
Package ‘APML0’
January 19, 2020

Type Package

Title Augmented and Penalized Minimization Method L0

Version 0.10

Author Xiang Li, Shanghong Xie, Donglin Zeng and Yuanjia Wang

Maintainer Xiang Li <spiritcoke@gmail.com>

Description Fit linear, logistic and Cox models regularized with L0, lasso (L1), elastic-
net (L1 and L2), or net (L1 and Laplacian) penalty, and their adaptive forms, such as adap-
tive lasso / elastic-net and net adjusting for signs of linked coefficients. It solves L0 penalty prob-
lem by simultaneously selecting regularization parameters and performing hard-
thresholding or selecting number of non-zeros. This augmented and penalized minimiza-
tion method provides an approximation solution to the L0 penalty prob-
lem, but runs as fast as L1 regularization problem. The package uses one-step coordinate de-
scent algorithm and runs extremely fast by taking into account the sparsity structure of coeffi-
cients. It could deal with very high dimensional data and has superior selection performance.

License GPL (>= 2)

Encoding UTF-8

LazyData true

Imports Rcpp (>= 0.12.12)

LinkingTo Rcpp, RcppEigen

Depends Matrix (>= 1.2-10)

RoxygenNote 6.0.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-01-19 17:00:10 UTC

R topics documented:
APML0-package . 2
APML0 . 3
print.APML0 . 8

Index 10

1

2 APML0-package

APML0-package Augmented and Penalized Minimization Method L0

Description

Fit linear, logistic and Cox models regularized with L0, lasso (L1), elastic-net (L1 and L2), or net
(L1 and Laplacian) penalty, and their adaptive forms, such as adaptive lasso / elastic-net and net
adjusting for signs of linked coefficients. It solves L0 penalty problem by simultaneously selecting
regularization parameters and performing hard-thresholding (or selecting number of non-zeros).
This augmented and penalized minimization method provides an approximation solution to the L0
penalty problem, but runs as fast as L1 regularization problem.

The package uses one-step coordinate descent algorithm and runs extremely fast by taking into
account the sparsity structure of coefficients. It could deal with very high dimensional data.

Details

Package: APML0
Type: Package
Version: 0.10
Date: 2020-1-19
License: GPL (>= 2)

Functions: APML0, print.APML0

Author(s)

Xiang Li, Shanghong Xie, Donglin Zeng and Yuanjia Wang
Maintainer: Xiang Li <spiritcoke@gmail.com>

References

Li, X., Xie, S., Zeng, D., Wang, Y. (2018). Efficient l0-norm feature selection based on augmented
and penalized minimization. Statistics in medicine, 37(3), 473-486.
https://onlinelibrary.wiley.com/doi/full/10.1002/sim.7526
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J. (2011). Distributed optimization and statisti-
cal learning via the alternating direction method of multipliers. Foundations and Trends in Machine
Learning, 3(1), 1-122.
http://dl.acm.org/citation.cfm?id=2185816
Friedman, J., Hastie, T., Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent, Journal of Statistical Software, Vol. 33(1), 1.
http://www.jstatsoft.org/v33/i01/

https://onlinelibrary.wiley.com/doi/full/10.1002/sim.7526
http://dl.acm.org/citation.cfm?id=2185816
http://www.jstatsoft.org/v33/i01/

APML0 3

Examples

Linear model
set.seed(1213)
N=100;p=30;p1=5
x=matrix(rnorm(N*p),N,p)
beta=rnorm(p1)
xb=x[,1:p1]%*%beta
y=rnorm(N,xb)

fiti=APML0(x,y,penalty="Lasso",nlambda=10) # Lasso
fiti2=APML0(x,y,penalty="Lasso",nlambda=10,nfolds=10) # Lasso
attributes(fiti)

Logistic model
set.seed(1213)
N=100;p=30;p1=5
x=matrix(rnorm(N*p),N,p)
beta=rnorm(p1)
xb=x[,1:p1]%*%beta
y=rbinom(n=N, size=1, prob=1.0/(1.0+exp(-xb)))

fiti=APML0(x,y,family="binomial",penalty="Lasso",nlambda=10) # Lasso
fiti2=APML0(x,y,family="binomial",penalty="Lasso",nlambda=10,nfolds=10) # Lasso
attributes(fiti)

