Package 'ActiveDriverWGS'

November 30, 2021

n- cu

2 .fix_all_results

	.get_signf_results	4
	.make_mut_signatures	5
	.split_coord_fragments_in_BED	
	ActiveDriverWGS	6
	ADWGS_test	8
	cancer_genes	10
	cancer_gene_sites	11
	cll_mutations	12
	format_muts	13
	prepare_elements_from_BED12	14
	prepare_elements_from_BED4	14
Index		16
.fix_	_all_results fix_all_results verifies that the results table has the correct format and p-values	d

Description

fix_all_results verifies that the results table has the correct format and p-values

Usage

```
.fix_all_results(all_results)
```

Arguments

all_results

a data frame containing the following columns

id A string identifying the element of interest

pp_element The p-value of the element

element_muts_obs The number of patients with a mutation in the element

element_muts_exp The expected number of patients with a mutation in the element with respect to background

element_enriched A boolean indicating whether the element is enriched in mutations

pp_site The p-value of the element

site_muts_obs The number of patients with a mutation in the site

site_muts_exp The expected number of patients with a mutation in the site with respect to element

site_enriched A boolean indicating whether the site is enriched in mutations
result_number A numeric indicator denoting the order in which the results
were calculated

Value

the same data frame

```
.get_3n_context_of_mutations
```

This function finds the tri-nucleotide context of mutations

Description

This function finds the tri-nucleotide context of mutations

Usage

```
.get_3n_context_of_mutations(mutations, this_genome)
```

Arguments

mutations A data frame with the following columns: chr, pos1, pos2, ref, alt, patient

chr autosomal chromosomes as chr1 to chr22 and sex chromosomes as chrX and chrY

pos1 the start position of the mutation in base 1 coordinates

pos2 the end position of the mutation in base 1 coordinates

ref the reference allele as a string containing the bases A, T, C or G **alt** the alternate allele as a string containing the bases A, T, C or G

patient the patient identifier as a string

this_genome The reference genome object of BSgenome, for example BSgenome. Hsapiens. UCSC.hg19::Hsapiens

Value

A data frame consisting of the same columns as the original mutations data frame and sorted by SNVs and Indels with an additional column tag which indicates the trinucleotide context of the mutation

.get_obs_exp

Calculates the number of expected mutations based

Description

Calculates the number of expected mutations based

Usage

```
.get_obs_exp(hyp, select_positions, dfr, colname)
```

.get_signf_results

Arguments

hyp hypothesis to be tested

select_positions

boolean column which indicates which positions are in the element of interest

dfr a dataframe containing the data to be tested

colname name of the column which indicates the count of mutations in the positions of

interest

Value

a list of observed mutations and expected mutations

.get_signf_results

Returns significant results

Description

Returns significant results

Usage

```
.get_signf_results(all_res)
```

Arguments

all_res a data frame containing the following columns

id A string identifying the element of interest

pp_element The p-value of the element

element_muts_obs The number of patients with a mutation in the element

element_muts_exp The expected number of patients with a mutation in the element with respect to background

element_enriched A boolean indicating whether the element is enriched in mutations

pp_site The p-value of the element

site_muts_obs The number of patients with a mutation in the site

site_muts_exp The expected number of patients with a mutation in the site with respect to element

site_enriched A boolean indicating whether the site is enriched in mutations

result_number A numeric indicator denoting the order in which the results were calculated

.make_mut_signatures 5

Value

the same data frame with three addition columns

fdr_element The FDR corrected p-value of the element

fdr_site The FDR corrected p-value of the site

has_site_mutations A V indicates the presence of site mutations

Description

Makes mutational signatures

Usage

```
.make_mut_signatures()
```

Value

a dataframe with mutational signatures

```
.split_coord_fragments_in_BED

Splits a BED12 file into separate regions
```

Description

Splits a BED12 file into separate regions

Usage

```
.split_coord_fragments_in_BED(i, coords)
```

Arguments

i The i-th row of the coords data frame which needs to be split into separate

elements

coords The coords data frame which is the imported BED12 file

6 ActiveDriverWGS

Value

A data frame containing the following columns for a given BED12 identifier

chr autosomal chromosomes as chr1 to chr22 and sex chromosomes as chrX and chrY

start the start position of the element in base 0 coordinates (BED format)

end the end position of the element in base 0 coordinates (BED format)

id the element identifier - if the element contains multiple segments such as exons, each segment should be a separate row with the segment coordinates and the element identifier as id. Elements can be coding or noncoding such as exons of protein coding genes or active enhancers.

