ExomeDepth

Vincent Plagnol
February 11, 2014

Contents
1 What is new? 1

2 What ExomeDepth does and tips for QC

2.1 What ExomeDepth does and doesnot do 1

2.2 Useful quality checks oL e 1
3 Create count data from BAM files 2

3.1 Count for the autosomes L 2

3.2 Counts for chromosome Xo 3
4 Load an example dataset 3
5 Build the most appropriate reference set 3
6 CNYV calling 4
7 Ranking the CNV calls by confidence level 5
8 Better annotation of CNV calls 5
9 A visual example 7
10 How to loop over the multiple samples 8
11 Counting everted reads 9
12 Technical information about R session 10

1 What is new?

Version 1.0.0:

¢ New warning when the correlation between the test and reference samples is low, so that the user knows he
should expect unreliable results.

e New function to count everted reads (characteristic of segmental duplications)

e Updated genes.hgl9 and exons.hgl9 objects. The number of exons tested is now 10% lower, because it
excludes some non coding regions as well as UTRs that are typically not well covered. My test data suggest
that removing these difficult regions cleans up the signal quite a bit and the quality of established CNVs calls
has improved significantly as a consequence of this.

2 What ExomeDepth does and tips for QC

2.1 What ExomeDepth does and does not do

ExomeDepth uses read depth data to call CNVs from exome sequencing experiments. A key idea is that the test
exome should be compared to a matched aggregate reference set. This aggregate reference set should combine
exomes from the same batch and it should also be optimized for each exome. It will certainly differ from one exome
to the next.

Importantly, ExomeDepth assumes that the CNV of interest is absent from the aggregate reference set. Hence
related individuals should be excluded from the aggregate reference. It also means that ExomeDepth can miss
common CNVs, if the call is also present in the aggregate reference. ExomeDepth is really suited to detect rare
CNV calls (typically for rare Mendelian disorder analysis).

The ideas used in this package are of course not specific to exome sequencing and could be applied to other
targeted sequencing datasets, as long as they contain a sufficiently large number of exons to estimate the parameters
(at least 20 genes, say, but probably more would be useful). Also note that PCR based enrichment studies are often
not well suited for this type of read depth analysis. The reason is that as the number of cycles is often set to a high
number in order to equalize the representation of each amplicon, which can discard the CNV information.

2.2 Useful quality checks

Just to give some general expectations I usually obtain 150-280 CNV calls per exome sample (two third of them
deletions). Any number clearly outside of this range is suspicious and suggests that either the model was inappro-
priate or that something went wrong while running the code. Less important and less precise, I also expect the
aggregate reference to contain 5-10 exome samples. While there is no set rule for this number, and the code may
work very well with fewer exomes in the aggregate reference set, numbers outside of this range suggest potential
technical artifacts.

3 Create count data from BAM files

3.1 Count for the autosomes

Firstly, to facilitate the generation of read count data, exon positions for the hgl9 build of the human genome are
available within ExomeDepth. This exons.hgl9 data frame can be directly passed as an argument of getBAMCounts
(see below).

> library(ExomeDepth)
> data(exons.hg19)
> print (head(exons.hg19))

chromosome start end name
1 1 35138 35174 FAM138A_3
2 1 35277 35481 FAM138A_2
3 1 35721 35736 FAM138A_1
4 1 53049 53067 AL627309.2_1
5 1 54830 54936 AL627309.2_2
6 1 69091 70008 OR4F5_1

To generate read count data, the function getBamCounts in ExomeDepth is set up to parse the BAM files.
It generates an array of read count, stored in a GenomicRanges object. It is a wrapper around the function
countBamInGRanges . exomeDepth which is derived from an equivalent function in the exomeCopy package. You can
refer to the help page of getBAMCounts to obtain the full list of options. An example line of code (not evaluated
here) would look like this:

