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1 Introduction

The BEST package provides a Bayesian alternative to a t test, providing much richer information
about the samples and the difference in means than a simple p value.

Bayesian estimation for two groups provides complete distributions of credible values for the
effect size, group means and their difference, standard deviations and their difference, and the
normality of the data. For a single group, distributions for the mean, standard deviation and
normality are provided. The method handles outliers.

The decision rule can accept the null value (unlike traditional t tests) when certainty in the
estimate is high (unlike Bayesian model comparison using Bayes factors).

The package also provides methods to estimate statistical power for various research goals.

2 The Model

To accommodate outliers we describe the data with a distribution that has fatter tails than the
normal distribution, namely the t distribution. (Note that we are using this as a convenient
description of the data, not as a sampling distribution from which p values are derived.) The
relative height of the tails of the t distribution is governed by the shape parameter ν: when ν
is small, the distribution has heavy tails, and when it is large (e.g., 100), it is nearly normal.
Here we refer to ν as the normality parameter.

The data (y) are assumed to be independent and identically distributed (i.i.d.) draws from
a t distribution with different mean (µ) and standard deviation (σ) for each population, and
with a common normality parameter (ν), as indicated in the lower portion of Figure 1.

The default priors, with priors = NULL, are minimally informative: normal priors with
large standard deviation for (µ), broad uniform priors for (σ), and a shifted-exponential prior
for (ν), as described by Kruschke (2013). You can specify your own priors by providing a
list: population means (µ) have separate normal priors, with mean muM and standard deviation
muSD; population standard deviations (σ) have separate gamma priors, with mode sigmaMode

and standard deviation sigmaSD; the normality parameter (ν) has a gamma prior with mean
nuMean and standard deviation nuSD. These priors are indicated in the upper portion of Figure 1.

For a general discussion see chapters 11 and 12 of Kruschke (2015).
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Figure 1: Hierarchical diagram of the descriptive model for robust Bayesian estimation.

3 Preparing to run BEST

BEST uses the JAGS package (Plummer, 2003) to produce samples from the posterior distribu-
tion of each parameter of interest. You will need to download JAGS from http://sourceforge.

net/projects/mcmc-jags/ and install it before running BEST.
BEST also requires the packages rjags and coda, which should normally be installed at the

same time as package BEST if you use the install.packages function in R.
Once installed, we need to load the BEST package at the start of each R session, which will

also load rjags and coda and link to JAGS:

> library(BEST)

4 An example with two groups

4.1 Some example data

We will use hypothetical data for reaction times for two groups (N1 = N2 = 6), Group 1
consumes a drug which may increase reaction times while Group 2 is a control group that
consumes a placebo.

> y1 <- c(5.77, 5.33, 4.59, 4.33, 3.66, 4.48)

> y2 <- c(3.88, 3.55, 3.29, 2.59, 2.33, 3.59)

Based on previous experience with these sort of trials, we expect reaction times to be approxi-
mately 6 secs, but they vary a lot, so we’ll set muM = 6 and muSD = 2. We’ll use the default priors
for the other parameters: sigmaMode = sd(y), sigmaSD = sd(y)*5, nuMean = 30, nuSD = 30),
where y = c(y1, y2).

> priors <- list(muM = 6, muSD = 2)
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4.2 Running the model

We run BESTmcmc and save the result in BESTout. We do not use parallel processing here,
but if your machine has at least 4 cores, parallel processing cuts the time by 50%.

> BESTout <- BESTmcmc(y1, y2, priors=priors, parallel=FALSE)

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph information:

Observed stochastic nodes: 12

Unobserved stochastic nodes: 5

Total graph size: 51

Initializing model

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100%

Sampling from the posterior distributions:

|**************************************************| 100%

4.3 Basic inferences

The default plot (Figure 2) is a histogram of the posterior distribution of the difference in
means.

> plot(BESTout)

Difference of Means

µ1 − µ2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

95% HDI
0.266 2.6

mean = 1.44

1.2% < 0 < 98.8%

Figure 2: Default plot: posterior probability of the difference in means.

