
Package ‘AmigaFFH’
September 3, 2021

Type Package

Title Commodore Amiga File Format Handler

Version 0.4.1

Date 2021-09-03

Author Pepijn de Vries [aut, cre, dtc]

Maintainer Pepijn de Vries <pepijn.devries@outlook.com>

Description Modern software often poorly support older file formats. This
package intends to handle many file formats that were native to the
antiquated Commodore Amiga machine. This package focuses on file types from
the older Amiga operating systems (<= 3.0). It will read and write specific
file formats and coerces them into more contemporary data.

Depends tuneR (>= 1.0), R (>= 2.10)

Imports grDevices, methods, utils, vctrs

Suggests ProTrackR (>= 0.3.4), adfExplorer (>= 0.1.4)

License GPL-3

LazyData True

RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2021-09-03 08:30:07 UTC

R topics documented:
AmigaBasic . 3
AmigaBasic-files . 4
AmigaBasic.reserved . 5
AmigaBasicBMAP . 5
AmigaBasicShape . 6
AmigaBitmapFont . 7
AmigaFFH . 9
AmigaIcon . 11

1

2 R topics documented:

amiga_display_keys . 12
amiga_display_modes . 13
amiga_monitors . 14
amiga_palettes . 14
as.AmigaBasic . 15
as.AmigaBasicBMAP . 16
as.character . 18
as.raster.AmigaBasicShape . 19
as.raw.AmigaBasic . 21
availableFontSizes . 23
bitmapToRaster . 24
c . 26
check.names.AmigaBasic . 27
colourToAmigaRaw . 29
deltaFibonacciCompress . 30
dither . 32
fontName . 35
font_example . 36
getAmigaBitmapFont . 37
getIFFChunk . 38
hardwareSprite-class . 39
IFFChunk-class . 41
IFFChunk-method . 42
ilbm8lores.iff . 48
index.colours . 49
interpretIFFChunk . 51
names.AmigaBasic . 52
packBitmap . 54
play . 55
plot.AmigaBasicShape . 56
rasterToAmigaBasicShape . 59
rasterToAmigaBitmapFont . 60
rasterToBitmap . 63
rasterToHWSprite . 66
rasterToIFF . 67
rawToAmigaBasic . 69
rawToAmigaBasicBMAP . 70
rawToAmigaBasicShape . 71
rawToAmigaBitmapFont . 73
rawToAmigaBitmapFontSet . 74
rawToAmigaIcon . 75
rawToHWSprite . 76
rawToIFFChunk . 78
rawToSysConfig . 79
read.AmigaBasic . 80
read.AmigaBasicBMAP . 81
read.AmigaBasicShape . 83
read.AmigaBitmapFont . 84

AmigaBasic 3

read.AmigaBitmapFontSet . 85
read.AmigaIcon . 87
read.iff . 88
read.SysConfig . 89
simpleAmigaIcon . 90
simpleSysConfig . 92
SysConfig . 93
timeval . 94
WaveToIFF . 95
write.AmigaBasic . 97
write.AmigaBasicShape . 98
write.AmigaBitmapFont . 99
write.AmigaIcon . 101
write.iff . 102
write.SysConfig . 103
[.AmigaBasic . 104

Index 107

AmigaBasic The S3 AmigaBasic class

Description

A class that represents the content of Amiga Basic files.

Details

Amiga Basic is a BASIC-style programming language that was shipped with early Commodore
Amiga machines. It requires an interpreter to run an Amiga Basic script. The AmigaFFH package
does not interpret Amiga Basic scripts. It does allow for encoding and decoding scripts in the binary
format in which it was originally stored on the Amiga. Amiga Basic scripts were stored as encoded
binaries instead of ASCII text files in order to save (at the time precious) memory and disk space.

Amiga Basic binary files start with a file header (as an identifier) and is followed by each line of the
script as binary data. The AmigaBasic-class object stores each line of the script as a list item as
a vector of raw data. Use as.character and as.AmigaBasic to switch between character data
and AmigaBasic-class objects.

Note

Although there is ample reference material on the Amiga BASIC language, there is no documen-
tation available on the script file storage format. The implementation in the AmigaFFH package
is all the result of painstaking reverse engineering on my part. Consequently the Amiga Basic file
encoders and decoders implemented here may not be infallible.

Author(s)

Pepijn de Vries

https://en.wikipedia.org/wiki/BASIC

4 AmigaBasic-files

References

https://en.wikipedia.org/wiki/AmigaBASIC

See Also

Other AmigaBasic.operations: AmigaBasic.reserved(), AmigaBasicBMAP, [.AmigaBasic(), as.AmigaBasicBMAP(),
as.AmigaBasic(), as.character(), check.names.AmigaBasic(), names.AmigaBasic(), rawToAmigaBasicBMAP(),
rawToAmigaBasic(), read.AmigaBasicBMAP(), read.AmigaBasic(), write.AmigaBasic()

Examples

Not run:
This creates an AmigaBasic-class object:
bas <- as.AmigaBasic("PRINT \"hello world!\"")

This will decode the object as plain text:
as.character(bas)

End(Not run)

AmigaBasic-files ’demo.bas’, ’r_logo.shp’ and ’ball.shp’ as example files for AmigaBa-
sic and AmigaBasicShape objects

Description

‘demo.bas’, ‘r_logo.shp’ and ‘ball.shp’ as example files for AmigaBasic and AmigaBasicShape
objects

Format

See AmigaBasic and AmigaBasicShape for more information about the format.

Details

The ‘r_logo.shp’ and ‘ball.shp’ files are formatted such that they can be read with read.AmigaBasicShape.
They serve as an example of the AmigaBasicShape class, where the first represents a blitter object,
and the latter a sprite.

The ‘demo.bas’ file is an example of a binary encoded Amiga Basic script. It can be read with
read.AmigaBasic. The script demonstrates how the shape files could be used in Amiga Basic.

Examples

Not run:
read.AmigaBasic(system.file("demo.bas", package = "AmigaFFH"))
read.AmigaBasicShape(system.file("ball.shp", package = "AmigaFFH"))
read.AmigaBasicShape(system.file("r_logo.shp", package = "AmigaFFH"))

End(Not run)

https://en.wikipedia.org/wiki/AmigaBASIC

AmigaBasic.reserved 5

AmigaBasic.reserved List Amiga Basic reserved words.

Description

Obtain a list of reserved Amiga Basic words. These words are not allowed as names of variables or
labels in Amiga Basic.

Usage

AmigaBasic.reserved()

Details

This function will return a full list of reserved Amiga Basic words. This list does not serve as a
manual for basic (for that purpose consult external resources). This list is meant to consult when
choosing label names in Amiga Basic code. These reserved words are not allowed as names.

Value

Returns a vecor of character strings of reserved Amiga Basic words.

Author(s)

Pepijn de Vries

See Also

Other AmigaBasic.operations: AmigaBasicBMAP, AmigaBasic, [.AmigaBasic(), as.AmigaBasicBMAP(),
as.AmigaBasic(), as.character(), check.names.AmigaBasic(), names.AmigaBasic(), rawToAmigaBasicBMAP(),
rawToAmigaBasic(), read.AmigaBasicBMAP(), read.AmigaBasic(), write.AmigaBasic()

Examples

AmigaBasic.reserved()

AmigaBasicBMAP The S3 AmigaBasicBMAP class

Description

A class that represents the content of Amiga Basic BMAP files.

6 AmigaBasicShape

Details

The Amiga operating system made use of library files to execute specific (repetitive/routine) tasks.
Amiga Basic was also able to call such routines from library files. In order to do so, it required a
’bmap’ file for each library. This file contains a map of the library where it specifies: the name of
routine; the ‘Library Vector Offset’ (explained below); and used CPU registers (explained below).

The ‘Library Vector Offset’ is an offset to the base address of a library in memory. This offsets
indicates where a specific executable routine starts. The CPU registers are used to (temporary) store
(pointers to) input data used by the routine. The BMAP file thus lists which CPU registers are used
by specified routines.

Author(s)

Pepijn de Vries

References

https://en.wikipedia.org/wiki/AmigaOS#Libraries_and_devices

See Also

Other AmigaBasic.operations: AmigaBasic.reserved(), AmigaBasic, [.AmigaBasic(), as.AmigaBasicBMAP(),
as.AmigaBasic(), as.character(), check.names.AmigaBasic(), names.AmigaBasic(), rawToAmigaBasicBMAP(),
rawToAmigaBasic(), read.AmigaBasicBMAP(), read.AmigaBasic(), write.AmigaBasic()

AmigaBasicShape The S3 AmigaBasicShape class

Description

A class that represents the file format used by Amiga Basic to store bitmap graphics: blitter objects
and sprites.

Details

Amiga Basic used a specific format to store bitmap images that could be displayed using Basic
code. Both sprites and blitter objects can be stored and used. This class is used to represent such
files.

Author(s)

Pepijn de Vries

See Also

Other AmigaBasicShape.operations: rasterToAmigaBasicShape(), read.AmigaBasicShape(),
write.AmigaBasicShape()

https://en.wikipedia.org/wiki/AmigaOS#Libraries_and_devices

AmigaBitmapFont 7

Examples

Not run:
ball <- read.AmigaBasicShape(system.file("ball.shp", package = "AmigaFFH"))
r_logo <- read.AmigaBasicShape(system.file("r_logo.shp", package = "AmigaFFH"))

plot(ball)
plot(r_logo)

End(Not run)

AmigaBitmapFont The S3 AmigaBitmapFont and AmigaBitmapFontSet classes

Description

A comprehensive representation of monochromous Amiga bitmap fonts.

Details

Nowadays fonts are represented by vector graphics an computer systems. On the original Com-
modore Amiga, the screen resolution, system memory and cpu speed were limited. On those sys-
tems, it was more efficient to use bitmap images to represent the glyphs in fonts. The AmigaBitmapFontSet
and AmigaBitmapFont classes can be used to represent Amiga bitmap fonts.

The Commodore Amiga had a directory named ’FONTS’ located in the root, where (bitmap) fonts
were stored. Font sets were stored under the font name with a *.font extension. Files with the *.font
extension did not contain the bitmap images of the font. Rather the *.font file contained information
on which font heights (in pixels) are available, in addition to some other meta-information.

The bitmap images were stored in separate files for each individual height. The AmigaBitmapFontSet
is an S3 class that forms a comprehensive format (named list) to represent the *.font files. The
AmigaBitmapFont is an S3 class is a comprehensive format (named list) that represent each
font bitmap and glyph information. The AmigaBitmapFontSet objects will hold one or more
AmigaBitmapFont objects.

The AmigaBitmapFont and AmigaBitmapFontSet objects are essentially named lists. Their
structure and most important elements are described below. Although it is possible to replace ele-
ments manually, it is only advisable when you know what you are doing as it may break the validity
of the font.

AmigaBitmapFontSet

fch_FileID A factor with levels ’FontContents’, ’TFontContents’ and ’ScalableOutline’. It
specifies the type of font. Currently only the first level is supported.

fch_NumEntries number of font heights available for this font. It should match with the length of
FontContents. Do not change this value manually.

FontContents This is a list with bitmap entries for each specific font height (in pixels). The
name of each element in this list is ’pt’ followed by the height. Each element in this list holds
the elements:

8 AmigaBitmapFont

Miscellaneous Miscellaneous information from the *.font file
fc_FileName This element represents the filename of the nested font bitmap images. Note

that it should be a valid Commodore Amiga filename. It is best to modify this name using
fontName. Note that this field could cause problems as Commodore Amiga filenames
can contain characters that most modern platforms would not allow (such as the question
mark).

BitmapFont This element is of type AmigaBitmapFont and is structured as described in the
following section. The information in this element is no longer part of the *.font file.

AmigaBitmapFont

Information represented by a AmigaBitmapFont is not stored in *.font files. Rather it is stored in
sub-directories of the font in separate files. It has the following structure:

Miscellaneous Elements with information on the font properties and style, and also relative file
pointers.

glyph.info A data.frame containing glyph info with information for specific glyphs on each
row. Each row matches with a specific ASCII code, ranging from tf_LoChar up to tf_HiChar.
There is an additional row that contains information for the default glyph that is out of the
range of the tf_LoChar and tf_HiChar. The data.frame thus has 2 + tf_HiChar -tf_LoChar
rows. This table is used to extract and plot a glyph from the bitmap image correctly.

bitmap Is a monochromous bitmap image of all the font’s glyphs in a single line. It is a sim-
ple raster object (see as.raster) with an additional attribute ’palette’, which lists the two
colours in the image. In this palette, the first colour is the background colour and the second
colour is interpreted as the foregroundcolour.

Useful functions

For importing and exporting the following functions are useful: read.AmigaBitmapFont, read.AmigaBitmapFontSet,
write.AmigaBitmapFont and write.AmigaBitmapFontSet.

The following generic functions are implemented for these objects: plot, print, as.raster and
as.raw.

Use c to combine one or more AmigaBitmapFont objects into a AmigaBitmapFontSet.

Author(s)

Pepijn de Vries

References

http://amigadev.elowar.com/read/ADCD_2.1/Libraries_Manual_guide/node03E0.html http:
//amigadev.elowar.com/read/ADCD_2.1/Libraries_Manual_guide/node03DE.html http://
amigadev.elowar.com/read/ADCD_2.1/Libraries_Manual_guide/node05BA.html

See Also

Other AmigaBitmapFont.operations: availableFontSizes(), c(), fontName(), font_example,
getAmigaBitmapFont(), rasterToAmigaBitmapFont(), rawToAmigaBitmapFontSet(), rawToAmigaBitmapFont(),
read.AmigaBitmapFontSet(), read.AmigaBitmapFont(), write.AmigaBitmapFont()

http://amigadev.elowar.com/read/ADCD_2.1/Libraries_Manual_guide/node03E0.html
http://amigadev.elowar.com/read/ADCD_2.1/Libraries_Manual_guide/node03DE.html
http://amigadev.elowar.com/read/ADCD_2.1/Libraries_Manual_guide/node03DE.html
http://amigadev.elowar.com/read/ADCD_2.1/Libraries_Manual_guide/node05BA.html
http://amigadev.elowar.com/read/ADCD_2.1/Libraries_Manual_guide/node05BA.html

AmigaFFH 9

Other raster.operations: as.raster.AmigaBasicShape(), bitmapToRaster(), dither(), index.colours(),
rasterToAmigaBasicShape(), rasterToAmigaBitmapFont(), rasterToBitmap(), rasterToHWSprite(),
rasterToIFF()

Examples

Not run:
'font_example' is an example of the AmigaBitmapFontSet object:
data(font_example)

An AmigaBitmapFont object can also be extracted from this object:
font_example_9 <- getAmigaBitmapFont(font_example, 9)

the objects can be printed, plotted, converted to raw data or a raster:
print(font_example)
plot(font_example)
font_example_raw <- as.raw(font_example)
font_example_raster <- as.raster(font_example)

You can also format text using the font:
formated_raster <- as.raster(font_example, text = "Foo bar", style = "bold")
plot(font_example, text = "Foo bar", style = "underlined", interpolate = F)

End(Not run)

AmigaFFH The Amiga File Format Handler package

Description

The Amiga File Format Handler package (AmigaFFH) is designed to interpret file formats that were
native to Commodore Amiga machines.

Details

In combination with the adfExplorer package this package can be used to interpret older file for-
mats that were native to the Commodore Amiga. The focus of this package will be on the older
system (Amiga OS <= 3.0). This will allow you to analyse and interpret these files in the scripted
environment of R.

Note that all functions and methods in this package are implemented as scripted source code and
may not run very fast.

Supported File Formats

This package supports a number of file formats. The ProTracker module file format requires so-
phisticated interpretation and a dedicated package (ProTrackR) is developed for that purpose.

The following formats are supported by this package (to some extend):

10 AmigaFFH

• Amiga Basic binary encode scripts and Amiga Basic shapes which were used by such scripts
to display specific graphics.

• Bitmap Font (*.font). Originally fonts were stored in separate files on the Amiga. An overar-
ching *.font file contained generic information, amongst others the specific pixel heights that
were available for a font. The actual font bitmap images were stored in separate files. There
was a file available for each individual font height. For more details see AmigaBitmapFont
and AmigaBitmapFontSet.

• Interchange File Format (IFF). This file format is actually a container for a wide variety of
data flavours. Of which the following are supported:

– 8SVX (8-bit sampled voices (i.e., audio)). There are no major restrictions in this pack-
age’s implementation.

– ANIM (animations). Not all display modes are supported as per ILBM. Furthermore,
the vertical byterun encoding for the animation frames is the only encoding currently
supported.

– ILBM (InterLeaved BitMap images). Specific display modes (such as ‘extra halfbrite’)
can in some cases be decoded, but encoding for these modes may not (yet) be supported.

For more details see IFFChunk, interpretIFFChunk, read.iff and write.iff.

• Hardware sprites. This format follows the hardware structure for displaying sprites on the
screen. It is usually not used as a file format as such, but it can be found embedded in some files
(for instance the mouse pointer is embeded as a hardware sprite in the ‘system-configuration’
file). For more details see hardwareSprite.

• System-configuration. A file that was stored in the ‘devs’ directory of a system disk. As
the file name suggests, it holds many of the systems configurations. See SysConfig for more
details.

• Workbench icons (*.info). Icons (i.e., graphical representation of files and directories on the
Amiga) were stored as separate files with the extension *.info. See AmigaIcon for more
details.

In future versions of this package more file types may be added to this list.

In Addition...

Several helper functions are also exported by this package. This will give you access to older com-
pression techniques, such as the run length encoding (packBitmap) and delta Fibonacci compres-
sion (deltaFibonacciCompress). But also other techniques that will help in converting modern
files into classic file formats and vice versa. Such as for instance the function to dither full colour
images to a limited colour palette.

Author(s)

Pepijn de Vries

References

Documentation on several Amiga File types: http://amigadev.elowar.com/read/ADCD_2.1/
Devices_Manual_guide/

http://amigadev.elowar.com/read/ADCD_2.1/Devices_Manual_guide/
http://amigadev.elowar.com/read/ADCD_2.1/Devices_Manual_guide/

AmigaIcon 11

AmigaIcon The S3 AmigaIcon class

Description

A comprehensive representation of an Amiga Workbench icon file.

Details

Files, directories and other similar objects were depicted as icons on the Amiga Workbench (the
Amiga’s equivalent of what is now mostly known as the computer’s desktop). Icons were actually
separate files with the exact same name as the file or directory it represents, except for an additional
‘.info’ extension.

In addition of being a graphical representation of files or directories, icon files also contained ad-
ditional information about the file. It could for instance indicate which tool would be required to
open the file.

The classic Amiga Workbench icon file has a rather complex structure as it is basically a dump
of how it is stored in memory. As a result it contains many memory pointers that are really not
necassary to store in a file.

The S3 AmigaIcon class is used to represent these complex files as a named list. The elements in
that list have mostly identical names as listed in the document at the top referenced below. The
names are usually self-explanatory, but the referred documents can also be consulted to obtain more
detailed information with respect to each of these elements. As pointed out earlier, not all elements
will have a meaningful use.

It is possible to change the values of the list, but not all values may be valid. Note that they will not
be fully checked for validity. Invalid values may result in errors when writing to a binary file using
write.AmigaIcon, or may simply not work properly on an Amiga or in an emulator.

The original ‘.info’ file could be extended with NewIcon or with an OS3.5 IFFChunk data, that
allowed for icons with larger colour depths. These extensions are currently not implemented.

Use simpleAmigaIcon for creating a simple AmigaIcon object which can be modified. Use read.AmigaIcon
to read, and write.AmigaIcon to write workbench icon files (*.info). With rawToAmigaIcon and
as.raw AmigaIcon can be coerced back and forth from and to its raw (binary) form.

Author(s)

Pepijn de Vries

References

http://www.evillabs.net/wiki/index.php/Amiga_Icon_Formats http://fileformats.archiveteam.
org/wiki/Amiga_Workbench_icon http://krashan.ppa.pl/articles/amigaicons/ http://
amigadev.elowar.com/read/ADCD_2.1/Libraries_Manual_guide/node0241.html http://amigadev.
elowar.com/read/ADCD_2.1/Includes_and_Autodocs_3._guide/node05D6.html

http://www.evillabs.net/wiki/index.php/Amiga_Icon_Formats
http://fileformats.archiveteam.org/wiki/Amiga_Workbench_icon
http://fileformats.archiveteam.org/wiki/Amiga_Workbench_icon
http://krashan.ppa.pl/articles/amigaicons/
http://amigadev.elowar.com/read/ADCD_2.1/Libraries_Manual_guide/node0241.html
http://amigadev.elowar.com/read/ADCD_2.1/Libraries_Manual_guide/node0241.html
http://amigadev.elowar.com/read/ADCD_2.1/Includes_and_Autodocs_3._guide/node05D6.html
http://amigadev.elowar.com/read/ADCD_2.1/Includes_and_Autodocs_3._guide/node05D6.html

12 amiga_display_keys

See Also

Other AmigaIcon.operations: rawToAmigaIcon(), read.AmigaIcon(), simpleAmigaIcon(), write.AmigaIcon()

amiga_display_keys A list of special display modes

Description

A list of special display modes on the Amiga and corresponding raw keys.

Format

a data.frame with 2 columns:

• The column named ‘mode’: a factor reflecting a display mode, monitor or bitwise mask

• The column named ‘code’: vector of 4 raw values as used by the Amiga to reflect specific
display modes

Details

This table show specific special display modes and to which Amiga monitors they relate. The
raw codes can be used to interpret specific display modes as listed in amiga_display_modes. This
information is used to interpret IFFChunk objects of type ‘CAMG’. It is also used to interpret ILBM
images and creating IFF files from raster images.

References

https://wiki.amigaos.net/wiki/Display_Database#ModeID_Identifiers

http://amigadev.elowar.com/read/ADCD_2.1/AmigaMail_Vol2_guide/node00FD.html

Examples

data("amiga_display_keys")

https://wiki.amigaos.net/wiki/Display_Database#ModeID_Identifiers
http://amigadev.elowar.com/read/ADCD_2.1/AmigaMail_Vol2_guide/node00FD.html

amiga_display_modes 13

amiga_display_modes A table of display modes on the Amiga and corresponding raw codes

Description

A table of display modes on the Amiga and corresponding raw codes representing these modes.

Format

A data.frame with 4 columns:

• The column named ‘DISPLAY_MODE’: a factor reflecting the display mode

• The column named ‘DISPLAY_MODE_ID’: A list containing a vector of 4 raw values as
used by the Amiga to reflect specific display modes. These raw values are usually also stored
with bitmap images in the Interchange File Format in a IFFChunk called ‘CAMG’.

• The column named ‘MONITOR_ID’: A character string identifying the monitor that could
display the specific mode.

• The column named ‘CHIPSET’: a factor identifying the minimal chip set that was required
to display the specific mode. OCS is the original chip set; ECS is the Enhanced Chip Set. AGA
is the Advanced Graphics Architecture chip set (in some countries known as just Advanced
Architecture). AGA could also display OCS and ECS modes, ECS could also display OCS
modes, OCS could only display OCS modes.

Details

This table contains most display modes that were available on the Amiga. It also contains raw codes
that were used to represent these modes. The table also contains the hardware monitors that could
display the specific modes, and the minimal chip set that was required for the display mode. This
data is used to interpret IFFChunk objects of type ‘CAMG’. It is also used to interpret ILBM images
and creating IFF files from raster images.

References

https://wiki.amigaos.net/wiki/Display_Database#ModeID_Identifiers

http://amigadev.elowar.com/read/ADCD_2.1/AmigaMail_Vol2_guide/node00FD.html

Examples

data("amiga_display_modes")

https://wiki.amigaos.net/wiki/Display_Database#ModeID_Identifiers
http://amigadev.elowar.com/read/ADCD_2.1/AmigaMail_Vol2_guide/node00FD.html

14 amiga_palettes

amiga_monitors A list of Amiga monitors

Description

This table lists Amiga monitors and corresponding raw codes that represent these monitors.

Format

A data.frame with 2 columns:

• The column named ‘MONITOR_ID’: a factor representing an Amiga monitor

• The column named ‘CODE’: A list containing a vector of 4 raw values as used by the
Amiga to represent a specific monitor.

