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Welcome to BHMSMAfMRI, an R package to analyze functional MRI (fMRI)
data. This manual shows how to systematically use the BHMSMAfMRI package
functions to analyze fMRI data and should be helpful for the first-time user. In
Section 1, we give a short introduction and overview of the methodology, and in
Section 2, we discuss the package functions in a systematic way and apply them to
analyze a simulated fMRI dataset.

1 Introduction and overview

The package BHMSMAfMRI performs Bayesian hierarchical multi-subject multiscale
analysis (BHMSMA) of fMRI data (Sanyal and Ferreira, 2012). Though fMRI data
is generally 3D, until now, BHMSMAfMRI considers analysis of 2D slices only.

The main features and usefulness of the BHMSMA methodology are that this
methodology

(a) takes into account both the temporal and the spatial information contained
in the fMRI data, (b) performs multi-subject analysis and borrows strength across
subjects for precise estimation of the brain activations, and provides a straightforward
way to obtain group activation map, and (c) does not use Markov Chain Monte Carlo
(MCMC) simulation and is fast.

We model the temporal variation present in the fMRI dataset through a general
linear model and then consider discrete wavelet transform of the standardized regres-
sion coefficients to harness the spatial information. In the wavelet space, on each
wavelet coefficient we put a mixture prior that is a combination of a Gaussian density
and a point mass at zero. This prior specification takes into account the sparsity of
the wavelet coefficients. For the mixture probabilities we consider a prior that depend
on few hyperparameters. We develop empirical Bayes methodology to estimate the
hyperparameters and carry out inference without using MCMC simulation and with
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approximation of one-dimensional integrals only. The use of mixture prior borrows
strength across subjects. Finally, the posterior mean of the regression coefficients
are obtained by using the posterior mean of the wavelet coefficients in the inverse
discrete wavelet transform. Further, we use the average over subjects of the poste-
rior wavelet coefficients in the inverse discrete wavelet transform to obtain posterior
group image of the regression coefficients. For posterior uncertainty assessment we
develop a simulation-based method for the computation of the posterior variance of
the regression coefficients.

The BHMSMAfMRI package fits our model to the fMRI data and provides the
estimates of the hyperparameters of the BHMSMA methodology along with their
standard error estimates, the posterior mean of the wavelet coefficients, the posterior
mean of the regression coefficients, samples from the posterior distribution of the
regression coefficients, and the posterior group image of the regression coefficients.
The posterior samples, in turn, can be used to compute the estimates of posterior
standard deviation and posterior probability maps. In addition, when the true signal
is available, the package provides mean squared error (MSE).

2 Using the package functions with examples

In this section we illustrate the use of the package functions. We assume that prior to
applying our methodology, the fMRI data have been preprocessed for necessary cor-
rections like realignment or motion correction, slice-timing correction, coregistration
with anatomical image and normalization. However, the data must not be spatially
filtered before applying BHMSMA, because our approach is to include the spatial
information into modeling instead of filtering it out. Preprocessing can be perfomed
by using available softwares/packages like SPM (Friston et al., 2007), BrainVoyager
(Goebel et al., 2006), AFNI (Cox, 1996), and FSL (Smith et al., 2004).

In the following subsections, we show the use of the package functions in a sys-
tematic way.

2.1 Reading fMRI Data

The function read.fmridata can read fMRI data file(s) stored in ANALYZE for-
mat (.img/.hdr files), NIFTI format (.img/.hdr files or .nii files) or AFNI format
(.BRIK/.HEAD files) within a directory. The reading of the fMRI data files is done
using R package oro.nifti (?), which is loaded when BHMSMAfMRI package is loaded.

We have provided a simulated fMRI dataset within the BHMSMAfMRI package.
For the purpose of illustration in this vignette, we consider this dataset. The simulated
dataset contains data from 3 subjects. We will be analyzing data from a single axial
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slice. So, for brevity, we have provided only data from that slice in the simulated
dataset. For each subject, we consider a time series of 9 noisy images of the slice
of interest with image dimension 32 × 32. The following code illustrates, how the
function read.fmridata can be used to read the data files from this simulated dataset.
The simulated datset is extracted in the directory ’fmridata’ within the R temporary
folder.

fpath <- system.file("extdata", package="BHMSMAfMRI")

untar(paste0(fpath,"/fmridata.tar"), exdir=tempdir())

Data <- array(dim=c(3,32,32,9))

for(subject in 1:3)

{

directory <- paste0(tempdir(),"/fmridata","/s0",subject,"/")

a <- read.fmridata(directory, format="Analyze", prefix=paste0("s0",subject,"_t"),

nimages=9, dim.image=c(32,32,1))

