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BNSP-package Bayesian non- and semi-parametric model fitting

Description

Markov chain Monte Carlo algorithms for non- and semi-parametric models: 1. spike-slab vari-
able selection in multivariate mean/variance regression models with function mvrm, 2. joint mean-
covariance models for multivariate longitudinal responses with function lmrm, and 3. Dirichlet
process mixture models with function dpmj.

Details

Package: BNSP
Type: Package
Version: 2.1.6
Date: 2021-05-05
License: GPL (>=2)

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the Li-
cense, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

For details on the GNU General Public License see http://www.gnu.org/copyleft/gpl.html
or write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-
1301, USA.

http://www.gnu.org/copyleft/gpl.html
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ami Amitriptyline dataset from Johnson and Wichern

Description

Amitriptyline is a prescription antidepressant. The dataset consists of measurements on 17 patients
who had over-dosed on amitriptyline.

Usage

data(ami)

Format

A data frame containing 17 rows and 7 columns. The columns represent

tot total blood plasma level.

ami amount of amitriptyline found in the plasma.

gen gender (1 for female).

amt amount of the drug taken.

pr PR wave measurement.

bp diastolic blood pressure.

qrs QRS wave measurement.
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Source

Johnson, R. A., and Wichern, D. W. (2007), Applied Multivariate Statistical Analysis, Essex: Pear-
son, page 426.

References

Johnson, R. A., and Wichern, D. W. (2007). Applied Multivariate Statistical Analysis, Essex: Pear-
son.

chol The Cholesky and modified Cholesky decompositions

Description

Computes the Cholesky factorization and modified Cholesky factorizations of a real symmetric
positive-definite square matrix.

Usage

chol(x, mod = TRUE, p = 1, ...)

Arguments

x A symmetric, positive-definite matrix.

mod Defaults to TRUE. With this choice, the function returns the modified Cholesky
decomposition. When mod = FALSE, the function returns the usual Cholesky
decomposition.

p Relevant only when mod = TRUE. It determines the size of the blocks of the block
diagonal matrix.

... other arguments.

Details

The function computes the modified Cholesky decomposition of a real symmetric positive-definite
square matrix Σ. This is given by

LΣL> = D,

where L is a lower tringular matrix with ones on its main diagonal and D is a block diagonal matrix
with block size determined by argument p.

Value

The function returns matrices L and D.

Author(s)

Georgios Papageorgiou <gpapageo@gmail.com>
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See Also

The default function from base, chol

Examples

Sigma <- matrix(c(1.21,0.18,0.13,0.41,0.06,0.23,
0.18,0.64,0.10,-0.16,0.23,0.07,
0.13,0.10,0.36,-0.10,0.03,0.18,
0.41,-0.16,-0.10,1.05,-0.29,-0.08,
0.06,0.23,0.03,-0.29,1.71,-0.10,
0.23,0.07,0.18,-0.08,-0.10,0.36),6,6)

LD <- chol(Sigma)
L <- LD$L
D <- LD$D
round(L,5)
round(D,5)
solve(L) %*% D %*% solve(t(L))
LD <- chol(Sigma, p = 2)
L <- LD$L
D <- LD$D
round(L, 5)
round(D, 5)
solve(L) %*% D %*% solve(t(L))

clustering Computes the similarity matrix

Description

Computes the similarity matrix.

Usage

clustering(object, ...)

Arguments

object an object of class "mvrm", usually a result of a call to mvrm.

... other arguments.

Details

The function computes the similarity matrix for clustering based on corrrelations or variables.

Value

Similarity matrix.
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Author(s)

Georgios Papageorgiou <gpapageo@gmail.com>

See Also

mvrm

Examples

#see \code{mvrm} example

continue Continues the sampler from where it stopped

Description

Allows the user to continue the sampler from the state it stopped in the previous call to mvrm.

Usage

continue(object, sweeps, discard = FALSE,...)

Arguments

object An object of class "mvrm", usually a result of a call to mvrm.
sweeps The number of additional sweeps, maintaining the same thinning interval as

specified in the original call to mvrm.
discard If set to true, the previous samples are discarded.
... other arguments.

Details

The function allows the sampler to continue from the state it last stopped.

Value

The function returns an object of class mvrm.

Author(s)

Georgios Papageorgiou <gpapageo@gmail.com>

See Also

mvrm

Examples

#see \code{mvrm} example
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dpmj Dirichlet process mixtures of joint models

Description

Fits Dirichlet process mixtures of joint response-covariate models, where the covariates are of mixed
type while the discrete responses are represented utilizing continuous latent variables. See ‘Details’
section for a full model description and Papageorgiou (2018) for all technical details.

Usage

dpmj(formula, Fcdf, data, offset, sampler = "truncated", Xpred, offsetPred,
StorageDir, ncomp, sweeps, burn, thin = 1, seed, H, Hdf, d, D,
Alpha.xi, Beta.xi, Alpha.alpha, Beta.alpha, Trunc.alpha, ...)

Arguments

formula a formula defining the response and the covariates e.g. y ~ x.

Fcdf a description of the kernel of the response variable. Currently five options are
supported: 1. "poisson", 2. "negative binomial", 3. "generalized poisson", 4.
"binomial" and 5. "beta binomial". The first three kernels are used for count
data analysis, where the third kernel allows for both over- and under-dispersion
relative to the Poisson distribution. The last two kernels are used for binomial
data analysis. See ‘Details’ section for some of the kernel details.

data an optional data frame, list or environment (or object coercible by ‘as.data.frame’
to a data frame) containing the variables in the model. If not found in ‘data’, the
variables are taken from ‘environment(formula)’.

offset this can be used to specify an a priori known component to be included in the
model. This should be ‘NULL’ or a numeric vector of length equal to the sample
size. One ‘offset’ term can be included in the formula, and if more are required,
their sum should be used.

sampler the MCMC algorithm to be utilized. The two options are sampler = "slice"
which implements a slice sampler (Walker, 2007; Papaspiliopoulos, 2008) and
sampler = "truncated" which proceeds by truncating the countable mixture at
ncomp components (see argument ncomp).

Xpred an optional design matrix the rows of which include the values of the covariates
x for which the conditional distribution of Y |x,D (where D denotes the data)
is calculated. These are treated as ‘new’ covariates i.e. they do not contribute
to the likelihood. The matrix shouldn’t include a column of 1’s. NA’s can be
included to obtain averaged effects.

offsetPred the offset term associated with the new covariates Xpred. It is of dimension
one i.e. the same offset term is used for all rows of Xpred. If Fcdf is one of
"poisson" or "negative binomial" or "generalized poisson", then offsetPred is
the Poisson offset term. If Fcdf is one of "binomial" or "beta binomial", then
offsetPred is the number of Binomial trials. If offsetPred is missing, it is
taken to be the mean of offset, rounded to the nearest integer.
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StorageDir a directory to store files with the posterior samples of models parameters and
other quantities of interest. If a directory is not provided, files are created in the
current directory and removed when the sampler completes.

ncomp number of mixture components. It defines where the countable mixture of den-
sities [in (1) below] is truncated. Even if sampler="slice" is chosen, ncomp
needs to be specified as it is used in the initialization process.

sweeps total number of posterior samples, including those discarded in burn-in period
(see argument burn) and those discarded by the thinning process (see argument
thin).

burn length of burn-in period.

thin thinning parameter.

seed optional seed for the random generator.

H optional scale matrix of the Wishart-like prior assigned to the restricted covari-
ance matrices Σ∗h. See ‘Details’ section.

Hdf optional degrees of freedom of the prior Wishart-like prior assigned to the re-
stricted covariance matrices Σ∗h. See ‘Details’ section.

d optional prior mean of the mean vector µh. See ‘Details’ section.