Details

This table contains monitors that were compatible with the Amiga. It also contains raw codes that
were used to represent them. This data is used to interpret IFFChunk objects of type ‘CAMG’. It is
also used to interpret ILBM images and creating IFF files from raster images.

References

https://wiki.amigaos.net/wiki/Display_Database#ModeID_Identifiers

Examples

data("amiga_monitors")

amiga_palettes Commonly used palettes on the Commodore Amiga

Description

amiga_palettes is a named list, where each element represents a commonly used palette on the
Commodore Amiga.

Format

A named list with the following elements:

• wb.os1: A vector of 4 colours that were used as the default palette of the Workbench on
Amiga OS 1.x.

• wb.os2: A vector of 8 colours. The first 4 colours are the default colours of a standard
Workbench on Amiga OS 2.x. The latter 4 are additional colours used by the Workbench
expansion MagicWB.

https://wiki.amigaos.net/wiki/Display_Database#ModeID_Identifiers

as.AmigaBasic 15

• spr.os1: A vector of 3 colours that were used by default for a mouse pointer sprite on Amiga
OS 1.x.

• spr.os2: A vector of 3 colours that were used by default for a mouse pointer sprite on Amiga
OS 2.x.

Details

Some files that contain bitmap images with an indexed palette did not store the palette in the same
file. Amiga Workbench icons (AmigaIcon) for instance only store the index values of the palette,
but not the palette itself. amiga_palettes therefore provides some commonly used palettes on the
Amiga, such that these files can be interpreted.

Examples

data("amiga_palettes")

as.AmigaBasic Coerce raw or character data to an AmigaBasic class object

Description

Coerce raw or character data to an AmigaBasic S3 class object

Usage

as.AmigaBasic(x, ...)

Arguments

x x should be a vector of raw data or character strings. When x is raw data, it
is interpreted as if it where from an Amiga Basic binary encoded file.
When x is a vector of character strings, each element of the vector should
represent one line of Basic code. Each line should not contain line break or
other special characters, as this will result in errors. The text should represent
valid Amiga Basic syntax. The syntax is only checked to a limited extent as this
package does not implement an interpreter for the code.

... Currently ignored.

Details

Convert text to an AmigaBasic S3 class object. The text should consist of valid Amiga BASIC
syntaxis. This function does not perform a full check of the syntaxis, but will break on some
fundamental syntaxis malformations

Value

Returns an AmigaBasic class object based on x.

16 as.AmigaBasicBMAP

Author(s)

Pepijn de Vries

References

https://en.wikipedia.org/wiki/AmigaBASIC

See Also

Other AmigaBasic.operations: AmigaBasic.reserved(), AmigaBasicBMAP, AmigaBasic, [.AmigaBasic(),
as.AmigaBasicBMAP(), as.character(), check.names.AmigaBasic(), names.AmigaBasic(),
rawToAmigaBasicBMAP(), rawToAmigaBasic(), read.AmigaBasicBMAP(), read.AmigaBasic(),
write.AmigaBasic()

Other raw.operations: as.raw.AmigaBasic(), colourToAmigaRaw(), packBitmap(), rawToAmigaBasicBMAP(),
rawToAmigaBasicShape(), rawToAmigaBasic(), rawToAmigaBitmapFontSet(), rawToAmigaBitmapFont(),
rawToAmigaIcon(), rawToHWSprite(), rawToIFFChunk(), rawToSysConfig(), simpleAmigaIcon()

Examples

Not run:
An AmigaBasic object can be created from text.
Note that each line of code is a seperate element
in the vector:
bas <- as.AmigaBasic(c(

"CLS ' Clear the screen",
"PRINT \"Hello world!\" ' Print a message on the screen"

))

Let's make it raw data:
bas.raw <- as.raw(bas)

We can also use the raw data to create an Amiga Basic object:
Note that this effectively the same as calling 'rawToAmigaBasic'
bas <- as.AmigaBasic(bas.raw)

End(Not run)

as.AmigaBasicBMAP Coerce raw or named list to an AmigaBasicBMAP class object

Description

Coerce raw or named list to an AmigaBasicBMAP class object

Usage

as.AmigaBasicBMAP(x)

https://en.wikipedia.org/wiki/AmigaBASIC

as.AmigaBasicBMAP 17

Arguments

x When x is a vector of raw data, it needs to be structured as it would be when
stored in a binary file (see read.AmigaBasicBMAP). x can also be a named list,
where the name of each element corresponds with a routine in the library. Each
element should than consist of a list with 2 elements: The first should be
named ‘libraryVectorOffset’ and should hold the numeric offset of the routine
in the library (see details). The second element should be named ‘registers’ and
should contain a vector of raw values refering to CPU registers used by the
routine (see details).

Details

An Amiga Basic BMAP file maps the offset of routines in Amiga libraries. This function converts
the raw format in which it would be stored as a file into a comprehensive S3 class object. It can also
convert a named list into an S3 class object. See ‘Arguments’ and ‘Examples’ sections on how to
format this list.

Value

Returns a AmigaBasicBMAP based on x

Author(s)

Pepijn de Vries

See Also

Other AmigaBasic.operations: AmigaBasic.reserved(), AmigaBasicBMAP, AmigaBasic, [.AmigaBasic(),
as.AmigaBasic(), as.character(), check.names.AmigaBasic(), names.AmigaBasic(), rawToAmigaBasicBMAP(),
rawToAmigaBasic(), read.AmigaBasicBMAP(), read.AmigaBasic(), write.AmigaBasic()

Examples

Not run:
For the dos.library, the start of the bmap list would look like:
dos.list <- list(

xOpen = list(
libraryVectorOffset = -30,
registers = as.raw(2:3)

),
xClose = list(

libraryVectorOffset = -36,
registers = as.raw(2)

),
xRead = list(

libraryVectorOffset = -42,
registers = as.raw(2:4)

)
)

18 as.character

Note that the list above is incomplete, the dos.library holds more routines than shown here.
This merely serves as an example.
This list can be converted to an S3 class as follows:
dos.bmap <- as.AmigaBasicBMAP(dos.list)

End(Not run)

as.character Coerce an AmigaBasic class object to its character representation

Description

Coerce an AmigaBasic-class object to its character representation

Usage

S3 method for class 'AmigaBasic'
as.character(x, ...)

Arguments

x An AmigaBasic class object that needs to be coerced to its character represen-
tation.

... Currently ignored.

Details

Amiga Basic files are encoded in a binary format and are also stored as such in AmigaBasic-class
objects. Use this function to convert these objects into legible character data.

Value

A vector of character strings, where each element of the vector is a character representation
of a line of Amiga Basic code stored in x.

Author(s)

Pepijn de Vries

See Also

Other AmigaBasic.operations: AmigaBasic.reserved(), AmigaBasicBMAP, AmigaBasic, [.AmigaBasic(),
as.AmigaBasicBMAP(), as.AmigaBasic(), check.names.AmigaBasic(), names.AmigaBasic(),
rawToAmigaBasicBMAP(), rawToAmigaBasic(), read.AmigaBasicBMAP(), read.AmigaBasic(),
write.AmigaBasic()

as.raster.AmigaBasicShape 19

Examples

Not run:
First create an Amiga Basic object:
bas <- as.AmigaBasic("PRINT \"Hello world!\"")

now convert the object back into text:
bas.txt <- as.character(bas)

End(Not run)

as.raster.AmigaBasicShape

Convert AmigaFFH objects into grDevices raster images

Description

Convert AmigaFFH objects that contain bitmap images into grDevices raster images.

Usage

S3 method for class 'AmigaBasicShape'
as.raster(x, selected = c("bitmap", "shadow", "collision"), ...)

S3 method for class 'AmigaBitmapFont'
as.raster(x, text, style, palette, ...)

S3 method for class 'AmigaBitmapFontSet'
as.raster(x, text, style, palette, ...)

S3 method for class 'hardwareSprite'
as.raster(x, background = "#AAAAAA", ...)

S3 method for class 'IFFChunk'
as.raster(x, ...)

S3 method for class 'AmigaIcon'
as.raster(x, selected = F, ...)

Arguments

x Object that needs to be converted into a grDevices raster. It can be an IFFChunk
containing an interleaved bitmap image (ILBM) or animation (ANIM), a hardwareSprite,
an AmigaBitmapFont object or an AmigaBitmapFontSet object.

selected When x is an object of class AmigaIcon, selected can be used to select a spe-
cific state. When set to TRUE, the raster of the AmigaIcon will be based on the
‘selected’ state of the icon. Otherwise it will be based on the deselected state
(default).

20 as.raster.AmigaBasicShape

When x is an AmigaBasicShape class object, selected can be used to select
a specific layer of the shape to plot, which can be one of "bitmap" (default),
"shadow" or "collision".

... Currently ignored.
text Text (a character string) to be formated with x (when x is an AmigaBitmapFont

or an AmigaBitmapFontSet.
style Argument is only valid when x is an AmigaBitmapFont or an AmigaBitmapFontSet.

No styling is applied when missing or NULL. One or more of the following styles
can be used ’bold’, ’italic or ’underlined’.

palette Argument is only valid when x is an AmigaBitmapFont or an AmigaBitmapFontSet.
Should be a vector of two colours. The first is element is used as background
colour, the second as foreground. When missing, transparent white and black
are used.

background Use the argument background to specify a background colour in case x is a
hardwareSprite.

Details

Images on the Amiga were stored as bitmap images with indexed colour palettes. This was mainly
due to hardware and memory limitations. Bitmap images could also be embedded in several file
types. This method can be used to convert AmigaFFH objects read from such files into grDevices
raster images (as.raster).

Value

Returns a grDevices raster image (as.raster) based on x. If x is an animation (IFFChunk of type
ANIM), a list of raster objects is returned.

Author(s)

Pepijn de Vries

See Also

Other raster.operations: AmigaBitmapFont, bitmapToRaster(), dither(), index.colours(),
rasterToAmigaBasicShape(), rasterToAmigaBitmapFont(), rasterToBitmap(), rasterToHWSprite(),
rasterToIFF()

Other raster.operations: AmigaBitmapFont, bitmapToRaster(), dither(), index.colours(),
rasterToAmigaBasicShape(), rasterToAmigaBitmapFont(), rasterToBitmap(), rasterToHWSprite(),
rasterToIFF()

Other iff.operations: IFFChunk-class, WaveToIFF(), getIFFChunk(), interpretIFFChunk(),
rasterToIFF(), rawToIFFChunk(), read.iff(), write.iff()

Other raster.operations: AmigaBitmapFont, bitmapToRaster(), dither(), index.colours(),
rasterToAmigaBasicShape(), rasterToAmigaBitmapFont(), rasterToBitmap(), rasterToHWSprite(),
rasterToIFF()

Other raster.operations: AmigaBitmapFont, bitmapToRaster(), dither(), index.colours(),
rasterToAmigaBasicShape(), rasterToAmigaBitmapFont(), rasterToBitmap(), rasterToHWSprite(),
rasterToIFF()

as.raw.AmigaBasic 21

Examples

Not run:
load an IFF file
example.iff <- read.iff(system.file("ilbm8lores.iff", package = "AmigaFFH"))

The file contains an interleaved bitmap image that can be
converted into a raster:
example.raster <- as.raster(example.iff)

the raster can be plotted:
plot(example.raster)

note that the IFFChunk can also be plotted directly:
plot(example.iff)

Hardware sprites can also be converted into raster images.
Let's generate a 16x16 sprite with a random bitmap:
spr <- new("hardwareSprite",

VStop = 16,
bitmap = as.raw(sample.int(255, 64, replace = TRUE)))

now convert it into a raster image.
as the background colour is not specified for hardware
sprite, we can optionally provide it here.
spr.raster <- as.raster(spr, background = "green")

AmigaBasicShape objects can also be converted into rasters:
ball <- read.AmigaBasicShape(system.file("ball.shp", package = "AmigaFFH"))
ball.rst <- as.raster(ball)

End(Not run)

as.raw.AmigaBasic Convert AmigaFFH objects into raw data

Description

Convert AmigaFFH objects into raw data, as they would be stored in the Commodore Amiga’s
memory or files.

Usage

S3 method for class 'AmigaBasic'
as.raw(x, ...)

S3 method for class 'AmigaBasicShape'
as.raw(x, ...)

S3 method for class 'AmigaBasicBMAP'

22 as.raw.AmigaBasic

as.raw(x)

S3 method for class 'AmigaBitmapFont'
as.raw(x, ...)

S3 method for class 'AmigaBitmapFontSet'
as.raw(x, ...)

S3 method for class 'AmigaTimeVal'
as.raw(x, ...)

S4 method for signature 'hardwareSprite'
as.raw(x)

S4 method for signature 'IFFChunk'
as.raw(x)

S3 method for class 'IFF.ANY'
as.raw(x, ...)

S3 method for class 'SysConfig'
as.raw(x, ...)

S3 method for class 'AmigaIcon'
as.raw(x, ...)

Arguments

x An AmigaFFH object that needs to be converted into raw data. See usage section
for all supported objects.

... Arguments passed on to IFFChunk-method when x is of class IFF.ANY.

Details

Objects originating from this package can in some cases be converted into raw data, as they would
be stored on an original Amiga. See the usage section for the currently supported objects.

Not all information from x may be included in the raw data that is returned, so handle with care.

As this package grows additional objects can be converted with this method.

Value

Returns a vector of raw data based on x.

Author(s)

Pepijn de Vries

availableFontSizes 23

See Also

Other raw.operations: as.AmigaBasic(), colourToAmigaRaw(), packBitmap(), rawToAmigaBasicBMAP(),
rawToAmigaBasicShape(), rawToAmigaBasic(), rawToAmigaBitmapFontSet(), rawToAmigaBitmapFont(),
rawToAmigaIcon(), rawToHWSprite(), rawToIFFChunk(), rawToSysConfig(), simpleAmigaIcon()

Examples

Not run:
read an IFF file as an IFFChunk object:
example.iff <- read.iff(system.file("ilbm8lores.iff", package = "AmigaFFH"))

This will recreate the exact raw data as it was read from the file:
example.raw <- as.raw(example.iff)

End(Not run)

availableFontSizes Get available font sizes from an AmigaBitmapFontSet

Description

Get available font sizes (height) from an AmigaBitmapFontSet in pixels.

Usage

availableFontSizes(x)

Arguments

x An AmigaBitmapFontSet for which the available font sizes (height) in number
of pixels need to be obtained.

Details

An AmigaBitmapFontSet can hold bitmaps of multiple font sizes. Use this function to obtain the
available size from such a set.

Value

Returns a vector of numeric values specifying the available font sizes (height in pixels) for x.

Author(s)

Pepijn de Vries

24 bitmapToRaster

See Also

Other AmigaBitmapFont.operations: AmigaBitmapFont, c(), fontName(), font_example, getAmigaBitmapFont(),
rasterToAmigaBitmapFont(), rawToAmigaBitmapFontSet(), rawToAmigaBitmapFont(), read.AmigaBitmapFontSet(),
read.AmigaBitmapFont(), write.AmigaBitmapFont()

Examples

Not run:
data(font_example)

The example font holds two font sizes (8 and 9):
availableFontSizes(font_example)

End(Not run)

bitmapToRaster Convert an Amiga bitmap image into a raster

Description

Amiga images are usually stored as bitmap images with indexed colours. This function converts
raw Amiga bitmap data into raster data (as.raster).

Usage

bitmapToRaster(
x,
w,
h,
depth,
palette = grDevices::gray(seq(0, 1, length.out = 2^depth)),
interleaved = T

)

Arguments

x a vector of raw values, representing bitmap data.

w Width in pixels of the bitmap image. Can be any positive value. However,
bitmap data is ‘word’ aligned on the amiga. This means that the width of the
stored bitmap data is a multiple of 16 pixels. The image is cropped to the width
specified here.

h Height in pixels of the bitmap image.

depth The colour depth of the bitmap image (i.e., the number of bit planes). The image
will be composed of 2^depth indexed colours.

palette A vector of 2^depth colours, to be used for the indexed colours of the bitmap
image. By default, a grayscale palette is used. When explicitly set to NULL, this
function returns a matrix with palette index values.

bitmapToRaster 25

interleaved A logical value, indicating whether the bitmap is interleaved. An interleaved
bitmap image stores each consecutive bitmap layer per horizontal scanline.

Details

Bitmap images stored as raw data, representing palette index colours, can be converted into raster
data (as.raster). The latter data can easily be plotted in R. It is usually not necessary to call this
function directly, as there are several more convenient wrappers for this function. Those wrappers
can convert specific file formats (such as IFF ILBM and Hardware Sprites, see as.raster) into
raster objects. This function is provided for completeness sake (or for when you want to search for
images in an amiga memory dump).

Value

Returns a raster object (as.raster) as specified in the grDevices package. Unless, palette is set
to NULL, in which case a matrix with numeric palette index values is returned.

Author(s)

Pepijn de Vries

See Also

Other raster.operations: AmigaBitmapFont, as.raster.AmigaBasicShape(), dither(), index.colours(),
rasterToAmigaBasicShape(), rasterToAmigaBitmapFont(), rasterToBitmap(), rasterToHWSprite(),
rasterToIFF()

Examples

Not run:
first load an example image:
example.iff <- read.iff(system.file("ilbm8lores.iff", package = "AmigaFFH"))

get the raw bitmap data, which is nested in the InterLeaved BitMap (ILBM)
IFF chunk as the BODY:
bitmap.data <- interpretIFFChunk(getIFFChunk(example.iff, c("ILBM", "BODY")))

In order to translate the bitmap data into a raster object we need
to know the image dimensions (width, height and colour depth). This
information can be obtained from the bitmap header (BMHD):

bitmap.header <- interpretIFFChunk(getIFFChunk(example.iff, c("ILBM", "BMHD")))

First the bitmap data needs to be unpacked as it was stored in a compresssed
form in the IFF file (see bitmap.header$Compression):

bitmap.data <- unPackBitmap(bitmap.data)

It would also be nice to use the correct colour palette. This can be obtained
from the CMAP chunk in the IFF file:

26 c

bitmap.palette <- interpretIFFChunk(getIFFChunk(example.iff, c("ILBM", "CMAP")))

example.raster <- bitmapToRaster(bitmap.data,
bitmap.header$w,
bitmap.header$h,
bitmap.header$nPlanes,
bitmap.palette)

We now have a raster object that can be plotted:

plot(example.raster, interpolate = FALSE)

End(Not run)

c Combine multiple AmigaFFH objects

Description

Use this function to correctly combine one or more AmigaBitmapFont class objects into a single
AmigaBitmapFontSet class object, or to combine multiple AmigaBasic class objects.

Usage

S3 method for class 'AmigaBasic'
c(...)

S3 method for class 'AmigaBitmapFont'
c(..., name = "font")

Arguments

... Either AmigaBasic or AmigaBitmapFont class objects. In case of AmigaBitmapFont
objects: Each AmigaBitmapFont object should have a unique Y-size.

name This argument is only valid when ... are one or more AmigaBitmapFont class
objects.
A character string specifying the name that needs to be applied to the font set.
When unspecified, the default name ’font’ is used. Note that this name will also
be used as a file name when writing the font to a file. So make sure the name is
also a valid file name. This will not be checked for you and may thus result in
errors.

Details

In case ... are one or more AmigaBasic class objects:

AmigaBasic class objects are combined into a single AmigaBasic class object in the same order
as they are given as argument to this function. for this purpose the lines of Amiga Basic codes are
simply concatenated.

check.names.AmigaBasic 27

In case ... are one or more AmigaBitmapFont class objects:

AmigaBitmapFontSet class objects can hold multiple AmigaBitmapFont class objects. Use this
method to combine font bitmaps into such a font set. Make sure each bitmap represents a unique
font height (in pixels). When heights are duplicated an error will be thrown.

You can also specify a name for the font, that will be embeded in the object. As this name will also
be used as a file name when writing the font to a file, make sure that it is a valid filename.

Value

Returns an AmigaBitmapFontSet in which the AmigaBitmapFont objects are combined. Or when
AmigaBasic objects are combined, an AmigaBasic object is returned in which the lines of Amiga
Basic code are combined.

Author(s)

Pepijn de Vries

See Also

Other AmigaBitmapFont.operations: AmigaBitmapFont, availableFontSizes(), fontName(),
font_example, getAmigaBitmapFont(), rasterToAmigaBitmapFont(), rawToAmigaBitmapFontSet(),
rawToAmigaBitmapFont(), read.AmigaBitmapFontSet(), read.AmigaBitmapFont(), write.AmigaBitmapFont()

Examples

Not run:
data(font_example)

first get some AmigaBitmapFont objects:
font8 <- getAmigaBitmapFont(font_example, 8)
font9 <- getAmigaBitmapFont(font_example, 9)

now bind these bitmaps again in a single set
font.set <- c(font8, font9, name = "my_font_name")

Amiga Basic codes can also be combined:
bas1 <- as.AmigaBasic("LET a = 1")
bas2 <- as.AmigaBasic("PRINT a")
bas <- c(bas1, bas2)

End(Not run)

check.names.AmigaBasic

Check Amiga Basic label/variable names for validity

Description

Check Amiga Basic label/variable names for validity

28 check.names.AmigaBasic

Usage

check.names.AmigaBasic(x, ...)

Arguments

x A vector of character strings that need to be checked

... Currently ignored.

Details

Names for variables and labels should adhere to the following rules in Amiga Basic:

• Length of the names should be in the range of 1 up to 255 character

• Names cannot be AmigaBasic.reserved words

• Names should only contain alphanumeric characters or periods and should not contain special
characters (i.e., reserved for type definition, such as dollar- or percentage sign)

• Names should not start with a numeric character

This function tests names against each of these criteria.

Value

A data.frame with logical values with the same number of rows as the length of x. Columns in
the data.frame corresponds with the criteria listed in the details. FALSE for invalid names.

Author(s)

Pepijn de Vries

See Also

Other AmigaBasic.operations: AmigaBasic.reserved(), AmigaBasicBMAP, AmigaBasic, [.AmigaBasic(),
as.AmigaBasicBMAP(), as.AmigaBasic(), as.character(), names.AmigaBasic(), rawToAmigaBasicBMAP(),
rawToAmigaBasic(), read.AmigaBasicBMAP(), read.AmigaBasic(), write.AmigaBasic()

Examples

Not run:
These are valid names in Amiga Basic:
check.names.AmigaBasic(c("Foo", "Bar"))

Reserved words and repeated names are not allowed:

check.names.AmigaBasic(c("Print", "Foo", "Foo"))

End(Not run)

colourToAmigaRaw 29

colourToAmigaRaw Convert colours to Amiga compatible raw data or vice versa

Description

Convert colours to Amiga compatible raw data or vice versa, such that it can be used in graphical
objects from the Commodore Amiga.

Usage

colourToAmigaRaw(
x,
colour.depth = c("12 bit", "24 bit"),
n.bytes = c("2", "3")

)

amigaRawToColour(
x,
colour.depth = c("12 bit", "24 bit"),
n.bytes = c("2", "3")

)

Arguments

x In the case amigaRawToColour is called, x should be a vector of raw data. The
length of this vector should be a multiple of 2 (when n.bytes = "2") or 3 (when
n.bytes = "3"). When colourToAmigaRaw is called, x should be a character
strings representing a colour.

colour.depth A character string: "12 bit" (default) or "24 bit". The first should be used
in most cases, as old Amigas have a 12 bit colour depth.

n.bytes A character string: "2" or "3". The number of bytes that is used or should be
used to store each colour.

Details

On the original Commodore Amiga chipset, graphics used indexed palettes of 12 bit colours.
Colours are specified by their RGB (Red, Green and Blue) values, each component requiring 4 bits
(with corresponding values ranging from 0 up to 15). Data structures on the Amiga were WORD (2
bytes) aligned. Colours are therefore typically stored in either 2 bytes (skipping the first four bits)
or 3 bytes (one byte for each value).

These functions can be used to convert R colours into the closest matching Amiga colour in a
raw format, or vice versa. Note that later Amiga models with the advanced (graphics) architecture
(known as AA or AGA) allowed for 24 bit colours.

30 deltaFibonacciCompress

Value

In the case amigaRawToColour is called, a (vector of) colour character string(s) is returned. When
colourToAmigaRaw is called, raw representing the colour(s) specified in x is returned.