ActiveDriverWGS

ActiveDriverWGS is a driver discovery tool for simple somatic mutations in cancer whole genomes

Description

ActiveDriverWGS is a driver discovery tool for simple somatic mutations in cancer whole genomes

Usage

```
ActiveDriverWGS(
  mutations,
  elements,
  sites = NULL,
  window_size = 50000,
  filter_hyper_MB = 30,
  recovery.dir = NULL,
  mc.cores = 1,
  ref_genome = "hg19"
)
```

Arguments

mutations

A data frame containing the following columns: chr, pos1, pos2, ref, alt, patient.

chr autosomal chromosomes as chr1 to chr22 and sex chromosomes as chrX and chrY

pos1 the start position of the mutation in base 1 coordinates

pos2 the end position of the mutation in base 1 coordinates

ref the reference allele as a string containing the bases A, T, C, G or -

alt the alternate allele as a string containing the bases A, T, C, G or -

patient the patient identifier as a string

elements

A data frame containing the following columns: chr, start, end, id

chr autosomal chromosomes as chr1 to chr22 and sex chromosomes as chrX and chrY ActiveDriverWGS 7

start the start position of the element in base 0 coordinates (BED format) **end** the end position of the element in base 0 coordinates (BED format)

id the element identifier - if the element contains multiple segments such as exons, each segment should be a separate row with the segment coordinates and the element identifier as id. Elements can be coding or noncoding such as exons of protein coding genes or active enhancers.

sites A data frame containing the following columns: chr, start, end, id

chr autosomal chromosomes as chr1 to chr22 and sex chromosomes as chrX and chrY

start the start position of the site in base 0 coordinates (BED format)

end the end position of the site in base 0 coordinates (BED format)

id the identifier of the element. id's need to match with those listed in the object elements.

window_size An integer indicating the size of the background window in base pairs that is

used to establish the expected mutation rate and respective null model. The

default is 50000bps

filter_hyper_MB

Hyper-mutated samples carry many passenger mutations and dilute the signal of true drivers. Samples with a rate greater than filter_hyper_MB mutations per megabase are excluded. The default is 30 mutations per megabase.

recovery.dir The directory for storing recovery files. If the directory does not exist, Ac-

tiveDriverWGS will create the directory. If the parameter is unspecified, recovery files will not be saved. As an ActiveDriverWGS query for large datasets may be computationally heavy, specifying a recovery directory will recover pre-

viously computed results if a query is interrupted.

mc.cores The number of cores which can be used if multiple cores are available. The

default is 1.

ref_genome The reference genome used on the analysis. The default option is "hg19", other

options are "hg38", "mm9" and "mm10".

Value

A data frame containing the results of driver discovery containing the following columns: id, pp_element, element_muts_obs, element_muts_exp, element_enriched, pp_site, site_muts_obs, site_muts_exp, site_enriched, fdr_element, fdr_site

id A string identifying the element of interest

pp_element The p-value of the element

element muts obs The number of patients with a mutation in the element

element_muts_exp The expected number of patients with a mutation in the element with respect
to background

element enriched A boolean indicating whether the element is enriched in mutations

pp_site The p-value of the site

site_muts_obs The number of patients with a mutation in the site

8 ADWGS_test

site_muts_exp The expected number of patients with a mutation in the site with respect to elementsite_enriched A boolean indicating whether the site is enriched in mutations

fdr_element The FDR corrected p-value of the element

fdr_site The FDR corrected p-value of the site

has_site_mutations A V indicates the presence of site mutations

Examples

```
data(cancer_genes)
data(cll_mutations)

some_genes = c("ATM", "MYD88", "NOTCH1", "SF3B1", "XPO1",
   "SOCS1", "CNOT3", "DDX3X", "KMT2A", "HIF1A", "APC")

result = ActiveDriverWGS(mutations = cll_mutations,
elements = cancer_genes[cancer_genes$id %in% some_genes,])
```

ADWGS_test

ADWGS_test executes the statistical test for ActiveDriverWGS

Description

ADWGS_test executes the statistical test for ActiveDriverWGS

Usage

```
ADWGS_test(
   id,
   gr_element_coords,
   gr_site_coords,
   gr_maf,
   win_size,
   this_genome
)
```

Arguments

id

A string used to identify the element of interest. id corresponds to an element in the id column of the elements file

```
gr_element_coords
```

A GenomicRanges object that describes the elements of interest containing the chromosome, start and end coordinates, and an mcols column corresponding to id

ADWGS_test 9

gr_site_coords A GenomicRanges object that describes the sites of interest which reside in the

elements of interest containing the chromosome, start and end coordinates, and an mcols column corresponding to id. Examples of sites include transcription factor binding sites in promoter regions or phosphosites in exons of protein coding genes. An empty GenomicRanges object nullifies the requirement for sites

to exist.