Also shown is the mean of the posterior probability, which is an appropriate point estimate
of the true difference in means, the 95% Highest Density Interval (HDI), and the posterior
probability that the difference is greater than zero. The 95% HDI does not include zero, and
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Difference of Means

µ1 − µ2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

95% HDI
0.266 2.6

mean = 1.44

19.9% < 1 < 80.1%

1% in ROPE

Figure 3: Posterior probability of the difference in means with compVal=1.0 and ROPE ± 0.1.

the probability that the true value is greater than zero is shown as 98.8%. Compare this with
the output from a t test:

> t.test(y1, y2)

Welch Two Sample t-test

data: y1 and y2

t = 3.7624, df = 9.6093, p-value = 0.003977

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.6020466 2.3746201

sample estimates:

mean of x mean of y

4.693333 3.205000

Because we are dealing with a Bayesian posterior probability distribution, we can extract
much more information:

� We can estimate the probability that the true difference in means is above (or below) an
arbitrary comparison value. For example, an increase reaction time of 1 unit may indicate
that users of the drug should not drive or operate equipment.

� The probability that the difference in reaction times is precisely zero is zero. More inter-
esting is the probability that the difference may be too small to matter. We can define a
region of practical equivalence (ROPE) around zero, and obtain the probability that the
true value lies therein. For the reaction time example, a difference of ± 0.1 may be too
small to matter.

> plot(BESTout, compVal=1, ROPE=c(-0.1,0.1))

The annotations in (Figure 3) show a high probability that the reaction time increase is > 1.
In this case it’s clear that the effect is large, but if most of the probability mass (say, 95%) lay
within the ROPE, we would accept the null value for practical purposes.

4



Difference of Std. Dev.s

σ1 − σ2

−2 −1 0 1 2

95% HDI
−1.08 1.41

mode = 0.1

36.4% < 0 < 63.6%

Figure 4: Posterior plots for difference in standard deviation.

BEST deals appropriately with differences in standard deviations between the samples and
departures from normality due to outliers. We can check the difference in standard deviations
or the normality parameter with plot (Figure 4).

> plot(BESTout, which="sd")

The summary method gives us more information on the parameters of interest, including
derived parameters:

> summary(BESTout)

mean median mode HDI% HDIlo HDIup compVal %>compVal

mu1 4.750 4.735 4.715 95 3.880 5.66

mu2 3.310 3.290 3.266 95 2.592 4.09

muDiff 1.440 1.442 1.435 95 0.266 2.60 0 98.8

sigma1 1.000 0.886 0.736 95 0.379 1.92

sigma2 0.829 0.731 0.615 95 0.313 1.61

sigmaDiff 0.170 0.143 0.100 95 -1.084 1.41 0 63.6

nu 34.927 25.751 9.796 95 0.849 96.97

log10nu 1.375 1.411 1.540 95 0.550 2.11

effSz 1.680 1.658 1.612 95 0.190 3.24 0 98.8

Here we have summaries of posterior distributions for the derived parameters: difference
in means (muDiff), difference in standard deviations (sigmaDiff) and effect size (effSz). As
with the plot command, we can set values for compVal and ROPE for each of the parameters of
interest:

> summary(BESTout, credMass=0.8, ROPEm=c(-0.1,0.1), ROPEsd=c(-0.15,0.15),

compValeff=1)

mean median mode HDI% HDIlo HDIup compVal %>compVal ROPElow

mu1 4.750 4.735 4.715 80 4.216 5.235
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mu2 3.310 3.290 3.266 80 2.854 3.702

muDiff 1.440 1.442 1.435 80 0.749 2.139 0 98.8 -0.10

sigma1 1.000 0.886 0.736 80 0.463 1.322

sigma2 0.829 0.731 0.615 80 0.382 1.091

sigmaDiff 0.170 0.143 0.100 80 -0.490 0.821 0 63.6 -0.15

nu 34.927 25.751 9.796 80 1.448 54.669

log10nu 1.375 1.411 1.540 80 0.890 1.934

effSz 1.680 1.658 1.612 80 0.682 2.670 1 80.7

ROPEhigh %InROPE

mu1

mu2

muDiff 0.10 0.671

sigma1

sigma2

sigmaDiff 0.15 26.301

nu

log10nu

effSz

4.4 Checking convergence and fit

The output from BESTmcmc has class BEST, which has a print method:

> class(BESTout)

[1] "BEST" "data.frame"

> print(BESTout)

