Package ‘ABCanalysis’

March 13, 2017

Type Package
 Title Computed ABC Analysis

Version 1.2.1
Date 2017-03-13
Author Michael Thrun, Jorn Lotsch, Alfred Ultsch
Maintainer Florian Lerch lerch@mathematik.uni-marburg.de
Description For a given data set, the package provides a novel method of computing precise limits to acquire subsets which are easily interpreted. Closely re-
lated to the Lorenz curve, the ABC curve visualizes the data by graphically representing the cumulative distribution function. Based on an ABC analysis the algorithm calcu-
lates, with the help of the ABC curve, the optimal limits by exploiting the mathematical properties pertaining to distribution of analyzed items. The data containing positive values is divided into three disjoint subsets A, B and C , with subset A comprising very profitable values, i.e. largest data values ("the important few"), subset B comprising values where the yield equals to the effort required to obtain it, and the subset C comprising of nonprofitable values, i.e., the smallest data sets ("'the trivial many"). Package is based on "Computed ABC Analysis for rational Selection of most informative Variables in multivariate Data", PLoS One. Ultsch. A., Lotsch J. (2015) DOI:10.1371/journal.pone.0129767.

Imports plotrix
Depends R (>=2.10)
License GPL-3
LazyLoad yes

URL https://www.uni-marburg.de/fb12/datenbionik/software-en
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2017-03-13 14:31:38

R topics documented:

ABCanalysis-package 2
ABCanalysis 3
ABCanalysis4curve 4
ABCanalysisPlot 5
ABCcleanData 7
ABCcurve 8
ABCplot 9
ABCRemoveSmallYields 10
calculatedABCanalysis 11
Gini4ABC 12
GiniIndex 13
SwissInhabitants 13
Index 15
ABCanalysis-package

Description

Computed ABC Analysis allows the optimal calculation of three disjoint subsets $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in data sets containing positive values:
subset A containing few most profitable values, i.e. largest data values ("the important few"), subset B containing data, where the profit gain equals effort required to obtain this gain, and the subset C of non-profitable values, i.e. the smallest data sets ("the trivial many").
This package calculates the three subsets A, B and C by means of an algorithm based on statistically valid definitions of thresholds for the three sets A, B and C.

Note

Check out our new Umatrix package for visualisation and clustering of high-dimensional data on our Webpage.

Author(s)

Michael Thrun, Jorn Lotsch, Alfred Ultsch
http://www.uni-marburg.de/fb12/datenbionik
mthrun@mathematik.uni-marburg.de

References

Ultsch. A ., Lotsch J.: Computed ABC Analysis for Rational Selection of Most Informative Variables in Multivariate Data, PloS one, Vol. 10(6), pp. e0129767. doi 10.1371/journal.pone.0129767, 2015.

Examples

> data("SwissInhabitants")
abc=ABCanalysis(SwissInhabitants,PlotIt=TRUE)
SetA=SwissInhabitants[abc\$Aind]
SetB=SwissInhabitants[abc\$Bind]
SetC=SwissInhabitants[abc\$Cind]

```
ABCanalysis
```

Computed ABC analysis: calculates a division of the data in 3 classes A, B and C

Description

divide the Data in 3 classes A, B and C such that
A=Data[Aind] : with low effort much yield
$B=D a t a[B i n d]$: yield and effort are about equal
$\mathrm{C}=$ Data[Cind] : with much effort low yield

Usage

ABCanalysis(Data, ABCcurvedata, PlotIt=FALSE)

Arguments

Data vector(1:n) describes an array of data: n cases in rows of one variable, if matrix or dataframe then first column will be used.
ABCcurvedata only for internal usage, list from ABCcurve
PlotIt default(FALSE), if variable is used, a plot is made, set with arbitrary value

Details

Pareto point: Minimum distance to $(0,1)=$ minimal unrealized potential
BreakEven Point: B_x is the x value of the point, where the slope of ABCcurve equals one.
For further description to p in variable AlimitIndInInterpolation see ABCcurve