gr_maf A GenomicRanges object that describes the mutations in the dataset containing

the chromosome, start and end coordinates, patient id, and trinucleotide context

win_size An integer indicating the size of the background window in base pairs that is

used to establish the expected mutation rate and respective null model. The

default is 50000bps

this_genome The reference genome object of BSgenome, for example BSgenome. Hsapiens. UCSC.hg19::Hsapiens

Value

A data frame containing the following columns

id A string identifying the element of interest

pp_element The p-value of the element

element_muts_obs The number of patients with a mutation in the element

element_muts_exp The expected number of patients with a mutation in the element with respect to background

element_enriched A boolean indicating whether the element is enriched in mutations

pp_site The p-value of the site

site_muts_obs The number of patients with a mutation in the site

site_muts_exp The expected number of patients with a mutation in the site with respect to element

site_enriched A boolean indicating whether the site is enriched in mutations

result_number A numeric indicator denoting the order in which the results were calculated

fdr_element The FDR corrected p-value of the element

fdr_site The FDR corrected p-value of the site

has_site_mutations A V indicates the presence of site mutations

```
library(GenomicRanges)

# Regions
data(cancer_genes)
gr_element_coords = GRanges(seqnames = cancer_genes$chr,
IRanges(start = cancer_genes$start, end = cancer_genes$end),
mcols = cancer_genes$id)

# Sites (NULL)
gr_site_coords = GRanges(c(seqnames=NULL,ranges=NULL,strand=NULL))
```

10 cancer_genes

```
# Reference genome
this_genome = BSgenome.Hsapiens.UCSC.hg19::Hsapiens

# Mutations
data(cll_mutations)
cll_mutations = format_muts(cll_mutations, this_genome = this_genome)
gr_maf = GRanges(cll_mutations$chr,
IRanges(cll_mutations$pos1, cll_mutations$pos2),
mcols=cll_mutations[,c("patient", "tag")])

# ADWGS_test
id = "ATM"
result = ADWGS_test(id, gr_element_coords, gr_site_coords, gr_maf,
win_size = 50000, this_genome = this_genome)
```

cancer_genes

cancer_genes

Description

protein coding genes from gencode v.19, cancer genes adapted from the Cancer Gene Census (November, 2018). Genes affected solely by amplifications, deletions and translations were removed.

Usage

```
data(cancer_genes)
```

Format

A data frame containing the following columns: chr, start, end, id

chr autosomal chromosomes as chr1 to chr22 and sex chromosomes as chrX and chrY

start the start position of the element in base 0 coordinates (BED format)

end the end position of the element in base 0 coordinates (BED format)

id the element identifier - if the element contains multiple segments such as exons, each segment should be a separate row with the segment coordinates and the element identifier as id. Elements can be coding or noncoding such as exons of protein coding genes or active enhancers.

Source

GENCODE

References

Harrow, Jennifer, et al. "GENCODE: the reference human genome annotation for The ENCODE Project." Genome research 22.9 (2012): 1760-1774. (PubMed)

cancer_gene_sites 11

Examples

```
data(cancer_genes)

data(cll_mutations)
ActiveDriverWGS(mutations = cll_mutations, elements = cancer_genes)
```

cancer_gene_sites

post-translational modification sites found in cancer genes

Description

post-translational modification sites found in cancer genes

Usage

```
data(cancer_gene_sites)
```

Format

A data frame containing the following columns: chr, start, end, id

chr autosomal chromosomes as chr1 to chr22 and sex chromosomes as chrX and chrY

start the start position of the site in base 0 coordinates (BED format)

end the end position of the site in base 0 coordinates (BED format)

id the site identifier - each site should contain only 1 segment and a unique id. If ids are duplicated, each segment of the site will be treated as an individual site. Sites can be coding or noncoding such as phosphosites of protein coding genes in genomic coordinates or transcription factor binding sites of active enhancers.