Data[subject,,,] <- a[,,1,]

}

dim(a)

#[1] 32 32 1 9

The above code reads all the data files for all subjects into a 4D array Data. For
each subject, the data are generated by adding Gaussian random noise to the true
regression coefficient image with activation in three regions. The positions of two
activation regions are varied across subject. The underlying design is taken to be a
block design. The true regression coefficient images and the design matrix are also
included in the package and can be read as follows.

data(fmridata)

names(fmridata)

#[1] "grid" "nsubject" "TrueCoeff" "DesignMatrix"

grid <- fmridata$grid

nsubject <- fmridata$nsubject

TrueCoeff <- fmridata$TrueCoeff

DesignMatrix <- fmridata$DesignMatrix

dim(TrueCoeff)

#[1] 3 32 32

dim(DesignMatrix)

#[1] 9 2

Specifically, now we have TrueCoeff, an array of dimension (3, 32, 32) containing
the true regression coefficients, Data, an array of dimension (3, 32, 32, 9) containing
time series of noisy observations for all the subjects and DesignMatrix, containing
the design matrix used to generate the data. Note that, the R package neuRosim
(Welvaert et al., 2011) can be used to generate fMRI data.
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Figure 1: True regression coefficient images for the three subjects.

In Figure 1, let us look at the true regression coefficient images of the three
subjects produced by the following code.

par(mfrow=c(1,3), cex=.2)

for(subject in 1:3)

image(TrueCoeff[subject,,], main=paste0("Subject ",subject))

2.2 Temporal modeling through GLM

Now, we fit a general linear model to the time series of each voxel and obtain the
estimated regression coefficients by using the function glmcoeff as follows.

glmDat <- glmcoeff(nsubject, grid, Data, DesignMatrix)

names(glmDat)

#[1] "GLMCoeffStandardized" "GLMEstimatedSE"

dim(glmDat$GLMCoeffStandardized)

#[1] 3 32 32

dim(glmDat$GLMEstimatedSE)

#[1] 3 32 32
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Figure 2: Estimated standardized regression coefficient images for the three subjects.
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The output glmDat contains the estimated standardized regression coefficients
and their standard error estimates. Figure 2, obtained by the following code, shows
the images of the estimated standardized regression coefficients for the three subjects.

par(mfrow=c(1,3), cex=.2)

for(subject in 1:3)

image(abs(glmDat$GLMCoeffStandardized[subject,,]), col=heat.colors(8),zlim=c(0,max),

main=paste0("Subject ",subject))

2.3 Wavelet transform of the GLM coefficients

Next, we apply the discrete wavelet transform to the standardized regression coeffi-
cient images of each subject. The wavelet transformation is performed by the help
of the R package wavethresh (Nason, 2013), which is loaded when BHMSMAfMRI
package is loaded.

The function waveletcoeff outputs the wavelet coefficients for all the subjects
within a matrix. The following code illustrates the use of the function waveletcoeff
and the output.

wavecoeff.glmDat <- waveletcoeff(nsubject, grid, glmDat$GLMCoeffStandardized,

wave.family="DaubLeAsymm", filter.number=6, bc="periodic")

names(wavecoeff.glmDat)

#[1] "WaveletCoefficientMatrix"

dim(wavecoeff.glmDat$WaveletCoefficientMatrix)

#[1] 3 1023

In the wavelet transform, the user can choose the wavelet family (one of “DaubLeAsymm”
and “DaubExPhase”), the number of vanishing moments (filter.number) and the
boundary condition (“symmetric” or “periodic”) to be applied. For fMRI data, we
recommend the use of Daubechies least asymmetric wavelet transform (“DaubLeAsymm”)
with 6 vanishing moments and periodic boundary condition.

2.4 Estimating the BHMSMA model hyperparameters

The BHMSMA model has six hyperparameters, which are estimated by their max-
imum likelihood estimates (MLEs) following an empirical Bayes approach. We can
estimate the hyperparameters by performing multi-subject analysis or single subject
analysis. In multi-subject analysis, the likelihood function of the hyperparameters is
constructed over all subjects and maximized to obtain their estimates. In single sub-
ject analysis, for each subject, separate likelihood function of the hyperparameters
is constructed and maximized. Hence, for single subject analysis, for each subject
we obtain a set of estimates of the hyperparameters. Clearly, multi-subject analysis
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benefits from being able to borrow strength across subjects and produces more precise
estimates.

