Package 'BGmisc'

December 4, 2020
Title Behavior Genetic Modeling Functions
Version 0.1
Date 2020-11-15
Description
Functions for behavior genetic modeling, including model identification, calculating related-
ness, and various others (e.g., Hunter, Garrison, et al, 2019 doi:10.1007/s10519-019-09973-8).
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1.9000
Imports Matrix, stats
NeedsCompilation no
Author S. Mason Garrison [aut], Michael D. Hunter [aut],
S. Alexandra Burt [aut],

Jonathan D. Trattner [aut, cre]
Maintainer Jonathan D. Trattner code@jdtrat.com
Repository CRAN
Date/Publication 2020-12-04 09:10:05 UTC

R topics documented:

BGmisc_package 2
comp2vech 2
fitComponentModel 3
identifyComponentModel 4
relatedness 4
related_coef 5
vech 6
Index 7

```
BGmisc_package Behavior Genetic Miscellaneous functions in R
```


Description

This collection contains functions for behavior genetic modeling. These functions include model identification, calculating relatedness, and various others (e.g. Hunter, Garrison, et al, 2019 doi:10.1007/s10519-019-09973-8).

Author(s)

S. Mason Garrison, Michael D. Hunter, S. Alexandra Burt, and Jonathan D. Trattner

comp2vech | Turn a variance component relatedness matrix into its half- |
| :--- |
| vectorization |

Description

Turn a variance component relatedness matrix into its half-vectorization

Usage

comp2vech(x, include.zeros = FALSE)

Arguments

x
relatedness component matrix
include.zeros logical. Whether to include all-zero rows.

Details

This is a wrapper around the vech function for producing the half-vectorization of a matrix. The extension here is to allow for blockwise matrices.

Examples

```
comp2vech(list(matrix(c(1, .5, . 5, 1), 2, 2), matrix(1, 2, 2)))
```


Description

Fit the estimated variance components of a model to covariance data

Usage

fitComponentModel(covmat, ...)

Arguments

covmat the covariance matrix of the raw data, possibly blockwise.
... Comma-separated relatedness component matrices.

Details

Returns a regression (linear model fitted with 1 m). The coefficients of the regression are the estimated variance components.

Examples

```
## Not run:
# install.packages("OpenMX")
data(twinData, package = "OpenMx")
sellVars <- c("ht1", "ht2")
mzData <- subset(twinData, zyg %in% c(1), c(selVars, 'zyg'))
dzData <- subset(twinData, zyg %in% c(3), c(selVars, 'zyg'))
fitComponentModel(
covmat = list(cov(mzData[,selVars], use = "pair"), cov(dzData[,selVars], use = "pair")),
A = list(matrix(1, nrow = 2, ncol = 2), matrix(c(1, 0.5, 0.5, 1), nrow = 2, ncol = 2)),
C = list(matrix(1, nrow = 2, ncol = 2), matrix(1, nrow = 2, ncol = 2)),
E = list(diag(1, nrow = 2), diag(1, nrow = 2))
)
## End(Not run)
```

```
identifyComponentModel
```

 Determine if a variance components model is identified

Description

Determine if a variance components model is identified

```
Usage
    identifyComponentModel(..., silent = FALSE)
```


Arguments

$$
\begin{array}{ll}
\ldots & \text { Comma-separated relatedness component matrices. } \\
\text { silent } & \text { logical. Whether to print messages about identification. }
\end{array}
$$

Details

Returns of list of length 2 . The first element is a single logical value: TRUE if the model is identified, FALSE otherwise. The second list element is the vector of non-identified parameters. For instance, a model might have 5 components with 3 of them identified and 2 of them not. The second list element will give the names of the components that are not simultaneously identified.

Examples

```
identifyComponentModel(A=list(matrix(1, 2, 2)), C=list(matrix(1, 2, 2)), E= diag(1, 2))
```

 relatedness Estimate Relatedness based on Observed Correlation

Description

Estimate Relatedness based on Observed Correlation

Usage

relatedness(cor_obs, ace_A $=0.9$, ace_C $=0$, shared_c $=0$)

Arguments

cor_obs
ace_A
ace_C
shared_c

Observed Correlation proportion of variance attributable to additive genetic variance proportion of variance attributable to shared environmental variance proportion of shared environment shared. Typically takes zero or 1.

Value

estimated relatedness Coefficient est_r

Examples

\# Using the ACE framework, we can estimate the relatedness between two
\# individuals based on the observed correlation between their additive genetic
\# variance, shared environmental variance, and proportion of shared environment.
relatedness(cor_obs = 0.5, ace_A = 0.9, ace_C = 0, shared_c = 0)

related_coef Relatedness Coefficient Calculation

Description

Relatedness Coefficient Calculation based on Wright (1922)

Usage

related_coef(generations $=2$, path $=$ NULL, full $=$ TRUE)

Arguments

generations Specifies the number of generations back of common ancestors the pair share
path A Traditional method to count common ancestry, which is 2 times the number of generations removed from common ancestors
full Full or half kin. Do the kin share both parents at the common ancestor's generation?

Details

$r_{b c}=\sum\left(\frac{1}{2}\right)^{n+n^{\prime}+1}\left(1+f_{a}\right)$ where the relatedness coefficient between two people ($\mathrm{b} \& \mathrm{c}$) is defined in relation to their common ancestors.

Value

Relatedness Coefficient coef

Examples

```
    # For two full siblings, we would expect a relatedness of 0.5. Using the
    # default method to count common ancestry, and looking back one generation
    # (i.e. towards the full siblings' parents), we get a relatedness coefficient
    # of 0.5:
    related_coef(generations = 1, path = NULL, full = TRUE)
    # Similarly, for half siblings, we would expect a relatedness coefficient of 0.25:
    related_coef(generations = 1, path = NULL, full = FALSE)
```

 vech \(\quad\) Create the half-vectorization of a matrix

Description

Create the half-vectorization of a matrix

Usage

$\operatorname{vech}(x)$

Arguments

X
a matrix, the half-vectorization of which is desired

Details

Returns the vector of the lower triangle of a matrix, including the diagonal. The upper triangle is ignored with no checking that the provided matrix is symmetric.

Examples

```
vech(matrix(c(1, 0.5, 0.5, 1), nrow = 2, ncol = 2))
```


Index

BGmisc-package (BGmisc_package), 2
BGmisc_package, 2
comp2vech, 2
fitComponentModel, 3
identifyComponentModel, 4
related_coef, 5
relatedness, 4
vech, 6