Author(s)

Pepijn de Vries

See Also

Other raw.operations: as.AmigaBasic(), as.raw.AmigaBasic(), packBitmap(), rawToAmigaBasicBMAP(),
rawToAmigaBasicShape(), rawToAmigaBasic(), rawToAmigaBitmapFontSet(), rawToAmigaBitmapFont(),
rawToAmigaIcon(), rawToHWSprite(), rawToIFFChunk(), rawToSysConfig(), simpleAmigaIcon()

Examples

Let's create some Amiga palettes:
colourToAmigaRaw(c("red", "navy blue", "brown", "#34AC5A"))

let's do the reverse.
this is white:
amigaRawToColour(as.raw(c(0x0f, 0xff)))

this is white specified in 3 bytes:
amigaRawToColour(as.raw(c(0xf0, 0xf0, 0xf0)), n.bytes = "3")

lower nybbles are ignored, you will get a warning when it is not zero:
amigaRawToColour(as.raw(c(0xf0, 0xf0, 0x0f)), n.bytes = "3")

deltaFibonacciCompress

(De)compress 8-bit continuous signals.

Description

Use a lossy delta-Fibonacci (de)compression to continuous 8-bit signals. This algorithm was used
to compress 8-bit audio wave data on the Amiga.

Usage

deltaFibonacciCompress(x, ...)

deltaFibonacciDecompress(x, ...)

Arguments

x A vector of raw data that needs to be (de)compressed.

... Currently ignored.

deltaFibonacciCompress 31

Details

This form of compression is lossy, meaning that information and quality will get lost. 8-bit audio is
normally stored as an 8-bit signed value representing the amplitude at specific time intervals. The
delta-Fibonacci compression instead stores the difference between two time intervals (delta) as a
4-bit index. This index in turn represents a value from the Fibonacci series (hence the algorithm
name). The compression stores small delta values accurately, but large delta values less accurately.
As each sample is stored as a 4-bit value instead of an 8-bit value, the amount of data is reduced
with almost 50% (the exact compression ratio is (4 + n)/(2n)).

The algorithm was first described by Steve Hayes and was used in 8SVX audio stored in the In-
terchange File Format (IFF). The quality loss is considerable (especially when the audio contained
many large deltas) and was even in the time it was developed (1985) not used much. The function
is provided here for the sake of completeness. The implementation here only compresses 8-bit data,
as for 16-bit data the quality loss will be more considerable.

Value

Returns a vector of the resulting (de)compressed raw data.

Author(s)

Pepijn de Vries

References

https://en.wikipedia.org/wiki/Delta_encoding

http://amigadev.elowar.com/read/ADCD_2.1/Devices_Manual_guide/node02D6.html

Examples

Not run:
Let's get an audio wave from the ProTrackR package, which we
can use in this example:
buzz <- ProTrackR::PTSample(ProTrackR::mod.intro, 1)

Let's convert it into raw data, such that we can compress it:
buzz.raw <- adfExplorer::amigaIntToRaw(ProTrackR::waveform(buzz) - 128, 8, T)

Let's compress it:
buzz.compress <- deltaFibonacciCompress(buzz.raw)

Look the new data uses less memory:
length(buzz.compress)/length(buzz.raw)

The compression was lossy, which we can examine by decompressing the
sample again:
buzz.decompress <- deltaFibonacciDecompress(buzz.compress)

And turn the raw data into numeric data:
buzz.decompress <- adfExplorer::rawToAmigaInt(buzz.decompress, 8, T)

https://en.wikipedia.org/wiki/Delta_encoding
http://amigadev.elowar.com/read/ADCD_2.1/Devices_Manual_guide/node02D6.html

32 dither

Plot the original wave in black, the decompressed wave in blue
and the error in red (difference between the original and decompressed
wave). The error is actually very small here.
plot(ProTrackR::waveform(buzz) - 128, type = "l")
lines(buzz.decompress, col = "blue")
buzz.error <- ProTrackR::waveform(buzz) - 128 - buzz.decompress
lines(buzz.error, col = "red")

this can also be visualised by plotting the orignal wave data against
the decompressed data (and observe a very good correlation):
plot(ProTrackR::waveform(buzz) - 128, buzz.decompress)

Let's do the same with a sample of a snare drum, which has larger
delta values:
snare.drum <- ProTrackR::PTSample(ProTrackR::mod.intro, 2)

Let's convert it into raw data, such that we can compress it:
snare.raw <- adfExplorer::amigaIntToRaw(ProTrackR::waveform(snare.drum) - 128, 8, T)

Let's compress it:
snare.compress <- deltaFibonacciCompress(snare.raw)

Decompress the sample:
snare.decompress <- deltaFibonacciDecompress(snare.compress)

And turn the raw data into numeric data:
snare.decompress <- adfExplorer::rawToAmigaInt(snare.decompress, 8, T)

Now if we make the same comparison as before, we note that the
error in the decompressed wave is much larger than in the previous
case (red line):
plot(ProTrackR::waveform(snare.drum) - 128, type = "l")
lines(snare.decompress, col = "blue")
snare.error <- ProTrackR::waveform(snare.drum) - 128 - snare.decompress
lines(snare.error, col = "red")

this can also be visualised by plotting the orignal wave data against
the decompressed data (and observe a nice but not perfect correlation):
plot(ProTrackR::waveform(snare.drum) - 128, snare.decompress)

End(Not run)

dither Image dithering

Description

Dither is an intentional form of noise applied to an image to avoid colour banding when reducing
the amount of colours in that image. This function applies dithering to a grDevices raster image.

dither 33

Usage

dither(x, method, ...)

S3 method for class 'raster'
dither(
x,
method = c("none", "floyd-steinberg", "JJN", "stucki", "atkinson", "burkse",
"sierra", "two-row-sierra", "sierra-lite"),

palette,
mode = c("none", "HAM6", "HAM8"),
...

)

S3 method for class 'matrix'
dither(
x,
method = c("none", "floyd-steinberg", "JJN", "stucki", "atkinson", "burkse",
"sierra", "two-row-sierra", "sierra-lite"),

palette,
mode = c("none", "HAM6", "HAM8"),
...

)

Arguments

x Original image data that needs to be dithered. Should be a raster object (as.raster),
or a matrix of character string representing colours.

method A character string indicating which dithering method should be applied. See
usage section for all possible options (Note that the "JJN" is the Jarvis, Judice,
and Ninke algorithm). Default is "none", meaning that no dithering is applied.

... Currently ignored.

palette A palette to which the image should be dithered. It should be a vector of
character strings representing colours.

mode A character string indicating whether a special Amiga display mode should be
used when dithering. By default ‘none’ is used (no special mode). In addition,
‘HAM6’ and ‘HAM8’ are supported. See rasterToBitmap for more details.

Details

The approaches implemented here all use error diffusion to achieve dithering. Each pixel is scanned
(from top to bottom, from left to right), where the actual colour is sampled and compared with the
closest matching colour in the palette. The error (the differences between the actual and used colour)
is distributed over the surrounding pixels. The only difference between the methods implemented
here is the way the error is distributed. The algorithm itself is identical. For more details consult
the listed references.

Which method results in the best quality image will depend on the original image and the palette
colours used for dithering, but is also a matter of taste. Note that the dithering algorithm is relatively

34 dither

slow and is provided in this package for your convenience. As it is not in the main scope of this
package you should use dedicated software for faster/better results.

Value

Returns a matrix with the same dimensions as x containing numeric index values. The correspond-
ing palette is returned as attribute, as well as the index value for the fully transparent colour in the
palette.

Author(s)

Pepijn de Vries

References

R.W. Floyd, L. Steinberg, An adaptive algorithm for spatial grey scale. Proceedings of the Society
of Information Display 17, 75-77 (1976).

J. F. Jarvis, C. N. Judice, and W. H. Ninke, A survey of techniques for the display of continuous tone
pictures on bilevel displays. Computer Graphics and Image Processing, 5:1:13-40 (1976).

https://en.wikipedia.org/wiki/Floyd-Steinberg_dithering

https://tannerhelland.com/4660/dithering-eleven-algorithms-source-code/

See Also

Other colour.quantisation.operations: index.colours()

Other raster.operations: AmigaBitmapFont, as.raster.AmigaBasicShape(), bitmapToRaster(),
index.colours(), rasterToAmigaBasicShape(), rasterToAmigaBitmapFont(), rasterToBitmap(),
rasterToHWSprite(), rasterToIFF()

Examples

Not run:
first: Let's make a raster out of the 'volcano' data, which we can use in the example:
volcano.raster <- as.raster(t(matrix(terrain.colors(1 + diff(range(volcano)))[volcano -

min(volcano) + 1], nrow(volcano))))

let's dither the image, using a predefined two colour palette:
volcano.dither <- dither(volcano.raster,

method = "floyd-steinberg",
palette = c("yellow", "green"))

Convert the indices back into a raster object, such that we can plot it:
volcano.dither <- as.raster(apply(volcano.dither, 2, function(x) c("yellow", "green")[x]))
par(mfcol = c(1, 2))
plot(volcano.raster, interpolate = F)
plot(volcano.dither, interpolate = F)

results will get better when a better matching colour palette is used.
for that purpose use the function 'index.colours'.

https://en.wikipedia.org/wiki/Floyd-Steinberg_dithering
https://tannerhelland.com/4660/dithering-eleven-algorithms-source-code/

fontName 35

End(Not run)

fontName Extract or replace a font name

Description

Extract or replace a font name from an AmigaBitmapFontSet object.

Usage

fontName(x)

fontName(x) <- value

Arguments

x An AmigaBitmapFontSet for which the font name needs to be changed.

value A character string specifying the name you wish to use for the font.

Details

The name of a font is embeded at multiple locations of an AmigaBitmapFontSet object. This
function can be used to extract or replace the font name correctly. This is also the name that will be
used when writing the font to a file with write.AmigaBitmapFontSet.

Value

Returns the font name. In case of the replace function, a copy of x is returned with the name
replaced by ’value’.

Author(s)

Pepijn de Vries

See Also

Other AmigaBitmapFont.operations: AmigaBitmapFont, availableFontSizes(), c(), font_example,
getAmigaBitmapFont(), rasterToAmigaBitmapFont(), rawToAmigaBitmapFontSet(), rawToAmigaBitmapFont(),
read.AmigaBitmapFontSet(), read.AmigaBitmapFont(), write.AmigaBitmapFont()

36 font_example

Examples

Not run:
data(font_example)

show the name of the example font:
fontName(font_example)

This is how you change the name into "foo"
fontName(font_example) <- "foo"

see it worked:
fontName(font_example)

End(Not run)

font_example An example object for the AmigaBitmapFontSet class

Description

An example object for the AmigaBitmapFontSet class used in examples throughout this pack-
age. It also contains a nested AmigaBitmapFont class objects, which can be obtain by using
getAmigaBitmapFont(font_example,9).

Format

font_example is an AmigaBitmapFontSet object. For details see the object class documentation.

Details

The font_example contains a font that was designed as an example for this package. It holds
bitmap glyphs for 8 and 9 pixels tall characters.

See Also

Other AmigaBitmapFont.operations: AmigaBitmapFont, availableFontSizes(), c(), fontName(),
getAmigaBitmapFont(), rasterToAmigaBitmapFont(), rawToAmigaBitmapFontSet(), rawToAmigaBitmapFont(),
read.AmigaBitmapFontSet(), read.AmigaBitmapFont(), write.AmigaBitmapFont()

Examples

data("font_example")

getAmigaBitmapFont 37

getAmigaBitmapFont Extract a specific AmigaBitmapFont from a AmigaBitmapFontSet

Description

Extract a specific AmigaBitmapFont from a AmigaBitmapFontSet.

Usage

getAmigaBitmapFont(x, size)

Arguments

x An AmigaBitmapFontSet object, from which the specific AmigaBitmapFont
object needs to be extracted.

size A single numeric value specifying the desired font size in pixels. Use availableFontSizes
to get available sizes.

Details

An AmigaBitmapFontSet object can hold one or more bitmaps for specific font sizes (heights). Use
this function to obtain such a specific AmigaBitmapFont.

Value

Returns an AmigaBitmapFont of the requested size. An error is thrown when the requested size is
not available.

Author(s)

Pepijn de Vries

See Also

Other AmigaBitmapFont.operations: AmigaBitmapFont, availableFontSizes(), c(), fontName(),
font_example, rasterToAmigaBitmapFont(), rawToAmigaBitmapFontSet(), rawToAmigaBitmapFont(),
read.AmigaBitmapFontSet(), read.AmigaBitmapFont(), write.AmigaBitmapFont()

Examples

Not run:
data(font_example)

get the font object for the first available size:
font <- getAmigaBitmapFont(font_example,

availableFontSizes(font_example)[1])

End(Not run)

38 getIFFChunk

getIFFChunk Get a specific IFFChunk nested inside other IFFChunks

Description

IFFChunks can be nested in a tree-like structure. Use this method to get a specific chunk with a
specific label.

Usage

S4 method for signature 'IFFChunk,character,integer'
getIFFChunk(x, chunk.path, chunk.number)

S4 method for signature 'IFFChunk,character,missing'
getIFFChunk(x, chunk.path, chunk.number)

S4 replacement method for signature 'IFFChunk,character,missing,IFFChunk'
getIFFChunk(x, chunk.path, chunk.number = NULL) <- value

S4 replacement method for signature 'IFFChunk,character,integer,IFFChunk'
getIFFChunk(x, chunk.path, chunk.number = NULL) <- value

Arguments

x An IFFChunk object from which the nested IFFChunk should be extracted an
returned.

chunk.path A vector of 4 character long strings of IFF chunk labels, specifying the
path of the target IFF chunk. For example: c("ILBM","BODY") means, get the
"BODY" chunk from inside the "ILBM" chunk.

chunk.number A vector of the same length as chunk.path, with integer index numbers.
Sometimes a chunk can contain a list of chunks with the same label. With this
argument you can specify which element should be returned. By default (when
missing), the first element is always returned.

value An IFFChunk with which the target chunk should be replaced. Make sure that
value is of the same chunk.type as the last chunk specified in the chunk.path.

Details

IFFChunk objects have 4 character identifiers, indicating what type of chunk you are dealing
with. These chunks can be nested inside of each other. Use this method to extract specific chunks
by referring to there respective identifiers. The identifiers are shown when calling print on an
IFFChunk. If a specified path doesn’t exist, this method throws a ‘subscript out of range’ error.

Value

Returns an IFFChunk object nested inside x at the specified path. Or in case of the replace method
the original chunk x is returned with the target chunk replaced by value.

hardwareSprite-class 39

Author(s)

Pepijn de Vries

See Also

Other iff.operations: IFFChunk-class, WaveToIFF(), as.raster.AmigaBasicShape(), interpretIFFChunk(),
rasterToIFF(), rawToIFFChunk(), read.iff(), write.iff()

Examples

Not run:
load an IFF file
example.iff <- read.iff(system.file("ilbm8lores.iff", package = "AmigaFFH"))

Get the BMHD (bitmap header) from the ILBM (interleaved bitmap) chunk:
bmhd <- getIFFChunk(example.iff, c("ILBM", "BMHD"))

This is essentially doing the same thing, but we now explicitly
tell the method to get the first element for each specified label:
bmhd <- getIFFChunk(example.iff, c("ILBM", "BMHD"), c(1L, 1L))

Let's modify the bitmap header and replace it in the parent IFF chunk.
bmhd.itpt <- interpretIFFChunk(bmhd)

Let's disable the masking, the bitmap will no longer be transparent:
bmhd.itpt$Masking <- "mskNone"
bmhd <- IFFChunk(bmhd.itpt)

Now replace the header from the original iff with the modified header:
getIFFChunk(example.iff, c("ILBM", "BMHD")) <- bmhd

End(Not run)

hardwareSprite-class The hardwareSprite class

Description

An S4 class object that represent graphical objects known as hardware sprites on the Commodore
Amiga.

Details

Amiga hardware supported sprites, which are graphical objects that could be moved around the
display and independently from each other. Basic sprites were 16 pixels wide and any number of
pixels high and were composed of four colours, of which one is transparent.

More complex sprites could be formed by linking separate sprites together. That way, sprites could
become wider, or be composed of more colours. Such extended sprites are currently not supported
by this package.

40 hardwareSprite-class

A well known example of hardware sprite on the Commodore Amiga is the mouse pointer.

This object simply holds the basic information belonging to hardware sprite. Use as.raster to
convert it to a raster which is a more useful graphical element in R.

Slots

VStart The vertical starting position of a sprite.

HStart The horizontal starting position of a sprite.

VStop The vertical stopping position of a sprite. The height of a sprite should be given by VStart
- VStop.

control.bits 8 logical values used for extending sprites. The values are stored in this objects
but extending sprites is not (yet) supported.

bitmap Interleaved bitmap data containing information on the pixel colour numbers of the sprite.

colours A vector of the 3 colours used for the sprite.

end.of.data Sprite data can be followed by another sprite. It is terminated with two WORDS
equalling zero (raw(4)). Repeated sprite data is currently not supported.

Author(s)

Pepijn de Vries

References

http://amigadev.elowar.com/read/ADCD_2.1/Hardware_Manual_guide/node00AE.html

Examples

This generates a sprite of a single line (16x1 pixels) with an empty bitmap:
new("hardwareSprite")

This generates a sprite of a single line (16x1 pixels) where
the bitmap contains some coloured pixels:
new("hardwareSprite", bitmap = as.raw(c(0x01,0x02,0x03,0x04)))

This generates a sprite of 16x16 pixels:
new("hardwareSprite",

VStop = 16,
bitmap = as.raw(sample.int(255, 64, replace = TRUE)))

http://amigadev.elowar.com/read/ADCD_2.1/Hardware_Manual_guide/node00AE.html

IFFChunk-class 41

IFFChunk-class A class structure to represent IFF files

Description

An S4 class structure to represent data stored in the Interchange File Format (IFF).

Details

The Interchange File Format (IFF) was introduced in 1985 by Electronic Arts. This format stores
files in standardised modular objects, called ‘chunks’. At the start of each chunk it is specified what
type of data can be expected and what the size of this data is. This was a very forward thinking way
of storing data, similar structures are still used in modern file formats (such as PNG images and
XML files).

Although the IFF format is still in use, and new standardised chunk types can still be registered, this
package will focus on the older chunk types that were primarily used on the Commodore Amiga
(OS <= 3.0). IFF files could contain any kind of information. It could contain bitmap images, but
also audio clips or (formatted) texts.

The IFFChunk class is designed such that it theoretically can hold any type of IFF data. This package
will mostly focus on the early IFF file types (i.e., IFF chunks as originally registered by Electronic
Arts). IFF files are read by this package in a none lossy way (read.iff), such that all information
is preserved (even if it is of an unknown type, as long as the chunk identifier is 4 characters long).

This means that the object needs to be interpreted in order to make sense out of it (interpretIFFChunk).
This interpretation returns simplified interpretations of class IFF.ANY when it is supported (see
IFFChunk-method for supported chunk types). Note that in the interpretation process (meta-)information
may get lost. converting IFF.ANY objects back into IFFChunk objects (if possible) could therefore
result in an object that is different from then one stored in the original file and could even destroy
the correct interpretation of IFF objects. IFF files should thus be handled with care.

Slots

chunk.type A four character long code reflecting the type of information represented by this
chunk.

chunk.data A list that holds either one or more valid IFFChunks or a single vector of raw data.
This data can only be interpreted in context of the specified type or in some cases information
from other IFFChunks.

Author(s)

Pepijn de Vries

References

https://wiki.amigaos.net/wiki/IFF_Standard

https://wiki.amigaos.net/wiki/IFF_FORM_and_Chunk_Registry

https://en.wikipedia.org/wiki/Interchange_File_Format

https://wiki.amigaos.net/wiki/IFF_Standard
https://wiki.amigaos.net/wiki/IFF_FORM_and_Chunk_Registry
https://en.wikipedia.org/wiki/Interchange_File_Format

42 IFFChunk-method

See Also

Other iff.operations: WaveToIFF(), as.raster.AmigaBasicShape(), getIFFChunk(), interpretIFFChunk(),
rasterToIFF(), rawToIFFChunk(), read.iff(), write.iff()

Examples

Not run:
load an IFF file
example.iff <- read.iff(system.file("ilbm8lores.iff", package = "AmigaFFH"))

'example.iff' is of class IFFChunk:
class(example.iff)

let's plot it:
plot(example.iff)

The default constructor will create an empty FORM:
new("IFFChunk")

The constructor can also be used to create simple chunks:
new("IFFChunk",

chunk.type = "TEXT",
chunk.data = list(charToRaw("A simple chunk")))

End(Not run)

IFFChunk-method Coerce to and create IFFChunk objects

Description

Convert IFF.ANY objects (created with interpretIFFChunk) into IFFChunk objects. A basic
IFFChunk can also be created with this method by providing the chunk type name.

Usage

IFFChunk(x, ...)

S3 method for class 'character'
IFFChunk(x, ...)

S3 method for class 'IFF.FORM'
IFFChunk(x, ...)

S3 method for class 'IFF.BODY'
IFFChunk(x, ...)

S3 method for class 'IFF.ANNO'

IFFChunk-method 43

IFFChunk(x, ...)

S3 method for class 'IFF.AUTH'
IFFChunk(x, ...)

S3 method for class 'IFF.CHRS'
IFFChunk(x, ...)

S3 method for class 'IFF.NAME'
IFFChunk(x, ...)

S3 method for class 'IFF.TEXT'
IFFChunk(x, ...)

S3 method for class 'IFF.copyright'
IFFChunk(x, ...)

S3 method for class 'IFF.CHAN'
IFFChunk(x, ...)

S3 method for class 'IFF.VHDR'
IFFChunk(x, ...)

S3 method for class 'IFF.8SVX'
IFFChunk(x, ...)

S3 method for class 'IFF.ILBM'
IFFChunk(x, ...)

S3 method for class 'IFF.CMAP'
IFFChunk(x, ...)

S3 method for class 'IFF.BMHD'
IFFChunk(x, ...)

S3 method for class 'IFF.CAMG'
IFFChunk(x, ...)

S3 method for class 'IFF.CRNG'
IFFChunk(x, ...)

S3 method for class 'IFF.ANIM'
IFFChunk(x, ...)

S3 method for class 'IFF.ANHD'
IFFChunk(x, ...)

S3 method for class 'IFF.DLTA'

44 IFFChunk-method

IFFChunk(x, ...)

S3 method for class 'IFF.DPAN'
IFFChunk(x, ...)

Arguments

x An S3 class IFF.ANY object that needs to be coerced into an IFFChunk-class
object. IFF.ANY objects are created with the interpretIFFChunk method. x
can also be a character string of a IFF chunk type (e.g., "FORM" or "BMHD"). In
that case an IFFChunk object of that type is created with some basic content.

... Arguments passed onto methods underlying the interpretation of the specific
IFF chunks. Allowed arguments depend on the specific type of IFF chunk that
x represents.

Details

IFF data is stored in a IFFChunk-class object when read from an IFF file (read.iff). These ob-
jects reflect the file structure well, but the data is stored as raw information. IFF files can contain
a wide variety of information types, ranging from bitmap images to audio clips. The raw informa-
tion stored in IFFChunk objects can be interpreted into more meaningful representations that can
be handled in R. This is achieved with the interpretIFFChunk method, which returns IFF.ANY
objects.

These IFF.ANY objects are a less strict representation of the IFF Chunk, but are easier to handle in R.
The interpretation method is lossy and may not preserve all information in the IFF.ANY object. The
IFFChunk-method can coerce IFF.ANY back to the more strictly defined IFFChunk-class objects.
Be careful with conversions between IFFChunk-class and IFF.ANY objects and vice versa, as
information may get lost.

More detailed information about IFF chunks can be found in the IFF chunk registry (see references).

• IFF.FORM represents a FORM chunk, which is a container that can hold any kind of chunk.
When interpreted, it is represented as a list, where each element is an interpreted chunk
nested inside the FORM.

• IFF.BODY represents the actual data in an IFF file. However, without context this chunk cannot
be interpreted and is therefore interpreted as a vector of raw data.

• IFF.ANIM represents an animation (ANIM) chunk. When interpreted, it will return a list
where each element is an animation frame represented as an IFF.ILBM object. Each animation
frame should be nested inside an ILBM chunk nested inside a FORM chunk, nested inside an
ANIM chunk.

