truncated and
 rounded to the closest even value.

 For a more exhaustive validation of a JCS number serializer, you may
 test against a file (currently) available in the development portal
 (see) containing a
 large set of sample values. Another option is running V8 as a live reference together with a
 program generating a substantial amount of random IEEE 754 values.

 Canonicalized JSON as "Wire Format"

 Since the result from the canonicalization process (see) is fully valid JSON, it can
 also be used as "Wire Format". However, this is just an option since
 cryptographic schemes based on JCS, in most cases, would not depend on
 that externally supplied JSON data already being canonicalized.

 In fact, the ECMAScript standard way of serializing objects using
 "JSON.stringify()" produces a
 more "logical" format, where properties are
 kept in the order they were created or received. The
 example below shows an address record that could benefit from
 ECMAScript standard serialization:

 {
 "name": "John Doe",
 "address": "2000 Sunset Boulevard",
 "city": "Los Angeles",
 "zip": "90001",
 "state": "CA"
 }

 Using canonicalization, the properties above would be output in the
	order
 "address", "city", "name", "state", and "zip", which adds fuzziness
 to the data from a human (developer or technical support) perspective.
 Canonicalization also converts JSON data into a single line of text,
	which may
 be less than ideal for debugging and logging.

 Dealing with Big Numbers

 There are several issues associated with the
 JSON number type, here illustrated by the following
 sample object:

 {
 "giantNumber": 1.4e+9999,
 "payMeThis": 26000.33,
 "int64Max": 9223372036854775807
 }

 Although the sample above conforms to JSON ,
 applications would normally use different native data types for
	storing
 "giantNumber" and "int64Max". In addition, monetary data like
	"payMeThis" would
 presumably not rely on floating-point data types due to rounding
	issues with respect
 to decimal arithmetic.

 The established way of handling this kind of "overloading" of the
 JSON number type (at least in an extensible manner) is through
 mapping mechanisms, instructing parsers what to do with different
	properties
 based on their name. However, this greatly limits the value of using
	the
 JSON number type outside of its original, somewhat constrained
	JavaScript context.
 The ECMAScript "JSON" object does not support mappings to the JSON
	number type either.

 Due to the above, numbers that do not have a natural place in the
	current
 JSON ecosystem MUST be wrapped using the JSON string
	type. This is close to
 a de facto standard for open systems. This is also applicable for
 other data types that do not have direct support in JSON, like
	"DateTime"
 objects as described in .

 Aided by a system using the JSON string type, be it programmatic like

 var obj = JSON.parse('{"giantNumber": "1.4e+9999"}');
 var biggie = new BigNumber(obj.giantNumber);

 or declarative schemes like OpenAPI ,
 JCS imposes no limits on applications, including when using
	ECMAScript.

 String Subtype Handling

 Due to the limited set of data types featured in JSON, the JSON string
 type is commonly used for holding subtypes. This can, depending on
 JSON parsing method, lead to interoperability problems, which
 MUST be dealt with by JCS-compliant applications
 targeting a wider audience.

 Assume you want to parse a JSON object where the schema
 designer assigned the property "big" for holding a "BigInt" subtype
	and
 "time" for holding a "DateTime" subtype, while "val" is supposed to be
	a JSON number
 compliant with JCS. The following example shows such an object:

 {
 "time": "2019-01-28T07:45:10Z",
 "big": "055",
 "val": 3.5
 }

 Parsing of this object can be accomplished by the following
 ECMAScript statement:

 var object = JSON.parse(JSON_object_featured_as_a_string);

 After parsing, the actual data can be extracted, which for subtypes,
 also involves a conversion step using the result of the parsing process
 (an ECMAScript object) as input:

 ... = new Date(object.time); // Date object
 ... = BigInt(object.big); // Big integer
 ... = object.val; // JSON/JS number

 Note that the "BigInt" data type is currently only natively supported
	by V8 .

 Canonicalization of "object" using the sample code in would return the
 following string:

 {"big":"055","time":"2019-01-28T07:45:10Z","val":3.5}

 Although this is (with respect to JCS) technically correct, there is
 another way of parsing JSON data, which also can be used with
 ECMAScript as shown below:

 // "BigInt" requires the following code to become JSON serializable
 BigInt.prototype.toJSON = function() {
 return this.toString();
 };

 // JSON parsing using a "stream"-based method
 var object = JSON.parse(JSON_object_featured_as_a_string,
 (k,v) => k == 'time' ? new Date(v) : k == 'big' ? BigInt(v) : v
);

 If you now apply the canonicalizer in to "object", the following string would be
 generated:

 {"big":"55","time":"2019-01-28T07:45:10.000Z","val":3.5}

 In this case, the string arguments for "big" and "time" have changed
	with respect to the original,
 presumably making an application depending on JCS fail.