D optional prior covariance matrix of the mean vector µh. See ‘Details’ section.

Alpha.xi an optional parameter that depends on the specified Fcdf argument.

1. If Fcdf = "poisson", this argument is parameter αξ of the prior of the Pois-
son rate: ξ ∼ Gamma(αξ, βξ).

2. If Fcdf = "negative binomial", this argument is a two-dimensional vec-
tor that includes parametersα1ξ andα2ξ of the priors: ξ1 ∼Gamma(α1ξ, β1ξ)
and ξ2 ∼ Gamma(α2ξ, β2ξ), where ξ1 and ξ2 are the two parameters of the
Negative Binomial pmf.

3. If Fcdf = "generalized poisson", this argument is a two-dimensional vec-
tor that includes parametersα1ξ andα2ξ of the priors: ξ1 ∼Gamma(α1ξ, β1ξ)
and ξ2 ∼ N(α2ξ, β2ξ)I[ξ2 ∈ Rξ2 ], where ξ1 and ξ2 are the two parameters
of the Generalized Poisson pmf. Parameter ξ2 is restricted in the range
Rξ2 = (0.05,∞) as it is a dispersion parameter.

4. If Fcdf = "binomial", this argument is parameter αξ of the prior of the
Binomial probability: ξ ∼ Beta(αξ, βξ).

5. If Fcdf = "beta binomial", this argument is a two-dimensional vector that
includes parameters α1ξ and α2ξ of the priors: ξ1 ∼ Gamma(α1ξ, β1ξ) and
ξ2 ∼ Gamma(α2ξ, β2ξ), where ξ1 and ξ2 are the two parameters of the Beta
Binomial pmf.

See ‘Details’ section.

Beta.xi an optional parameter that depends on the specified family.

1. If Fcdf = "poisson", this argument is parameter βξ of the prior of the Pois-
son rate: ξ ∼ Gamma(αξ, βξ).

2. If Fcdf = "negative binomial", this argument is a two-dimensional vec-
tor that includes parameters β1ξ and β2ξ of the priors: ξ1 ∼Gamma(α1ξ, β1ξ)
and ξ2 ∼ Gamma(α2ξ, β2ξ), where ξ1 and ξ2 are the two parameters of the
Negative Binomial pmf.
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3. If Fcdf = "generalized poisson", this argument is a two-dimensional vec-
tor that includes parameters β1ξ and β2ξ of the priors: ξ1 ∼Gamma(α1ξ, β1ξ)
and ξ2 ∼ Normal(α2ξ, β2ξ)I[ξ2 ∈ Rξ2 ], where ξ1 and ξ2 are the two pa-
rameters of the Generalized Poisson pmf. Parameter ξ2 is restricted in the
range Rξ2 = (0.05,∞) as it is a dispersion parameter. Note that β2ξ is a
standard deviation.

4. If Fcdf = "binomial", this argument is parameter βξ of the prior of the
Binomial probability: ξ ∼ Beta(αξ, βξ).

5. If Fcdf = "beta binomial", this argument is a two-dimensional vector that
includes parameters β1ξ and β2ξ of the priors: ξ1 ∼ Gamma(α1ξ, β1ξ) and
ξ2 ∼ Gamma(α2ξ, β2ξ), where ξ1 and ξ2 are the two parameters of the Beta
Binomial pmf.

See ‘Details’ section.

Alpha.alpha optional shape parameter αα of the Gamma prior assigned to the concentration
parameter α. See ‘Details’ section.

Beta.alpha optional rate parameter βα of the Gamma prior assigned to concentration pa-
rameter α. See ‘Details’ section.

Trunc.alpha optional truncation point cα of the Gamma prior assigned to concentration pa-
rameter α. See ‘Details’ section.

... Other options that will be ignored.

Details

Function dpmj returns samples from the posterior distributions of the parameters of the model:

f(yi, xi) =

∞∑
h=1

πhf(yi, xi|θh), (1)

where yi is a univariate discrete response, xi is a p-dimensional vector of mixed type covariates, and
πh, h ≥ 1, are obtained according to Sethuraman’s (1994) stick-breaking construction: π1 = v1,
and for l ≥ 2, πl = vl

∏l−1
j=1(1− vj), where vk are iid samples vk ∼Beta (1, α), k ≥ 1.

Let Z denote a discrete variable (response or covariate). It is represented as discretized version of a
continuous latent variable Z∗. Observed discrete Z and continuous latent variable Z∗ are connected
by:

z = q ⇐⇒ cq−1 < z∗ < cq, q = 0, 1, 2, . . . ,

where the cut-points are obtained as: c−1 = −∞, while for q ≥ 0, cq = cq(λ) = Φ−1{F (q;λ)}.
Here Φ(.) is the cumulative distribution function (cdf) of a standard normal variable andF () denotes
an appropriate cdf. Further, latent variables are assumed to independently follow a N(0, 1) distri-
bution, where the mean and variance are restricted to be zero and one as they are non-identifiable
by the data. Choices for F () are described next.

For counts, three options are supported. First, F (.;λi) can be specified as the cdf of a Poisson(Hiξh)
variable. Here λi = (ξh, Hi)

T , ξh denotes the Poisson rate associated with cluster h, and Hi the
offset term associated with sampling unit i. Second, F (.;λi) can be specified as the negative bi-
nomial cdf, where λi = (ξ1h, ξ2h, Hi)

T . This option allows for overdispersion within each cluster
relative to the Poisson distribution. Third, F (.;λi) can be specified as the Generalized Poisson cdf,
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where, again, λi = (ξ1h, ξ2h, Hi)
T . This option allows for both over- and under-dispersion within

each cluster.

For Binomial data, two options are supported. First, F (.;λi) may be taken to be the cdf of a
Binomial(Hi, ξh) variable, where ξh denotes the success probability of cluster h andHi the number
of trials associated with sampling unit i. Second, F (.;λi) may be specified to be the beta-binomial
cdf, where λ = (ξ1h, ξ2h, Hi)

T .

The special case of Binomial data is treated as

Z = 0 ⇐⇒ z∗ < 0, z∗ ∼ N(µ∗z, 1).

Details on all kernels are provided in the two tables below. The first table provides the probability
mass functions and the mean in the presence of an offset term (which may be taken to be one). The
column ‘Sample’ indicates for which parameters the routine provides posterior samples. The second
table provides information on the assumed priors along with the default values of the parameters of
the prior distributions and it also indicates the function arguments that allow the user to alter these.

Kernel PMF Offset Mean Sample
Poisson exp(−Hξ)(Hξ)y/y! H Hξ ξ

Negative Binomial Γ(y+ξ1)
Γ(ξ1)Γ(y+1) ( ξ2

H+ξ2
)ξ1( H

H+ξ2
)y H Hξ1/ξ2 ξ1, ξ2

Generalized Poisson ξ1{ξ1 + (ξ2 − 1)y}y−1ξ−y2 × H Hξ1 ξ1, ξ2
exp{−[ξ1 + (ξ2 − 1)y]/ξ2}/y!

Binomial
(
N
y

)
ξy(1− ξ)N−y N Nξ ξ

Beta Binomial
(
N
y

)Beta(y+ξ1,N−y+ξ2)
Beta(ξ1,ξ2) N Nξ1/(ξ1 + ξ2) ξ1, ξ2

Kernel Priors Default Values
Poisson ξ ∼ Gamma(αξ, βξ) Alpha.xi = 1.0, Beta.xi = 0.1
Negative Binomial ξi ∼ Gamma(αξi , βξi), i = 1, 2 Alpha.xi = c(1.0,1.0), Beta.xi = c(0.1,0.1)
Generalized Poisson ξ1 ∼ Gamma(αξ1 , βξ1)

ξ2 ∼ N(αξ2 , βξ2)I[ξ2 > 0.05] Alpha.xi = c(1.0,1.0), Beta.xi = c(0.1,1.0)
where βξ2 denotes st.dev.