– IFF.ANHD represents an ANimation HeaDer (ANHD) chunk. When interpreted, it returns
a named list containing the following information:

* operation is a character string indicating how the bitmap data for the animation
frame is encoded. Can be one of the following: "standard", "XOR", "LongDeltaMode",
"ShortDeltaMode", "GeneralDeltamode", "ByteVerticalCompression", "StereoOp5",
or "ShortLongVerticalDeltaMode". Currently, only the ByteVerticalCompression
is implemented in this package.

* mask is a vector of 8 logical values. It is currently ignored.

IFFChunk-method 45

* w and h are positive numeric values, specifying the width and height of the frame
(should be identical for all frames).

* x and y are numeric values, specifying the plotting position for the frame.

* abstime is a positive numeric value - currently unused - used for timing the frame
relative to the time the first frame was displayed. In jiffies (1/60 sec).

* reltime is a positive numeric value for timing the frame relative to time previous
frame was displayed. In jiffies (1/60 sec).

* interleave is currently unused. It should be set to 0.

* pad0 is a padding byte (raw) for future use.

* flags is a vector of 32 logical values. They contain information on how the
bitmap data is stored.

* pad1 are 16 padding bytes (raw) for future use.
– IFF.DPAN represents an DPaint ANimation (DPAN) chunk. Some software will require

this chunk to correctly derive the total number of frames in the animation. When inter-
preted, it will return a named list with the following elements:

* version a numeric version number.

* nframes a positive numeric value, indicating the number of frames in the animation.

* flags a vector of 32 logical values. Ignored in this package as it was intended for
future implementations.

– IFF.DLTA represents a delta mode data chunk (DLTA). The first animation frame is stored
as a normal InterLeaved BitMap (ILBM) image as described below. The following frames
only store differences in bitmap data compared to the previous frames but is not in-
terleaved. They are thus incorrectly embedded in an ILBM chunk (but is kept so for
backward compatibility). When interpreted, a grDevices raster object is returned only
showing the differences. It is not very meaningful to interpret these chunks on their own,
but rather the entire parent ANIM chunk.

• IFF.ILBM represents InterLeaved BitMap (ILBM) chunks. It is interpreted here as a raster
image (see as.raster). ILBM chunks are usually nested inside a FORM container.

– IFF.BMHD represents the header chunk of a bitmap (BMHD), and should always be present
(nested inside) an ILBM chunk. It is interpreted as a named list containing the following
elements:

* w and h are positive numeric values specifying the bitmap width and height in pix-
els. Note that the width can be any positive whole number, whereas the bitmap data
always has a width divisible by 16.

* x and y are numeric values specifying the plotting position relative to the top left
position of the screen. Although required in the bitmap header. It is ignored in the
interpretation of bitmap images.

* nPlanes is a positive value indicating the number of bitplanes in the image. The
number of colours in an image can be calculated as 2^nPlanes.

* Masking indicates whether there are bitplanes that should be masked (i.e. are treated
as transparent). It is a character string equalling any of the following: "mskNone",
"mskHasMask", "mskHasTransparentColour", "mskLasso" or "mskUnknown". Only
the first (no transparency) and third (one of the colours should be treated as trans-
parent) id is currently interpreted correctly. The others are ignored. "mskUnknown"
means that an undocumented mask is applied to the image.

46 IFFChunk-method

* Compression indicates whether the bitmap data is compressed. It is a character
string that can equal any of the following: "cmpNone", "cmpByteRun1" or "cmpUnknown".
The latter means an undocumented form of compression is applied and is currently
ignored. In most cases bitmap data is compressed with the cmpByteRun1 algorithm
(packBitmap). In some cases, bitmap data is not compressed (cmpNone).

* pad is a raw byte that is only used to align data. It is ignored in the interpretation.

* transparentColour is a numeric value that indicates which colour number in the
palette should be treated as fully transparent (when Masking equals "mskHasTransparentColour").

* xAspect and yAspect or positive numeric values that indicate the aspect ratio of
the pixels in the image. Amiga screen modes allowed for some extreme pixel aspect
ratios. These values are used to stretch the image to their intended display mode.

* pageWidth and pageHeight are positive numeric values indicating the size of the
screen in which the image should be displayed. They are ignored in the interpretation
of the image.

– IFF.CMAP represents the colour map (CMAP) or palette of a bitmap image. Although
common, the chunk is optional and can be omitted from the parent ILBM chunk. It is
interpreted as a vector of colours (i.e., a character string formatted as ‘#RRGGBB’ or
named colours such as ‘blue’).

– IFF.CAMG represents a chunk with information with respect to the display mode in which
the bitmap image should be displayed. This information can be used to determine the
correct pixel aspect ratio, or is sometimes required to correctly interpret the bitmap in-
formation. The IFF.CAMG chunk is interpreted as a named list containing the following
elements:

* monitor: a factor indicating the hardware monitor on which the image was created
and should be displayed (see amiga_monitors).

* display.mode: a factor indicating the display mode in which the image should be
displayed (see amiga_display_modes).

– IFF.CRNG is an optional chunk nested in an ILBM chunk. It represents a ‘colour range’
and is used to cycle through colours in the bitmap’s palette in order to achieve animation
effects. It is interpreted as a named list with the following elements. This chunk is
currently not used with the interpretation of ILBM images.

* padding are two raw padding bytes and are ignored when interpreted.

* rate is a numeric value specifying the rate at which the colours are cycled. The rate
is in steps per second.

* flags is a flag that indicates how colours should be cycled. It is a character string
that can equal any of the following: "RNG_OFF", "RNG_ACTIVE", "RNG_REVERSE" or
"RNG_UNKNOWN". When equal to the first, colours are not cycled. When equal to the
second, colours are cycled. When equal to the third, colours are cycled in reverse
direction. When equal to the latter, an undocumented form of cycling is applied.

* low and high are numeric indices of colours between which should be cycled. Only
colour from index low up to index high are affected.

• IFF.8SVX represents 8-bit sampled voice chunks (8SVX). The original Amiga supported 8-bit
audio which could be stored using the IFF. 8SVX chunks can contain separate audio samples
for each octave. 8SVX chunks are usually stored inside a FORM container. Its body chunk
contains 8-bit PCM wave data that could be compressed. When the 8SVX chunk is interpreted
with this package, a list is returned where each element represents an octave given as a Wave

IFFChunk-method 47

object. Possible chunks nested in 8SVX chunks and currently supported by this package are
as follows.

– IFF.VHDR represents voice header chunks (VHDR). It contains (meta-)information about
the audio stored in the body of the parent 8SVX chunk. When interpreted, a named list
is returned with the following elements:

* oneShotHiSamples is a numeric value indicating how many samples there are in the
audio wave of the first octave in the file, that should not be looped (repeated).

* repeatHiSamples is a numeric value indicating how many samples there are in the
audio wave of the first octave in the file, that should be looped (repeated).

* samplesPerHiCycle is a numeric value specifying the number of samples per repeat
cycle in the first octave, or 0 when unknown. The number of repeatHiSamples
should be an exact multiple of samplesPerHiCycle.

* samplesPerSec is a numeric value specifying the data sampling rate.

* ctOctave a positive whole numeric value indicating how many octaves are included.
In 8SVX files the audio wave is resampled for each octave. The wave data in the body
starts with the audio sample in the highest octave (least number of samples). The data
is then followed by each subsequent octave, where the number of samples increase
by a factor of 2 for each octave.

* sCompression is a character string indicating whether and how the wave data in the
body is compressed. It can have one of the following values: "sCmpNone" (no com-
pression), "sCmpFibDelta" (deltaFibonacciCompression is applied), "sCmpUnknown"
(an undocumented and unknown form of compression is applied).

* volume is a numeric value between 0 (minimum) and 0x10000 (maximum) playback
volume.

– IFF.CHAN represents the channel chunk (CHAN). When interpreted it returns a named
list with 1 named element: "channel". It’s value can be one of the following character
strings "LEFT", "RIGHT" or "STEREO". This indicates for how many (one or two) audio
channels data is available in the body of the parent 8SVX chunk. It also indicates two
which channels the audio should be played back.

• IFF.ANNO, IFF.AUTH, IFF.CHRS, IFF.NAME, IFF.TEXT and IFF.copyright are all unformat-
ted text chunks that can be included optionally in any of the chunk types. Respectively, they
represent an annotation, the author’s name, a generic character string, the name of the work,
generic unformatted text, and copyright text. They are interpreted as a character string.

Value

Returns an IFFChunk-class representation of x.

References

https://wiki.amigaos.net/wiki/IFF_FORM_and_Chunk_Registry

Examples

Not run:
load an IFF file
example.iff <- read.iff(system.file("ilbm8lores.iff", package = "AmigaFFH"))

https://wiki.amigaos.net/wiki/IFF_FORM_and_Chunk_Registry

48 ilbm8lores.iff

interpret the IFF file (in some cases information
will get lost in this step):
example.itpt <- interpretIFFChunk(example.iff)

now coerce back to a formal IFFChunk class object.
Only information in the interpreted object is used
The coerced object may therefore depart from the
original read from the file.
example.coerce <- IFFChunk(example.itpt)

and indeed the objects are not identical, as shown below.
In this case the difference is not disastrous, the order
of the colours in the palette have shifted. But be careful
with switching between formal IFFChunk objects and
interpreted IFF.ANY objects.
identical(example.iff, example.coerce)

It is also possible to create simple IFFChunk objects
by providing the desired chunk type identifier as a
character string.

This creates a basic bitmap header:
bmhd <- IFFChunk("BMHD")

This creates a basic colour palette:
cmap <- IFFChunk("CMAP")

End(Not run)

ilbm8lores.iff An example file of a bitmap image stored in the Interchange File For-
mat

Description

This file is provided to demonstrate the structure of an Interchange File Format and is used in several
examples throughout this package.

Format

See IFFChunk-class and references for more information about the Interchange File Format.

Details

The Interchange File Format stores information compartmentally in separate containers called ‘chunks’.
This file demonstrates how a bitmap image is stored in this format. In addition to the raw bitmap
data, the file also contains meta-information on the bitmap dimensions, its colour palette and the
display mode that should be used on an Amiga. See also interpretIFFChunk, IFFChunk-class
and the example for bitmapToRaster.

index.colours 49

References

https://en.wikipedia.org/wiki/Interchange_File_Format

https://wiki.amigaos.net/wiki/A_Quick_Introduction_to_IFF

Examples

Not run:
filename <- system.file("ilbm8lores.iff", package = "AmigaFFH")
example.iff <- read.iff(filename)

show the structure of the IFF file:
print(example.iff)

End(Not run)

index.colours Quantisation of colours and indexing a grDevices raster image

Description

Converts an image represented by a grDevices raster object into a matrix containing numeric
indices of a quantised colour palette.

Usage

index.colours(
x,
length.out = 8,
palette = NULL,
background = "#FFFFFF",
dither = c("none", "floyd-steinberg", "JJN", "stucki", "atkinson", "burkse",
"sierra", "two-row-sierra", "sierra-lite"),

colour.depth = c("12 bit", "24 bit"),
...

)

Arguments

x A raster object (as.raster), or a matrix containing character strings repre-
senting colours. x can also be a list of such matrices or rasters. All elements of
this list should have identical dimensions. An overall palette will be generated
for elements in the list.

length.out A numeric value indicating the number of desired colours in the indexed palette.
It can also be a character string indicating which special Amiga display mode
should be used when indexing colours. ‘HAM6’ and ‘HAM8’ are supported. See
rasterToBitmap for more details on these special modes.

https://en.wikipedia.org/wiki/Interchange_File_Format
https://wiki.amigaos.net/wiki/A_Quick_Introduction_to_IFF

50 index.colours

palette A vector of no more than length.out colours, to be used for the bitmap image.
When missing or set to NULL, a palette will be generated based on the provided
colours in raster x. In that case, kmeans is used on the hue, saturation, brightness
and alpha values of the colours in x for clustering the colours. The cluster centres
will be used as palette colours.

background On the Amiga, indexed images could not be semi-transparent. Only a single
colour could be designated as being fully transparent. The ‘background’ argu-
ment should contain a background colour with which semi-transparent colours
should be mixed, before colour quantisation. It is white by default.

dither Dither the output image using the algorithm specified here. See the usage section
for possible options. By default no dithering ("none") is applied. See dither
for more details.

colour.depth A character string indicating the colour depth to be used. Can be either "12
bit" (default, standard on an Amiga with original chipset), or "24 bit".
This argument is overruled when length.out is set to “HAM6” or “HAM8”. In that
case the colour depth linked to that special mode is used (12 bit for HAM6, 24
bit for HAM8).

... Arguments that are passed onto kmeans (see palette argument).

Details

Determines the optimal limited palette by clustering colours in an image with kmeans. The result
of the optimisation routine will depend on the randomly chosen cluster centres by this algorithm.
This means that the result may slightly differ for each call to this function. If you want reproducible
results, you may want to reset the random seed (set.seed) before each call to this function.

Value

Returns a matrix with the same dimensions as x containing numeric index values. The correspond-
ing palette is returned as attribute, as well as the index value for the fully transparent colour in the
palette. When x is a list a list of matrices is returned.

Author(s)

Pepijn de Vries

See Also

Other colour.quantisation.operations: dither()

Other raster.operations: AmigaBitmapFont, as.raster.AmigaBasicShape(), bitmapToRaster(),
dither(), rasterToAmigaBasicShape(), rasterToAmigaBitmapFont(), rasterToBitmap(), rasterToHWSprite(),
rasterToIFF()

Examples

Not run:
first: Let's make a raster out of the 'volcano' data, which we can use in the example:
volcano.raster <- as.raster(t(matrix(terrain.colors(1 + diff(range(volcano)))[volcano -

interpretIFFChunk 51

min(volcano) + 1], nrow(volcano))))

This will create an image of the original raster using an indexed palette:
volcano.index <- index.colours(volcano.raster)

The index values can be converted back into colours, using the palette:
volcano.index <- as.raster(apply(volcano.index, 2,

function(x) attributes(volcano.index)$palette[x]))

Create an indexed image using dithering
volcano.dith <- index.colours(volcano.raster, dither = "floyd-steinberg")
volcano.dith <- as.raster(apply(volcano.dith, 2,

function(x) attributes(volcano.dith)$palette[x]))

plot the images side by side for comparison
par(mfcol = c(1, 3))
plot(volcano.raster, interpolate = F)
plot(volcano.index, interpolate = F)
plot(volcano.dith, interpolate = F)

End(Not run)

interpretIFFChunk Interpret an IFFChunk object

Description

IFFChunks represent the structure of the Interchange File Format well, but the iformation is stored
as raw data. This method tries to interpret and translate the information into a more comprehensive
format.

Usage

S4 method for signature 'IFFChunk'
interpretIFFChunk(x, ...)

Arguments

x An IFFChunk object which needs to be interpreted.
... Currently ignored.

Details

Interchange File Format chunks can hold any kind of information (images, audio, (formatted) text,
etc.). This method will try to convert this information into something useful. Information may
get lost in the translation, so be careful when converting back to an IFFChunk-class object using
IFFChunk-method.

An error is thrown when the IFFChunk object is currently not interpretable by this package. See
IFFChunk-method for an overview of currently supported IFF chunks. This list may increase while
this package matures.

52 names.AmigaBasic

Value

If x is interpretable by this package an S3 class object of IFF.ANY is returned. The content of the
returned object will depend on the type of IFFChunk provided for x. The result can for instance be
a raster image (as.raster), a list of audio Waves, a character string or a named list.

Author(s)

Pepijn de Vries

See Also

Other iff.operations: IFFChunk-class, WaveToIFF(), as.raster.AmigaBasicShape(), getIFFChunk(),
rasterToIFF(), rawToIFFChunk(), read.iff(), write.iff()

Examples

Not run:
load an IFF file
example.iff <- read.iff(system.file("ilbm8lores.iff", package = "AmigaFFH"))

in this case, the file is a FORM container with a bitmap image, and a
list with a raster object is returned when interpreted:
example.itpt <- interpretIFFChunk(example.iff)
class(example.itpt)
typeof(example.itpt)
class(example.itpt[[1]])

Let's extraxt the bitmap header from the main chunk:
bmhd <- getIFFChunk(example.iff, c("ILBM", "BMHD"))

When interpreted, a named list is returned with (meta-)information
on the bitmap image:
bmhd.itpt <- interpretIFFChunk(bmhd)
class(bmhd.itpt)
typeof(bmhd.itpt)
print(bmhd.itpt)

End(Not run)

names.AmigaBasic Extract or replace variable and label names from Amiga Basic scripts

Description

In the binary Amiga Basic files, names for labels and variables in the code are stored at the end of
the file. In the encoded there is only a pointer to the index of the name in that list. Use this function
to list, select or replace names included in the code

names.AmigaBasic 53

Usage

S3 method for class 'AmigaBasic'
names(x)

S3 replacement method for class 'AmigaBasic'
names(x) <- value

Arguments

x An AmigaBasic-class object for which to obtain or change variable and/or label
names

value A (vector of) character string of desired replacement variable/label names.

Details

Make sure that variable and label names are valid for the basic script (see check.names.AmigaBasic).

Value

A vector of character strings with label and variable names in the basic script. In case of the
replacement method a AmigaBasic-class with replaced names is returned.

Author(s)

Pepijn de Vries

See Also

Other AmigaBasic.operations: AmigaBasic.reserved(), AmigaBasicBMAP, AmigaBasic, [.AmigaBasic(),
as.AmigaBasicBMAP(), as.AmigaBasic(), as.character(), check.names.AmigaBasic(), rawToAmigaBasicBMAP(),
rawToAmigaBasic(), read.AmigaBasicBMAP(), read.AmigaBasic(), write.AmigaBasic()

Examples

Let's create some Basic code with labels and variables:
bas <- as.AmigaBasic(c(

"REM - This will loop forever...",
"my.label:",
" my.variable% = 0",
" WHILE my.variable% < 10",
" my.variable% = my.variable% + 1",
" WEND",
" GOTO my.label"

))

list the names in the script above:
names(bas)

change the first name:
names(bas)[1] <- "better.label"

54 packBitmap

packBitmap A routine to (un)pack bitmap data

Description

A very simplistic lossless routine to (un)pack repetitive bitmap data. Often used in InterLeaved
BitMap (ILBM) images in IFF containers (IFFChunk).

Usage

packBitmap(x)

unPackBitmap(x)

Arguments

x raw data, usually representing a (packed) bitmap.

Details

InterLeaved BitMap (ILBM) images on the Amiga often use a packing algorithm referred to as
‘ByteRun1’. This routine was introduced first on the Macintosh where it was called PackBits. It is
a form of run-length encoding and is very simple: when a specific byte is repeated in a bitmap, it is
replaced by a (signed negative) byte telling how many times the following byte should be repeated.
When a series of bytes are not repetitive, it is preceded by a (signed positive) byte telling how long
the non repetitive part is.

Not very complicated, but for most images some bytes can be shaved off the file. This was very
useful when everything had to be stored on 880 kilobyte floppy disks with little CPU time to spare.
Note that the file size can also increase for (noisy) images.

This packing routine will pack the entire bitmap (x) at once. The IFF file format requires packing
of bitmap data per scanline. This is done automatically by the rasterToIFF function, which calls
this packing routine per scanline.

Value

Returns packed or unpacked raw data, depending on whether packBitmap or unPackBitmap was
called.

Author(s)

Pepijn de Vries

References

http://amigadev.elowar.com/read/ADCD_2.1/Devices_Manual_guide/node01C0.html

https://en.wikipedia.org/wiki/PackBits

http://amigadev.elowar.com/read/ADCD_2.1/Devices_Manual_guide/node01C0.html
https://en.wikipedia.org/wiki/PackBits

play 55

See Also

Other raw.operations: as.AmigaBasic(), as.raw.AmigaBasic(), colourToAmigaRaw(), rawToAmigaBasicBMAP(),
rawToAmigaBasicShape(), rawToAmigaBasic(), rawToAmigaBitmapFontSet(), rawToAmigaBitmapFont(),
rawToAmigaIcon(), rawToHWSprite(), rawToIFFChunk(), rawToSysConfig(), simpleAmigaIcon()

Examples

generate some random raw data:
dat.rnd <- as.raw(sample.int(10, 100, TRUE))

try to pack it:
pack.rnd <- packBitmap(dat.rnd)

due to the random nature of the source data
the data could not be packed efficiently.
The length of the packed data is close to
the length of the original data:
length(pack.rnd) - length(dat.rnd)

Now generate similar data but sort it
to generate more repetitive data:
dat.srt <- as.raw(sort(sample.int(10, 100, TRUE)))
pack.srt <- packBitmap(dat.srt)

This time the packing routing is more successful:
length(pack.srt) - length(dat.srt)

The original data can always be obtained
from the packed data:
all(dat.rnd == unPackBitmap(pack.rnd))
all(dat.srt == unPackBitmap(pack.srt))

play Playing Amiga audio data

Description

A wrapper for tuneR-package’s play routine. Allowing it to play Amiga audio (for instance stored
in an 8SVX Interchange File Format).

Usage

S4 method for signature 'ANY'
play(object, player = NULL, ...)

S4 method for signature 'IFFChunk'
play(object, player = NULL, ...)

56 plot.AmigaBasicShape

Arguments

object An IFFChunk-class object that needs to be played. The IFFChunk should be of
type FORM, containing an 8SVX chunk, or an 8SVX itself. object can also be
of class IFF.FORM or IFF.8SVX. See play for other objects that can be played.

player Path to the external audio player. See play for more details.

... Arguments passed onto the tuneR play routine.

Details

A wrapper for tuneR-package’s play routine. It will try to play audio using an external audio
player. When 8SVX audio is played, each octave is played separately. When a FORM container
contains multiple 8SVX samples, they are also played successively.

Note that a separate package is developed to interpret and play ProTracker modules and samples
(ProTrackR).

Value

Returns a list of data returned by tuneR’s play, for which the output is undocumented.

Author(s)

Pepijn de Vries

Examples

Not run:
First get an audio sample from the ProTrackR package
snare.samp <- ProTrackR::PTSample(ProTrackR::mod.intro, 2)

Coerce it into an IFFChunk object:
snare.iff <- WaveToIFF(snare.samp)

Play the 8SVX sample:
play(snare.iff)

End(Not run)

plot.AmigaBasicShape Plot AmigaFFH objects

Description

Plot AmigaFFH objects using base plotting routines.

plot.AmigaBasicShape 57

Usage

S3 method for class 'AmigaBasicShape'
plot(x, y, ...)

S3 method for class 'AmigaBitmapFont'
plot(x, y, ...)

S3 method for class 'AmigaBitmapFontSet'
plot(x, y, ...)

S3 method for class 'hardwareSprite'
plot(x, y, ...)

S3 method for class 'IFFChunk'
plot(x, y, ...)

S3 method for class 'IFF.FORM'
plot(x, y, ...)

S3 method for class 'IFF.8SVX'
plot(x, y, ...)

S3 method for class 'IFF.ILBM'
plot(x, y, ...)

S3 method for class 'IFF.ANIM'
plot(x, y, ...)

S3 method for class 'SysConfig'
plot(x, y, ...)

S3 method for class 'AmigaIcon'
plot(x, y, asp = 2, ...)

Arguments

x An AmigaFFH object to be plotted. See usage section for supported object
classes. If x is an AmigaBitmapFont or AmigaBitmapFontSet class object, it
will plot the full bitmap that is used to extract the font glyphs.

y When x is an AmigaIcon class object, y can be used as an index. In that case,
when y=1 the first icon image is shown. When y=2 the selected icon image is
shown.
When x is an AmigaBitmapFontSet class object, y can be used to plot the
bitmap of a specific font height (y).
When x is an AmigaBasicShape class object, y can be used to select a spe-
cific layer of the shape to plot, which can be one of "bitmap", "shadow" or
"collision".

58 plot.AmigaBasicShape

... Parameters passed onto the generic graphics plotting routine.
When x is an AmigaBitmapFont or an AmigaBitmapFontSet object, ’...’ can
also be used for arguments that need to be passed onto the as.raster function.

asp A numeric value indicating the aspect ratio for the plot. For many AmigaFFH,
the aspect ratio will be based on the Amiga display mode when known. For
AmigaIcon objects a default aspect ratio of 2 is used (tall pixels).
When x is an AmigaBitmapFont or AmigaBitmapFontSet object, an aspect ratio
of 1 is used by default. When the TALLDOT flag is set for that font, the aspect
ratio s multiplied by 2. When the WIDEDOT flag is set, it will be divided by 2.
A custom aspect ratio can also be used and will override the ratios specified
above.