> data(exons.hg19)
> my.counts <- getBamCounts(bed.frame = exons.hgl9,

+ bam.files = my.bam,
+ include.chr = FALSE,
+ referenceFasta = fasta)

my .bam is a set character vector of indexed BAM files. fasta is the reference genome in fasta format (only useful
if one wants to obtain the GC content). exons.hg19 are the positions and names of the exons on the hgl9 reference
genome (as shown above). include.chr defaults to false: if the BAM file are aligned to a reference sequence with
the convention chri for chromosomes instead of simply 1 (i.e. the UCSC convention vs. the Ensembl one) you need
to set include.chr = TRUE, otherwise the counts will be equal to 0. Note that the data frame with exon locations
provided with ExomeDepth uses the Ensembl location (i.e. no chr prefix before the chromosome names) but what
matters to set this option is how the BAM files were aligned.

getBAMCounts creates an object of the GRanges class which can easily be converted into a matrix or a data frame
(which is the input format for ExomeDepth). An example of GenomicRanges output generated by getBAMCounts
is provided in this package (chromosome 1 only to keep the size manageable). Here is how this object could for
example be used to obtain a more generic data frame:

> library(ExomeDepth)
> data(ExomeCount)
> ExomeCount.dafr <- as(ExomeCount[, colnames(ExomeCount)], 'data.frame')
> ExomeCount.dafr$chromosome <- gsub(as.character (ExomeCount.dafr$space),
+ pattern = 'chr',
+ replacement = '') ##remove the annoying chr letters
> print (head (ExomeCount.dafr))
space start end width names GC Exomel Exome2 Exome3 Exome4
1 1 12012 12058 47 DDX11L10-201_1 0.6170213 0 0 0 0
2 1 12181 12228 48 DDX11L10-201_2 0.5000000 0 0 0 0
3 1 12615 12698 84 DDX11L10-201_3 0.5952381 118 242 116 170
4 1 12977 13053 77 DDX11L10-201_4 0.6103896 198 48 104 118
5 1 13223 13375 153 DDX11L10-201_5 0.5882353 516 1112 530 682
6 1 13455 13671 217 DDX11L10-201_6 0.5898618 272 762 336 372
chromosome
1 1
2 1
3 1
4 1
5 1
6 1

3.2 Counts for chromosome X

Calling CNVs on the X chromosome can create issues if the exome sample of interest and the reference exome
samples it is being compared to (what I call the aggregate reference) are not gender matched. For this reason the
chromosome X exonic regions are not included by default in the data frame exons.hgl9, mostly to avoid users
getting low quality CNV calls because of this issue. However, loading the same dataset in R also brings another
object called exons.hgl9.X that containts the chromosome X exons.

> data(exons.hgl9.X)
> head(exons.hg19.X)

chromosome start end name
185131 X 200855 200981 PLCXD1_2
185132 X 205400 205536 PLCXD1_3
185133 X 207315 207443 PLCXD1_4
185134 X 208166 208321 PLCXD1_5
185135 X 209702 209885 PLCXD1_6
185136 X 215764 216002 PLCXD1_7

This object can be used to generate CNV counts and further down the line CNV calls, in the same way as
exons.hgl9. While this is not really necessary, I would recommend calling CNV on the X separately from the
autosomes. Also make sure that the genders are matched properly (i.e. do not use male as a reference for female
samples and vice versa).

4 Load an example dataset

We have already loaded a dataset of chromosome 1 data for four exome samples. We run a first test to make sure
that the model can be fitted properly. Note the use of the subset.for.speed option that subsets some rows purely to
speed up this computation.

> test <- new('ExomeDepth',

+ test = ExomeCount.dafr$Exome2,

+ reference = ExomeCount.dafr$Exome3,

+ formula = 'cbind(test, reference) ~ 1',

+ subset.for.speed = seq(1l, nrow(ExomeCount.dafr), 100))
> show(test)

Number of data points: 266

Formula: cbind(test, reference) ~ 1

Phi parameter (range if multiple values have been set): 0.0229405 0.0229405
Likelihood computed

5 Build the most appropriate reference set

A key idea behing ExomeDepth is that each exome should not be compared to all other exomes but rather to an
optimized set of exomes that are well correlated with that exome. This is what I call the optimized aggregate
reference set, which is optimized for each exome sample. So the first step is to select the most appropriate reference
sample. This step is demonstrated below.