Value

Output is of type list which parts are described in the following
Aind vector [1:j], A==Data(Aind) : with little effort much Yield
Bind vector [1:1], $B==D a t a(B i n d): ~ e f f o r t ~ a n d ~ Y i e l d ~ a r e ~ b a l a n c e d ~$
Cind (vector [1:m], $\mathrm{C}==$ Data(Cind) : much effort for little Yield
ABexchanged Boolean, TRUE if Point A is the Break Even and point B is the Pareto Point, FALSE otherwise

A
B $\quad \mathrm{c}(\mathrm{Bx}, \mathrm{By})$, Pareto point or BreakEven Point indicated by ABexchanged
C
smallestAData Boundary AB, defined by point A or B with ABexchanged
smallestBData Boundary BC, defined by point C
AlimitIndInInterpolation index of $A B$ Boundary in [p, ABC], the interpolation of the $A B C$ plot
BlimitIndInInterpolation index of BC Boundary in $[p, \mathrm{ABC}]$, the interpolation of the ABC plot

Author(s)

Michael Thrun
http://www.uni-marburg.de/fb12/datenbionik

References

Ultsch. A ., Lotsch J.: Computed ABC Analysis for Rational Selection of Most Informative Variables in Multivariate Data, PloS one, Vol. 10(6), pp. e0129767. doi 10.1371/journal.pone.0129767, 2015.

See Also

ABCplot

Examples

```
    data("SwissInhabitants")
abc=ABCanalysis(SwissInhabitants,PlotIt=TRUE)
A=abc$Aind
B=abc$Bind
C=abc$Cind
Agroup=SwissInhabitants[A]
Bgroup=SwissInhabitants[B]
Cgroup=SwissInhabitants[C]
```

ABCanalysis4curve calculate ABC Analysis from a given curve.

Description

calculate points A B C of the ABC Analysis from a given curve.

Arguments

$\mathrm{p}[1: \mathrm{m}] \quad$ a vector of values specifying where interpolation took place
$A B C[1: m] \quad$ given values of the curve at positions from p

Value

BreakEvenPunktIndex $=$ BreakEvenPunktIndex, ParetoPunktIndex $=$ ParetoPunktIndex, SubmarginalPunktIndex $=$ SubmarginalPunktIndex, $\mathrm{ABx}=\operatorname{Effort}[\mathrm{AB}], \mathrm{ABy}=$ Yield $[\mathrm{AB}], \mathrm{BCx}=$ Effort $[\mathrm{BC}], \mathrm{BCy}=$ Yield[BC], Bx = Effort[B], By = Yield[B]))

BreakEvenPunktIndex
Index of breakeven point
ParetoPunktIndex
Index of pareto point
SubmarginalPunktIndex
Index of submarginal point
$A B x \quad$ Position of $A B$ point on x axis
ABy Position of AB point on y axis
$B C x \quad$ Position of $B C$ point on x axis
BCy Position of BC point on y axis
$\mathrm{Bx} \quad$ Position of the unused point (breakeven or pareto) on the x axis
By Position of the unused point (breakeven or pareto) on the y axis

Author(s)

Florian Lerch

Description

Displays ABC Curve : cumulative percentage of largest Data (effort) vs cumlative percentage of sum of largest data (yield) with set limits generated by an calculated ABCanalysis.

Usage

ABCanalysisPlot(Data, LineType $=0$, LineWidth $=3$, ShowUniform = TRUE,title, limits = TRUE, MarkPoints = TRUE, ABCcurvedata, ResetPlotDefaults=TRUE)