The function hyperparamest computes the hyperparameter estimates and their
standard error estimates. The type of analysis must be specified as analysis=“multi”
or “single”. The following code illustrates the use of the function hyperparamest and
the output. The code may take some minutes to run.

hyparEst <- hyperparamest(nsubject, grid, wavecoeff.glmDat$WaveletCoefficientMatrix,

analysis = "multi")

names(hyparEst)

#[1] "hyperparam" "hyperparamVar"

round(hyparEst$hyperparam,3)

#[1] 1.181 1.337 0.431 0.675 3.663 0.201

hyparEst$hyperparamVar

# [,1] [,2] [,3] [,4] [,5] [,6]

#[1,] 1.307551e-19 5.682199e-35 -4.577911e-36 -1.433021e-35 -1.945261e-34 -6.416180e-36

#[2,] 5.682199e-35 1.676239e-19 -2.332483e-35 -8.518254e-35 4.184757e-34 -1.210776e-35

#[3,] -4.577911e-36 -2.332483e-35 1.740835e-20 5.228802e-36 7.097862e-35 2.341133e-36

#[4,] -1.433021e-35 -8.518254e-35 5.228802e-36 4.264501e-20 -8.887361e-35 -7.328437e-36

#[5,] -1.945261e-34 4.184757e-34 7.097862e-35 -8.887361e-35 1.257300e-18 -3.316008e-36

#[6,] -6.416180e-36 -1.210776e-35 2.341133e-36 -7.328437e-36 -3.316008e-36 3.799562e-21

From the hyperparameter estimates, we can compute the estimates of akl, bkl and
ckl (Sanyal and Ferreira, 2012) for all levels as follows.

a.kl <- hyparEst$hyperparam[1] * 2^(-hyparEst$hyperparam[2] * (0:4))

b.kl <- hyparEst$hyperparam[3] * 2^(-hyparEst$hyperparam[4] * (0:4))

c.kl <- hyparEst$hyperparam[5] * 2^(-hyparEst$hyperparam[6] * (0:4))

round(a.kl,3)

#[1] 1.181 0.467 0.185 0.073 0.029

round(b.kl,3)

#[1] 0.431 0.270 0.169 0.106 0.066

round(c.kl,3)

#[1] 3.663 3.186 2.771 2.410 2.096

2.5 Computing posterior distribution of the wavelet coeffi-
cients

Given the values of the hyperparameters, the marginal posterior distribution of the
wavelet coefficients is a mixture of a Gaussian and a point mass at zero with mixture
probabilities p̄iklj. The BHMSMA methodology computes p̄iklj values using Newton-
Cotes numerical integration method. The function pikljbar computes the values p̄iklj
for all subjects and returns as a matrix. The type of analysis must be specified. The
following code illustrates its use. The code may take a few minutes to run.
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pklj.bar <- pikljbar(nsubject, grid, wavecoeff.glmDat$WaveletCoefficientMatrix,

hyparEst$hyperparam, analysis = "multi")

names(pklj.bar)

#[1] "pklj.bar"

dim(pklj.bar$pklj.bar)

#[1] 3 1023

round(pklj.bar$pklj.bar[1,1:20],4)

# [1] 0.9958 0.9739 0.9835 0.8423 0.8931 0.8522 0.8961 0.8416 0.9996 0.9773 0.9742

#[12] 0.9270 0.9927 0.9806 0.9962 0.4423 0.7358 0.7764 0.2933 0.3426

Once p̄iklj values are obtained, the marginal posterior distribution of the wavelet
coefficients are entirely known. With the hyperparameter estimates and the p̄iklj
values, the function postwaveletcoeff computes the posterior mean and the posterior
median of the wavelet coefficients. The type of analysis must be mentioned. The
following code shows its use.

postwavelet <- postwaveletcoeff(nsubject, grid, wavecoeff.glmDat$WaveletCoefficientMatrix,

hyparEst$hyperparam, pklj.bar = pklj.bar$pklj.bar,

analysis = "multi")

names(postwavelet)

#[1] "PostMeanWaveletCoeff" "PostMedianWaveletCoeff"

dim(postwavelet$PostMeanWaveletCoeff)

#[1] 3 1023

dim(postwavelet$PostMedianWaveletCoeff)

#[1] 3 1023

2.6 Computing posterior mean of the regression coefficients

Given the posterior mean of the wavelet coefficients, the function postglmcoeff can be
used to obtain the posterior means of the regression coefficients. The following code
shows its use.

postglm <- postglmcoeff(nsubject, grid, glmDat$GLMCoeffStandardized,

postwavelet$PostMeanWaveletCoeff, wave.family="DaubLeAsymm",

filter.number=6, bc="periodic")

names(postglm)

#[1] "GLMcoeffposterior"

dim(postglm$GLMcoeffposterior)

#[1] 3 32 32
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Figure 3: Posterior standardized regression coefficient images for the three subjects
obtained by BHMSMA.