> my.test <- ExomeCount$Exome4

> my.ref.samples <- c('Exomel', 'Exome2', 'Exome3')

> my.reference.set <- as.matrix(ExomeCount.dafr[, my.ref.samples])

> my.choice <- select.reference.set (test.counts = my.test,

+ reference.counts = my.reference.set,

+ bin.length = (ExomeCount.dafr$end - ExomeCount.dafr$start)/1000,
+ n.bins.reduced = 10000)

> print (my.choice[[1]])

[1] "Exome2" "Exomel" "Exome3"

Using the output of this procedure we can construct the reference set.

> my.matrix <- as.matrix(ExomeCount.dafr[, my.choice$reference.choice, drop = FALSE])
> my.reference.selected <- apply(X = my.matrix,

+ MAR =1,

+ FUN = sum)

Note that the drop = FALSE option is just used in case the reference set contains a single sample. If this is the
case, it makes sure that the subsetted object is a data frame, not a numeric vector.

6 CNYV calling

Now the following step is the longest one as the beta-binomial model is applied to the full set of exons:

> all.exons <- new('ExomeDepth',

+ test = my.test,
+ reference = my.reference.selected,
+ formula = 'cbind(test, reference) ~ 1')

We can now call the CNV by running the underlying hidden Markov model:

> all.exons <- CallCNVs(x = all.exons,

+ transition.probability = 107-4,

+ chromosome = ExomeCount.dafr$space,
+ start = ExomeCount.dafr$start,

+ end = ExomeCount.dafr$end,

+ name = ExomeCount.dafr$names)

Number of hidden states: 3

Number of data points: 26547

Initializing the HMM

Done with the first step of the HMM, now running the trace back
Total number of calls: 23

> head(all.exons@CNV.calls)

start.p end.p type nexons start end chromosome
1 25 27 deletion 3 89553 91106 1
2 52 66 deletion 15 324290 523834 1
3 100 103 duplication 4 743956 745551 1
4 575 576 deletion 2 1569583 1570002 1
5 587 591 deletion 5 1592941 1603069 1
6 2324 2327 deletion 4 12976452 12980570 1
id BF reads.expected reads.observed reads.ratio
1 chr1:89553-91106 12.40 224 68 0.304
2 chr1:324290-523834 13.40 380 190 0.500
3 chr1:743956-745551 7.67 201 336 1.670
4 chr1:1569583-1570002 5.53 68 24 0.353
5 chr1:1592941-1603069 13.90 1136 434 0.382
6 chr1:12976452-12980570 12.10 780 342 0.438

Now the last thing to do is to save it in an easily readable format (csv in this example, which can be opened in
excel if needed):

> output.file <- 'exome_calls.csv'
> write.csv(file = output.file,

+ x = all.exons@CNV.calls,
+ row.names = FALSE)

Note that it is probably best to annotate the calls before creating that csv file (see below for annotation tools).

7 Ranking the CNYV calls by confidence level

ExomeDepth tries to be quite aggressive to call CNVs. Therefore the number of calls may be relatively high compared
to other tools that try to accomplish the same task. One important information is the BF column, which stands
for Bayes factor. It quantifies the statistical support for each CNV. It is in fact the logl0 of the likelihood ratio
of data for the CNV call divided by the null (normal copy number). The higher that number, the more confident
once can be about the presence of a CNV. While it is difficult to give an ideal threshold, and for short exons the
Bayes Factor are bound to be unconvincing, the most obvious large calls should be easily flagged by ranking them
according to this quantity.