Cox model
set.seed(1213)
N=100;p=30;p1=5
x=matrix(rnorm(N*p),N,p)
beta=rnorm(p1)
xb=x[,1:p1]%*%beta
ty=rexp(N, exp(xb))
td=rexp(N, 0.05)
tcens=ifelse(td<ty,1,0) # censoring indicator
y=cbind(time=ty,status=1-tcens)

fiti=APML0(x,y,family="cox",penalty="Lasso",nlambda=10) # Lasso
fiti2=APML0(x,y,family="cox",penalty="Lasso",nlambda=10,nfolds=10) # Lasso
attributes(fiti)

APML0 Fit a Model with Various Regularization Forms

Description

Fit linear, logistic and Cox models regularized with L0, lasso (L1), elastic-net (L1 and L2), or net
(L1 and Laplacian) penalty, and their adaptive forms, such as adaptive lasso / elastic-net and net

4 APML0

adjusting for signs of linked coefficients.

It solves L0 penalty problem by simultaneously selecting regularization parameters and performing
hard-thresholding (or selecting number of non-zeros). This augmented and penalized minimiza-
tion method provides an approximation solution to the L0 penalty problem and runs as fast as L1
regularization.

The function uses one-step coordinate descent algorithm and runs extremely fast by taking into
account the sparsity structure of coefficients. It could deal with very high dimensional data.

Usage

APML0(x, y, family=c("gaussian", "binomial", "cox"), penalty=c("Lasso","Enet", "Net"),
Omega=NULL, alpha=1.0, lambda=NULL, nlambda=50, rlambda=NULL, wbeta=rep(1,ncol(x)),
sgn=rep(1,ncol(x)), nfolds=1, foldid=NULL, ill=TRUE, iL0=TRUE, icutB=FALSE, ncutB=10,
ifast=TRUE, isd=FALSE, iysd=FALSE, ifastr=TRUE, keep.beta=FALSE,
thresh=1e-6, maxit=1e+5, threshC=1e-5, maxitC=1e+2, threshP=1e-5)

Arguments

x input matrix. Each row is an observation vector.

y response variable. For family = "gaussian", y is a continuous vector. For
family = "binomial", y is a binary vector with 0 and 1. For family = "cox",
y is a two-column matrix with columns named ‘time’ and ‘status’. ‘status’ is a
binary variable, with ‘1’ indicating event, and ‘0’ indicating right censored.

family type of outcome. Can be "gaussian", "binomial" or "cox".

penalty penalty type. Can choose "Net", "Enet" (elastic net) and "Lasso". For "Net",
need to specify Omega; otherwise, "Enet" is performed. For penalty = "Net",
the penalty is defined as

λ ∗ α ∗ ||β||1 + (1− α)/2 ∗ (βTLβ),

where L is a Laplacian matrix calculated from Omega.

Omega adjacency matrix with zero diagonal and non-negative off-diagonal, used for
penalty = "Net" to calculate Laplacian matrix.

alpha ratio between L1 and Laplacian for "Net", or between L1 and L2 for "Enet".
Default is alpha = 1.0, i.e. lasso.

lambda a user supplied decreasing sequence. If lambda = NULL, a sequence of lambda
is generated based on nlambda and rlambda. Supplying a value of lambda
overrides this.

nlambda number of lambda values. Default is 50.

rlambda fraction of lambda.max to determine the smallest value for lambda. The default
is rlambda = 0.0001 when the number of observations is larger than or equal to
the number of variables; otherwise, rlambda = 0.01.

wbeta penalty weights used with L1 penalty (adaptive L1), given by
∑q

j=1 wj |βj |. The
wbeta is a vector of non-negative values and works as adaptive L1. No penalty
is imposed for those coefficients with zero values in wbeta. Default is 1 for all
coefficients. The same weights are also applied to L0.