MCMC fit results for BEST analysis:

100002 simulations saved.

mean sd median HDIlo HDIup Rhat n.eff

mu1 4.7499 0.4427 4.7348 3.8799 5.655 1.000 46662

mu2 3.3101 0.3771 3.2898 2.5919 4.087 1.001 37233

nu 34.9267 31.0128 25.7509 0.8488 96.973 1.000 20341

sigma1 0.9997 0.4682 0.8859 0.3788 1.922 1.000 15780

sigma2 0.8294 0.4032 0.7311 0.3135 1.612 1.003 14469

'HDIlo' and 'HDIup' are the limits of a 95% HDI credible interval.

'Rhat' is the potential scale reduction factor (at convergence, Rhat=1).

'n.eff' is a crude measure of effective sample size.

The print function displays the mean, standard deviation and median of the posterior dis-
tributions of the parameters in the model, together with a 95% Highest Density Interval: see
the help page for the hdi function for details. Two convergence diagnostic measures are also
displayed:

� Rhat is the Brooks-Gelman-Rubin scale reduction factor, which is 1 on convergence.
Gelman and Shirley (2011) consider values below 1.1 to be acceptable. Increase the
burnInSteps argument to BESTmcmc if any of the Rhats are too big.

� n.eff is the effective sample size, which is less than the number of simulations because of
autocorrelation between successive values in the sample. Values of n.eff around 10,000
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Figure 5: Posterior predictive plots together with a histogram of the data.

are needed for stable estimates of 95% credible intervals.1 If any of the values is too small,
you can increase the numSavedSteps or thinSteps arguments.

See the help pages for the coda package for more information on these measures.

As a further check, we can compare posterior predictive distributions with the original data:

> plotPostPred(BESTout)

Each panel of Figure 5 corresponds to one of the samples, and shows curves produced by
selecting 30 random steps in the MCMC chain and plotting the t distribution with the values of
µ, σ and ν for that step. Also shown is a histogram of the actual data. We can visually assess
whether the model is a reasonably good fit to the sample data (though this is easier for large
samples then when n = 6 as here).

The function plotAll puts histograms of all the posterior distributions and the posterior
predictive plots onto a single page (Figure 6).

> plotAll(BESTout)

1See http://doingbayesiandataanalysis.blogspot.com/2011/07/how-long-should-mcmc-chain-be-to-get.
html for some simulation results.

7

http://doingbayesiandataanalysis.blogspot.com/2011/07/how-long-should-mcmc-chain-be-to-get.html
http://doingbayesiandataanalysis.blogspot.com/2011/07/how-long-should-mcmc-chain-be-to-get.html


2 3 4 5 6

0.
0

0.
4

0.
8

1.
2

y

p(
y)

Data Group 1 w. Post. Pred.

N1 = 6

2 3 4 5 6
0.

0
0.

4
0.

8
1.

2

y

p(
y)

Data Group 2 w. Post. Pred.

N2 = 6

Normality

log10(ν)
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95% HDI
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mode = 1.54

Group 1 Mean

µ1
2 4 6 8

95% HDI
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Group 2 Mean

µ2
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2.59 4.09

mean = 3.31

Difference of Means

µ1 − µ2
0.0 0.5 1.0 1.5 2.0 2.5 3.0

95% HDI
0.266 2.6

mean = 1.44

1.2% < 0 < 98.8%

Group 1 Std. Dev.

σ1
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95% HDI
0.379 1.92

mode = 0.736

Group 2 Std. Dev.

σ2
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95% HDI
0.313 1.61

mode = 0.615

Difference of Std. Dev.s

σ1 − σ2

−2 −1 0 1 2

95% HDI
−1.08 1.41

mode = 0.1

Effect Size

(µ1 − µ2) (σ1
2 + σ2

2) 2
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95% HDI
0.19 3.24

mode = 1.61

1.2% < 0 < 98.8%

Figure 6: All the posterior distributions and the posterior predictive plots.
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4.5 Working with individual parameters

Objects of class BEST contain long vectors of simulated draws from the posterior distribution of
each of the parameters in the model. Since BEST objects are also data frames, we can use the $
operator to extract the columns we want:

> names(BESTout)

[1] "mu1" "mu2" "nu" "sigma1" "sigma2"