> head(all.exons@CNV.calls[order (all.exons@CNV.calls$BF, decreasing = TRUE),])

start.p end.p type nexons start end chromosome
14 6813 6816 deletion 4 40229386 40240129 1
20 14847 14872 deletion 26 146219129 146244718 1
12 4449 4461 duplication 13 25593204 25655628 1
11 4263 4267 deletion 5 24287932 24301561 1
22 23032 23039 deletion 8 207718655 207726325 1

21 15186 15195 deletion 10 147850202 147931934
id BF reads.expected reads.observed reads.ratio

14 chr1:40229386-40240129 30.4
20 chr1:146219129-146244718 29.
12 chr1:25593204-25655628 27.
11 chrl1:24287932-24301561 20.
22 chr1:207718655-207726325 17.
21 chr1:147850202-147931934 16.

O O D

393
192
470
104
184
103

8 Better annotation of CNV calls

Much can be done to annotate CNV calls and this is an open problem. While this is a work in progress, I have started
adding basic options. Importantly, the key function uses the more recent syntax from the package GenomicRanges.
Hence the function will only return a warning and not add the annotations if you use a version of GenomicRanges
prior to 1.8.10. The best way to upgrade is probably to use R 2.15.0 or later and let Bioconductor scripts do
the install for you. If you use R 2.14 or earlier the annotation steps described below will probably only return a

warning and not annotate the calls.

Perhaps the most useful step is to identify the overlap with a set of common CNVs identified in Conrad et al,
Nature 2010. If one is looking for rare CNVs, these should probably be filtered out. The first step is to load these
reference data from Conrad et al. To make things as practical as possible, these data are now available as part of

ExomeDepth.

> data(Conrad.hg19)
> head(Conrad.hgl19.common.CNVs)

GRanges with 6 ranges and 1 metadata column:

seqnames ranges strand |
<Rle> <IRanges> <Rle> |
[1] 1 [10499, 91591] * |
[2] 1 [10499, 177368] * |
[3] 1 [82705, 92162] x|
[4] 1 [85841, 91967] * |
[5] 1 [87433, 89163] * |
(6] 1 [87446, 109121] * |
seqlengths:

names
<factor>
CNVR1.
CNVR1.
CNVR1.
CNVR1.
CNVR1.
CNVR1.

~NOo P O

102
28
926
0
74
8

O O O = OO

.2600
.1460
.9700
.0000
.4020
L0777

110 11 12 13 14 15 16 17 18 19 22021 22 3 4 5 6 7 8 9 X
NA NA

Then one can use this information to annotate our CNV calls with the function AnnotateExtra.

+ + + Vv

The min.overlap argument set to 0.5 requires that the Conrad reference call overlaps at least 50% of our CNV
calls to declare an overlap. The column.name argument simply defines the name of the column that will store the

all.exons <- AnnotateExtra(x = all.exons,
reference.annotation =
min.overlap = 0.5,
column.name

Conrad.hgl19.common.CNVs,

= 'Conrad.hgl9')

overlap information. The outcome of this procedure can be checked with:

> print (head(all.exons@CNV.calls))

start.p end.p type nexons

1 25 27 deletion 3
2 52 66 deletion 15
3 100 103 duplication 4
4 575 576 deletion 2
5 587 591 deletion 5

start end
89553 91106
324290 523834
743956 745551
1569583 1570002
1592941 1603069

chromosome

N

6 2324 2327 deletion 4 12976452 12980570 1

id BF reads.expected reads.observed reads.ratio
1 chr1:89553-91106 12.40 224 68 0.304
2 chr1:324290-523834 13.40 380 190 0.500
3 chr1:743956-7455561 7.67 201 336 1.670
4 chr1:1569583-1570002 5.53 68 24 0.353
5 chr1:1592941-1603069 13.90 1136 434 0.382
6 chr1:12976452-12980570 12.10 780 342 0.438