APML0 5

sgn sign adjustment used with Laplacian penalty (adaptive Laplacian). The sgn is a
vector of 1 or -1. The sgn could be based on an initial estimate of β, and 1 is
used for β > 0 and -1 is for β < 0. Default is 1 for all coefficients.

nfolds number of folds. With nfolds = 1 and foldid = NULL by default, cross-validation
is not performed. For cross-validation, smallest value allowable is nfolds = 3.
Specifying foldid overrides nfolds.

foldid an optional vector of values between 1 and nfolds specifying which fold each
observation is in.

ill logical flag for using likelihood-based as the cross-validation criteria. Default
is ill = TRUE. For family = "gaussian", set ill = FALSE to use predict mean
squared error as the criteria.

iL0 logical flag for simultaneously performing L0-norm via performing hard-thresholding
or selecting number of non-zeros. Default is iL0 = TRUE.

icutB logical flag for performing hard-thresholding by selecting the number of non-
zero coefficients with the default of icutB = FALSE. Alternative way is to apply
thresholding on the coefficients by setting icutB = TRUE.

ncutB the number of thresholds used for icutB = TRUE. Default is ncutB=10. Increas-
ing ncutB may improve the variable selection performance but will increase the
computation time.

ifast logical flag for searching for the best cutoff or the number of non-zero. De-
fault is ifast=TRUE for local searching. Setting ifast=TRUE will search from
the smallest cutoff (or number of non-zeros) to the largest but will increase the
computation time.

isd logical flag for outputting standardized coefficients. x is always standardized
prior to fitting the model. Default is isd = FALSE, returning β on the original
scale.

iysd logical flag for standardizing y prior to computation, for family = "gaussian".
The returning coefficients are always based the original y (unstandardized). De-
fault is isd = FALSE.

ifastr logical flag for efficient calculation of risk set updates for family = "cox". De-
fault is ifastr = TRUE. Setting ifastr = FALSE may improve the accuracy of
calculating the risk set.

keep.beta logical flag for returning estimates for all lambda values. For keep.beta =
FALSE, only return the estimate with the minimum cross-validation value.

thresh convergence threshold for coordinate descent. Default value is 1E-6.

maxit Maximum number of iterations for coordinate descent. Default is 10^5.

threshC convergence threshold for hard-thresholding for family = "binomial". Default
value is 1E-5.

maxitC Maximum number of iterations for hard-thresholding for family = "binomial".
Default is 10^2.

threshP Cutoff when calculating the probability in family = "binomial". The proba-
bility is bounded within threshP and 1-threshP. Default value is 1E-5.

6 APML0

Details

One-step coordinate descent algorithm is applied for each lambda. Cross-validation is used for
tuning parameters. For iL0 = TRUE, we further perform hard-thresholding (for icutB=TRUE) to the
coefficients or select the number of non-zero coefficients (for icutB=FALSE), which is obtained
from regularized model at each lambda. This is motivated by formulating L0 variable selection
in an augmented form, which shows significant improvement over the commonly used regularized
methods without this technique. Details could be found in our publication.

x is always standardized prior to fitting the model and the estimate is returned on the original scale
for isd=FALSE.

Each one element of wbeta corresponds to each variable in x. Setting the value in wbeta will not
impose any penalty on that variable.

For family = "cox", ifastr = TRUE adopts an efficient way to update risk set and sometimes the
algorithm ends before all nlambda values of lambda have been evaluated. To evaluate small values
of lambda, use ifast = FALSE. The two methods only affect the efficiency of algorithm, not the
estimates.

ifast = TRUE seems to perform well.

Value

An object with S3 class "APML0".

a the intercept for family = "gaussian".

Beta a sparse Matrix of coefficients, stored in class "dgCMatrix". For family =
"binomial", the first coefficient is the intercept.

Beta0 coefficients after additionally performing L0-norm for iL0 = TRUE. For family
= "binomial", the first coefficient is the intercept.

fit a data.frame containing lambda and the number of non-zero coefficients nzero.
With cross-validation, additional results are reported, such as average cross-
validation partial likelihood cvm and its standard error cvse, and index with ‘*’
indicating the minimum cvm. For family = "gaussian", rsq is also reported.

fit0 a data.frame containing lambda, cvm and nzero based on iL0 = TRUE. cvm in
fit0 may be different from cvm in fit, because the constaint on the number
of non-zeros is imposed in the cross-validation. The maximum number of non-
zeros is based on the full dataset not the one used in the cross-validation.

lambda.min value of lambda that gives minimum cvm.

lambda.opt value of lambda based on iL0 = TRUE.

penalty penalty type.

adaptive logical flags for adaptive version (see above).

flag convergence flag (for internal debugging). flag = 0 means converged.