Binomial ξ ∼ Beta(αξ, βξ) Alpha.xi = 1.0, Beta.xi = 1.0
Beta Binomial ξi ∼ Gamma(αξi , βξi), i = 1, 2 Alpha.xi = c(1.0,1.0), Beta.xi = c(0.1,0.1)

Let zi = (yi, x
T
i )T denote the joint vector of observed continuous and discrete variables and z∗i

the corresponding vector of continuous observed and latent variables. With θh denoting model
parameters associated with the hth cluster, the joint density f(zi|θh) takes the form

f(zi|θh) =

∫
R(y)

∫
R(xd)

Nq(z
∗
i ;µ∗h,Σ

∗
h)dx∗ddy

∗,

where

µ∗h =

(
0
µh

)
, Σ∗h =

[
Ch νTh
νh Σh

]
,

where Ch is the covariance matrix of the latent continuous variables and it has diagonal elements
equal to one i.e. it is a correlation matrix.
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In addition to the priors defined in the table above, we specify the following:

1. The restricted covariance matrix Σ∗h is assigned a prior distribution that is based on the Wishart
distribution with degrees of freedom set by default to dimension of matrix plus two and di-
agonal scale matrix, with the sub-matrix that corresponds to discrete variables taken to be the
identity matrix and with sub-matrix that corresponds to continuous variables having entries
equal to 1/8 of the square of the observed data range. Default values can be changed using
arguments H and Hdf.

2. The prior on µh, the non-zero part of µ∗h, is taken to be multivariate normal µh ∼ N(d,D).
The mean d is taken to be equal to the center of the dataset. The covariance matrix D is taken
to be diagonal. Its elements that correspond to continuous variables are set equal to 1/8 of the
square of the observed data range while the elements that correspond to binary variables are
set equal to 5. Arguments Mu.mu and Sigma.mu allow the user to change the default values.

3. The concentration parameter α is assigned a Gamma(αα, βα) prior over the range (cα,∞),
that is, f(α) ∝ ααα−1 exp{−αβα}I[α > cα], where I[.] is the indicator function. The
default values are αα = 2.0, βα = 5.0, and cα = 0.25. Users can alter the default using using
arguments Alpha.alpha, Beta.alpha and Turnc.alpha.

Value

Function dpmj returns the following:

call the matched call.

seed the seed that was used (in case replication of the results is needed).

meanReg if Xpred is specified, the function returns the posterior mean of the conditional
expectation of the response y given each new covariate x.

medianReg if Xpred is specified, the function returns the posterior mean of the conditional
50% quantile of the response y given each new covariate x.

q1Reg if Xpred is specified, the function returns the posterior mean of the conditional
25% quantile of the response y given each new covariate x.

q3Reg if Xpred is specified, the function returns the posterior mean of the conditional
75% quantile of the response y given each new covariate x.

modeReg if Xpred is specified, the function returns the posterior mean of the conditional
mode of the response y given each new covariate x.

denReg if Xpred is specified, the function returns the posterior mean conditional density
of the response y given each new covariate x. Results are presented in a matrix
the rows of which correspond to the different xs.

denVar if Xpred is specified, the function returns the posterior variance of the condi-
tional density of the response y given each new covariate x. Results are pre-
sented in a matrix the rows of which correspond to the different xs.

Further, function dpmj creates files where the posterior samples are written. These files are (with
all file names preceded by ‘BNSP.’):

alpha.txt this file contains samples from the posterior of the concentration parameters α.
The file is arranged in (sweeps-burn)/thin lines and one column, each line
including one posterior sample.
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compAlloc.txt this file contains the allocations to clusters obtained during posterior sampling.
It consists of (sweeps-burn)/thin lines, that represent the posterior samples,
and n columns, that represent the sampling units. Clusters are represented by
integers ranging from 0 to ncomp-1.

MeanReg.txt this file contains the conditional means of the response y given covariates x ob-
tained during posterior sampling. The rows represent the (sweeps-burn)/thin
posterior samples. The columns represent the various covariate values x for
which the means are obtained.

MedianReg.txt this file contains the 50% conditional quantile of the response y given covariates
x obtained during posterior sampling. The rows represent the (sweeps-burn)/thin
posterior samples. The columns represent the various covariate values x for
which the medians are obtained.

muh.txt this file contains samples from the posteriors of the p-dimensional mean vectors
µh, h = 1, 2, . . .,ncomp. The file is arranged in ((sweeps-burn)/thin)*ncomp
lines and p columns. In more detail, sweeps create ncomp lines representing
samples µ(sw)

h , h = 1, . . . ,ncomp, where superscript sw represents a particular
sweep. The elements of µ(sw)

h are written in the columns of the file.
nmembers.txt this file contains (sweeps-burn)/thin lines and ncomp columns, where the

lines represent posterior samples while the columns represent the components
or clusters. The entries represent the number of sampling units allocated to each
component.

Q05Reg.txt this file contains the 5% conditional quantile of the response y given covariates x
obtained during posterior sampling. The rows represent the (sweeps-burn)/thin
posterior samples. The columns represent the various covariate values x for
which the quantiles are obtained.

Q10Reg.txt as above, for the 10% conditional quantile.
Q15Reg.txt as above, for the 15% conditional quantile.
Q20Reg.txt as above, for the 20% conditional quantile.
Q25Reg.txt as above, for the 25% conditional quantile.
Q75Reg.txt as above, for the 75% conditional quantile.
Q80Reg.txt as above, for the 80% conditional quantile.
Q85Reg.txt as above, for the 85% conditional quantile.
Q90Reg.txt as above, for the 90% conditional quantile.
Q95Reg.txt as above, for the 95% conditional quantile.
Sigmah.txt this file contains samples from the posteriors of the q × q restricted covariance

matrices Σ∗h, h = 1, 2, . . . ,ncomp. The file is arranged in ((sweeps-burn)/thin)*ncomp
lines and q2 columns. In more detail, sweeps create ncomp lines representing
samples Σ

(sw)
h , h = 1, . . . ,ncomp, where superscript sw represents a particular

sweep. The elements of Σ
(sw)
h are written in the columns of the file.

xih.txt this file contains samples from the posteriors of parameters ξh, h = 1, 2, . . . ,ncomp.
The file is arranged in ((sweeps-burn)/thin)*ncomp lines and one or two
columns, depending on the number of parameters in the selected Fcdf. Sweeps
write in the file ncomp lines representing samples ξ(sw)

h , h = 1, . . . ,ncomp,
where superscript sw represents a particular sweep.
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Updated.txt this file contains (sweeps-burn)/thin lines with the number of components
updated at each iteration of the sampler (relevant for slice sampling).

Author(s)

Georgios Papageorgiou <gpapageo@gmail.com>

References

Consul, P. C. & Famoye, G. C. (1992). Generalized Poisson regression model. Communications in
Statistics - Theory and Methods, 1992, 89-109.

Papageorgiou, G. (2018). Bayesian density regression for discrete outcomes. arXiv:1603.09706v3
[stat.ME].

Papaspiliopoulos, O. (2008). A note on posterior sampling from Dirichlet mixture models. Techni-
cal report, University of Warwick.

Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 4, 639-650.

Walker, S. G. (2007). Sampling the Dirichlet mixture model with slices. Communications in Statis-
tics Simulation and Computation, 36(1), 45-54.