Conrad.hgl9
1 CNVR1.1,CNVR1.2,CNVR1.5,CNVR1.4,CNVR1.7
2 CNVR2.4
3 <NA>
4 CNVR17.1
5 CNVR17.1
6 CNVR72.3,CNVR72.4,CNVR72.2

I have processed the Conrad et al data in the GRanges format. Potentially any other reference dataset could be
converted as well. See for example the exon information:

> exons.hgl9.GRanges <- GRanges (seqnames = exons.hgl9$chromosome,

+ IRanges (start=exons.hgl9$start,end=exons.hg19%end),
+ names = exons.hgl9$name)

> all.exons <- AnnotateExtra(x = all.exons,

+ reference.annotation = exons.hgl9.GRanges,

+ min.overlap = 0.0001,

+ column.name = 'exons.hgl9')

> all.exons@CNV.calls[3:6,]

start.p end.p type nexons start end chromosome
3 100 103 duplication 4 743956 745551 1
4 575 576 deletion 2 1569583 1570002 1
5 587 591 deletion 5 1592941 1603069 1
6 2324 2327 deletion 4 12976452 12980570 1
id BF reads.expected reads.observed reads.ratio
3 chr1:743956-745551 7.67 201 336 1.670
4 chr1:1569583-1570002 5.53 68 24 0.353
5 chr1:1592941-1603069 13.90 1136 434 0.382
6 chrl:12976452-12980570 12.10 780 342 0.438
Conrad.hgl9
3 <NA>
4 CNVR17.1
5 CNVR17.1
6 CNVR72.3,CNVR72.4,CNVR72.2
exons.hgl9
3 <NA>
4 MMP23B_7,MMP23B_8
5 SLC35E2B_10,SLC35E2B_9,SLC35E2B_8,SLC35E2B_7,SLC35E2B_6
6 PRAMEF7_2,PRAMEF7_3,PRAMEF7_4

This time I report any overlap with an exon by specifying a value close to 0 in the min.overlap argument. Note
the metadata column names which MUST be specified for the annotation to work properly.

9 A visual example

The ExomeDepth object includes a plot function. This function shows the ratio between observed and expected
read depth. The 95% confidence interval is marked by a grey shaded area. Here we use a common CNV located in
the RHD gene as an example. We can see that the individual in question has more copies than the average (in fact
two functional copies of RHD, which corresponds to rhesus positive).

plot (all.exons,
sequence = '1',
xlim = c(25598981 - 100000, 25633433 + 100000),
count.threshold = 20,
main = 'RHD gene',

>
+
+
+
+
+ with.gene = TRUE)

RHD gene
/+
+
o 2 -
% [N
= 4 - +t +
g I
+
o —
Q
5 +
o /\ +T
3 o \;v +\ + +° |
— N o+ +
> +
2 - i o
3 i * J
>
)
n 9
o o
O
o _|
o
SYF2 RHD RHCE
RP4 Clorf63 TMEM50A

I I I I I
25500000 25550000 25600000 25650000 25700000

10 How to loop over the multiple samples

A FAQ is a way to deal with a set of a significant number of exomes, i.e. how to loop over all of them using
ExomeDepth. This can be done with a loop. I show below an example of how I would code things. The code is not
executed in the vignette to save time when building the package, but it can give some hints to users who do not
have extensive experience with R.

> #### get the annotation datasets to be used later

> data(Conrad.hgl19)

> exons.hgl9.GRanges <- GRanges (seqnames = exons.hgl9$chromosome,

+ IRanges (start=exons.hgl9$start, end=exons.hg19%end),

+ names = exons.hgl9$name)

> ### prepare the main matrix of read count data

> ExomeCount.mat <- as.matrix(ExomeCount.dafr[, grep(names(ExomeCount.dafr), pattern = 'Exome.*')])
> nsamples <- ncol(ExomeCount.mat)

> ### start looping over each sample
> for (i in 1:nsamples) {

Create the aggregate reference set for this sample
my.choice <- select.reference.set (test.counts = ExomeCount.mat[,i],

n.bins.reduced = 10000)

