Introduction

We simulate data from a discrete distribution for the Rankin scores, which are ordinal integers from 0 to 6 in the following simulations. So we define a few scenarios.

library(ASSISTant)
null.uniform <- rep(1, 7L) ## uniform on 7 support points
hourglass <- c(1, 2, 2, 1, 2, 2, 1)
inverted.hourglass <- c(2, 1, 1, 2, 1, 1, 2)
bottom.heavy <- c(2, 2, 2, 1, 1, 1, 1)
bottom.heavier <- c(3, 3, 2, 2, 1, 1, 1)
top.heavy <- c(1, 1, 1, 1, 2, 2, 2)
top.heavier <- c(1, 1, 1, 2, 2, 3, 3)
ctlDist <- null.uniform
trtDist <- cbind(null.uniform, null.uniform, null.uniform,
                 hourglass, hourglass, hourglass)

##d <- generateDiscreteRankinScores(rep(1, 6), 10, ctlDist, trtDist)

Scenario S0

This is the null setting.

data(LLL.SETTINGS)
designParameters <- list(prevalence = rep(1/6, 6),
                         ctlDist = ctlDist,
                         trtDist = trtDist)

designA <- ASSISTDesign$new(trialParameters = LLL.SETTINGS$trialParameters,
                            designParameters = designParameters, discreteData = TRUE)
print(designA)
## Design Parameters:
##  Number of Groups: 6
##  Prevalence:
## 
##     Group1      Group2      Group3      Group4      Group5      Group6
## ----------  ----------  ----------  ----------  ----------  ----------
##  0.1666667   0.1666667   0.1666667   0.1666667   0.1666667   0.1666667
## 
##  Using Discrete Rankin scores? TRUE
## 
##  Null Rankin Distribution:
## 
##           Prob.
## ---  ----------
## 0     0.1428571
## 1     0.1428571
## 2     0.1428571
## 3     0.1428571
## 4     0.1428571
## 5     0.1428571
## 6     0.1428571
##  Null Distribution Mean: 3.000000, SD: 2.000000
## 
##  Alternative Rankin Distribution:
## 
## 
##          Group1      Group2      Group3      Group4      Group5      Group6
## ---  ----------  ----------  ----------  ----------  ----------  ----------
## 0     0.1428571   0.1428571   0.1428571   0.0909091   0.0909091   0.0909091
## 1     0.1428571   0.1428571   0.1428571   0.1818182   0.1818182   0.1818182
## 2     0.1428571   0.1428571   0.1428571   0.1818182   0.1818182   0.1818182
## 3     0.1428571   0.1428571   0.1428571   0.0909091   0.0909091   0.0909091
## 4     0.1428571   0.1428571   0.1428571   0.1818182   0.1818182   0.1818182
## 5     0.1428571   0.1428571   0.1428571   0.1818182   0.1818182   0.1818182
## 6     0.1428571   0.1428571   0.1428571   0.0909091   0.0909091   0.0909091
##  Alternative Mean and SD
## 
##         Group1   Group2   Group3     Group4     Group5     Group6
## -----  -------  -------  -------  ---------  ---------  ---------
## mean         3        3        3   3.000000   3.000000   3.000000
## sd           2        2        2   1.858641   1.858641   1.858641
## 
## Trial Parameters:
## List of 5
##  $ N         : num [1:3] 300 400 500
##  $ type1Error: num 0.05
##  $ eps       : num 0.5
##  $ type2Error: num 0.2
##  $ effectSize: num 0.0642
## 
## Boundaries:
## 
## 
##     btilde          b          c
## ----------  ---------  ---------
##  -1.460993   2.390404   2.491775
result <- designA$explore(numberOfSimulations = 5000, showProgress = FALSE)
analysis <- designA$analyze(result)
print(designA$summary(analysis))
## P(Reject H0_ITT) = 0.016800; P(Reject H0_subgp) = 0.023000; P(Reject H0) = 0.039800
## P(Early stop for efficacy [futility]) = 0.025400 [0.555200]
## Mean [SD] Randomized N = 421.740000 [75.779423]
## 
## Stage at exit (proportion)
## 
## 
##  exitStage   proportion
## ----------  -----------
##          1       0.2020
##          2       0.3786
##          3       0.4194
## 
## Mean [SD] Lost N = 181.395400 [92.385183]
## Mean [SD] Analyzed N = 240.344600 [99.145577]
## 
## Mean loss by futility stage and subgroup
## 
## 
##  FutilityStage   selectedGroup        mean          sd
## --------------  --------------  ----------  ----------
##              1               1   249.97900    6.372633
##              1               2   199.85776    8.041504
##              1               3   150.07692    8.570802
##              1               4    99.69504    8.147290
##              1               5    50.15759    6.558217
##              2               1   331.72993    7.298775
##              2               2   267.16071    8.749315
##              2               3   200.20779   10.050318
##              2               4   133.50926    9.183992
##              2               5    65.96571    7.512363
##              3               1   417.64085    8.449551
##              3               2   332.59836   10.244660
##              3               3   249.78030    9.816106
##              3               4   166.43333   11.670571
##              3               5    83.14793    8.661899
## 
## Chance of each subpopulation rejected
## 
## 
##  group   count   proportion
## ------  ------  -----------
##      1      45       0.0090
##      2      28       0.0056
##      3      15       0.0030
##      4      21       0.0042
##      5       6       0.0012
##      6      84       0.0168
## 
## Counts by futility stage and subgroup choice
## 
## 
##  FutilityStage     G1    G2    G3    G4    G5
## --------------  -----  ----  ----  ----  ----
##              1   1286   689   481   423   514
##              2    137   112    77   108   175
##              3    142   122   132   180   338
## 
## CI Statistics:
## Overall coverage and coverage for rejections:
## 
##  overall   rejection
## --------  ----------
##        1           1
## 
## P(theta_test is in the confidence interval)
## 
## 
##  coverage   selectedCount   rejectedCount
## ---------  --------------  --------------
##         1            1565              45
##         1             923              28
##         1             690              15
##         1             711              21
##         1            1027               6
##         1              84              84
## NULL