Details

A plotting routine is implemented for most AmigaFFH objects. See the usage section for all sup-
ported objects.

Value

Returns NULL silently.

Author(s)

Pepijn de Vries

Examples

Not run:
load an IFF file
example.iff <- read.iff(system.file("ilbm8lores.iff", package = "AmigaFFH"))

and plot it:
plot(example.iff)

AmigaIcons can also be plotted:
plot(simpleAmigaIcon())

As can the cursor from a SysConfig object:
plot(simpleSysConfig())

As can Amiga fonts:
data(font_example)
plot(font_example)
plot(font_example, text = "foo bar", style = "underlined", interpolate = F)

As can AmigaBasicShapes:
ball <- read.AmigaBasicShape(system.file("ball.shp", package = "AmigaFFH"))
plot(ball)

End(Not run)

rasterToAmigaBasicShape 59

rasterToAmigaBasicShape

Convert a grDevices raster object into an AmigaBasicShape class ob-
ject.

Description

Convert a raster object into an AmigaBasicShape class object.

Usage

rasterToAmigaBasicShape(
x,
type = c("blitter object", "sprite"),
palette,
shadow,
collision,
...

)

Arguments

x A raster class object to convert into a AmigaBasicShape class obejct.

type A character string indicating what type of graphic needs to be created: "blitter
object" (default) or "sprite".

palette A vector of character strings, where each element represents a colour. This
palette is used to quantize the colours that occur in the raster x.

shadow An optional layer that could be stored with the graphics. This layer could be
used for specific shadow effects when blitting the graphics to the screen. It
needs to be a raster object consisting of the colours black (bit unset) and white
(bit set). The raster needs to have the same dimensions as x. This layer will be
omitted when this argument is omitted (or set to NULL).

collision An optional layer that could be stored with the graphics. This layer could be
used for collision detection between graphical objects. It needs to be a raster
object consisting of the colours black (bit unset) and white (bit set). The raster
needs to have the same dimensions as x. This layer will be omitted when this
argument is omitted (or set to NULL).

... Arguments passed onto index.colours. Can be used, for instance, to achieve
specific dithering effects.

Details

This method can be used to turn any graphics into an AmigaBasicShape class object. In order to
do so, the colours of the input image (a raster object) will be quantized to a limited palette. This
palette can be forced as an argument to this function. Otherwise, it will be based on the input image.

60 rasterToAmigaBitmapFont

Value

Returns an AmigaBasicShape class object based on x.

Author(s)

Pepijn de Vries

See Also

Other AmigaBasicShape.operations: AmigaBasicShape, read.AmigaBasicShape(), write.AmigaBasicShape()

Other raster.operations: AmigaBitmapFont, as.raster.AmigaBasicShape(), bitmapToRaster(),
dither(), index.colours(), rasterToAmigaBitmapFont(), rasterToBitmap(), rasterToHWSprite(),
rasterToIFF()

Examples

Not run:
get a raster image:
ilbm <- as.raster(read.iff(system.file("ilbm8lores.iff", package = "AmigaFFH")))

convert to an Amiga Basic blitter object:
bob <- rasterToAmigaBasicShape(ilbm, "blitter object")

End(Not run)

rasterToAmigaBitmapFont

Convert a raster image into an AmigaBitmapFont

Description

Convert a two-coloured as.raster image into an AmigaBitmapFont class object.

Usage

rasterToAmigaBitmapFont(
x,
glyphs,
default_glyph,
baseline,
glyph_width,
glyph_space,
glyph_kern,
palette,
...

)

rasterToAmigaBitmapFont 61

Arguments

x A raster (see grDevices package) object composed of two colours only. Make
sure that all glyphs (graphical representation of characters) are next to eachother
on a single line. The height of this raster (in pixels) is taken automatically as
font height.

glyphs Specify which glyphs are included in the image x from left to right. It can be
specified in one of the following ways:
A single character string, where the length of the string (nchar) equals the
number of displayed glyphs in x.
A vector of numeric ASCII codes. The length of the vector should equal the
number of displayed glyphs in x.
A list of either character strings or vector of numerics. The length of
the list should equal the number of displayed glyphs in x. Each element can
represent multiple characters, meaning that the nth element of the list uses the
nth glyph shown in x to represent all the characters included in that element.
Note that Amiga bitmap fonts represent ASCII characters and may not include
all special characters or symbols.

default_glyph A single character or ASCII code (numeric) that should be used by default.
This means that all characters that are not specified by glyphs will be repre-
sented by this default_glyph. default_glyph should be included in glyphs.

baseline The baseline of the font, specified in number of pixels from the top (numeric).
Should be a whole number between 0 and the font height (height of x) minus 1.

glyph_width A numeric vector with the same number of elements or characters as used for
glyphs. It specifies the width in pixels for each glyph reserved in the raster
image x. They should be whole numbers greater or equal to 0.

glyph_space A numeric vector with the same number of elements or characters as used for
glyphs. It specifies the width in pixels for each glyph that should be used when
formatting. text. Note that these values can be smaller or larger than the values
specified for glyph_width. They should be whole numbers greater or equal to
0.

glyph_kern Note that in Amiga bitmap fonts not the formal definition from typography is
used for kerning. Here, kerning is used as the number of pixels the cursor should
be moved forward or backward after typesetting a character. It should be a
numeric vector with the same number of elements or characters as used for
glyphs. It can hold both positive and negative values.

palette A vector of two colours. Both colours should be in x. The first colour is used
as background colour, the second as foreground colour.
When missing, it will be checked whether x has a palette as attribute, and uses
that. If that attribute is also missing, the palette will be guessed from x, where
the most frequently occurring colour is assumed to be the background colour.

... Currently ignored.

Details

Create an AmigaBitmapFont class object by providing a two-coloured raster image and specifying
which characters are depicted by the image.

62 rasterToAmigaBitmapFont

Value

Returns a AmigaBitmapFont class object based on x.

Author(s)

Pepijn de Vries

See Also

Other AmigaBitmapFont.operations: AmigaBitmapFont, availableFontSizes(), c(), fontName(),
font_example, getAmigaBitmapFont(), rawToAmigaBitmapFontSet(), rawToAmigaBitmapFont(),
read.AmigaBitmapFontSet(), read.AmigaBitmapFont(), write.AmigaBitmapFont()

Other raster.operations: AmigaBitmapFont, as.raster.AmigaBasicShape(), bitmapToRaster(),
dither(), index.colours(), rasterToAmigaBasicShape(), rasterToBitmap(), rasterToHWSprite(),
rasterToIFF()

Examples

Not run:
data("font_example")

make a raster that we can use to create a bitmap font
font9.rast <- as.raster(getAmigaBitmapFont(font_example, 9))

note the glyphs and the order in which they are included in
the raster image:
plot(font9.rast)

let's build a simple font, using only the first few glyphs
in the raster:
font9 <- rasterToAmigaBitmapFont(

'x' needs the raster image:
x = font9.rast,

'glyphs' are the graphical representation of the characters
that we will include in our font. We will only use the
first 7 characters in the raster image:
glyphs = " !\"#$%&",

We will use the '&' glyph to represent all characters that
are not specified in the font:
default_glyph = "&",

The raster image is 9 pixels tall, as will be the font.
Let's use 7 as the base (it needs to be less than the height)
baseline = 7,

Let's define the width in pixels for each of the 7
characters. This is their width in the raster image:
glyph_width = c(0, 1, 3, 6, 5, 5, 5),

rasterToBitmap 63

Let's define the space the character should take in pixels
when it is used to format text:
glyph_space = c(4, 2, 4, 7, 6, 6, 6),

the raster uses white as background colour and black as
foreground:
palette = c("white", "black")

)

note that for all characters that are not specified,
the default glyph ('&') is used:
plot(font9, text = "!@#$%ABCD")

Let's take a subset from the font's bitmap (rasteer):
font9abc.rast <- font9.rast[,263:282]

as you can see this bitmap only contains the lowercase
characters 'a', 'b', 'c', 'd' and 'e':
plot(font9abc.rast)

font9.abc <- rasterToAmigaBitmapFont(
x = font9abc.rast,
Each glyph in the image can be represented by a single
element in a list. By specifying multiple characters in
each element, you can recycle a glyph to represent different
characters. So in this case, the glyph 'a' is used for
all the accented variants of the character 'a'.
glyphs = list("a\xE0\xE1\xE2\xE3\xE4\xE5",

"b",
"c\xA2\xE7",
"d",
"e\xE8\xE9\xEA\xEB"),

default_glyph = "c", ## 'c' is used as default glyph for all other characters
baseline = 7,
glyph_width = c(4, 4, 4, 4, 4),
glyph_space = c(5, 5, 5, 5, 5),
palette = c("white", "black")

)

see what happens when you format text using the font we just created:
plot(font9.abc, text = "a\xE0\xE1\xE2\xE3\xE4\xE5bc\xA2\xE7de\xE8\xE9\xEA\xEB, foo bar")

End(Not run)

rasterToBitmap Convert a grDevices raster object into binary bitmap data

Description

Converts an image represented by a grDevices raster object into binary (Amiga) bitmap data.

64 rasterToBitmap

Usage

rasterToBitmap(x, depth = 3, interleaved = T, indexing = index.colours)

Arguments

x A raster object created with as.raster which needs to be converted into bitmap
data. It is also possible to let x be a matrix of characters, representing colours.

depth The colour depth of the bitmap image. The image will be composed of 2^depth
indexed colours.
depth can also be a character string "HAM6" or "HAM8" representing special
Amiga display modes (see details).

interleaved A logical value, indicating whether the bitmap needs to be interleaved. An
interleaved bitmap image stores each consecutive bitmap layer per horizontal
scanline.

indexing A function that accepts two arguments: x (a grDevices raster object); length.out,
a numeric value indicating the desired size of the palette (i.e., the number of
colours). It should return a matrix with numeric palette indices (ranging from 1
up to the number of colours in the palette). The result should have an attribute
named ‘palette’ that contains the colours that correspond with the index num-
bers. The result should also carry an attribute with the name ‘transparent’, with
a single numeric value representing which colour in the palette should be treated
as transparent (or NA when no transparency is required). By default the function
index.colours is used. You are free to provide a customised version of this
function (see examples).

Details

Images represented by grDevices raster objects are virtually true colour (24 bit colour depth)
and an alpha layer (transparency). On the early Amiga’s the chipset (in combination with memory
restrictions) only allowed images with indexed palettes. The colour depth was 12 bit with the
original chipset and the number of colours allowed in a palette also depended on the chipset. This
function will allow you to convert a raster object into binary bitmap data with an indexed palette.
This means that the image is converted in a lossy way (information will be lost). So don’t expect
the result to have the same quality as the original image.

With the depth argument, the raster can also be converted to special mode bitmap images. One
of these modes is the ‘hold and modify’ (HAM). In this mode two of the bitplanes are reserved as
modifier switches. If the this switch equals zero, the remainder of the bitplanes are used as an index
for colours in a fixed palette. If the switch equals 1, 2 or 3, the red, green or blue component of the
previous is modified, using the number in the remainder of the bitplanes. So it holds the previous
colour but modifies one of the colour components (hence the term ‘hold and modify’.) Here only
the HAM6 and the HAM8 mode are implemented. HAM6 uses 6 bitplanes and a 12 bit colour
depth, HAM8 uses 8 bitplanes and a 24 bit colour depth.

The HAM mode was a special video modes supported by Amiga hardware. Normal mode bitmap
images with a 6 bit depth would allow for a palette of 64 (2^6) colours, HAM6 can display 4096
colours with the same bit depth.

In addition to HAM6 and HAM8, sliced HAM (or SHAM) was another HAM variant. Using the
coprocessor on the Amiga, it was possible to change the palette at specific scanlines, increasing

rasterToBitmap 65

the number of available colours even further. The SHAM mode is currently not supported by this
package.

Value

The bitmap is returned as a vector of logical values. The logical values reflect the bits for each
bitplane. The palette used for the bitmap is returned as attribute to the vector. There will also be
an attribute called ‘transparent’. This will hold a numeric index corresponding with the colour in
the palette that will be treated as transparent. It will be NA when transparency is not used.

Author(s)

Pepijn de Vries

See Also

Other raster.operations: AmigaBitmapFont, as.raster.AmigaBasicShape(), bitmapToRaster(),
dither(), index.colours(), rasterToAmigaBasicShape(), rasterToAmigaBitmapFont(), rasterToHWSprite(),
rasterToIFF()

Examples

Not run:
first: Let's make a raster out of the 'volcano' data, which we can use in the example:
volcano.raster <- as.raster(t(matrix(terrain.colors(1 + diff(range(volcano)))[volcano -

min(volcano) + 1], nrow(volcano))))

convert the raster into binary (logical) bitmap data:
volcano.bm <- rasterToBitmap(volcano.raster)

The palette for the indexed colours of the generated bitmap is returned as
attribute. There is no transparency is the image:
attributes(volcano.bm)

We can also include a custom function for colour quantisation. Let's include
some dithering:
volcano.dither <- rasterToBitmap(volcano.raster,

indexing = function(x, length.out) {
index.colours(x, length.out,

dither = "floyd-steinberg")
})

You can also use a custom indexing function to force a specified palette,
in this case black and white:
volcano.bw <- rasterToBitmap(volcano.raster,

indexing = function(x, length.out) {
index.colours(x, length.out,

palette = c("black", "white"),
dither = "floyd-steinberg")

})

Make a bitmap using a special display mode (HAM6):

66 rasterToHWSprite

volcano.HAM <- rasterToBitmap(volcano.raster, "HAM6")

End(Not run)

rasterToHWSprite Convert a raster object into an hardwareSprite object

Description

Convert a grDevices raster object into an Amiga hardwareSprite class object.

Usage

rasterToHWSprite(x, indexing = index.colours)

Arguments

x A grDevices raster object (as.raster) that needs to be converted into a hardwareSprite
class object. Note that a hardwareSprite has a maximum width of 16 pixels.
When x is wider, it will be cropped.

indexing A function that accepts two arguments: x (a grDevices raster object); length.out,
a numeric value indicating the desired size of the palette (i.e., the number of
colours). It should return a matrix with numeric palette indices (ranging from 1
up to the number of colours in the palette). The result should have an attribute
named ‘palette’ that contains the colours that correspond with the index num-
bers. The result should also carry an attribute with the name ‘transparent’, with
a single numeric value representing which colour in the palette should be treated
as transparent (or NA when no transparency is required). By default the function
index.colours is used.

Details

A grDevices raster image can be converted into a hardwareSprite class object with this function.
For this purpose the any true-colour image will be converted to an indexed palette with 4 colours.
The Amiga hardware sprite will reserve one of the colours as transparent. Thos function will use
fully transparent colours in the original image (i.e., the alpha level equals 0) for this purpose. Or
when the image has no fully transparent colours, it will use the most frequently occuring colour (at
least when the default indexing function is used).

Value

Returns a hardwareSprite class object based on x

Author(s)

Pepijn de Vries

rasterToIFF 67

See Also

Other raster.operations: AmigaBitmapFont, as.raster.AmigaBasicShape(), bitmapToRaster(),
dither(), index.colours(), rasterToAmigaBasicShape(), rasterToAmigaBitmapFont(), rasterToBitmap(),
rasterToIFF()

Other HWSprite.operations: rawToHWSprite()

Examples

Not run:
first create a raster object that can be used as input
(making sure that the background is transparent):
rst <- as.raster(simpleSysConfig()$PointerMatrix, "#AAAAAA00")

now turn it into a hardware sprite:
spr <- rasterToHWSprite(rst)

and plot it as a check:
plot(spr)

End(Not run)

rasterToIFF Convert a grDevices raster image into an IFF formated bitmap image

Description

Convert grDevices raster images (as.raster) into a formal IFFChunk object, as an interleaved
bitmap (ILBM) image.

Usage

rasterToIFF(
x,
display.mode = as.character(AmigaFFH::amiga_display_modes$DISPLAY_MODE),
monitor = as.character(AmigaFFH::amiga_monitors$MONITOR_ID),
anim.options,
...

)

Arguments

x A raster object created with as.raster which needs to be converted into an IFF
formated bitmap image. It is also possible to let x be a matrix of characters,
representing colours.

display.mode Specify the Amiga display mode that should be used. See amiga_display_modes
for all possible options. "LORES_KEY" is used by default, this is the lowest reso-
lution possible on the Amiga.

68 rasterToIFF

monitor The Amiga monitor on which the needs to be displayed. See amiga_monitors
for more details and posible options. By default "DEFAULT_MONITOR_ID" is
used.

anim.options Currently ignored. This argument will potentitally be implemented in future
versions of this package. Currently, animations are always encoded with the
"ByteVerticalCompression" in this package (when x is a list of raster objects).

... Arguments passed on to rasterToBitmap.

Details

Convert any modern image into a interleaved bitmap (image) conform Interchange File Format
(IFF) specifications. If your original image is in true colour (i.e., a 24 bit colour depth) it will be
converted into a bitmap image with an indexed palette.

Value

Returns an IFFChunk object holding an Interleaved Bitmap (ILBM) image based on x.

Author(s)

Pepijn de Vries

See Also

Other iff.operations: IFFChunk-class, WaveToIFF(), as.raster.AmigaBasicShape(), getIFFChunk(),
interpretIFFChunk(), rawToIFFChunk(), read.iff(), write.iff()

Other raster.operations: AmigaBitmapFont, as.raster.AmigaBasicShape(), bitmapToRaster(),
dither(), index.colours(), rasterToAmigaBasicShape(), rasterToAmigaBitmapFont(), rasterToBitmap(),
rasterToHWSprite()

Examples

Not run:
first: Let's make a raster out of the 'volcano' data, which we can use in the example:
volcano.raster <- as.raster(t(matrix(terrain.colors(1 + diff(range(volcano)))[volcano -

min(volcano) + 1], nrow(volcano))))

Turning the raster into an IFFChunk object is easy:
volcano.iff <- rasterToIFF(volcano.raster)

This object can be saved as an IFF file using write.iff

in special modes HAM6 and HAM 8 higher quality images
can be obtained. See 'rasterToBitmap' for more info on the
special HAM modes.
volcano.ham <- rasterToIFF(volcano.raster, "HAM_KEY", depth = "HAM8")

The result can be further improved by applying dithering
volcano.ham.dither <- rasterToIFF(volcano.raster, "HAM_KEY", depth = "HAM8",

indexing = function(x, length.out) {

rawToAmigaBasic 69

index.colours(x, length.out, dither = "JJN", iter.max = 20)
})

End(Not run)

rawToAmigaBasic Coerce raw data into an AmigaBasic class object

Description

AmigaBasic objects are comprehensive representations of binary-encode Amiga Basic scripts. Use
this function to convert raw content from encoded Amiga Basic scripts to an AmigaBasic object.

Usage

rawToAmigaBasic(x, ...)

Arguments

x A vector of raw data that is to be converted into an AmigaBasic class object.

... Currently ignored.

Details

This function will convert raw data as stored in Amiga Basic files into its corresponding S3 AmigaBasic-
class object.

Value

An AmigaBasic class object based on x.

Author(s)

Pepijn de Vries

See Also

Other AmigaBasic.operations: AmigaBasic.reserved(), AmigaBasicBMAP, AmigaBasic, [.AmigaBasic(),
as.AmigaBasicBMAP(), as.AmigaBasic(), as.character(), check.names.AmigaBasic(), names.AmigaBasic(),
rawToAmigaBasicBMAP(), read.AmigaBasicBMAP(), read.AmigaBasic(), write.AmigaBasic()

Other raw.operations: as.AmigaBasic(), as.raw.AmigaBasic(), colourToAmigaRaw(), packBitmap(),
rawToAmigaBasicBMAP(), rawToAmigaBasicShape(), rawToAmigaBitmapFontSet(), rawToAmigaBitmapFont(),
rawToAmigaIcon(), rawToHWSprite(), rawToIFFChunk(), rawToSysConfig(), simpleAmigaIcon()

70 rawToAmigaBasicBMAP

Examples

Not run:
First create an AmigaBAsic object:
bas <- as.AmigaBasic("PRINT \"Hello world!\"")

Make it raw:
bas.raw <- as.raw(bas)

Now convert it back to an AmigaBasic object:
bas <- rawToAmigaBasic(bas.raw)

End(Not run)

rawToAmigaBasicBMAP Coerce raw data into an AmigaBasicBMAP class object

Description

Coerce raw data into an AmigaBasicBMAP class object

Usage

rawToAmigaBasicBMAP(x, ...)

Arguments

x A vector of raw data that is to be converted into an AmigaBasicBMAP class
object.

... Currently ignored.

Details

An Amiga Basic BMAP file maps the offset of routines in Amiga libraries. This function converts
the raw format in which it would be stored as a file into a comprehensive S3 class object.

Value

An AmigaBasicBMAP class object based on x.

Author(s)

Pepijn de Vries

rawToAmigaBasicShape 71

See Also

Other AmigaBasic.operations: AmigaBasic.reserved(), AmigaBasicBMAP, AmigaBasic, [.AmigaBasic(),
as.AmigaBasicBMAP(), as.AmigaBasic(), as.character(), check.names.AmigaBasic(), names.AmigaBasic(),
rawToAmigaBasic(), read.AmigaBasicBMAP(), read.AmigaBasic(), write.AmigaBasic()

Other raw.operations: as.AmigaBasic(), as.raw.AmigaBasic(), colourToAmigaRaw(), packBitmap(),
rawToAmigaBasicShape(), rawToAmigaBasic(), rawToAmigaBitmapFontSet(), rawToAmigaBitmapFont(),
rawToAmigaIcon(), rawToHWSprite(), rawToIFFChunk(), rawToSysConfig(), simpleAmigaIcon()

Examples

Not run:
A small fragment of the dos.library BMAP would look like this:
dos.bmap <- as.AmigaBasicBMAP(list(

xOpen = list(
libraryVectorOffset = -30,
registers = as.raw(2:3)

),
xClose = list(

libraryVectorOffset = -36,
registers = as.raw(2)

),
xRead = list(

libraryVectorOffset = -42,
registers = as.raw(2:4)

)
))

The raw representation would be
dos.bmap.raw <- as.raw(dos.bmap)

And the reverse
rawToAmigaBasicBMAP(dos.bmap.raw)

End(Not run)

rawToAmigaBasicShape Coerce raw data into an AmigaBasicShape class object

Description

Coerce raw data into an AmigaBasicShape-class object

Usage

rawToAmigaBasicShape(x, palette)

72 rawToAmigaBasicShape

Arguments

x A vector of raw data that is to be converted into an AmigaBasicShape class
object.

palette A vector of character strings, where each element represents a colour in the
palette. This palette will be used to display the graphics (note that the raw format
does not store the palette, but this S3 class does). When this argument is omitted
a grey scale palette will be generated.

Details

AmigaBasicShape objects are comprehensive representations of blitter and sprite graphics that can
be used in AmigaBasic scripts. Use this function to convert raw content to an AmigaBasicShape
object.

Value

returns an AmigaBasicShape-class object.

Author(s)

Pepijn de Vries

See Also

Other raw.operations: as.AmigaBasic(), as.raw.AmigaBasic(), colourToAmigaRaw(), packBitmap(),
rawToAmigaBasicBMAP(), rawToAmigaBasic(), rawToAmigaBitmapFontSet(), rawToAmigaBitmapFont(),
rawToAmigaIcon(), rawToHWSprite(), rawToIFFChunk(), rawToSysConfig(), simpleAmigaIcon()

Examples

Not run:
filename <- system.file("ball.shp", package = "AmigaFFH")

read as binary:
con <- file(filename, "rb")
ball.raw <- readBin(con, "raw", file.size(filename))
close(con)

convert raw data into something useful:
ball <- rawToAmigaBasicShape(ball.raw)

A shortcut would be to call read.AmigaBasicShape
ball2 <- read.AmigaBasicShape(filename)

End(Not run)

rawToAmigaBitmapFont 73

rawToAmigaBitmapFont Coerce raw data into an AmigaBitmapFont class object

Description

AmigaBitmapFont objects are comprehensive representations of binary Amiga font subset files.
The file name is usually simply a numeric number indicating the font height in pixels. Use this
function to convert raw content from such a file to an AmigaBitmapFont object.