Arguments

\(\left.$$
\begin{array}{ll}\text { Data } & \text { vector[1:n] describes an array of data: } \mathrm{n} \text { cases in rows of one variable } \\
\text { LineType } & \begin{array}{l}\text { integer, optional, for plot default: LineType=0 for solid line; for other line codes } \\
\text { see documentation about pch } \\
\text { integer, optional, width of Line, see lwd in par } \\
\text { boolean, optional, the ABC curve of the uniform distribution is shown in plot if } \\
\text { TRUE (default) }\end{array} \\
\text { LineWidth } & \text { string, optional, see parameter main in plot } \\
\text { ShowUniform } \\
\text { title } & \begin{array}{l}\text { boolean, = TRUE, lines of division in A, B and C are drawn, default = FALSE } \\
\text { limits } \\
\text { MarkPoints }\end{array}
$$

boolean, optional, default= TRUE, Mark the three points of interest\end{array}\right\}\)| optional, see ABCcurve |
| :--- |
| ResetPlotDefaults |
| optional, default =TRUE. If ResetPlotDefaults=FALSE, multiple plots in one |
| window possible, but no resetting of plot to default parameters. |

Value

object is a list of items with

ABC	Output of ABCplot
ABCanalysis	Output of ABCanalysis

Note

The Break Even point is always marked with a green star.
The diagonal from $(0,1)$ to $(1,0)$ is the equilibrium, where effort equals yield.

Author(s)

Michael Thrun
http://www.uni-marburg.de/fb12/datenbionik

See Also

ABCanalysis

Examples

```
## Standard Example
data("SwissInhabitants")
abc=ABCanalysisPlot(SwissInhabitants)
## Multiple plots in one Window:
m=runif(4,100, 200)
s=runif(4,1,10)
Data=sapply(1:4,FUN=function(x,m,s) rnorm(1000,m,s),m,s)
# windows() #screen devices should not be used in examples etc
par(mfrow=c(2,2))
```

```
for (i in 1:4)
{
ABCanalysisPlot(Data[,i],ResetPlotDefaults=FALSE)
}
```

ABCcleanData Data cleaning for ABC analysis

Description

Only the first column of Data is used, anything not beeinh positive numerical value is set to zero

Usage

ABCcleanData(Data)

Arguments

Data vector[1:n] describes an array of data: n cases in rows of one variable

Details

Data <0 are set to zero, non-numeric values (NA,NaN,etc.) in Data are set to zero strings and chars are set to zero infinitive numbers are set to max(Data)

Value

Output is of type list which's parts are described in the following
CleanedData vector [1:m], columnvector containing Data $>=0$ and zeros for all NA, NaN and negative values in Data(1:n)

Data2CleanInd vector [1:k], Index such that CleanedData = nantozero(Data(Data2CleanInd))
RemovedInd vector [1:1], Index such that Data(RemovedInd) is the data that has been removed if RemoveSmallYields==1

Author(s)

http://www.uni-marburg.de/fb12/datenbionik
Michael Thrun

Description

Calculates cumulative percentage of largest data (effort) and cumulative percentages of sum of largest Data (yield) with spline interpolation (second order, piecewise) of values in-between.

Usage

ABCcurve(Data, p)

Arguments

Data vector[1:n] describes an array of data: n cases in rows of one variable
p
optional, an vector of values specifying where interpolation takes place, created by seq of package base

Value

Output is of type list which parts are described in the following

Curve	A list with
	Effort:vector [1:k], cumulative population in percent
	Yield: vector [1:k], cumulative high data in percent
CleanedData	vector [1:m], columnvector containing Data>=0 and zeros for all NA, NaN and negative values in Data(1:n)
Slope	A list with
	p : X-values for spline interpolation, defualt: $\mathrm{p}=(0: 0.01: 1)$
	dABC : first deviation of the functio $\mathrm{ABC}(\mathrm{p})=$ Effort(Yield

Author(s)

Michael Thrun
http://www.uni-marburg.de/fb12/datenbionik

References

Ultsch. A ., Lotsch J.: Computed ABC Analysis for Rational Selection of Most Informative Variables in Multivariate Data, PloS one, Vol. 10(6), pp. e0129767. doi 10.1371/journal.pone.0129767, 2015.