MAR = 1,
FUN = sum)

message ('Now creating the ExomeDepth object')

all.exons <- new('ExomeDepth',
test = ExomeCount.mat[,i],
reference = my.reference.selected,
formula = 'cbind(test, reference) ~ 1')

HHAR#AR AR HAR#A## Now call the CNVs
all.exons <- CallCNVs(x = all.exons,
transition.probability = 10°-4,
chromosome = ExomeCount.dafr$space,
start = ExomeCount.dafr$start,
end = ExomeCount.dafr$end,
name = ExomeCount.dafr$names)

HERBHHHHHARARAARRRR R R H##### Now annotate the ExomeDepth object

reference.counts = ExomeCount.mat[,-i],
bin.length = (ExomeCount.dafr$end - ExomeCount.dafr$start)/1000,

my.reference.selected <- apply(X = ExomeCount.mat[, my.choice$reference.choice, drop = FALSE],

VV A+ 4+ 4+ +++++++++++++++F+++FF+F+ At FFEF A+

all.exons <- AnnotateExtra(x = all.exons,

reference.annotation = Conrad.hg19.common.CNVs,
min.overlap = 0.5,
column.name = 'Conrad.hgl9')

all.exons <- AnnotateExtra(x = all.exons,

reference.annotation = exons.hgl9.GRanges,
min.overlap = 0.0001,
column.name = 'exons.hgl9')

output.file <- paste('Exome_', i, 'csv', sep = '')
write.csv(file = output.file, x = all.exons@CNV.calls, row.names = FALSE)

11 Counting everted reads

This issue of everted reads (read pairs pointing outward instead of inward) is a side story that has nothing to do with
read depth. It is based on a “read pair” analysis but it was practical for me (and I hope for others) to write simple
functions to find such a pattern in my exome data. The motivation is that everted reads are characteristic of tandem
duplications, which could be otherwised by ExomeDepth. I have argued before that such a paired end approach is
not well suited for exome sequence data, because the reads must be located very close to the junction of interest.
This is not very likely to happen if one only sequences 1% of the genome (i.e. the exome). However, experience
shows that these reads can sometimes be found, and it can be effective at identifying duplications. The function
below will return a data frame with the number of everted reads in each gene. More documentation is needed on
this, and will be added in later versions. But it is a useful additional screen to pick up segmental duplications.

> data(genes.hg19)

> everted <- count.everted.reads (bed.frame = genes.hgl9,

+ bam.files = bam.files.list,
min.mapq = 20,

include.chr = FALSE)

vV o+ o+

Note the option include.chr = FALSE is you aligned your reads to the NCBI version of the reference genome
(i.e. chromosome denoted as 1,2, ...) but set to TRUE if you used the UCSC reference genome (i.e. chromosomes
denoted as chrl, chr2, ...). As a filtering step one probably wants to look in the resulting table for genes that show
no everted reads in the vast majority of samples, with the exception of a few cases where a duplication may be rare
but real.

12 Technical information about R session
> sessionInfo()

R version 3.0.2 (2013-09-25)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_US.is0885915 LC_NUMERIC=C
[3] LC_TIME=en_US.is0885915 LC_COLLATE=C
[6] LC_MONETARY=en_US.iso0885915 LC_MESSAGES=en_US.1i1s0885915
[7] LC_PAPER=en_US.is0885915 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.is0885915 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 splines stats graphics grDevices utils

[8] datasets methods base

other attached packages:

[1] ExomeDepth_1.0.0 Rsamtools_1.14.2 Biostrings_2.30.1
[4] GenomicRanges_1.14.4 XVector_0.2.0 IRanges_1.20.6
[7] BiocGenerics_0.8.0 VGAM_0.9-3 aod_1.3

loaded via a namespace (and not attached):
[1] bitops_1.0-6 tools_3.0.2 zlibbioc_1.8.0

10