Usage

rawToAmigaBitmapFont(x, ...)

Arguments

x An AmigaBitmapFont object which needs to be converted into raw data.

... Currently ignored.

Details

This function converts raw data as stored in font bitmap files. These files are stored in subdirectories
with the font’s name and usually have the font height in pixels as file name. This function is
effectively the inverse of as.raw.

Value

A vector of raw data representing x.

Author(s)

Pepijn de Vries

See Also

Other AmigaBitmapFont.operations: AmigaBitmapFont, availableFontSizes(), c(), fontName(),
font_example, getAmigaBitmapFont(), rasterToAmigaBitmapFont(), rawToAmigaBitmapFontSet(),
read.AmigaBitmapFontSet(), read.AmigaBitmapFont(), write.AmigaBitmapFont()

Other raw.operations: as.AmigaBasic(), as.raw.AmigaBasic(), colourToAmigaRaw(), packBitmap(),
rawToAmigaBasicBMAP(), rawToAmigaBasicShape(), rawToAmigaBasic(), rawToAmigaBitmapFontSet(),
rawToAmigaIcon(), rawToHWSprite(), rawToIFFChunk(), rawToSysConfig(), simpleAmigaIcon()

74 rawToAmigaBitmapFontSet

Examples

Not run:
first create raw data that can be converted into a AmigaBitmapFont
data(font_example)
font.raw <- as.raw(getAmigaBitmapFont(font_example, 9))

Convert it back into an AmigaBitmapFont object:
font <- rawToAmigaBitmapFont(font.raw)

End(Not run)

rawToAmigaBitmapFontSet

Coerce raw data into an AmigaBitmapFontSet class object

Description

AmigaBitmapFontSet objects are comprehensive representations of binary Amiga font files (*.font).
Use this function to convert raw data from such a file to an AmigaBitmapFontSet object.

Usage

rawToAmigaBitmapFontSet(x, file, disk = NULL)

Arguments

x A vector of raw data that needs to be converted into an AmigaBitmapFontSet.

file The raw version of the AmigaBitmapFontSet does not contain the nested font
bitmap images. In order to correctly construct an AmigaBitmapFontSet the file
location of the original *.font file is required in order to read and include the font
bitmap image information. file should thus be a character string specifying
the file location of the *.font file.

disk A virtual Commodore Amiga disk from which the file should be read. This
should be an amigaDisk object. Using this argument requires the adfExplorer
package. When set to NULL, this argument is ignored.

Details

This function converts raw data as stored in *.font files. The function also needs the file location, in
order to load the nested bitmap images for each font height. This function is effectively the inverse
of as.raw.

Value

Returns an AmigaBitmapFontSet object.

rawToAmigaIcon 75

Author(s)

Pepijn de Vries

See Also

Other AmigaBitmapFont.operations: AmigaBitmapFont, availableFontSizes(), c(), fontName(),
font_example, getAmigaBitmapFont(), rasterToAmigaBitmapFont(), rawToAmigaBitmapFont(),
read.AmigaBitmapFontSet(), read.AmigaBitmapFont(), write.AmigaBitmapFont()

Other raw.operations: as.AmigaBasic(), as.raw.AmigaBasic(), colourToAmigaRaw(), packBitmap(),
rawToAmigaBasicBMAP(), rawToAmigaBasicShape(), rawToAmigaBasic(), rawToAmigaBitmapFont(),
rawToAmigaIcon(), rawToHWSprite(), rawToIFFChunk(), rawToSysConfig(), simpleAmigaIcon()

Examples

Not run:
data(font_example)

First create raw font set data. Note that this raw data
does not include the nested font bitmap images.
fontset.raw <- as.raw(font_example)

Therefore it is necesary to have the entire font stored as files:
write.AmigaBitmapFontSet(font_example, tempdir())

font.restored <- rawToAmigaBitmapFontSet(fontset.raw, file.path(tempdir(), "AmigaFFH.font"))

End(Not run)

rawToAmigaIcon Coerce raw data into an AmigaIcon class object

Description

AmigaIcon objects are comprehensive representations of binary Amiga Workbench icon files (*.info).
Use this function to convert raw data from such a file to an AmigaIcon object.

Usage

rawToAmigaIcon(x, palette = NULL)

Arguments

x A vector of raw data that needs to be converted into an S3 AmigaIcon class
object.

palette Provide a palette (vector of colours) for the icon bitmap image. When set to
NULL (default) the standard Amiga Workbench palette will be used.

76 rawToHWSprite

Details

Icons files (*.info) were used as a graphical representations of files and directories on the Com-
modore Amiga. This function will convert the raw data from such files into a more comprehensive
names list (see AmigaIcon). Use as.raw to achieve the inverse.

Value

Returns an AmigaIcon class object based on x.

Author(s)

Pepijn de Vries

See Also

Other AmigaIcon.operations: AmigaIcon, read.AmigaIcon(), simpleAmigaIcon(), write.AmigaIcon()

Other raw.operations: as.AmigaBasic(), as.raw.AmigaBasic(), colourToAmigaRaw(), packBitmap(),
rawToAmigaBasicBMAP(), rawToAmigaBasicShape(), rawToAmigaBasic(), rawToAmigaBitmapFontSet(),
rawToAmigaBitmapFont(), rawToHWSprite(), rawToIFFChunk(), rawToSysConfig(), simpleAmigaIcon()

Examples

Not run:
generate a simple AmigaIcon object:
icon <- simpleAmigaIcon()

convert it into raw data:
icon.raw <- as.raw(icon)

convert the raw data back into an icon:
icon.restored <- rawToAmigaIcon(icon.raw)

End(Not run)

rawToHWSprite Convert raw data into an Amiga hardware sprite

Description

Convert raw data structured conform a Commodore Amiga hardware sprite (see references) into a
hardwareSprite object.

Usage

S4 method for signature 'raw,missing'
rawToHWSprite(x, col)

S4 method for signature 'raw,character'
rawToHWSprite(x, col)

rawToHWSprite 77

Arguments

x raw data structured as an Amiga hardware sprite (see references).

col A vector of colours (character) to be used for the hardware sprite. Spec-
ify the three visible colours for the sprite. When missing some default colours
(grayscale) will be used. The colours have to be provided separately as they are
usually not stored together with the hardware sprite data.

Details

Information to set up a hardware sprite is stored as raw data on Commodore Amigas. This method
can be used to convert this data into a hardwareSprite object. This object can in turn be converted
with as.raster such that it can be plotted in R.

Value

Returns a hardwareSprite object based on the provided raw data

Author(s)

Pepijn de Vries

References

http://amigadev.elowar.com/read/ADCD_2.1/Hardware_Manual_guide/node00B9.html

See Also

Other raw.operations: as.AmigaBasic(), as.raw.AmigaBasic(), colourToAmigaRaw(), packBitmap(),
rawToAmigaBasicBMAP(), rawToAmigaBasicShape(), rawToAmigaBasic(), rawToAmigaBitmapFontSet(),
rawToAmigaBitmapFont(), rawToAmigaIcon(), rawToIFFChunk(), rawToSysConfig(), simpleAmigaIcon()

Other HWSprite.operations: rasterToHWSprite()

Examples

Let's generate a 16x16 sprite with a random bitmap:
dat <- as.raw(c(0x00, 0x00, 0x10, 0x00,

sample.int(255, 64, replace = TRUE),
0x00, 0x00, 0x00, 0x00))

make it a hardware sprite object:
spr <- rawToHWSprite(dat)
and plot it:
plot(spr, interpolate = FALSE)

with some imagination when can make
a more structured image:
dat <- as.raw(c(0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0xff, 0xf8,

0x7f, 0x80, 0x80, 0x70, 0x7f, 0x00, 0xbe, 0xe0,
0x7e, 0x00, 0x85, 0xc0, 0x7d, 0x80, 0x82, 0x40,
0x6b, 0xc0, 0x95, 0xa0, 0x57, 0xe0, 0xa8, 0xd0,
0x2f, 0xf0, 0xd1, 0x68, 0x4f, 0xf8, 0xb0, 0x34,

http://amigadev.elowar.com/read/ADCD_2.1/Hardware_Manual_guide/node00B9.html

78 rawToIFFChunk

0x07, 0xfc, 0xf8, 0x5a, 0x03, 0xfe, 0xe4, 0x0d,
0x01, 0xfc, 0xc2, 0x12, 0x00, 0xf8, 0x81, 0x04,
0x00, 0x70, 0x00, 0x88, 0x00, 0x20, 0x00, 0x50,
0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00))

spr <- rawToHWSprite(dat, c("#EE4444", "#000000", "#EEEECC"))
plot(spr, interpolate = FALSE)

rawToIFFChunk Coerce raw data to an IFFChunk class object

Description

Coerce raw data, as it would be stored in the Interchange File Format (IFF), and convert it into an
IFFChunk class object.

Usage

S4 method for signature 'raw'
rawToIFFChunk(x)

Arguments

x A vector of raw data that needs to be converted into a IFFChunk class object.

Details

This method should work for all IFF chunk types that are implemented in this package (see IFFChunk-method
for details). For non-implemented chunks this method may work properly as long as the chunks are
nested inside a FORM type container chunk. This method is provided for your convenience, but it
is recommended to import IFFChunk methods using the read.iff function. Use as.raw to achieve
the inverse of this method.

Value

Returns an IFFChunk class object based on x.

Author(s)

Pepijn de Vries

See Also

Other iff.operations: IFFChunk-class, WaveToIFF(), as.raster.AmigaBasicShape(), getIFFChunk(),
interpretIFFChunk(), rasterToIFF(), read.iff(), write.iff()

Other raw.operations: as.AmigaBasic(), as.raw.AmigaBasic(), colourToAmigaRaw(), packBitmap(),
rawToAmigaBasicBMAP(), rawToAmigaBasicShape(), rawToAmigaBasic(), rawToAmigaBitmapFontSet(),
rawToAmigaBitmapFont(), rawToAmigaIcon(), rawToHWSprite(), rawToSysConfig(), simpleAmigaIcon()

rawToSysConfig 79

Examples

Not run:
Get an IFFChunk object:
example.iff <- read.iff(system.file("ilbm8lores.iff", package = "AmigaFFH"))

Coerce it to raw data:
example.raw <- as.raw(example.iff)

Coerce raw data to IFF chunk:
example.iff.new <- rawToIFFChunk(example.raw)

These conversions were non-destructive:
identical(example.iff, example.iff.new)

End(Not run)

rawToSysConfig Coerce raw data into a SysConfig class object

Description

SysConfig objects are comprehensive representations of binary Amiga system-configuration files.
Use this function to convert raw data from such a file to a SysConfig object.

Usage

rawToSysConfig(x)

Arguments

x A vector of raw data that needs to be converted into an S3 SysConfig class
object. It should have a length of at least 232. Although system-configurations
can be extended, such extended files are not supported here.

Details

The Amiga used the system-configuration file to store certain system preferences in a binary file.
With this function such raw data can be converted into a more comprehensive SysConfig object.
Use as.raw to achieve the inverse.

Value

Returns a SysConfig class object based on x.

Author(s)

Pepijn de Vries

80 read.AmigaBasic

See Also

Other SysConfig.operations: SysConfig, read.SysConfig(), simpleSysConfig(), write.SysConfig()

Other raw.operations: as.AmigaBasic(), as.raw.AmigaBasic(), colourToAmigaRaw(), packBitmap(),
rawToAmigaBasicBMAP(), rawToAmigaBasicShape(), rawToAmigaBasic(), rawToAmigaBitmapFontSet(),
rawToAmigaBitmapFont(), rawToAmigaIcon(), rawToHWSprite(), rawToIFFChunk(), simpleAmigaIcon()

Examples

Not run:
get the system-configuration from the adfExplorer example disk:
sc <- adfExplorer::get.adf.file(adfExplorer::adf.example, "devs/system-configuration")

This will get you the raw data from the file:
typeof(sc)

Convert the raw data to a more comprehensive named list (and S3 SysConfig class):
sc <- rawToSysConfig(sc)

End(Not run)

read.AmigaBasic Read Amiga Basic files

Description

Read an AmigaBasic script from its binary format.

Usage

read.AmigaBasic(file, disk = NULL, ...)

Arguments

file A character string of the filename of the Amiga Basic file to be read.

disk A virtual Commodore Amiga disk from which the file should be read. This
should be an amigaDisk object. Using this argument requires the adfExplorer
package. When set to NULL, this argument is ignored.

... Currently ignored

Details

Normally Amiga Basic code is stored encoded in a binary format (rawToAmigaBasic). This func-
tion reads the binary data from a file (which can be stored on a virtual disk (amigaDisk)) and
converts in into an AmigaBasic class objec.

Value

Returns an AmigaBasic class object read from the file.

read.AmigaBasicBMAP 81

Author(s)

Pepijn de Vries

See Also

Other AmigaBasic.operations: AmigaBasic.reserved(), AmigaBasicBMAP, AmigaBasic, [.AmigaBasic(),
as.AmigaBasicBMAP(), as.AmigaBasic(), as.character(), check.names.AmigaBasic(), names.AmigaBasic(),
rawToAmigaBasicBMAP(), rawToAmigaBasic(), read.AmigaBasicBMAP(), write.AmigaBasic()

Other io.operations: read.AmigaBasicBMAP(), read.AmigaBasicShape(), read.AmigaBitmapFontSet(),
read.AmigaBitmapFont(), read.AmigaIcon(), read.SysConfig(), read.iff(), write.AmigaBasicShape(),
write.AmigaBasic(), write.AmigaBitmapFont(), write.AmigaIcon(), write.SysConfig(),
write.iff()

Examples

Not run:
First create an AmigaBasic file
write.AmigaBasic(as.AmigaBasic("PRINT \"Hello world\""),

file.path(tempdir(), "helloworld.bas"))

Now let's read the same file:
bas <- read.AmigaBasic(file.path(tempdir(), "helloworld.bas"))

End(Not run)

There's also a demo file included with the package
demo.bas <- read.AmigaBasic(system.file("demo.bas", package = "AmigaFFH"))
demo.bas

read.AmigaBasicBMAP Read and write Amiga Basic BMAP files

Description

Read and write AmigaBasicBMAP binary file format.

Usage

read.AmigaBasicBMAP(file, disk = NULL)

write.AmigaBasicBMAP(x, file, disk = NULL)

Arguments

file A character string of the filename of the Amiga Basic BMAP file to be read
or written.

82 read.AmigaBasicBMAP

disk A virtual Commodore Amiga disk from which the file should be read or writ-
ten to. This should be an amigaDisk object. Using this argument requires the
adfExplorer package. When set to NULL, this argument is ignored.

x A AmigaBasicBMAP class object that needs to be stored.

Details

An Amiga Basic BMAP file maps the offset of routines in Amiga libraries and can be read as a
comprehensive list and written back to a binary file using these functions.

Value

Returns an AmigaBasicBMAP class object read from the file in case of read.AmigaBasicBMAP.
Otherwise, invisibly returns the result of the call of close to the file connection. Or, when disk is
specified, a copy of disk is returned to which the file is written.

Author(s)

Pepijn de Vries

See Also

Other AmigaBasic.operations: AmigaBasic.reserved(), AmigaBasicBMAP, AmigaBasic, [.AmigaBasic(),
as.AmigaBasicBMAP(), as.AmigaBasic(), as.character(), check.names.AmigaBasic(), names.AmigaBasic(),
rawToAmigaBasicBMAP(), rawToAmigaBasic(), read.AmigaBasic(), write.AmigaBasic()

Other io.operations: read.AmigaBasicShape(), read.AmigaBasic(), read.AmigaBitmapFontSet(),
read.AmigaBitmapFont(), read.AmigaIcon(), read.SysConfig(), read.iff(), write.AmigaBasicShape(),
write.AmigaBasic(), write.AmigaBitmapFont(), write.AmigaIcon(), write.SysConfig(),
write.iff()

Examples

Not run:
A small fragment of the dos.library BMAP would look like this:
dos.bmap <- as.AmigaBasicBMAP(list(

xOpen = list(
libraryVectorOffset = -30,
registers = as.raw(2:3)

),
xClose = list(

libraryVectorOffset = -36,
registers = as.raw(2)

),
xRead = list(

libraryVectorOffset = -42,
registers = as.raw(2:4)

)
))

This will write the BMAP to a file:
write.AmigaBasicBMAP(dos.bmap, file.path(tempdir(), "dos.bmap"))

read.AmigaBasicShape 83

This will read the same file:
dos.bmap.copy <- read.AmigaBasicBMAP(file.path(tempdir(), "dos.bmap"))

End(Not run)

read.AmigaBasicShape Read Amiga Basic Shape files

Description

Read Amiga Basic Shape files

Usage

read.AmigaBasicShape(file, disk = NULL, ...)

Arguments

file A character string of the filename of the Amiga Basic Shape file to be read.

disk A virtual Commodore Amiga disk from which the file should be read. This
should be an amigaDisk object. Using this argument requires the adfExplorer
package. When set to NULL, this argument is ignored.

... Arguments passed to rawToAmigaBasicShape.

Details

AmigaBasic used the term ’shapes’ for graphics (sprites and blitter objects) which it could dis-
play. These graphics were stored in a specific binary format, which can be read with this func-
tion. See AmigaBasicShape for more details. The file can also be read from a virtual Amiga disk
(amigaDisk).

Value

Returns an AmigaBasicShape class object read from the file.

Author(s)

Pepijn de Vries

See Also

Other AmigaBasicShape.operations: AmigaBasicShape, rasterToAmigaBasicShape(), write.AmigaBasicShape()

Other io.operations: read.AmigaBasicBMAP(), read.AmigaBasic(), read.AmigaBitmapFontSet(),
read.AmigaBitmapFont(), read.AmigaIcon(), read.SysConfig(), read.iff(), write.AmigaBasicShape(),
write.AmigaBasic(), write.AmigaBitmapFont(), write.AmigaIcon(), write.SysConfig(),
write.iff()

84 read.AmigaBitmapFont

Examples

Not run:
filename <- system.file("ball.shp", package = "AmigaFFH")
ball <- read.AmigaBasicShape(filename)
This is a sprite:
ball$flags[["fVSprite"]]

filename <- system.file("r_logo.shp", package = "AmigaFFH")
The palette is not stored with an Amiga Basic Shape, so let's provide one:
r_logo <- read.AmigaBasicShape(filename,

palette = c("#FFFFFF", "#2266BB", "#3366BB", "#4477AA",
"#778899", "#999999", "#AAAAAA", "#BBBBBB"))

This is a blitter object:
r_logo$flags[["fVSprite"]]

Just for fun, plot it:
plot(r_logo)

End(Not run)

read.AmigaBitmapFont Read an AmigaBitmapFont class object from a file

Description

Amiga Font Bitmaps of distinctive font heights are stored in separate files, which in combination
form a font collection or set. This function can be used to read a specific bitmap from a set and
returns it as an AmigaBitmapFont class object.

Usage

read.AmigaBitmapFont(file, disk = NULL, ...)

Arguments

file The file name of a font subset is usually simply a numeric number indicating
the font height in pixels. Use file as a character string representing that file
location.

disk A virtual Commodore Amiga disk from which the file should be read. This
should be an amigaDisk object. Using this argument requires the adfExplorer
package. When set to NULL, this argument is ignored.

... Arguments passed on to rawToAmigaBitmapFont.

Details

Individual font bitmaps are stored in a font’s subdirectory where the file name is usually equal
to the font height in pixels. This function will read such a font bitmap file and return it as an
AmigaBitmapFont class object. It can also read such files from amigaDisk-class objects, but that
requires the adfExplorer package to be installed.

read.AmigaBitmapFontSet 85

Value

Returns an AmigaBitmapFont object read from the specified file.

Author(s)

Pepijn de Vries

See Also

Other AmigaBitmapFont.operations: AmigaBitmapFont, availableFontSizes(), c(), fontName(),
font_example, getAmigaBitmapFont(), rasterToAmigaBitmapFont(), rawToAmigaBitmapFontSet(),
rawToAmigaBitmapFont(), read.AmigaBitmapFontSet(), write.AmigaBitmapFont()

Other io.operations: read.AmigaBasicBMAP(), read.AmigaBasicShape(), read.AmigaBasic(),
read.AmigaBitmapFontSet(), read.AmigaIcon(), read.SysConfig(), read.iff(), write.AmigaBasicShape(),
write.AmigaBasic(), write.AmigaBitmapFont(), write.AmigaIcon(), write.SysConfig(),
write.iff()

Examples

Not run:
data(font_example)

Let's store the example font first:
write.AmigaBitmapFontSet(font_example, tempdir())

Now read a specific subset from the font files:
font.sub <- read.AmigaBitmapFont(file.path(tempdir(), "AmigaFFH", "9"))

The same can be done with a virtual Amiga disk. The following
examples require the 'adfExplorer' package.
font.disk <- adfExplorer::blank.amigaDOSDisk("font.disk")
font.disk <- adfExplorer::dir.create.adf(font.disk, "FONTS")
font.disk <- write.AmigaBitmapFontSet(font_example, "DF0:FONTS", font.disk)
font.sub <- read.AmigaBitmapFont("DF0:FONTS/AmigaFFH/9", font.disk)

End(Not run)

read.AmigaBitmapFontSet

Read AmigaBitmapFontSet from *.font file

Description

Reads AmigaBitmapFontSet from *.font file including all nested bitmap images for all font heights.

Usage

read.AmigaBitmapFontSet(file, disk = NULL, ...)

86 read.AmigaBitmapFontSet

Arguments

file A character string of the filename of the *.font file to be read.

disk A virtual Commodore Amiga disk from which the file should be read. This
should be an amigaDisk object. Using this argument requires the adfExplorer
package. When set to NULL, this argument is ignored.

... Currently ignored.

Details

The *.font file only holds meta-information. The bitmap images for each font height are stored in
separate files, which are listed in the *.font file. The function reads the *.font file, including all
nested bitmap files and returns it as a AmigaBitmapFontSet.

It can also read *.font files from amigaDisk-class objects, but that requires the adfExplorer pack-
age to be installed.

Value

Returns an AmigaBitmapFontSet object read from the specified file.

Author(s)

Pepijn de Vries

See Also

Other AmigaBitmapFont.operations: AmigaBitmapFont, availableFontSizes(), c(), fontName(),
font_example, getAmigaBitmapFont(), rasterToAmigaBitmapFont(), rawToAmigaBitmapFontSet(),
rawToAmigaBitmapFont(), read.AmigaBitmapFont(), write.AmigaBitmapFont()

Other io.operations: read.AmigaBasicBMAP(), read.AmigaBasicShape(), read.AmigaBasic(),
read.AmigaBitmapFont(), read.AmigaIcon(), read.SysConfig(), read.iff(), write.AmigaBasicShape(),
write.AmigaBasic(), write.AmigaBitmapFont(), write.AmigaIcon(), write.SysConfig(),
write.iff()

Examples

Not run:
data(font_example)

in order to read, we first need to write a file"
write.AmigaBitmapFontSet(font_example, tempdir())

The font is written as 'AmigaFFH.font' as that name
is embedded in the AmigaBitmapFontSet object 'font_example'.
We can read it as follows:
font.read <- read.AmigaBitmapFontSet(file.path(tempdir(), "AmigaFFH.font"))

similarly, the file can also be written and read from and to
a virtual amiga disk. The following codes requires the 'adfExplorer'
package:

read.AmigaIcon 87

adf <- adfExplorer::blank.amigaDOSDisk("font.disk")
adf <- adfExplorer::dir.create.adf(adf, "FONTS")
adf <- write.AmigaBitmapFontSet(font_example, "DF0:FONTS", adf)
font.read <- read.AmigaBitmapFontSet("DF0:FONTS/AmigaFFH.font", adf)

End(Not run)

read.AmigaIcon Read an Amiga Workbench icon (info) file

Description

Graphical representation of files and directories (icons) are stored as separate files (with the .info
extension) on the Amiga. This function reads such files and imports them as AmigaIcon class
objects.

Usage

read.AmigaIcon(file, disk = NULL, ...)