Examples

#Bayesian nonparametric joint model with binomial response Y and one predictor X
data(simD)
pred<-seq(with(simD,min(X))+0.1,with(simD,max(X))-0.1,length.out=30)
npred<-length(pred)
# fit1 and fit2 define the same model but with different numbers of
# components and posterior samples
fit1 <- dpmj(cbind(Y,(E-Y))~X, Fcdf="binomial", data=simD, ncomp=10, sweeps=20,

burn=10, sampler="truncated", Xpred=pred, offsetPred=30)
fit2 <- dpmj(cbind(Y,(E-Y))~X, Fcdf="binomial", data=simD, ncomp=50, sweeps=5000,

burn=1000, sampler="truncated", Xpred=pred, offsetPred=30)
plot(with(simD,X),with(simD,Y)/with(simD,E))
lines(pred,fit2$medianReg/30,col=3,lwd=2)
# with discrete covariate
simD<-data.frame(simD,Xd=sample(c(0,1),300,replace=TRUE))
pred<-c(0,1)
fit3 <- dpmj(cbind(Y,(E-Y))~Xd, Fcdf="binomial", data=simD, ncomp=10, sweeps=20,

burn=10, sampler="truncated", Xpred=pred, offsetPred=30)

histCorr Creates plots of correlation matrices

Description

This function plots the posterior distribution of the elements of correlation matrices.

Usage

histCorr(x, term = "R", plotOptions = list(),...)
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Arguments

x an object of class ‘mvrm’, as generated by function mvrm.

term Admits two possible values: "R" to plot samples from the posterior of the cor-
relation matrix R, and "muR" to plot samples from the posterior of the means
µR.

plotOptions ggplot type options.

... other arguments.

Details

Use this function to visualize the elements of a correlation matrix.

Value

Posterior distributions of elements of correlation matrices.

Author(s)

Georgios Papageorgiou <gpapageo@gmail.com>

See Also

mvrm

Examples

#see \code{mvrm} example

lmrm Bayesian semiparametric modelling of covariance matrices for multi-
variate longitudinal data

Description

Implements an MCMC algorithm for posterior sampling based on a semiparametric model for con-
tinuous longitudinal multivariate responses. The overall model consists of 5 regression submodels
and it utilizes spike-slab priors for variable selection and function regularization. See ‘Details’
section for a full description of the model.
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Usage

lmrm(formula, data = list(), id, time,
sweeps, burn = 0, thin = 1, seed, StorageDir,
c.betaPrior = "IG(0.5,0.5*n*p)", pi.muPrior = "Beta(1,1)",
c.alphaPrior = "IG(1.1,1.1)", pi.phiPrior = "Beta(1,1)", c.psiPrior = "HN(2)",
sigmaPrior = "HN(2)", pi.sigmaPrior = "Beta(1,1)",
corr.Model = c("common", nClust = 1), DP.concPrior = "Gamma(5,2)",
c.etaPrior = "IG(0.5,0.5*samp)", pi.nuPrior = "Beta(1,1)",
pi.fiPrior = "Beta(1,1)", c.omegaPrior = "IG(1.1,1.1)", sigmaCorPrior = "HN(2)",
tuneCa, tuneSigma2, tuneCb, tuneAlpha, tuneSigma2R, tuneR, tuneCpsi,
tuneCbCor, tuneOmega, tuneComega, tau, FT = 1,...)

Arguments

formula a formula defining the responses and the covariates in the 5 regression models
e.g. y1 | y2 ~ x | w | z | t | t or for smooth effects y1 | y2 ~ sm(x) | sm(w)
| sm(z) | sm(t) | sm(t). The package uses the extended formula notation,
where the responses are defined on the left of ~ and the models on the right.

data a data frame.
id identifiers of the individuals or other sampling units that are observed over time.
time a vector input that specifies the time of observation
sweeps total number of posterior samples, including those discarded in burn-in period

(see argument burn) and those discarded by the thinning process (see argument
thin).

burn length of burn-in period.
thin thinning parameter.
seed optional seed for the random generator.
StorageDir a required directory to store files with the posterior samples of models parame-

ters.
c.betaPrior The inverse Gamma prior of cβ . The default is "IG(0.5,0.5*n*p)", that is, an in-

verse Gamma with parameters 1/2 and np/2, where n is the number of sampling
units and p is the length of the response vector.

pi.muPrior The Beta prior of πµ. The default is "Beta(1,1)". It can be of dimension 1, of
dimensionK (the number of effects that enter the mean model), or of dimension
pK

c.alphaPrior The inverse Gamma prior of c2α. The default is "IG(1.1,1.1)". Half-normal priors
for cα are also available, declared using "HN(a)", where "a" is a positive number.
It can be of dimension 1 or p (the length of the multivariate response).

pi.phiPrior The Beta prior of πφ. The default is "Beta(1,1)". It can be of dimension 1,
of dimension B (the number of effects that enter the dependence model), or of
dimension p2B

c.psiPrior The prior of c2ψ . The default is "HN(2)", a half-normal prior for cψ with variance
equal to two, cψ ∼ N(0, 2)I[cψ > 0]. Inverse Gamma priors for c2ψ are also
available, declared using "IG(a,b)". It can be of dimension 1 or p2 (the number
of dependence models).
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sigmaPrior The prior of σ2
k, k = 1, . . . , p. The default is "HN(2)", a half-normal prior for

σk with variance equal to two, σk ∼ N(0, 2)I[σ > 0]. Inverse Gamma priors
for σ2

k are also available, declared using "IG(a,b)". It can be of dimension 1 or p
(the length of the multivariate response).

pi.sigmaPrior The Beta prior of πσ . The default is "Beta(1,1)". It can be of dimension 1,
of dimension L (the number of effects that enter the variance model), or of
dimension pL

corr.Model Specifies the model for the correlation matricesRt. The three choices supported
are "common", that specifies a common correlations model, "groupC", that spec-
ifies a grouped correlations model, and "groupV", that specifies a grouped vari-
ables model. When the model chosen is either "groupC" or "groupV", the up-
per limit on the number of clusters can also be specified, using corr.Model =
c("groupC", nClust = d) or corr.Model = c("groupV", nClust = p). If the number
of clusters is left unspecified, for the "groupV" model, it is taken to be p, the
number of responses. For the "groupC" model, it is taken to be d = p(p− 1)/2,
the number of free elements in the correlation matrices.

DP.concPrior The Gamma prior for the Dirichlet process concentration parameter.

c.etaPrior The inverse Gamma prior of cη . The default is "IG(0.5,0.5*samp)", that is, an
inverse Gamma with parameters 1/2 and samp/2, where samp is the number
of correlations observed over time, that is $samp=M*d$ where $M$ is the num-
ber of unique observation time points and $d$ is the number of non-redundant
elements of $R$.

pi.nuPrior The Beta prior of πν . The default is "Beta(1,1)". It can be of dimension 1.

pi.fiPrior The Beta prior of πϕ. The default is "Beta(1,1)". It can be of dimension 1.

c.omegaPrior The prior of c2ω . The default is "HN(2)", a half-normal prior for cω with variance
equal to two, cω ∼ N(0, 2)I[cω > 0]. Inverse Gamma priors for c2ω are also
available, declared using "IG(a,b)". It can be of dimension 1.

sigmaCorPrior The prior of σ2. The default is "HN(2)", a half-normal prior for σ2 with variance
equal to two, σ ∼ N(0, 2)I[σ > 0]. Inverse Gamma priors for σ2 are also
available, declared using "IG(a,b)". It can be of dimension 1.

tuneCa Starting value of the tuning parameter for sampling cαk, k = 1, . . . , p. Defaults
at a vector of $p$ ones. It could be of dimension p.