Figure 3, obtained by the following code, shows the images of the posterior stan-
dardized regression coefficients for the three subjects.

par(mfrow=c(1,3), cex=.2)

for(subject in 1:3)

image(abs(postglm$GLMcoeffposterior[subject,,]), col=heat.colors(8),zlim=c(0,max),

main=paste0("Subject ",subject))

As the true coefficients are known, we can compute the mean squared error (MSE)
using the following code.

MSE <- c()

for (i in 1:nsubject)

MSE[i] <- sum((as.vector(TrueCoeff[i, , ]/glmDat$GLMEstimatedSE[i,,])

- as.vector(postglm$GLMcoeffposterior[i,,]))^2)

round(MSE,3)

#[1] 301.127 257.521 287.048

In Sanyal and Ferreira (2012), we show that our multi-subject methodology per-
forms better than some existing methodologies in terms of MSE.

2.7 The function BHMSMA

All the above stages beginning from obtaining the estimated regression coefficients
by fitting GLM to obtaining the posterior regression coefficients are combined within
the function BHMSMA. The use of the function BHMSMA and its output are shown
in the code below. The type of analysis must be mentioned.

BHMSMAoutput.multi <- BHMSMA ( nsubject, grid, Data, DesignMatrix, TrueCoeff,

analysis="multi", saveplot=FALSE )

names(BHMSMAoutput.multi)

#[1] "GLMCoeffStandardized" "GLMEstimatedSE" "WaveletCoefficientMatrix"

#[4] "hyperparam" "hyperparamVar" "pklj.bar"

#[7] "PostMeanWaveletCoeff" "GLMcoeffposterior" "MSE"

Note that, when the true coefficients are available, the function BHMSMA returns
the mean squared errors (MSEs) for all the subjects.
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2.8 Posterior simulation and uncertainty estimation

In order to simulate observations from the posterior distribution of the regression
coefficients, the function postsamples can be used. The type of analysis must be
mentioned. The code below shows its use.

Postsamples <- postsamples( nsample=50, nsubject, grid, glmDat$GLMCoeffStandardized,

wavecoeff.glmDat$WaveletCoefficientMatrix, hyparEst$hyperparam,

pklj.bar$pklj.bar, analysis="multi")

names(Postsamples)

#[1] "samples" "postdiscovery"

dim(Postsamples$samples)

#[1] 3 32 32 50

dim(Postsamples$postdiscovery)

#[1] 3 32 32

The argument nsample denotes the number of samples to be drawn. We can see
postsamples returns the posterior samples and the probabilities of posterior discovery
(Morris et al., 2011) for all the subjects. Figure 4, obtained by the following code,
shows the posterior discovery images based on the above 50 samples for the three
subjects.

par(mfrow=c(1,3), cex=.2)

for(subject in 1:3)

image(Postsamples$postdiscovery[subject,,], main=paste0("Subject ",subject))
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Figure 4: Posterior discovery images for the three subjects.

From the posterior samples, the posterior standard deviations of the regression
coefficients can be computed as follows.

9



postsd <- array(dim=c(nsubject,grid,grid))

for(subject in 1:nsubject)

postsd[subject,,] <- apply(Postsamples$samples[subject,,,], 1:2, sd)

round(postsd[1,1:5,1:5],3)

# [,1] [,2] [,3] [,4] [,5]

#[1,] 0.560 0.454 0.526 0.732 0.553

#[2,] 0.736 0.704 0.565 0.722 0.623

#[3,] 0.914 0.589 0.311 0.410 0.489

#[4,] 0.735 0.572 0.493 0.505 0.560

#[5,] 0.815 0.598 0.759 0.640 0.696

2.9 Posterior group image

Posterior group coefficients can be obtained by using the function postgroupcoeff as
follows.

postgroup <- postgroupcoeff( nsubject, grid, glmDat$GLMCoeffStandardized,

postwavelet$PostMeanWaveletCoeff)

names(postgroup)

#[1] "groupcoeff"

dim(postgroup$groupcoeff)

#[1] 32 32

Figure 5, obtained by the following code, shows the posterior group coefficient
image for the simulated dataset.

image(abs(postgroup$groupcoeff),col=heat.colors(8),zlim=c(0,max))
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Figure 5: Posterior group regression coefficient image.
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