> meanDiff <- (BESTout$mu1 - BESTout$mu2)

> meanDiffGTzero <- mean(meanDiff > 0)

> meanDiffGTzero

[1] 0.9883802

For example, you may wish to look at the ratio of the variances rather than the difference in
the standard deviations. You can calculate a vector of draws from the posterior distribution,
calculate summary statistics, and plot the distribution with plotPost (Figure 7):

> varRatio <- BESTout$sigma1^2 / BESTout$sigma2^2

> median(varRatio)

[1] 1.455736

> hdi(varRatio)

lower upper

0.01304619 9.49251197

attr(,"credMass")

[1] 0.95

> mean(varRatio > 1)

[1] 0.6359173

> plotPost(varRatio, xlim=c(0, 30))
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varRatio
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95% HDI
0.013 9.49

mean = 2.84

Figure 7: Posterior distribution of the ratio of the sample variances.

5 An example with a single group

Applying BEST to a single sample, or for differences in paired observations, works in much the
same way as the two-sample method and uses the same function calls. To run the model, simply
use BESTmcmc with only one vector of observations. For this example, we’ll use the broad priors
described in Kruschke (2013).

> y0 <- c(1.89, 1.78, 1.30, 1.74, 1.33, 0.89)

> BESTout1g <- BESTmcmc(y0, priors=NULL, parallel=FALSE)

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph information:

Observed stochastic nodes: 6

Unobserved stochastic nodes: 3

Total graph size: 23

Initializing model

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100%

Sampling from the posterior distributions:

|**************************************************| 100%

This time we have a single mean and standard deviation. The default plot (Figure 8) shows
the posterior distribution of the mean.

> BESTout1g
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Mean

µ
0.0 0.5 1.0 1.5 2.0

95% HDI
1 1.97

mean = 1.49

0.1% < 0 < 99.9%

Figure 8: Default plot: posterior probability distribution for the mean.

MCMC fit results for BEST analysis:

100002 simulations saved.

mean sd median HDIlo HDIup Rhat n.eff

mu 1.4935 0.2444 1.4963 0.9999 1.969 1.001 35046

nu 32.0687 29.2183 23.3641 1.0034 90.406 1.001 20078

sigma 0.5189 0.2736 0.4511 0.1860 1.029 1.010 11913

'HDIlo' and 'HDIup' are the limits of a 95% HDI credible interval.

'Rhat' is the potential scale reduction factor (at convergence, Rhat=1).

'n.eff' is a crude measure of effective sample size.

> plot(BESTout1g)

Standard deviation, the normality parameter and effect size can be plotted individually, or
on a single page with plotAll (Figure 9).

> plotAll(BESTout1g)

And we can access the draws from the posterior distributions with the $ operator:

> names(BESTout1g)

[1] "mu" "nu" "sigma"

> length(BESTout1g$nu)

[1] 100002

> variance <- BESTout1g$sigma^2

> plotPost(variance, xlim=c(0, 3))

11



0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
5

1.
0

1.
5

y

p(
y)

Data w. Post. Pred.

N = 6

Normality

log10(ν)
0.5 1.0 1.5 2.0

95% HDI
0.476 2.12

mode = 1.46

Mean

µ
−2 −1 0 1 2 3

95% HDI
1 1.97

mean = 1.49

0.1% < 0 < 99.9%

Std. Dev.

σ
0 1 2 3 4 5

95% HDI
0.186 1.03

mode = 0.369

Effect Size

(µ − 0) σ
0 2 4 6 8

95% HDI
0.802 6.24

mode = 3.03

0.1% < 0 < 99.9%

Figure 9: All the posterior distributions and the posterior predictive plots.
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variance

0.0 0.5 1.0 1.5 2.0 2.5 3.0

95% HDI
0.0204 1.01

mean = 0.344

Figure 10: Posterior distribution of the sample variance.

6 What next?

The package includes functions to estimate the power of experimental designs: see the help
pages for BESTpower and makeData for details on implementation and Kruschke (2013) for
background.

If you want to know how the functions in the BEST package work, you can download the R
source code from CRAN or from GitHub https://github.com/mikemeredith/BEST.

Bayesian analysis with computations performed by JAGS is a powerful approach to analysis.
For a practical introduction see Kruschke (2015).
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