Arguments

file A character string representing the file name from which the icon data should
be read.

disk A virtual Commodore Amiga disk from which the file should be read. This
should be an amigaDisk object. Using this argument requires the adfExplorer
package. When set to NULL, this argument is ignored.

... Arguments passed on to rawToAmigaIcon.

Details

The AmigaIcon S3 object provides a comprehensive format for Amiga icons, which are used as
a graphical representation of files and directories on the Amiga. The AmigaIcon is a named list
containing all information of an icon. Use this function to read an Amiga icon (with the .info
extension) from a file and convert it into an AmigaIcon object.

Value

Returns an AmigaIcon class object as read from the file.

Author(s)

Pepijn de Vries

88 read.iff

See Also

Other AmigaIcon.operations: AmigaIcon, rawToAmigaIcon(), simpleAmigaIcon(), write.AmigaIcon()

Other io.operations: read.AmigaBasicBMAP(), read.AmigaBasicShape(), read.AmigaBasic(),
read.AmigaBitmapFontSet(), read.AmigaBitmapFont(), read.SysConfig(), read.iff(), write.AmigaBasicShape(),
write.AmigaBasic(), write.AmigaBitmapFont(), write.AmigaIcon(), write.SysConfig(),
write.iff()

Examples

Not run:
create a simple AmigaIcon:
icon <- simpleAmigaIcon()

write the icon to the temp dir:
write.AmigaIcon(icon, file.path(tempdir(), "icon.info"))

read the same file:
icon2 <- read.AmigaIcon(file.path(tempdir(), "icon.info"))

End(Not run)

read.iff Read Interchange File Format (IFF)

Description

Read the Interchange File Format (IFF) as an IFFChunk object.

Usage

read.iff(file, disk = NULL)

Arguments

file A filename of an IFF file to be read, or a connection from which binary data can
be read.

disk A virtual Commodore Amiga disk from which the file should be read. This
should be an amigaDisk object. Using this argument requires the adfExplorer
package. When set to NULL, this argument is ignored.

Details

Information is stored as ‘chunks’ in IFF files (see IFFChunk). Each chunk should at least contain
a label of the type of chunk and the data for that chunk. This function reads all chunks from a
valid IFF file, including all nested chunks and stores them in an IFFChunk object. IFF files can
hold any kind of data (e.g. images or audio), this read function does not interpret the file. Use
interpretIFFChunk for that purpose.

read.SysConfig 89

Value

Returns a IFFChunk object read from the specified file.

Author(s)

Pepijn de Vries

See Also

Other io.operations: read.AmigaBasicBMAP(), read.AmigaBasicShape(), read.AmigaBasic(),
read.AmigaBitmapFontSet(), read.AmigaBitmapFont(), read.AmigaIcon(), read.SysConfig(),
write.AmigaBasicShape(), write.AmigaBasic(), write.AmigaBitmapFont(), write.AmigaIcon(),
write.SysConfig(), write.iff()

Other iff.operations: IFFChunk-class, WaveToIFF(), as.raster.AmigaBasicShape(), getIFFChunk(),
interpretIFFChunk(), rasterToIFF(), rawToIFFChunk(), write.iff()

Examples

Not run:
let's read a bitmap image stored in IFF as provided with this package:
filename <- system.file("ilbm8lores.iff", package = "AmigaFFH")
example.iff <- read.iff(filename)

And plot it:
plot(example.iff)

End(Not run)

read.SysConfig Read an Amiga system-configuration file

Description

Read a binary Amiga system-configuration file and return as SysConfig object.

Usage

read.SysConfig(file, disk = NULL)

Arguments

file The file name of a system-configuration file to be read. Can also be a connection
that allows reading binary data.

disk A virtual Commodore Amiga disk from which the file should be read. This
should be an amigaDisk object. Using this argument requires the adfExplorer
package. When set to NULL, this argument is ignored.

90 simpleAmigaIcon

Details

Amiga OS 1.x stored system preferences in a binary system-configuration file. This function returns
the file in a comprehensive format (a SysConfig object).

Value

Returns an S3 SysConfig class object based on the file that is read.

Author(s)

Pepijn de Vries

See Also

Other SysConfig.operations: SysConfig, rawToSysConfig(), simpleSysConfig(), write.SysConfig()

Other io.operations: read.AmigaBasicBMAP(), read.AmigaBasicShape(), read.AmigaBasic(),
read.AmigaBitmapFontSet(), read.AmigaBitmapFont(), read.AmigaIcon(), read.iff(), write.AmigaBasicShape(),
write.AmigaBasic(), write.AmigaBitmapFont(), write.AmigaIcon(), write.SysConfig(),
write.iff()

Examples

Not run:
Put a simple SysConfig object into the tempdir:
write.SysConfig(simpleSysConfig(), file.path(tempdir(), "system-configuration"))

Now read the same file:
sc <- read.SysConfig(file.path(tempdir(), "system-configuration"))

and plot it
plot(sc)

End(Not run)

simpleAmigaIcon Create simple AmigaIcon objects

Description

Graphical representation of files and directories (icons) are stored as separate files (with the .info
extension) on the Amiga. This function writes AmigaIcon class objects to such files.

simpleAmigaIcon 91

Usage

simpleAmigaIcon(
version = c("OS1.x", "OS2.x"),
type = c("WBDISK", "WBDRAWER", "WBTOOL", "WBPROJECT", "WBGARBAGE", "WBDEVICE",

"WBKICK", "WBAPPICON"),
two.images = TRUE,
back.fill = FALSE,
...

)

Arguments

version A character string indicating the Amiga OS version with which the icon should
be compatible. "OS2.x" indicates >=OS2.0 and "OS1.x" indicates <OS2.0.

type A character string indicating the type of object (file, disk, directory, etc.) the
icon should represent. See the ‘Usage’ section for all posible options.

two.images A single logical value, indicating whether the selected icon is depicted as a
second image (in which case the icon contains two images). The default value
is TRUE.

back.fill A single logical value, indicating whether the selected image of the icon should
use the ‘back fill’ mode (default). If set to FALSE ‘complement’ mode is used.
Note that back fill is not compatible when the icon holds two images. In the
‘complement’ mode, the image colours are inverted when selected. In the ‘back
fill’ exterior first colour is not inverted.

... Reserverd for additional arguments. Currently ignored.

Details

This function creates basic AmigaIcon objects which can be modified afterwards. It uses simple
generic images to represent different types of files or directories.

Value

Returns a simple S3 object of class AmigaIcon.

Author(s)

Pepijn de Vries

See Also

Other AmigaIcon.operations: AmigaIcon, rawToAmigaIcon(), read.AmigaIcon(), write.AmigaIcon()

Other raw.operations: as.AmigaBasic(), as.raw.AmigaBasic(), colourToAmigaRaw(), packBitmap(),
rawToAmigaBasicBMAP(), rawToAmigaBasicShape(), rawToAmigaBasic(), rawToAmigaBitmapFontSet(),
rawToAmigaBitmapFont(), rawToAmigaIcon(), rawToHWSprite(), rawToIFFChunk(), rawToSysConfig()

92 simpleSysConfig

Examples

Not run:
Create an AmigaIcon object using the default arguments:
icon <- simpleAmigaIcon()

End(Not run)

simpleSysConfig Function to generate a simple Amiga system-configuration represen-
tation

Description

SysConfig objects are comprehensive representations of binary Amiga system-configuration files.
Use this function to create a simple SysConfig object.

Usage

simpleSysConfig(options)

Arguments

options A named list with elements of the target SysConfig object that need to be
modified.

Details

The Amiga used the system-configuration file to store certain system preferences in a binary file. In
the AmigaFFH package such files can be represented by the more comprehensive SysConfig class
object. Use this function to create such an object with basic settings (which can be modified).

Value

Returns a comprehensive representation of a system-configuration file in the for of a SysConfig
class object.

Author(s)

Pepijn de Vries

See Also

Other SysConfig.operations: SysConfig, rawToSysConfig(), read.SysConfig(), write.SysConfig()

SysConfig 93

Examples

Not run:
Create a simple system-configuration (S3 SysConfigClass)
sc <- simpleSysConfig()

And modify it as you wish.
in this case change the setting for the printer
from the parallel port to the serial port:
sc$PrinterPort <- factor("SERIAL_PRINTER", levels(sc$PrinterPort))

It is also to provide modifications to the configuration
via the 'options' argument:
sc <- simpleSysConfig(options = list(FontHeight = 9))

End(Not run)

SysConfig The S3 SysConfig class

Description

A comprehensive representation of an Amiga system-configuration file.

Details

The system-configuration file is a binary file stored in the ‘devs’ folder of the root of a bootable
Amiga DOS device, containing system preferences. It was used in Amiga OS 1.x. Although it
could be used in later versions, it was gradually phased out and some settings may not be usable in
the later versions. See references below for more details.
Definitions of the system-configuration have file been revised at some points. Revisions are minor
and usually targeted at backward compatibility. Here revision V38.2 (released on 16 September
1992) is implemented, which is the latest documented version.
The sytem-configuration file contains settings for the serial and parallel port and the printer. It also
contains some settings for the ‘workbench’ which was the Amiga equivalent of what is now mostly
known as the computers desktop. Colours for the workbench and the shape of the mouse pointer are
also stored in this file. Settings for the mouse and basic screen resolution are also part of the file.
The SysConfig object is a comprehensive representation of the binary system-configuration file. It
is a a list where the elements have identical names as listed in the documents provided the ref-
erences. The names are usually self-explanatory, but the referred documents can also be consulted
to obtain more detailed information with respect to each of these elements. The mouse pointer is
included as a hardwareSprite object in the list. The pointer image can be replaced by a different
hardwareSprite, but make sure it has an height of 16 pixels.
It is possible to change the values of the list, but not all values may be valid. Note that they will not
be fully checked for validity. Invalid values may result in errors when writing to a binary file using
write.SysConfig, or may simply not work properly on an Amiga or in an emulator.
Use simpleSysConfig for creating a simple SysConfig object which can be modified. Use read.SysConfig
to read, and write.SysConfig to write system-configuration files. With rawToSysConfig and
as.raw SysConfig can be coerced back and forth from and to its raw (binary) form.

94 timeval

Author(s)

Pepijn de Vries

References

https://wiki.amigaos.net/wiki/Preferences#Preferences_in_1.3_and_Older_Versions_
of_the_OS http://amigadev.elowar.com/read/ADCD_2.1/Includes_and_Autodocs_2._guide/
node00D5.html http://amigadev.elowar.com/read/ADCD_2.1/Includes_and_Autodocs_3._guide/
node063B.html

See Also

Other SysConfig.operations: rawToSysConfig(), read.SysConfig(), simpleSysConfig(), write.SysConfig()

timeval Get an Amiga timeval struct value from raw data

Description

Some Amiga applications use a timeval struct (see references) to represent a time span in seconds.
This function coerces raw data to such a numeric time span.

Usage

timeval(x)

Arguments

x a vector of raw data that need to be converted into Amiga timeval structs.

Details

Timeval is a structure (struct) as specified in device/timer.h on the Amiga (see references). It rep-
resents a timespan in seconds. This function retrieves the numeric value from raw data. Amongst
others, the timeval struct was used in the system-configuration file (see SysConfig) to specify key
repeat speed, key repeat delay and mouse double click speed. Use as.raw for the inverse of this
function and get the original raw data.

Value

Returns a numeric vector of a timespan in seconds. It is represented as an S3 AmigaTimeVal
class.

Author(s)

Pepijn de Vries

https://wiki.amigaos.net/wiki/Preferences#Preferences_in_1.3_and_Older_Versions_of_the_OS
https://wiki.amigaos.net/wiki/Preferences#Preferences_in_1.3_and_Older_Versions_of_the_OS
http://amigadev.elowar.com/read/ADCD_2.1/Includes_and_Autodocs_2._guide/node00D5.html
http://amigadev.elowar.com/read/ADCD_2.1/Includes_and_Autodocs_2._guide/node00D5.html
http://amigadev.elowar.com/read/ADCD_2.1/Includes_and_Autodocs_3._guide/node063B.html
http://amigadev.elowar.com/read/ADCD_2.1/Includes_and_Autodocs_3._guide/node063B.html

WaveToIFF 95

References

http://amigadev.elowar.com/read/ADCD_2.1/Includes_and_Autodocs_2._guide/node0053.
html

Examples

First four raw values represent seconds, the latter four microseconds:
temp <- timeval(as.raw(c(0, 0, 0, 1, 0, 0, 0, 1)))
print(temp)

You can use 'as.raw' to get the original raw data again:
as.raw(temp)

WaveToIFF Convert WaveMC objects into an Interchange File Format object

Description

Convert WaveMC objects (or objects that can be coerced to WaveMC objects) into an IFFChunk-class
object which can be stored as a valid Iterchange File Format (write.iff).

Usage

WaveToIFF(
x,
loop.start = NA,
octaves = 1,
compress = c("sCmpNone", "sCmpFibDelta"),
...

)

Arguments

x A WaveMC object that needs to be converted into an IFFChunk object. x can also
be any other class object that can be coerced into a WaveMC object. Wave and
PTSample objects are therefore also allowed.

loop.start If the sample should be looped from a specific position to the end of the sample,
this argument specifies the starting position in samples (with a base of 0) for
looping. loop.start therefore should be a whole non-negative number. When
set to NA or negative values, the sample will not be looped.

octaves A whole positive numeric value indicating the number of octaves that should
be stored in the resulting IFF chunk. The original wave will be resampled for
each value larger than 1. Each subsequent octave will contain precisely twice as
many samples as the previous octave.

compress A character string indicating whether compression should be applied to the
waveform. "sCmpNone" (default) applies no compression, "sCmpFibDelta" ap-
plies the lossy deltaFibonacciCompression.

... Currently ignored.

http://amigadev.elowar.com/read/ADCD_2.1/Includes_and_Autodocs_2._guide/node0053.html
http://amigadev.elowar.com/read/ADCD_2.1/Includes_and_Autodocs_2._guide/node0053.html

96 WaveToIFF

Details

WaveMC objects can be read from contemporary file containers with readWave or readMP3. With
this function such objects can be converted into an IFFChunk-class object which can be stored
conform the Interchange File Format (write.iff).

When x is not a pcm formatted 8-bit sample, x will first be normalised and scaled to a pcm-formatted
8-bit sample using normalize. If you don’t like the result you need to convert the sample to 8-bit
pcm yourself before calling this function.

Value

Returns an IFFChunk-class object with a FORM container that contains an 8SVX waveform based
on x.

Author(s)

Pepijn de Vries

References

https://en.wikipedia.org/wiki/8SVX

See Also

Other iff.operations: IFFChunk-class, as.raster.AmigaBasicShape(), getIFFChunk(), interpretIFFChunk(),
rasterToIFF(), rawToIFFChunk(), read.iff(), write.iff()

Examples

Not run:
First get an audio sample from the ProTrackR package
snare.samp <- ProTrackR::PTSample(ProTrackR::mod.intro, 2)

The sample can easily be converted into an IFFChunk:
snare.iff <- WaveToIFF(snare.samp)

You could also first convert the sample into a Wave object:
snare.wav <- as(snare.samp, "Wave")

And then convert into an IFFChunk. The result is the same:
snare.iff <- WaveToIFF(snare.wav)

You could also use a sine wave as input (although you will get some warnings).
This will work because the vector of numeric data can be coerced to
a WaveMC object
sine.iff <- WaveToIFF(sin((0:2000)/20))

End(Not run)

https://en.wikipedia.org/wiki/8SVX

write.AmigaBasic 97

write.AmigaBasic Write an AmigaBasic object to a file

Description

Write an AmigaBasic class object to a file in its binary format.

Usage

write.AmigaBasic(x, file, disk = NULL)

Arguments

x The AmigaBasic class object that needs to be stored.

file A character string specifying the file location to which x (an AmigaBasic ob-
ject) needs to be written.

disk A virtual Commodore Amiga disk to which the file should be written. This
should be an amigaDisk object. Using this argument requires the adfExplorer
package. When set to NULL, this argument is ignored.

Details

This function encodes the Amiga Basic code in its binary format (using as.raw) and writes it to a
file. The file can also be stored onto a virtual Amiga disk (amigaDisk).

Value

Invisibly returns the result of the call of close to the file connection. Or, when disk is specified, a
copy of disk is returned to which the file(s) is/are written.

Author(s)

Pepijn de Vries

See Also

Other AmigaBasic.operations: AmigaBasic.reserved(), AmigaBasicBMAP, AmigaBasic, [.AmigaBasic(),
as.AmigaBasicBMAP(), as.AmigaBasic(), as.character(), check.names.AmigaBasic(), names.AmigaBasic(),
rawToAmigaBasicBMAP(), rawToAmigaBasic(), read.AmigaBasicBMAP(), read.AmigaBasic()

Other io.operations: read.AmigaBasicBMAP(), read.AmigaBasicShape(), read.AmigaBasic(),
read.AmigaBitmapFontSet(), read.AmigaBitmapFont(), read.AmigaIcon(), read.SysConfig(),
read.iff(), write.AmigaBasicShape(), write.AmigaBitmapFont(), write.AmigaIcon(), write.SysConfig(),
write.iff()

98 write.AmigaBasicShape

Examples

Not run:
First create an AmigaBasic object:
bas <- as.AmigaBasic("PRINT \"hello world!\"")

write to tempdir:
write.AmigaBasic(bas, file.path(tempdir(), "helloworld.bas"))

End(Not run)

write.AmigaBasicShape Write an AmigaBasicShape object to a file

Description

Write an AmigaBasicShape class object to a file in its binary format.

Usage

write.AmigaBasicShape(x, file, disk = NULL)

Arguments

x The AmigaBasicShape class object that needs to be stored.

file A character string specifying the file location to which x (an AmigaBasicShape
object) needs to be written.

disk A virtual Commodore Amiga disk to which the file should be written. This
should be an amigaDisk object. Using this argument requires the adfExplorer
package. When set to NULL, this argument is ignored.

Details

This function coerces the Amiga Basic Shape into its binary format (using as.raw) and writes it to
a file. The file can also be stored onto a virtual Amiga disk (amigaDisk).

Value

Invisibly returns the result of the call of close to the file connection. Or, when disk is specified, a
copy of disk is returned to which the file(s) is/are written.

Author(s)

Pepijn de Vries

write.AmigaBitmapFont 99

See Also

Other AmigaBasicShape.operations: AmigaBasicShape, rasterToAmigaBasicShape(), read.AmigaBasicShape()

Other io.operations: read.AmigaBasicBMAP(), read.AmigaBasicShape(), read.AmigaBasic(),
read.AmigaBitmapFontSet(), read.AmigaBitmapFont(), read.AmigaIcon(), read.SysConfig(),
read.iff(), write.AmigaBasic(), write.AmigaBitmapFont(), write.AmigaIcon(), write.SysConfig(),
write.iff()

Examples

Not run:
filename <- system.file("ball.shp", package = "AmigaFFH")
ball <- read.AmigaBasicShape(filename)
write.AmigaBasicShape(ball, file.path(tempdir(), "ball.shp"))

End(Not run)

write.AmigaBitmapFont Write an AmigaBitmapFont(set) file

Description

Functions to write AmigaBitmapFont and AmigaBitmapFontSet class objects to files.

Usage

write.AmigaBitmapFont(x, file, disk = NULL)

write.AmigaBitmapFontSet(x, path = getwd(), disk = NULL)

Arguments

x Respectively an AmigaBitmapFont or a AmigaBitmapFontSet object depending
on which of the write-functions is called. This is the object that will be written
to the specified file.

file A character string specifying the file location to which x (an AmigaBitmapFont
object) needs to be written. It is common practice on the Amiga to use the font
height in pixels as file name.

disk A virtual Commodore Amiga disk to which the file should be written. This
should be an amigaDisk object. Using this argument requires the adfExplorer
package. When set to NULL, this argument is ignored.

path A character string specifying the path where x (an AmigaBitmapFontSet ob-
ject) needs to be stored. The filename for the font set will be extracted from x
using fontName followed by the *.font extension. A subdirectory will be created
with the same name (without the extension) if it doesn’t already exists. In this
subdirectory all the nested AmigaBitmapFont objects are stored.

100 write.AmigaBitmapFont

Details

AmigaBitmapFontSet class objects are written to a *.font file. The filename used for this purpose is
obtained from the object itself using fontName. In addition, a subdirectory is created automatically
(when it doesn’t already exist) to which al the separate bitmap images for each font height are
written to individual files.

AmigaBitmapFont class objects can also be written to a file. In order to use it on a Commodore
Amiga or emulator, it is better to embed the font bitmap in a font set (using c) and write the set to
corresponding files.

Value

Invisibly returns the result of the call of close to the file connection. Or, when disk is specified, a
copy of disk is returned to which the file(s) is/are written.

Author(s)

Pepijn de Vries

See Also

Other AmigaBitmapFont.operations: AmigaBitmapFont, availableFontSizes(), c(), fontName(),
font_example, getAmigaBitmapFont(), rasterToAmigaBitmapFont(), rawToAmigaBitmapFontSet(),
rawToAmigaBitmapFont(), read.AmigaBitmapFontSet(), read.AmigaBitmapFont()

Other io.operations: read.AmigaBasicBMAP(), read.AmigaBasicShape(), read.AmigaBasic(),
read.AmigaBitmapFontSet(), read.AmigaBitmapFont(), read.AmigaIcon(), read.SysConfig(),
read.iff(), write.AmigaBasicShape(), write.AmigaBasic(), write.AmigaIcon(), write.SysConfig(),
write.iff()

Examples

Not run:
obtain a bitmap font set:
data(font_example)

write the font set to their files. The file name
is extracted from the font object, so you only have
to provide the path:
write.AmigaBitmapFont(font_example, temp.dir())

extract a font bitmap:
font <- getAmigaBitmapFont(font_example, 9)

and write it to the temp dir:
write.AmigaBitmapFont(font, file.path(temp.dir(), "9"))

The following examples require the 'adfExplorer' package:
font.disk <- adfExplorer::blank.amigaDOSDisk("font.disk")
font.disk <- adfExplorer::dir.create.adf(font.disk, "FONTS")
font.disk <- write.AmigaBitmapFontSet(font_example, "DF0:FONTS", font.disk)

write.AmigaIcon 101

End(Not run)

write.AmigaIcon Write an Amiga Workbench icon (info) file

Description

Graphical representation of files and directories (icons) are stored as separate files (with the .info
extension) on the Amiga. This function writes AmigaIcon class objects to such files.

Usage

write.AmigaIcon(x, file, disk = NULL)

Arguments

x An AmigaIcon class object.

file A character string representing the file name to which the icon data should be
written.

disk A virtual Commodore Amiga disk to which the file should be written. This
should be an amigaDisk object. Using this argument requires the adfExplorer
package. When set to NULL, this argument is ignored.

Details

The AmigaIcon S3 object provides a comprehensive format for Amiga icons, which are used as
a graphical representation of files and directories on the Amiga. The AmigaIcon is a named list
containing all information of an icon. Use this function to write this object to a file which can be
used on the Commodore Amiga or emulator.

Value

Returns NULL or an integer status passed on by the close function, that is used to close the file
connection. It is returned invisibly. Or, when disk is specified, a copy of disk is returned to which
the file is written.

Author(s)

Pepijn de Vries

See Also

Other AmigaIcon.operations: AmigaIcon, rawToAmigaIcon(), read.AmigaIcon(), simpleAmigaIcon()

Other io.operations: read.AmigaBasicBMAP(), read.AmigaBasicShape(), read.AmigaBasic(),
read.AmigaBitmapFontSet(), read.AmigaBitmapFont(), read.AmigaIcon(), read.SysConfig(),
read.iff(), write.AmigaBasicShape(), write.AmigaBasic(), write.AmigaBitmapFont(), write.SysConfig(),
write.iff()

102 write.iff

Examples

Not run:
create a simple AmigaIcon:
icon <- simpleAmigaIcon()

write the icon to the temp dir:
write.AmigaIcon(icon, file.path(tempdir(), "icon.info"))

End(Not run)

write.iff Write Interchange File Format (IFF)

Description

Write an IFFChunk object conform the Interchange File Format (IFF).

Usage

write.iff(x, file, disk = NULL)

Arguments

x An IFFChunk object that needs to be written to a file.

file A filename for the IFF file to which the IFFChunk needs to be saved, or a con-
nection to which the data should be written.

disk A virtual Commodore Amiga disk to which the file should be written. This
should be an amigaDisk object. Using this argument requires the adfExplorer
package. When set to NULL, this argument is ignored.