tuneSigma2 Starting value of the tuning parameter for sampling σ2
k, k = 1, . . . , p. Defaults

at a vector of $p$ ones. It could be of dimension p.

tuneCb Starting value of the tuning parameter for sampling cβ . Defaults at 100.

tuneAlpha Starting value of the tuning parameter for sampling regression coefficients of
the variance models αk, k = 1, . . . , p. Defaults at a vector of 5s. It could be of
dimension Lp

tuneSigma2R Starting value of the tuning parameter for sampling σ2. Defaults at 1.

tuneR Starting value of the tuning parameter for sampling correlation matrices. De-
faults at 40 ∗ (p + 2)3. Can be of dimension 1 or M is the number of unique
observation time points.

tuneCpsi Starting value of the tuning parameter for sampling variances c2ψ . Defaults at 5.
Can be of dimension 1 or p2.
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tuneCbCor Starting value of the tuning parameter for sampling c2η . Defaults at 10.

tuneOmega Starting value of the tuning parameter for sampling regression coefficients of the
variance models ω. Defaults at 5.

tuneComega Starting value of the tuning parameter for sampling cω . Defaults at 1.

tau The tau of the shadow prior. Defaults at 0.01.

FT Binary indicator. If set equal to 1, the Fisher’s z transform of the correlations is
modelled, otherwise if set equal to 0, the untransformed correlations are mod-
elled.

... Other options that will be ignored.

Details

Function lmrm returns samples from the posterior distributions of the parameters of a regression
model with normally distributed multivariate longitudinal responses. To describe the model, let
Yij = (Yij1, . . . , Yijp)

> denote the vector of p responses observed on individual i, i = 1, . . . , n, at
time point tij , j = 1, . . . , ni. The observational time points tij are allowed to be unequally spaced.
Further, let uij denote the covariate vector that is observed along with Yij and that may include time,
other time-dependent covariates and time-independent ones. In addition, let Yi = (Y >i1 , . . . , Y

>
ini

)>

denote the ith response vector. With µi = E(Yi) and Σi = cov(Yi), the model assumes multivariate
normality, Yi ∼ N(µi,Σi), i = 1, 2, . . . , n. The means µi and covariance matrices Σi are modelled
semiparametrically in terms of covariates. For the means one can specify semiparametric models,

µijk = βk0 +

K1∑
l=1

uijlβkl +

K∑
l=K1+1

fµ,k,l(uijl).

This is the first of the 5 regression submodels.

To model the covariance matrix, first consider the modified Cholesky decomposition, LiΣiL>i =
Di, where Li is a unit block lower triangular matrix and Di is a block diagonal matrix,

Li =


I 0 . . . 0

−Φi21 I . . . 0
...

...
. . .

...
−Φini1 −Φini1 . . . I

 , Di =


D1 0 . . . 0
0 D2 0 0
...

...
. . .

...
0 0 0 Dni

 ,
For modellingDij , i = 1, . . . , n, j = 1, . . . , ni in terms of covariates, first we separate the variances
and the correlations Dij = S

1/2
ij RijS

1/2
ij . It is easy to model matrix Sij in terms of covariates as

the only requirement on its diagonal elements is that they are nonnegative,

log σ2
ijk = αk0 +

L1∑
l=1

wijlαkl +

L∑
l=L1+1

fσ,k,l(wijl)

This is the second of the 5 regression submodels.

For φijklm, the (l,m) element of Φijk, l,m = 1, . . . , p, one can specify semiparametric models

φijklm = ψlm0 +

B1∑
b=1

vijkbψlmb +

B∑
b=B1+1

fφ,l,m,b(vijkb)
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This is the third of the 5 regression submodels.

The elements of the correlations matrices Rij are modelled in terms of covariate time only, hence
they are denoted by Rt. Subject to the positive definiteness constraint, the elements of Rt are
modelled using a normal distribution with location and scale parameters, µct and σ2

ct, modelled as

µct = η0 + fµ(t),

log σ2
ct = ω0 + fσ(t),

and these are the last 2 of the 5 submodels.

Value

Function lmrm returns samples from the posteriors of the model parameters.

Author(s)

Georgios Papageorgiou <gpapageo@gmail.com>

References

Papageorgiou, G. (2020). Bayesian semiparametric modelling of covariance matrices for multivari-
ate longitudinal data. arXiv:2012.09833.

Examples

# Fit a joint mean-covariance model on the simulated dataset simD2
require(ggplot2)
data(simD2)
model <- Y1 | Y2 ~ time | sm(time) | sm(lag) | sm(time) | 1
# the above defines the responses and the regression models on the left and
# right of "~", respectively
# the first model, for the mean, is a linear function of time, this is sufficient as
# the 2 responses have constant mean.
# the second model, for the variances, is a smooth function of time
# the third model, for the dependence structure, is a smooth function of lag,
# that lmrm figures out and it does not need to be computed by the user
# the fourth model, for location of the correlations, is a smooth function of time
# the fifth model, for scale of the correlations, is just an intercept model
## Not run:
m1 <- lmrm(formula = model, corr.Model = c("common", nClust = 1), data = simD2,

id = id, time = time, sweeps = 2500, burn = 500, thin = 2,
StorageDir = getwd(), seed = 1)

plot(m1)

## End(Not run)
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mvrm Bayesian semiparametric analysis of multivariate continuous re-
sponses, with variable selection

Description

Implements an MCMC algorithm for posterior sampling based on a semiparametric model for con-
tinuous multivariate responses and additive models for the mean and variance functions. The model
utilizes spike-slab priors for variable selection and regularization. See ‘Details’ section for a full
description of the model.

Usage

mvrm(formula, data = list(), sweeps, burn = 0, thin = 1, seed, StorageDir,
c.betaPrior = "IG(0.5, 0.5 * n * p)", pi.muPrior = "Beta(1, 1)",
c.alphaPrior = "IG(1.1, 1.1)", sigmaPrior = "HN(2)", pi.sigmaPrior = "Beta(1, 1)",
mu.RPrior = "N(0, 1)", sigma.RPrior = "HN(1)", corr.Model = c("common", nClust = 1),
DP.concPrior = "Gamma(5, 2)", tuneAlpha, tuneSigma2, tuneCb, tuneCa, tuneR,
tuneSigma2R, tau, FT = 1, ...)

Arguments

formula a formula defining the responses and the covariates in the mean and variance
models e.g. y1 | y2 ~ x | z or for smooth effects y1 | y2 ~ sm(x) | sm(z). The
package uses the extended formula notation, where the responses are defined on
the left of ~ and the mean and variance models on the right.

data a data frame.

sweeps total number of posterior samples, including those discarded in burn-in period
(see argument burn) and those discarded by the thinning process (see argument
thin).

burn length of burn-in period.

thin thinning parameter.

seed optional seed for the random generator.