Warning

It may terminate and return NULL.

APML0 7

Author(s)

Xiang Li, Shanghong Xie, Donglin Zeng and Yuanjia Wang
Maintainer: Xiang Li <spiritcoke@gmail.com>

References

Li, X., Xie, S., Zeng, D., Wang, Y. (2018). Efficient l0-norm feature selection based on augmented
and penalized minimization. Statistics in medicine, 37(3), 473-486.
https://onlinelibrary.wiley.com/doi/full/10.1002/sim.7526
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J. (2011). Distributed optimization and statisti-
cal learning via the alternating direction method of multipliers. Foundations and Trends in Machine
Learning, 3(1), 1-122.
http://dl.acm.org/citation.cfm?id=2185816
Friedman, J., Hastie, T., Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent, Journal of Statistical Software, Vol. 33(1), 1.
http://www.jstatsoft.org/v33/i01/

See Also

APML0, print.APML0

Examples

Linear model
set.seed(1213)
N=100;p=30;p1=5
x=matrix(rnorm(N*p),N,p)
beta=rnorm(p1)
xb=x[,1:p1]%*%beta
y=rnorm(N,xb)

fiti=APML0(x,y,penalty="Lasso",nlambda=10) # Lasso
fiti2=APML0(x,y,penalty="Lasso",nlambda=10,nfolds=10) # Lasso
attributes(fiti)

Logistic model
set.seed(1213)
N=100;p=30;p1=5
x=matrix(rnorm(N*p),N,p)
beta=rnorm(p1)
xb=x[,1:p1]%*%beta
y=rbinom(n=N, size=1, prob=1.0/(1.0+exp(-xb)))

fiti=APML0(x,y,family="binomial",penalty="Lasso",nlambda=10) # Lasso
fiti2=APML0(x,y,family="binomial",penalty="Lasso",nlambda=10,nfolds=10) # Lasso
attributes(fiti)

https://onlinelibrary.wiley.com/doi/full/10.1002/sim.7526
http://dl.acm.org/citation.cfm?id=2185816
http://www.jstatsoft.org/v33/i01/

8 print.APML0

Cox model
set.seed(1213)
N=100;p=30;p1=5
x=matrix(rnorm(N*p),N,p)
beta=rnorm(p1)
xb=x[,1:p1]%*%beta
ty=rexp(N, exp(xb))
td=rexp(N, 0.05)
tcens=ifelse(td<ty,1,0) # censoring indicator
y=cbind(time=ty,status=1-tcens)

fiti=APML0(x,y,family="cox",penalty="Lasso",nlambda=10) # Lasso
fiti2=APML0(x,y,family="cox",penalty="Lasso",nlambda=10,nfolds=10) # Lasso
attributes(fiti)

print.APML0 Print a APML0 Object

Description

Print a summary of results along the path of lambda.

Usage

S3 method for class 'APML0'
print(x, digits = 4, ...)

Arguments

x fitted APML0 object

digits significant digits in printout

... additional print arguments

Details

The performed model is printed, followed by fit and fit0 (if any) from a fitted APML0 object.

Value

The data frame above is silently returned

Author(s)

Xiang Li, Shanghong Xie, Donglin Zeng and Yuanjia Wang
Maintainer: Xiang Li <spiritcoke@gmail.com>

print.APML0 9

See Also

APML0

Examples

Linear model
set.seed(1213)
N=100;p=30;p1=5
x=matrix(rnorm(N*p),N,p)
beta=rnorm(p1)
xb=x[,1:p1]%*%beta
y=rnorm(N,xb)

fiti2=APML0(x,y,penalty="Lasso",nlambda=10,nfolds=10) # Lasso
fiti2

Index

∗Topic False positive control
APML0-package, 2

∗Topic Hard-thresholding
APML0, 3

∗Topic L0
APML0, 3

∗Topic Number of non-zeros
APML0-package, 2

∗Topic Number of non-zero
APML0, 3

∗Topic Package
APML0-package, 2

∗Topic Print
print.APML0, 8

∗Topic Regularization
APML0, 3
APML0-package, 2

APML0, 2, 3, 7, 9
APML0-package, 2

print.APML0, 2, 7, 8

10

	APML0-package
	APML0
	print.APML0
	Index