 The reason for the deviation is that in stream- and schema-based JSON
	parsers,
 the original string argument is typically replaced on the fly
 by the native subtype that, when serialized, may exhibit a different
 and platform-dependent pattern.

 That is, stream- and schema-based parsing MUST treat
 subtypes as "pure" (immutable) JSON string types and perform the
 actual conversion to the designated native type in a subsequent step.
 In modern programming platforms like Go, Java, and C#, this can be
 achieved with moderate efforts by combining annotations, getters, and
 setters. Below is an example in C#/Json.NET showing a part of a class
 that is serializable as a JSON object:

 // The "pure" string solution uses a local
 // string variable for JSON serialization while
 // exposing another type to the application
 [JsonProperty("amount")]
 private string _amount;

 [JsonIgnore]
 public decimal Amount {
 get { return decimal.Parse(_amount); }
 set { _amount = value.ToString(); }
 }

 In an application, "Amount" can be accessed as any other property
 while it is actually represented by a quoted string in JSON contexts.

 Note: The example above also addresses the constraints on numeric data
 implied by I-JSON (the C# "decimal" data type has quite different
 characteristics compared to IEEE 754 double precision).

 Subtypes in Arrays

 Since the JSON array construct permits mixing arbitrary JSON data
	 types,
 custom parsing and serialization code may be required
 to cope with subtypes anyway.

 Implementation Guidelines

 The optimal solution is integrating support for JCS directly
 in JSON serializers (parsers need no changes).
 That is, canonicalization would just be an additional "mode"
 for a JSON serializer. However, this is currently not the case.
 Fortunately, JCS support can be introduced through externally supplied
 canonicalizer software acting as a post processor to existing
 JSON serializers. This arrangement also relieves the JCS implementer
	from
 having to deal with how underlying data is to be represented in JSON.

 The post processor concept enables signature creation schemes like the
	following:

 Create the data to be signed.

 Serialize the data using existing JSON tools.

 Let the external canonicalizer process the serialized data and
	 return canonicalized result data.

 Sign the canonicalized data.

 Add the resulting signature value to the original JSON data
	 through a designated signature property.

 Serialize the completed (now signed) JSON object using existing
	 JSON tools.

 A compatible signature verification scheme would then be as follows:

 Parse the signed JSON data using existing JSON tools.

 Read and save the signature value from the designated signature
	 property.

 Remove the signature property from the parsed JSON object.

 Serialize the remaining JSON data using existing JSON tools.

 Let the external canonicalizer process the serialized data and
	 return canonicalized result data.

 Verify that the canonicalized data matches the saved signature
	 value
 using the algorithm and key used for creating the signature.

 A canonicalizer like above is effectively only a "filter", potentially
	usable with
 a multitude of quite different cryptographic schemes.

 Using a JSON serializer with integrated JCS support, the serialization
	performed
 before the canonicalization step could be eliminated for both
	processes.

 Open-Source Implementations

 The following open-source implementations have been verified to be
 compatible with JCS:

 JavaScript:

 Java:

 Go:

 .NET/C#:

 Python:

 Other JSON Canonicalization Efforts

 There are (and have been) other efforts creating "Canonical JSON".
 Below is a list of URLs to some of them:

 The listed efforts all build on text-level JSON-to-JSON
 transformations. The primary feature of text-level canonicalization is
 that it can be made neutral to the flavor of JSON used. However, such
 schemes also imply major changes to the JSON parsing process, which is
 a likely hurdle for adoption. Albeit at the expense of certain JSON
 and application constraints, JCS was designed to be compatible with
 existing JSON tools.

 Development Portal

 The JCS specification is currently developed at:
 .

 JCS source code and extensive test data is available at:
 .

 Acknowledgements

 Building on ECMAScript number serialization was
 originally proposed by . This
	ultimately led to the
 adoption of the entire ECMAScript serialization scheme for JSON
	primitives.

 Other people who have contributed with valuable input to this
	specification include
 ,
 ,
 ,
 ,
 ,
 ,
 ,

 ,
 ,
 ,
 ,
 ,
 ,
 ,
 and .

 For carrying out real-world concept verification, the software and
 support for number serialization provided by
 ,
 ,
 and
 was very helpful.

 Authors' Addresses

 Independent

 Montpellier
 France

 anders.rundgren.net@gmail.com
 https://www.linkedin.com/in/andersrundgren/

 Broadcom

 1320 Ridder Park Drive
 CA
 95131
 San Jose
 United States of America

 bret.jordan@broadcom.com

 Spotify AB

 Birger Jarlsgatan 61, 4tr
 113 56
 Stockholm
 Sweden

 erdtman@spotify.com