StorageDir a required directory to store files with the posterior samples of models parame-
ters.

c.betaPrior The inverse Gamma prior of cβ . The default is "IG(0.5,0.5*n*p)", that is, an in-
verse Gamma with parameters 1/2 and np/2, where n is the number of sampling
units and p is the length of the response vector.

pi.muPrior The Beta prior of πµ. The default is "Beta(1,1)". It can be of dimension 1, of
dimensionK (the number of effects that enter the mean model), or of dimension
pK

c.alphaPrior The inverse Gamma prior of cα. The default is "IG(1.1,1.1)". Half-normal pri-
ors for

√
cα are also available, declared using "HN(a)", where "a" is a positive

number. It can be of dimension 1 or p (the length of the multivariate response).
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sigmaPrior The prior of σ. The default is "HN(2)", a half-normal prior for σ with variance
equal to two, σ ∼ N(0, 2)I[σ > 0]. Inverse Gamma priors for σ2 are also
available, declared using "IG(a,b)". It can be of dimension 1 or p (the length of
the multivariate response).

pi.sigmaPrior The Beta prior of πσ . The default is "Beta(1,1)". It can be of dimension 1,
of dimension Q (the number of effects that enter the variance model), or of
dimension pQ

mu.RPrior The normal prior for µR. The default is the standard normal distribution.

sigma.RPrior The half normal prior for σR. The default is the half normal distribution with
variance one.

corr.Model Specifies the model for the correlation matrixR. The three choices supported are
"common", that specifies a common correlations model, "groupC", that specifies
a grouped correlations model, and "groupV", that specifies a grouped variables
model. When the model chosen is either "groupC" or "groupV", the upper limit
on the number of clusters can also be specified, using corr.Model = c("groupC",
nClust = d) or corr.Model = c("groupV", nClust = p). If the number of clusters
is left unspecified, for the "groupV" model, it is taken to be p, the number of
responses. For the "groupC" model, it is taken to be d = p(p−1)/2, the number
of free elements in the correlation matrix.

DP.concPrior The Gamma prior for the Dirichlet process concentration parameter.

tuneAlpha Starting value of the tuning parameter for sampling regression coefficients of the
variance model α. Defaults at 5.

tuneSigma2 Starting value of the tuning parameter for sampling variances σ2
j . Defaults at 1.

tuneCb Starting value of the tuning parameter for sampling cβ . Defaults at 10.

tuneCa Starting value of the tuning parameter for sampling cα. Defaults at 1.

tuneR Starting value of the tuning parameter for sampling correlation matrices. De-
faults at 100(p+ 2).

tuneSigma2R Starting value of the tuning parameter for sampling σ2
R. Defaults at 1.

tau The tau of the shadow prior. Defaults at 0.01.

FT Binary indicator. If set equal to 1, the Fisher’s z transform of the correlations is
modelled, otherwise if set equal to 0, the untransformed correlations are mod-
elled.

... Other options that will be ignored.

Details

Function mvrm returns samples from the posterior distributions of the parameters of a regression
model with normally distributed multivariate responses and mean and variance functions modeled
in terms of covariates. For instance, in the presence of two responses (y1, y2) and two covariates in
the mean model (u1, u2) and two in the variance model (w1, w2), we may choose to fit

µu = β0 + β1u1 + fµ(u2),

log(σ2
W ) = α0 + α1w1 + fσ(w2),
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parametrically modelling the effects of u1 and w1 and non-parametrically modelling the effects of
u2 and w2. Smooth functions, such as fµ and fσ , are represented by basis function expansion,

fµ(u2) =
∑
j

βjφj(u2),

fσ(w2) =
∑
j

αjφj(w2),

where φ are the basis functions and β and α are regression coefficients.

The variance model can equivalently be expressed as

σ2
W = exp(α0) exp(α1w1 + fσ(w2)) = σ2 exp(α1w1 + fσ(w2)),

where σ2 = exp(α0). This is the parameterization that we adopt in this implementation.

Positive prior probability that the regression coefficients in the mean model are exactly zero is
achieved by defining binary variables γ that take value γ = 1 if the associated coefficient β 6= 0
and γ = 0 if β = 0. Indicators δ that take value δ = 1 if the associated coefficient α 6= 0 and δ = 0
if α = 0 for the variance function are defined analogously. We note that all coefficients in the mean
and variance functions are subject to selection except the intercepts, β0 and α0.

Prior specification:

For the vector of non-zero regression coefficients βγ we specify a g-prior

βγ |cβ , σ2, γ, α, δ ∼ N(0, cβσ
2(X̃>γ X̃γ)−1).

where X̃ is a scaled version of design matrix X of the mean model.

For the vector of non-zero regression coefficients αδ we specify a normal prior

αδ|cα, δ ∼ N(0, cαI).

Independent priors are specified for the indicators variables γ and δ as P (γ = 1|πµ) = πµ and
P (δ = 1|πσ) = πσ . Further, Beta priors are specified for πµ and πσ

πµ ∼ Beta(cµ, dµ), πσ ∼ Beta(cσ, dσ).

We note that blocks of regression coefficients associated with distinct covariate effects have their
own probability of selection (πµ or πσ) and this probability has its own prior distribution.

Further, we specify inverse Gamma priors for cβ and cα

cβ ∼ IG(aβ , bβ), cα ∼ IG(aα, bα)

For σ2 we consider inverse Gamma and half-normal priors

σ2 ∼ IG(aσ, bσ), |σ| ∼ N(0, φ2
σ).

Lastly, for the elements of the correlation matrix, we specify normal distributions with mean µR and
variance σ2

R, with the priors on these two parameters being normal and half-normal, respectively.
This is the common correlations model. Further, the grouped correlations model can be specified.
It considers a mixture of normal distributions for the means µR. The grouped correlations model
can also be specified. It clusters the variables instead of the correlations.
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Value

Function mvrm returns the following:

call the matched call.

formula model formula.

seed the seed that was used (in case replication of the results is needed).

data the dataset

X the mean model design matrix.

Z the variance model design matrix.

LG the length of the vector of indicators γ.

LD the length of the vector of indicators δ.

mcpar the MCMC parameters: length of burn in period, total number of samples, thin-
ning period.

nSamples total number of posterior samples

DIR the storage directory

Further, function mvrm creates files where the posterior samples are written. These files are (with
all file names preceded by ‘BNSP.’):

alpha.txt contains samples from the posterior of vector α. Rows represent posterior sam-
ples and columns represent the regression coefficient, and they are in the same
order as the columns of design matrix Z.

beta.txt contains samples from the posterior of vector β. Rows represent posterior sam-
ples and columns represent the regression coefficients, and they are in the same
order as the columns of design matrix X.

gamma.txt contains samples from the posterior of the vector of the indicators γ. Rows
represent posterior samples and columns represent the indicator variables, and
they are in the same order as the columns of design matrix X.

delta.txt contains samples from the posterior of the vector of the indicators δ. Rows
represent posterior samples and columns represent the indicator variables, and
they are in the same order as the columns of design matrix Z.

sigma2.txt contains samples from the posterior of the error variance σ2 of each response.

cbeta.txt contains samples from the posterior of cβ .

calpha.txt contains samples from the posterior of cα.

R.txt contains samples from the posterior of the correlation matrix R.

theta.txt contains samples from the posterior of θ of the shadow prior (probably not
needed).

muR.txt contains samples from the posterior of µR.

sigma2R.txt contains samples from the posterior of σ2
R.

deviance.txt contains the deviance, minus twice the log likelihood evaluated at the sampled
values of the parameters.

In addition to the above, for models that cluster the correlations we have
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compAlloc.txt The cluster at which the correlations were allocated, λkl. These are integers
from zero to the specified number of clusters minus one.

nmembers.txt The numbers of correlations assigned to each cluster.

DPconc.txt Contains samples from the posterior of the Dirichlet process concentration pa-
rameter.

In addition to the above, for models that cluster the variables we have

compAllocV.txt The cluster at which the variables were allocated, λk. These are integers from
zero to the specified number of clusters minus one.

nmembersV.txt The numbers of variables assigned to each cluster.

Author(s)

Georgios Papageorgiou <gpapageo@gmail.com>

References

Papageorgiou, G. and Marshall, B.C. (2019). Bayesian semiparametric analysis of multivariate
continuous responses, with variable selection. arXiv.

Papageorgiou, G. (2018). BNSP: an R Package for fitting Bayesian semiparametric regression
models and variable selection. The R Journal, 10(2):526-548.