Description

Plots cumulative percentage of largest data (effort) vs. cumulative percentage of sum of largest data (yield)

Usage

ABCplot(Data, LineType = 0, LineWidth = 3, ShowUniform = TRUE, title, ABCcurvedata, defaultAxes = TRUE)

Arguments

Data vector[1:n], describes an array of data: n cases in rows of one variable
LineType for plot default: LineType=0 for a line, other line codes see documentation about pch in par
LineWidth integer, width of Line, see lwd in par
ShowUniform bool, =TRUE: the ABC curve of the uniform distribution is shown in plot
title string, optional, see parameter main in plot
ABCcurvedata optional, see ABCcurve
defaultAxes optional, boolean, see parameter axes in plot

Value

Output is of type list which parts are described in the following
$A B C x \quad$ vector $[1: k]$, cumulative population in percent
$A B C y \quad$ vector $[1: \mathrm{k}]$, cumulative high Data in percent

Note
The diagonal from $(1,0)$ to $(0,1)$ is the Equilibrium, where effort equals yield

Author(s)

Michael Thrun
http://www.uni-marburg.de/fb12/datenbionik

Examples

```
data("SwissInhabitants")
vec=ABCplot(SwissInhabitants)
```


Description

Only the first column of Data is used, anything not beeing positive numerical value is set to zero

Usage

ABCRemoveSmallYields(Data, CumSumSmallestPercentage)

Arguments

Data vector[1:n] describes an array of data: n cases in rows of one variable
CumSumSmallestPercentage
(default $=0.5$), the smallest data up to a cumulated sum of less than CumSumSmallestPercentage

Details

Data <0 are set to zero, non-numeric values (NA,NaN,etc.) in Data are set to zero strings and chars are set to zero infinitive numbers are set to max(Data) the smallest data up to a cumulated sum of less than CumSumSmallestPercentage of the total sum (yield) is removed

Value

Output is of type list which's parts are described in the following
SubstantialData
columnvector containing Data>=0 and zeros for all NaN and negative values in Data(1:n)

Data2CleanInd Index such that SubstantialData $=$ nantozero(Data(Data2SubstantialInd $)$)
RemovedInd Data(RemovedInd) is the data that has been removed

Author(s)

http://www.uni-marburg.de/fb12/datenbionik
Michael Thrun

```
calculatedABCanalysis Computed ABC analysis: calculates a division of the data in 3 classes
    A,B and C
```


Description

divide the Data in 3 classes A, B and C such that
A=Data[Aind] : with low effort much yield
$B=D a t a[B i n d]$: yield and effort are about equal
$\mathrm{C}=$ Data[Cind] : with much effort low yield

Usage

calculatedABCanalysis(Data)

Arguments

Data vector(1:n) describes an array of data: n cases in rows of one variable, if matrix or dataframe then first column will be used.

Details

Pareto point: Minimum distance to $(0,1)=$ minimal unrealized potential
BreakEven Point: $B_{-} \mathrm{x}$ is the x value of the point, where the slope of ABCcurve equals one.
For further description to p in variable AlimitIndInInterpolation see ABCcurve

Value
Output is of type list which parts are described in the following
Aind vector [1:j], $\mathrm{A}==\mathrm{Data}(A i n d):$ with little effort much Yield
Bind vector [1:1], B==Data(Bind) : effort and Yield are balanced
Cind (vector $[1: \mathrm{m}], \mathrm{C}==$ Data(Cind) : much effort for little Yield
smallestAData Boundary AB, defined by point A or B with ABexchanged
smallestBData Boundary BC, defined by point C

Author(s)

Michael Thrun
http://www.uni-marburg.de/fb12/datenbionik

References

Ultsch. A ., Lotsch J.: Computed ABC Analysis for Rational Selection of Most Informative Variables in Multivariate Data, PloS one, Vol. 10(6), pp. e0129767. doi 10.1371/journal.pone.0129767, 2015.