Details

Writes an IFFChunk object (including all nested chunks) to the specified file. Only the structure of
the object needs to be valid, however, a correctly structured file does not necessarily result in an
interpretable file (see examples).

Value

Returns either NULL or an integer status invisibly as passed by the close statement used to close
the file connection. When disk is specified, a copy of disk is returned to which the file is written.

Author(s)

Pepijn de Vries

References

https://en.wikipedia.org/wiki/Interchange_File_Format

https://en.wikipedia.org/wiki/Interchange_File_Format

write.SysConfig 103

See Also

Other io.operations: read.AmigaBasicBMAP(), read.AmigaBasicShape(), read.AmigaBasic(),
read.AmigaBitmapFontSet(), read.AmigaBitmapFont(), read.AmigaIcon(), read.SysConfig(),
read.iff(), write.AmigaBasicShape(), write.AmigaBasic(), write.AmigaBitmapFont(), write.AmigaIcon(),
write.SysConfig()

Other iff.operations: IFFChunk-class, WaveToIFF(), as.raster.AmigaBasicShape(), getIFFChunk(),
interpretIFFChunk(), rasterToIFF(), rawToIFFChunk(), read.iff()

Examples

Not run:
read an IFF file as an IFFChunk object:
example.iff <- read.iff(system.file("ilbm8lores.iff", package = "AmigaFFH"))

This will write the IFF file (in this case a bitmap image)
to the temp directory:
write.iff(example.iff, file.path(tempdir(), "image.iff"))

End(Not run)

write.SysConfig Write an Amiga system-configuration file

Description

Write a SysConfig class object to an Amiga binary system-configuration file.

Usage

write.SysConfig(x, file, disk = NULL)

Arguments

x An S3 SysConfig class object.

file A file name to which the binary file should be written.

disk A virtual Commodore Amiga disk to which the file should be written. This
should be an amigaDisk object. Using this argument requires the adfExplorer
package. When set to NULL, this argument is ignored.

Details

Amiga OS 1.x stored system preferences in a binary system-configuration file. This function writes
a SysConfig class object as such a binary file. This file can be used on an Amiga or in an emulator.

104 [.AmigaBasic

Value

Returns NULL or an integer status passed on by the close function, that is used to close the file
connection. It is returned invisibly. Or, when disk is specified, a copy of disk is returned to which
the file is written.

Author(s)

Pepijn de Vries

See Also

Other SysConfig.operations: SysConfig, rawToSysConfig(), read.SysConfig(), simpleSysConfig()

Other io.operations: read.AmigaBasicBMAP(), read.AmigaBasicShape(), read.AmigaBasic(),
read.AmigaBitmapFontSet(), read.AmigaBitmapFont(), read.AmigaIcon(), read.SysConfig(),
read.iff(), write.AmigaBasicShape(), write.AmigaBasic(), write.AmigaBitmapFont(), write.AmigaIcon(),
write.iff()

Examples

Not run:
First generate a simple SysConfig object to write to a file:
sc <- simpleSysConfig()

And write to the tempdir:
write.SysConfig(sc, file.path(tempdir(), "system-configuration"))

End(Not run)

[.AmigaBasic Extract or replace lines of Amiga Basic code

Description

Extract or replace lines of Amiga Basic code

Usage

S3 method for class 'AmigaBasic'
x[i]

S3 replacement method for class 'AmigaBasic'
x[i] <- value

S3 method for class 'AmigaBasic'
x[[i]]

S3 replacement method for class 'AmigaBasic'
x[[i]] <- value

[.AmigaBasic 105

Arguments

x An AmigaBasic class object from which specific lines need to be extracted or
replaced.

i In case of ‘[[’, an integer index, representing the line-number of basic code to
be selected. In case of ‘[’: a vector of numeric indices. This index is used to
select specific lines. Negative values will deselect lines.

value A vector of character strings or an AmigaBasic class object that is used to
replace the selected indices i. value should represent the same number of lines
of code as the selected number of lines.

Details

Extract or replace specific lines in an AmigaBasic-class object.

Value

The extraction method returns an AmigaBasic object based in the lines selected with i. The re-
placement method returns an AmigaBasic object with the selected lines replaced with value.

Author(s)

Pepijn de Vries

See Also

Other AmigaBasic.operations: AmigaBasic.reserved(), AmigaBasicBMAP, AmigaBasic, as.AmigaBasicBMAP(),
as.AmigaBasic(), as.character(), check.names.AmigaBasic(), names.AmigaBasic(), rawToAmigaBasicBMAP(),
rawToAmigaBasic(), read.AmigaBasicBMAP(), read.AmigaBasic(), write.AmigaBasic()

Examples

Not run:
First generate a few lines of Basic code:
bas <- as.AmigaBasic(c(

"LET a = 1",
"a = a + 1",
"PRINT \"a now equals\";a",
"INPUT \"clear screen (y/n)? \", b$",
"IF UCASE$(b$) = \"Y\" THEN CLS"

))

Select only lines 4 and 5:
bas[4:5]

use negative indices to deselect specific lines.
deselect line 2:
bas[-2]

replace line 2
bas[2] <- "a = a + 2"

106 [.AmigaBasic

You can also use AmigaBasic class object as replacement
bas[2] <- as.AmigaBasic("a = a + 3")

single lines can also be selected with '[['
bas[[2]]

End(Not run)

Index

∗ AmigaBasic.operations
[.AmigaBasic, 104
AmigaBasic, 3
AmigaBasic.reserved, 5
AmigaBasicBMAP, 5
as.AmigaBasic, 15
as.AmigaBasicBMAP, 16
as.character, 18
check.names.AmigaBasic, 27
names.AmigaBasic, 52
rawToAmigaBasic, 69
rawToAmigaBasicBMAP, 70
read.AmigaBasic, 80
read.AmigaBasicBMAP, 81
write.AmigaBasic, 97

∗ AmigaBasicShape.operations
AmigaBasicShape, 6
rasterToAmigaBasicShape, 59
read.AmigaBasicShape, 83
write.AmigaBasicShape, 98

∗ AmigaBasicShapes.operations
rawToAmigaBasicShape, 71

∗ AmigaBitmapFont.operations
AmigaBitmapFont, 7
availableFontSizes, 23
c, 26
font_example, 36
fontName, 35
getAmigaBitmapFont, 37
rasterToAmigaBitmapFont, 60
rawToAmigaBitmapFont, 73
rawToAmigaBitmapFontSet, 74
read.AmigaBitmapFont, 84
read.AmigaBitmapFontSet, 85
write.AmigaBitmapFont, 99

∗ AmigaIcon.operations
AmigaIcon, 11
rawToAmigaIcon, 75
read.AmigaIcon, 87

simpleAmigaIcon, 90
write.AmigaIcon, 101

∗ HWSprite.operations
rasterToHWSprite, 66
rawToHWSprite, 76

∗ SysConfig.operations
rawToSysConfig, 79
read.SysConfig, 89
simpleSysConfig, 92
SysConfig, 93
write.SysConfig, 103

∗ colour.quantisation.operations
dither, 32
index.colours, 49

∗ iff.operations
as.raster.AmigaBasicShape, 19
getIFFChunk, 38
IFFChunk-class, 41
interpretIFFChunk, 51
rasterToIFF, 67
rawToIFFChunk, 78
read.iff, 88
WaveToIFF, 95
write.iff, 102

∗ io.operations
read.AmigaBasic, 80
read.AmigaBasicBMAP, 81
read.AmigaBasicShape, 83
read.AmigaBitmapFont, 84
read.AmigaBitmapFontSet, 85
read.AmigaIcon, 87
read.iff, 88
read.SysConfig, 89
write.AmigaBasic, 97
write.AmigaBasicShape, 98
write.AmigaBitmapFont, 99
write.AmigaIcon, 101
write.iff, 102
write.SysConfig, 103

107

108 INDEX

∗ raster.operations
AmigaBitmapFont, 7
as.raster.AmigaBasicShape, 19
bitmapToRaster, 24
dither, 32
index.colours, 49
rasterToAmigaBasicShape, 59
rasterToAmigaBitmapFont, 60
rasterToBitmap, 63
rasterToHWSprite, 66
rasterToIFF, 67

∗ raw.operations
as.AmigaBasic, 15
as.raw.AmigaBasic, 21
colourToAmigaRaw, 29
packBitmap, 54
rawToAmigaBasic, 69
rawToAmigaBasicBMAP, 70
rawToAmigaBasicShape, 71
rawToAmigaBitmapFont, 73
rawToAmigaBitmapFontSet, 74
rawToAmigaIcon, 75
rawToHWSprite, 76
rawToIFFChunk, 78
rawToSysConfig, 79
simpleAmigaIcon, 90

[.AmigaBasic, 4–6, 16–18, 28, 53, 69, 71, 81,
82, 97, 104

[<-.AmigaBasic ([.AmigaBasic), 104
[[.AmigaBasic ([.AmigaBasic), 104
[[<-.AmigaBasic ([.AmigaBasic), 104
‘[[.AmigaBasic‘ ([.AmigaBasic), 104
‘[[<-.AmigaBasic‘ ([.AmigaBasic), 104

Amiga Basic, 4, 10
Amiga Basic BMAP, 17, 70, 82
Amiga Basic shapes, 10
amiga_display_keys, 12
amiga_display_modes, 12, 13, 46, 67
amiga_monitors, 14, 46, 68
amiga_palettes, 14
AmigaBasic, 3, 4–6, 15–18, 26–28, 53, 69, 71,

72, 80–82, 97, 105
AmigaBasic-files, 4
AmigaBasic.reserved, 4, 5, 6, 16–18, 28, 53,

69, 71, 81, 82, 97, 105
AmigaBasicBMAP, 4, 5, 5, 16–18, 28, 53,

69–71, 81, 82, 97, 105

AmigaBasicShape, 4, 6, 20, 57, 59, 60, 71, 72,
83, 98, 99

AmigaBitmapFont, 7, 10, 19, 20, 24–27,
34–37, 50, 57, 58, 60–62, 65, 67, 68,
73, 75, 84–86, 99, 100

AmigaBitmapFontSet, 10, 19, 20, 23, 26, 27,
35–37, 57, 58, 74, 85, 86, 99, 100

AmigaBitmapFontSet (AmigaBitmapFont), 7
amigaDisk, 74, 80, 82–84, 86–89, 97–99,

101–103
AmigaFFH, 9
AmigaIcon, 10, 11, 15, 19, 57, 58, 75, 76, 87,

88, 90, 91, 101
amigaRawToColour (colourToAmigaRaw), 29
as.AmigaBasic, 3–6, 15, 17, 18, 23, 28, 30,

53, 55, 69, 71–73, 75–78, 80–82, 91,
97, 105

as.AmigaBasicBMAP, 4–6, 16, 16, 18, 28, 53,
69, 71, 81, 82, 97, 105

as.character, 3–6, 16, 17, 18, 28, 53, 69, 71,
81, 82, 97, 105

as.raster, 8, 20, 24, 25, 33, 40, 45, 49, 52,
58, 60, 64, 66, 67, 77

as.raster (as.raster.AmigaBasicShape),
19

as.raster,hardwareSprite-method
(as.raster.AmigaBasicShape), 19

as.raster.AmigaBasicShape, 9, 19, 25, 34,
39, 42, 50, 52, 60, 62, 65, 67, 68, 78,
89, 96, 103

as.raster.AmigaBitmapFont
(as.raster.AmigaBasicShape), 19

as.raster.AmigaBitmapFontSet
(as.raster.AmigaBasicShape), 19

as.raster.AmigaIcon
(as.raster.AmigaBasicShape), 19

as.raster.hardwareSprite
(as.raster.AmigaBasicShape), 19

as.raster.IFFChunk
(as.raster.AmigaBasicShape), 19

as.raw, 8, 11, 73, 74, 76, 78, 79, 93, 97, 98
as.raw (as.raw.AmigaBasic), 21
as.raw,hardwareSprite-method

(as.raw.AmigaBasic), 21
as.raw,IFFChunk-method

(as.raw.AmigaBasic), 21
as.raw.AmigaBasic, 16, 21, 30, 55, 69,

71–73, 75–78, 80, 91

INDEX 109

as.raw.AmigaBasicBMAP
(as.raw.AmigaBasic), 21

as.raw.AmigaBasicShape
(as.raw.AmigaBasic), 21

as.raw.AmigaBitmapFont
(as.raw.AmigaBasic), 21

as.raw.AmigaBitmapFontSet
(as.raw.AmigaBasic), 21

as.raw.AmigaIcon (as.raw.AmigaBasic), 21
as.raw.AmigaTimeVal

(as.raw.AmigaBasic), 21
as.raw.IFF.ANY (as.raw.AmigaBasic), 21
as.raw.SysConfig (as.raw.AmigaBasic), 21
availableFontSizes, 8, 23, 27, 35–37, 62,

73, 75, 85, 86, 100

ball.shp (AmigaBasic-files), 4
bitmapToRaster, 9, 20, 24, 34, 48, 50, 60, 62,

65, 67, 68

c, 8, 24, 26, 35–37, 62, 73, 75, 85, 86, 100
check.names.AmigaBasic, 4–6, 16–18, 27,

53, 69, 71, 81, 82, 97, 105
close, 101, 102, 104
colourToAmigaRaw, 16, 23, 29, 55, 69, 71–73,

75–78, 80, 91

deltaFibonacciCompress, 10, 30, 47, 95
deltaFibonacciDecompress

(deltaFibonacciCompress), 30
demo.bas (AmigaBasic-files), 4
dither, 9, 10, 20, 25, 32, 50, 60, 62, 65, 67, 68

font_example, 8, 24, 27, 35, 36, 37, 62, 73,
75, 85, 86, 100

fontName, 8, 24, 27, 35, 36, 37, 62, 73, 75, 85,
86, 99, 100

fontName<- (fontName), 35

getAmigaBitmapFont, 8, 24, 27, 35, 36, 37,
62, 73, 75, 85, 86, 100

getIFFChunk, 20, 38, 42, 52, 68, 78, 89, 96,
103

getIFFChunk,IFFChunk,character,integer-method
(getIFFChunk), 38

getIFFChunk,IFFChunk,character,missing-method
(getIFFChunk), 38

getIFFChunk<- (getIFFChunk), 38
getIFFChunk<-,IFFChunk,character,integer,IFFChunk-method

(getIFFChunk), 38

getIFFChunk<-,IFFChunk,character,missing,IFFChunk-method
(getIFFChunk), 38

grDevices, 25, 66

hardwareSprite, 10, 19, 20, 66, 76, 77, 93
hardwareSprite (hardwareSprite-class),

39
hardwareSprite-class, 39

IFFChunk, 10–14, 19, 20, 38, 41, 42, 44, 51,
52, 54, 56, 67, 68, 78, 88, 89, 95, 102

IFFChunk (IFFChunk-method), 42
IFFChunk-class, 41
IFFChunk-method, 42
IFFChunk.character (IFFChunk-method), 42
IFFChunk.IFF.8SVX (IFFChunk-method), 42
IFFChunk.IFF.ANHD (IFFChunk-method), 42
IFFChunk.IFF.ANIM (IFFChunk-method), 42
IFFChunk.IFF.ANNO (IFFChunk-method), 42
IFFChunk.IFF.AUTH (IFFChunk-method), 42
IFFChunk.IFF.BMHD (IFFChunk-method), 42
IFFChunk.IFF.BODY (IFFChunk-method), 42
IFFChunk.IFF.CAMG (IFFChunk-method), 42
IFFChunk.IFF.CHAN (IFFChunk-method), 42
IFFChunk.IFF.CHRS (IFFChunk-method), 42
IFFChunk.IFF.CMAP (IFFChunk-method), 42
IFFChunk.IFF.copyright

(IFFChunk-method), 42
IFFChunk.IFF.CRNG (IFFChunk-method), 42
IFFChunk.IFF.DLTA (IFFChunk-method), 42
IFFChunk.IFF.DPAN (IFFChunk-method), 42
IFFChunk.IFF.FORM (IFFChunk-method), 42
IFFChunk.IFF.ILBM (IFFChunk-method), 42
IFFChunk.IFF.NAME (IFFChunk-method), 42
IFFChunk.IFF.TEXT (IFFChunk-method), 42
IFFChunk.IFF.VHDR (IFFChunk-method), 42
ilbm8lores.iff, 48
index.colours, 9, 20, 25, 34, 49, 59, 60, 62,

64–68
interpretIFFChunk, 10, 20, 39, 41, 42, 44,

48, 51, 68, 78, 88, 89, 96, 103
interpretIFFChunk,IFFChunk-method

(interpretIFFChunk), 51

kmeans, 50

names.AmigaBasic, 4–6, 16–18, 28, 52, 69,
71, 81, 82, 97, 105

names<-.AmigaBasic (names.AmigaBasic),
52

110 INDEX

normalize, 96

packBitmap, 10, 16, 23, 30, 46, 54, 69, 71–73,
75–78, 80, 91

play, 55, 55, 56
play,ANY-method (play), 55
play,IFFChunk-method (play), 55
plot, 8
plot (plot.AmigaBasicShape), 56
plot.AmigaBasicShape, 56
ProTrackR, 9, 56
PTSample, 95

r_logo.shp (AmigaBasic-files), 4
raster, 59
rasterToAmigaBasicShape, 6, 9, 20, 25, 34,

50, 59, 62, 65, 67, 68, 83, 99
rasterToAmigaBitmapFont, 8, 9, 20, 24, 25,

27, 34–37, 50, 60, 60, 65, 67, 68, 73,
75, 85, 86, 100

rasterToBitmap, 9, 20, 25, 33, 34, 49, 50, 60,
62, 63, 67, 68

rasterToHWSprite, 9, 20, 25, 34, 50, 60, 62,
65, 66, 68, 77

rasterToIFF, 9, 20, 25, 34, 39, 42, 50, 52, 54,
60, 62, 65, 67, 67, 78, 89, 96, 103

rawToAmigaBasic, 4–6, 16–18, 23, 28, 30, 53,
55, 69, 71–73, 75–78, 80–82, 91, 97,
105

rawToAmigaBasicBMAP, 4–6, 16–18, 23, 28,
30, 53, 55, 69, 70, 72, 73, 75–78,
80–82, 91, 97, 105

rawToAmigaBasicShape, 16, 23, 30, 55, 69,
71, 71, 73, 75–78, 80, 83, 91

rawToAmigaBitmapFont, 8, 16, 23, 24, 27, 30,
35–37, 55, 62, 69, 71, 72, 73, 75–78,
80, 84–86, 91, 100

rawToAmigaBitmapFontSet, 8, 16, 23, 24, 27,
30, 35–37, 55, 62, 69, 71–73, 74,
76–78, 80, 85, 86, 91, 100

rawToAmigaIcon, 11, 12, 16, 23, 30, 55, 69,
71–73, 75, 75, 77, 78, 80, 87, 88, 91,
101

rawToHWSprite, 16, 23, 30, 55, 67, 69, 71–73,
75, 76, 76, 78, 80, 91

rawToHWSprite,raw,character-method
(rawToHWSprite), 76

rawToHWSprite,raw,missing-method
(rawToHWSprite), 76

rawToIFFChunk, 16, 20, 23, 30, 39, 42, 52, 55,
68, 69, 71–73, 75–77, 78, 80, 89, 91,
96, 103

rawToIFFChunk,raw-method
(rawToIFFChunk), 78

rawToSysConfig, 16, 23, 30, 55, 69, 71–73,
75–78, 79, 90–94, 104

read.AmigaBasic, 4–6, 16–18, 28, 53, 69, 71,
80, 82, 83, 85, 86, 88–90, 97,
99–101, 103–105

read.AmigaBasicBMAP, 4–6, 16–18, 28, 53,
69, 71, 81, 81, 83, 85, 86, 88–90, 97,
99–101, 103–105

read.AmigaBasicShape, 4, 6, 60, 81, 82, 83,
85, 86, 88–90, 97, 99–101, 103, 104

read.AmigaBitmapFont, 8, 24, 27, 35–37, 62,
73, 75, 81–83, 84, 86, 88–90, 97,
99–101, 103, 104

read.AmigaBitmapFontSet, 8, 24, 27, 35–37,
62, 73, 75, 81–83, 85, 85, 88–90, 97,
99–101, 103, 104

read.AmigaIcon, 11, 12, 76, 81–83, 85, 86,
87, 89–91, 97, 99–101, 103, 104

read.iff, 10, 20, 39, 41, 42, 44, 52, 68, 78,
81–83, 85, 86, 88, 88, 90, 96, 97,
99–101, 103, 104

read.SysConfig, 80–83, 85, 86, 88, 89, 89,
92–94, 97, 99–101, 103, 104

readMP3, 96
readWave, 96

set.seed, 50
simpleAmigaIcon, 11, 12, 16, 23, 30, 55, 69,

71–73, 75–78, 80, 88, 90, 101
simpleSysConfig, 80, 90, 92, 93, 94, 104
SysConfig, 10, 79, 80, 89, 90, 92, 93, 94, 103,

104

timeval, 94
tuneR, 55, 56

unPackBitmap (packBitmap), 54

Wave, 46, 52, 95
WaveMC, 95, 96
WaveToIFF, 20, 39, 42, 52, 68, 78, 89, 95, 103
write.AmigaBasic, 4–6, 16–18, 28, 53, 69,

71, 81–83, 85, 86, 88–90, 97,
99–101, 103–105

INDEX 111

write.AmigaBasicBMAP
(read.AmigaBasicBMAP), 81

write.AmigaBasicShape, 6, 60, 81–83, 85,
86, 88–90, 97, 98, 100, 101, 103, 104

write.AmigaBitmapFont, 8, 24, 27, 35–37,
62, 73, 75, 81–83, 85, 86, 88–90, 97,
99, 99, 101, 103, 104

write.AmigaBitmapFontSet, 8, 35
write.AmigaBitmapFontSet

(write.AmigaBitmapFont), 99
write.AmigaIcon, 11, 12, 76, 81–83, 85, 86,

88–91, 97, 99, 100, 101, 103, 104
write.iff, 10, 20, 39, 42, 52, 68, 78, 81–83,

85, 86, 88–90, 95–97, 99–101, 102,
104

write.SysConfig, 80–83, 85, 86, 88–90,
92–94, 97, 99–101, 103, 103

	AmigaBasic
	AmigaBasic-files
	AmigaBasic.reserved
	AmigaBasicBMAP
	AmigaBasicShape
	AmigaBitmapFont
	AmigaFFH
	AmigaIcon
	amiga_display_keys
	amiga_display_modes
	amiga_monitors
	amiga_palettes
	as.AmigaBasic
	as.AmigaBasicBMAP
	as.character
	as.raster.AmigaBasicShape
	as.raw.AmigaBasic
	availableFontSizes
	bitmapToRaster
	c
	check.names.AmigaBasic
	colourToAmigaRaw
	deltaFibonacciCompress
	dither
	fontName
	font_example
	getAmigaBitmapFont
	getIFFChunk
	hardwareSprite-class
	IFFChunk-class
	IFFChunk-method
	ilbm8lores.iff
	index.colours
	interpretIFFChunk
	names.AmigaBasic
	packBitmap
	play
	plot.AmigaBasicShape
	rasterToAmigaBasicShape
	rasterToAmigaBitmapFont
	rasterToBitmap
	rasterToHWSprite
	rasterToIFF
	rawToAmigaBasic
	rawToAmigaBasicBMAP
	rawToAmigaBasicShape
	rawToAmigaBitmapFont
	rawToAmigaBitmapFontSet
	rawToAmigaIcon
	rawToHWSprite
	rawToIFFChunk
	rawToSysConfig
	read.AmigaBasic
	read.AmigaBasicBMAP
	read.AmigaBasicShape
	read.AmigaBitmapFont
	read.AmigaBitmapFontSet
	read.AmigaIcon
	read.iff
	read.SysConfig
	simpleAmigaIcon
	simpleSysConfig
	SysConfig
	timeval
	WaveToIFF
	write.AmigaBasic
	write.AmigaBasicShape
	write.AmigaBitmapFont
	write.AmigaIcon
	write.iff
	write.SysConfig
	[.AmigaBasic
	Index