Chan, D., Kohn, R., Nott, D., & Kirby, C. (2006). Locally adaptive semiparametric estimation of
the mean and variance functions in regression models. Journal of Computational and Graphical
Statistics, 15(4), 915-936.

Examples

# Fit a mean/variance regression model on the cps71 dataset from package np.
#This is a univariate response model
require(np)
require(ggplot2)
data(cps71)
model <- logwage ~ sm(age,k=30,bs="rd") | sm(age,k=30,bs="rd")
DIR<-getwd()
## Not run: m1 <- mvrm(formula=model,data=cps71,sweeps=10000,burn=5000,thin=2, seed=1,StorageDir=DIR)
#Print information and summarize the model
print(m1)
summary(m1)
#Summarize and plot one parameter of interest
alpha<-mvrm2mcmc(m1,"alpha")
summary(alpha)
plot(alpha)
#Obtain a plot of a term in the mean model
wagePlotOptions<-list(geom_point(data=cps71,aes(x=age,y=logwage)))
plot(x=m1,model="mean",term="sm(age)",plotOptions=wagePlotOptions)
plot(m1)
#Obtain predictions for new values of the predictor "age"
predict(m1,data.frame(age=c(21,65)),interval="credible")
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# Fit a bivariate mean/variance model on the marks dataset from package ggm
# two responses: marks mechanics and vectors, and one covariate: marks on algebra
model2 <- mechanics | vectors ~ sm(algebra,k=5) | sm(algebra,k=3)
m2 <- mvrm(formula=model2, data=marks, sweeps = 100000, burn = 50000,

thin = 2, seed = 1, StorageDir = DIR)
plot(m2)

## End(Not run)

mvrm2mcmc Convert posterior samples from function mvrm into an object of class
‘mcmc’

Description

Reads in files where the posterior samples were written and creates an object of class ‘mcmc’ so
that functions like summary and plot from package coda can be used

Usage

mvrm2mcmc(mvrmObj, labels)

Arguments

mvrmObj An object of class ‘mvrm’ as created by a call to function mvrm.

labels The labels of the files to be read in. These can be one or more of: "alpha",
"beta", "gamma", "delta", "sigma2", "cbeta", "calpha", "R", "muR", "sigma2R",
"nmembers", "nmembersV", "compAlloc", "compAllocV", and "DPconc" and
they correspond to the parameters of the model that a call to functions mvrm fits.
In addition, "deviance" can be read in. If left unspecified, all files are read in.

Value

An object of class ‘mcmc’ that holds the samples from the posterior of the selected parameter.

Author(s)

Georgios Papageorgiou <gpapageo@gmail.com>

See Also

mvrm

Examples

#see \code{mvrm} example
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plot.mvrm Creates plots of terms in the mean and/or variance models

Description

This function plots estimated terms that appear in the mean and variance models.

Usage

## S3 method for class 'mvrm'
plot(x, model, term, response, response2, intercept = TRUE, grid = 30,
centre = mean, quantiles = c(0.1, 0.9), contour = TRUE, static = TRUE,
centreEffects = FALSE, plotOptions = list(), nrow, ask = FALSE,
plotEmptyCluster = FALSE, ...)

Arguments

x an object of class ‘mvrm’ as generated by function mvrm.

model one of "mean", "stdev", or "both", specifying which model to be visualized.

term the term in the selected model to be plotted.

response integer number denoting the response variable to be plotted (in case there is
more than one).

response2 only relevant for multivariate longitudinal data.

intercept specifies if an intercept should be included in the calculations.

grid the length of the grid on which the term will be evaluated.

centre a description of how the centre of the posterior should be measured. Usually
mean or median.

quantiles the quantiles to be used when plotting credible regions. Plots without credible
intervals may be obtained by setting this argument to NULL.

contour relevant for 3D plots only. If contour=TRUE then plot.mvrm creates contour
plots. contour=FALSE is allowed only for creating one plot at a time. The plot
can be static or dynamic. See argument ‘static’.

static relevant for 3D plots only. If static=TRUE then plot.mvrm calls function
ribbon3D from package plot3D to create the plot. If static=FALSE then plot.mvrm
calls function scatterplot3js from package threejs to create the plot.

centreEffects if TRUE then the effects in the mean functions are centred around zero over
the range of the predictor while the effects in the variance function are scaled
around one.

plotOptions for plots of univariate smooth terms or for plots of bivariate smooth terms where
one of the two covariates is discrete, this is a list of plot elements to give to
ggplot. For smooths of bivariate continuous covariates, this is a list of plot
elements to give to ribbon3D (if static=FALSE) or to scatterplot3js (if
static=TRUE).
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nrow the number of rows in the figure with the plots.

ask if set to TRUE, plots will be displayed one at a time.
plotEmptyCluster

if set to TRUE, plots of empty clusters will be displayed. Relevant for multivari-
ate longitudinal datasets.

... other arguments.

Details

Use this function to obtain predictions.

Value

Predictions along with credible/pediction intervals

Author(s)

Georgios Papageorgiou <gpapageo@gmail.com>

See Also

mvrm

Examples

#see \code{mvrm} example

plotCorr Creates plots of the correlation matrices

Description

This function plots the posterior mean and credible intervals of the elements of correlation matrices.

Usage

plotCorr(x, term = "R", centre = mean, quantiles = c(0.1, 0.9), ...)

Arguments

x an object of class ‘mmvrm’ as generated by function mmvrm.

term R or muR,

centre a description of how the centre of the posterior should be measured. Usually
mean or median.

quantiles the quantiles to be used when plotting credible regions. Plots without credible
intervals may be obtained by setting this argument to NULL.

... other arguments.
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Details

Use this function to visualize the elements of a correlation matrix.

Value

Posterior means and credible intervals of elements of correlation matrices.

Author(s)

Georgios Papageorgiou <gpapageo@gmail.com>

See Also

mvrm

Examples

#see \code{mvrm} example

predict.mvrm Model predictions

Description

Provides predictions and posterior credible/prediction intervals for given feature vectors.

Usage

## S3 method for class 'mvrm'
predict(object, newdata, interval = c("none", "credible", "prediction"),

level = 0.95, nSamples = 100, ...)

Arguments

object an object of class "mvrm", usually a result of a call to mvrm.

newdata data frame of feature vectors to obtain predictions for. If newdata is missing,
the function will use the feature vectors in the data frame used to fit the mvrm
object.

interval type of interval calculation.

level tolerance level.

nSamples number of samples to obtain from the posterior predictive distribution (for each
sweep of the MCMC). Only relevant for "prediction intervals".

... other arguments.
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Details

The function returns predictions of new responses or the means of the responses for given feature
vectors. Predictions for new responses or the means of new responses are the same. However, the
two differ in the associated level of uncertainty: response predictions are associated with wider
(prediction) intervals than mean response predictions. To obtain prediction intervals (for new re-
sponses) the function samples from the normal distributions with means and variances as sampled
during the MCMC run.

Value

Predictions for given covariate/feature vectors.

Author(s)

Georgios Papageorgiou <gpapageo@gmail.com>

See Also

mvrm

Examples

#see \code{mvrm} example

print.mvrm Prints an mvrm fit

Description

Provides basic information from an mvrm fit.

Usage

## S3 method for class 'mvrm'
print(x, digits = 5, ...)

Arguments

x an object of class "mvrm", usually a result of a call to mvrm.

digits the number of significant digits to use when printing.

... other arguments.

Details

The function prints information about mvrm fits.
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Value

The function provides a matched call, the number of posterior samples obtained and marginal in-
clusion probabilities of the terms in the mean and variance models.

Author(s)

Georgios Papageorgiou <gpapageo@gmail.com>

See Also

mvrm

Examples

#see \code{mvrm} example

s mgcv constructor s

Description

Provides interface between mgcv::s and BNSP. s(...) calls mgcv::smoothCon(mgcv::s(...),...