See Also

ABCanalysis

Examples

```
    data("SwissInhabitants")
    abc=calculatedABCanalysis(SwissInhabitants)
    A=abc$Aind
    B=abc$Bind
    C=abc$Cind
    Agroup=SwissInhabitants[A]
    Bgroup=SwissInhabitants[B]
    Cgroup=SwissInhabitants[C]
```

 Gini4ABC Gini index

Description

Gini index for an ABC curve

Usage

Gini4ABC(p, ABC)

Arguments

$\mathrm{p} \quad$ vector [1:k], cumulative population in percent
$A B C \quad$ vector [1:k], cumulative high data in percent

Value

Gini gini index i.e. the integral over $\operatorname{ABC}(\mathrm{p}) / 0.5 * 100$
given in percent i.e in [0..100]

Author(s)

FL?MT?

```
    GiniIndex Gini-Index
```


Description

calculation of the Gini-Index from Data

Usage

GiniIndex(Data, p)

Arguments

Data vector[1:n] describes an array of data: n cases in rows of one variable
$p \quad$ optional, an vector of values specifying where interpolation takes place, created by seq of package base

Details

uses ABCcurve and Gini4ABC

Value

Gini gini index i.e. the integral over Area $* 200-100$ given in percent i.e in [0..100]
$\mathrm{p} \quad$ vector [1:k], cumulative population in percent
ABC vector [1:k], cumulative high data in percent
CleanedData vector [1:m], columnvector containing Data $>=0$ and zeros for all NA, NaN and negative values in Data(1:n)

Author(s)

Michael Thrun

SwissInhabitants SwissInhabitants in 1900

Description

Number of inhabitants in the 2896 villages of Switzerland in the year 1900.

Usage

data("SwissInhabitants")

Details

This data set consists of the number of inhabitants in the 2896 communes, i.e. cities and villages, in the year 1900. The individual count is the total number of persons living in the particular commune. The data set is unordered for anonymity reasons. The data set has been used as part of a larger data set to identify patterns of concentration in Switzerland (see reference).

Source

Schuler,M., Ullmann, D. Eidgenossische Volkszahlung:Bevoelkerungsentwicklung der Gemeinden, Bundesamt fur Statistik, Neuchatel, Switzerland, 2002

References

Behnisch, M., Ultsch, A.: Population Patterns in Switzerland 1850-2000, in: Gaul, W. et al (Eds), Advances in Data Analysis, Data Handling and Business Intelligence, Springer, Heidelberg, pp. 163-173, 2010.

Examples

```
data(SwissInhabitants)
## maybe str(SwissInhabitants) ; plot(SwissInhabitants) ...
```


Index

*Topic ABC analysis
ABCanalysis, 3
ABCanalysisPlot, 5
ABCplot, 9
calculatedABCanalysis, 11
*Topic ABC curve
ABCcurve, 8
*Topic ABCanalysis
ABCanalysis, 3
ABCanalysisPlot, 5 calculatedABCanalysis, 11
$*$ Topic ABCcurve
ABCcurve, 8
*Topic ABC
ABCanalysis, 3
ABCplot, 9
calculatedABCanalysis, 11
*Topic Computed ABC analysis
calculatedABCanalysis, 11
*Topic Lorenz curve
ABCanalysis, 3
ABCcurve, 8
ABCplot, 9
calculatedABCanalysis, 11
$*$ Topic Lorenz
ABCanalysis, 3
ABCcurve, 8
ABCplot, 9
calculatedABCanalysis, 11
$*$ Topic
datasets,SwissInhabitants,SwissInhabitants1900
SwissInhabitants, 13
$*$ Topic package
ABCanalysis-package, 2
ABCanalyse (ABCanalysis-package), 2
ABCanalysis, 3, 6, 12
ABCanalysis-package, 2
ABCanalysis4curve, 4
ABCanalysisPlot, 5

ABCcleanData, 7
ABCcurve, 3, 6, 8, 9, 11
ABCplot, 4, 6, 9
ABCRemoveSmallYields, 10
calculatedABCanalysis, 11
dbt.ABC (ABCanalysis-package), 2
dbt.ABCanalyse (ABCanalysis-package), 2
dbt.ABCanalysis (ABCanalysis-package), 2
Gini4ABC, 12
GiniIndex, 13
par, 6, 9
plot, 6, 9
seq, 8,13
SwissInhabitants, 13
SwissInhabitants1900
(SwissInhabitants), 13