Source

PubMed

References

Wadi, Lina, et al. "ActiveDriverDB: human disease mutations and genome variation in post-translational modification sites of proteins." Nucleic Acids Res. (2018): Jan 4;46(D1):D901-D910. (PubMed)

```
data(cancer_gene_sites)

data(cll_mutations)
data(cancer_genes)
ActiveDriverWGS(mutations = cll_mutations, elements = cancer_genes, sites = cancer_gene_sites)
```

12 cll_mutations

cll_mutations

CLL mutations

Description

CLL whole genome simple somatic mutations from Alexandrov et, 2013

Usage

```
data(cll_mutations)
```

Format

A data frame containing the following columns: chr, pos1, pos2, ref, alt, patient.

chr autosomal chromosomes as chr1 to chr22 and sex chromosomes as chrX and chrY

pos1 the start position of the mutation in base 1 coordinates

pos2 the end position of the mutation in base 1 coordinates

ref the reference allele as a string containing the bases A, T, C or G

alt the alternate allele as a string containing the bases A, T, C or G

patient the patient identifier as a string

Source

Publication

References

Alexandrov, Ludmil B., et al. "Signatures of mutational processes in human cancer." Nature 500.7463 (2013): 415. (PubMed)

```
data(cll_mutations)

data(cancer_genes)
ActiveDriverWGS(mutations = cll_mutations, elements = cancer_genes)
```

format_muts 13

format_muts	This function filters hypermutated samples and returns the formatted mutations with the appropriate trinucleotide context

Description

This function filters hypermutated samples and returns the formatted mutations with the appropriate trinucleotide context

Usage

```
format_muts(mutations, this_genome, filter_hyper_MB = NA)
```

Arguments

mutations A data frame with the following columns: chr, pos1, pos2, ref, alt, patient

chr autosomal chromosomes as chr1 to chr22 and sex chromosomes as chrX and chrY

pos1 the start position of the mutation in base 1 coordinates

pos2 the end position of the mutation in base 1 coordinates

ref the reference allele as a string containing the bases A, T, C or G

alt the alternate allele as a string containing the bases A, T, C or G

patient the patient identifier as a string

this_genome The reference genome object of BSgenome

filter_hyper_MB

The number of mutations per megabase for which a sample is considered hypermutated. Hypermutated samples will be removed in further analyses.

Value

a data frame called mutations which has been formatted with an extra column for trinucleotide context

```
data(cll_mutations)
this_genome = BSgenome.Hsapiens.UCSC.hg19::Hsapiens
formatted_mutations = format_muts(cll_mutations[1:10,],
filter_hyper_MB = 30, this_genome = this_genome)
```

```
prepare_elements_from_BED12
```

Prepares element coords from a BED12 file

Description

Prepares element coords from a BED12 file

Usage

```
prepare_elements_from_BED12(fname)
```

Arguments

fname

The file name of a BED12 file containing the desired elements. For further documentation on the BED12 format, refer to the UCSC website.

Value

A data frame containing the following columns to be used as the input element coords to ActiveDriverWGS

chr autosomal chromosomes as chr1 to chr22 and sex chromosomes as chrX and chrY

start the start position of the element in base 0 coordinates (BED format)

end the end position of the element in base 0 coordinates (BED format)

id the element identifier - if the element contains multiple segments such as exons, each segment should be a separate row with the segment coordinates and the element identifier as id. Elements can be coding or noncoding such as exons of protein coding genes or active enhancers.

Examples

```
elements = prepare_elements_from_BED12(system.file("extdata",
   "chr17.coding_regions.bed",
   package = "ActiveDriverWGS",
   mustWork = TRUE))
```

```
prepare_elements_from_BED4
```

Prepares element coords from a BED4 file

Description

Prepares element coords from a BED4 file

Usage

```
prepare_elements_from_BED4(fname)
```

Arguments

fname

The file name of a BED4 file containing the desired elements. For further documentation on the BED4 format, refer to the UCSC website.

Value

A data frame containing the following columns to be used as the input element coords to ActiveDriverWGS

chr autosomal chromosomes as chr1 to chr22 and sex chromosomes as chrX and chrY

start the start position of the element in base 0 coordinates (BED format)

end the end position of the element in base 0 coordinates (BED format)

id the element identifier - if the element contains multiple segments such as exons, each segment should be a separate row with the segment coordinates and the element identifier as id. Elements can be coding or noncoding such as exons of protein coding genes or active enhancers.

```
elements = prepare_elements_from_BED4(system.file("extdata",
"mini.ptm.bed",
package = "ActiveDriverWGS",
mustWork = TRUE))
```

Index

```
* datasets
    cancer_gene_sites, 11
    cancer_genes, 10
    cll_mutations, 12
.fix_all_results, 2
. \verb"get_3n_context_of_mutations", 3
.get_obs_exp, 3
.get\_signf\_results, 4
.make\_mut\_signatures, 5
.split\_coord\_fragments\_in\_BED, 5
ActiveDriverWGS, 6
ADWGS_test, 8
cancer\_gene\_sites, 11
cancer_genes, 10
\verb|cll_mutations|, 12|
format_muts, 13
prepare_elements_from_BED12, 14
prepare_elements_from_BED4, 14
```