Usage

s(..., data, knots = NULL, absorb.cons = FALSE, scale.penalty = TRUE,
n = nrow(data), dataX = NULL, null.space.penalty = FALSE, sparse.cons = 0,
diagonal.penalty = FALSE, apply.by = TRUE, modCon = 0, k = -1, fx = FALSE,
bs = "tp", m = NA, by = NA, xt = NULL, id = NULL, sp = NULL, pc = NULL)

Arguments

... a list of variables. See mgcv::s

data see mgcv::smoothCon

knots see mgcv::knots

absorb.cons see mgcv::smoothCon

scale.penalty see mgcv::smoothCon

n see mgcv::smoothCon

dataX see mgcv::smoothCon
null.space.penalty

see mgcv::smoothCon

sparse.cons see mgcv::smoothCon
diagonal.penalty

see mgcv::smoothCon

apply.by see mgcv::smoothCon
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modCon see mgcv::smoothCon

k see mgcv::s

fx see mgcv::s

bs see mgcv::s

m see mgcv::s

by see mgcv::s

xt see mgcv::s

id see mgcv::s

sp see mgcv::s

pc see mgcv::s

Details

The most relevant arguments for BNSP users are the list of variables ..., knots, absorb.cons, bs,
and by.

Value

A design matrix that specifies a smooth term in a model.

Author(s)

Georgios Papageorgiou <gpapageo@gmail.com>

simD Simulated dataset

Description

Just a simulated dataset to illustrate the DO mixture model. The success probability and the covari-
ate have a non-linear relationship.

Usage

data(simD)

Format

A data frame with 300 independent observations. Three numerical vectors contain information on

Y number of successes.

E number of trials.

X explanatory variable.
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simD2 Simulated dataset

Description

A simulated dataset to illustrate the multivariate longitudinal model. It consists of a bivariate vector
of responses observed over 6 time points.

Usage

data(simD2)

Format

A data frame that includes observations on 50 sampling units. The data frame has 300 rows for the
50 sampling units observed over 6 time points. It has 4 columns

Y1 first response.
Y2 second response.
time the time of observation.
id unique sampling unit identifier.

sm Smooth terms in mvrm formulae

Description

Function used to define smooth effects in the mean and variance formulae of function mvrm. The
function is used internally to construct the design matrices.

Usage

sm(..., k = 10, knots = NULL, bs = "rd")

Arguments

... one or two covariates that the smooth term is a function of. If two covariates are
used, they may be both continuous or one continuous and one discrete. Discrete
variables should be defined as factor in the data argument of the calling mvrm
function.

k the number of knots to be utilized in the basis function expansion.
knots the knots to be utilized in the basis function expansion.
bs a two letter character indicating the basis functions to be used. Currently, the

options are "rd" that specifies radial basis functions and is available for uni-
variate and bivariate smooths, and "pl" that specifies thin plate splines that are
available for univariate smooths.
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Details

Use this function within calls to function mvrm to specify smooth terms in the mean and/or variance
function of the regression model.

Univariate radial basis functions with q basis functions or q − 1 knots are defined by

B1 =
{
φ1(u) = u, φ2(u) = ||u− ξ1||2 log

(
||u− ξ1||2

)
, . . . , φq(u) = ||u− ξq−1||2 log

(
||u− ξq−1||2

)}
,

where ||u|| denotes the Euclidean norm of u and ξ1, . . . , ξq−1 are the knots that are chosen as the
quantiles of the observed values of explanatory variable u, with ξ1 = min(ui), ξq−1 = max(ui)
and the remaining knots chosen as equally spaced quantiles between ξ1 and ξq−1.

Thin plate splines are defined by

B2 = {φ1(u) = u, φ2(u) = (u− ξ1)+, . . . , φq(u) = (u− ξq)+} ,

where (a)+ = max(a, 0).

Radial basis functions for bivariate smooths are defined by

B3 =
{
u1, u2, φ3(u) = ||u− ξ1||2 log

(
||u− ξ1||2

)
, . . . , φq(u) = ||u− ξq−1||2 log

(
||u− ξq−1||2

)}
.

Value

Specifies the design matrices of an mvrm call

Author(s)

Georgios Papageorgiou <gpapageo@gmail.com>

See Also

mvrm

Examples

#see \code{mvrm} example

summary.mvrm Summary of an mvrm fit

Description

Provides basic information from an mvrm fit.

Usage

## S3 method for class 'mvrm'
summary(object, nModels = 5, digits = 5, printTuning = FALSE, ...)



te 33

Arguments

object an object of class "mvrm", usually a result of a call to mvrm.

nModels integer number of models with the highest posterior probability to be displayed.

digits the number of significant digits to use when printing.

printTuning if set to TRUE, the starting and finishig values of the tuninf parameters are dis-
played.

... other arguments.

Details

Use this function to summarize mvrm fits.

Value

The functions provides a detailed description of the specified model and priors. In addition, the
function provides information about the Markov chain ran (length, burn-in, thinning) and the folder
where the files with posterior samples are stored. Lastly, the function provides the mean posterior
and null deviance and the mean/variance models visited most often during posterior sampling.

Author(s)

Georgios Papageorgiou <gpapageo@gmail.com>

See Also

mvrm

Examples

#see \code{mvrm} example

te mgcv constructor te

Description

Provides interface between mgcv::te and BNSP. te(...) calls mgcv::smoothCon(mgcv::te(...),...

Usage

te(..., data, knots = NULL, absorb.cons = FALSE, scale.penalty = TRUE,
n = nrow(data), dataX = NULL, null.space.penalty = FALSE, sparse.cons = 0,
diagonal.penalty = FALSE, apply.by = TRUE, modCon = 0, k = NA, bs = "cr",
m = NA, d = NA, by = NA, fx = FALSE, np = TRUE, xt = NULL, id = NULL,
sp = NULL, pc = NULL)
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Arguments

... a list of variables. See mgcv::te

data see mgcv::smoothCon

knots see mgcv::knots

absorb.cons see mgcv::smoothCon

scale.penalty see mgcv::smoothCon

n see mgcv::smoothCon

dataX see mgcv::smoothCon
null.space.penalty

see mgcv::smoothCon

sparse.cons see mgcv::smoothCon
diagonal.penalty

see mgcv::smoothCon

apply.by see mgcv::smoothCon

modCon see mgcv::smoothCon

k see mgcv::te

bs see mgcv::te

m see mgcv::te

d see mgcv::te

by see mgcv::te

fx see mgcv::te

np see mgcv::te

xt see mgcv::te

id see mgcv::te

sp see mgcv::te

pc see mgcv::te

Details

The most relevant arguments for BNSP users are the list of variables ..., knots, absorb.cons, bs,
and by.

Value

A design matrix that specifies a smooth term in a model.

Author(s)

Georgios Papageorgiou <gpapageo@gmail.com>
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ti mgcv constructor ti

Description

Provides interface between mgcv::ti and BNSP. ti(...) calls mgcv::smoothCon(mgcv::ti(...),...

Usage

ti(..., data, knots = NULL, absorb.cons = FALSE, scale.penalty = TRUE,
n = nrow(data), dataX = NULL, null.space.penalty = FALSE, sparse.cons = 0,
diagonal.penalty = FALSE, apply.by = TRUE, modCon = 0, k = NA, bs = "cr",
m = NA, d = NA, by = NA, fx = FALSE, np = TRUE, xt = NULL, id = NULL,
sp = NULL, mc = NULL, pc = NULL)

Arguments

... a list of variables. See mgcv::ti
data see mgcv::smoothCon
knots see mgcv::knots
absorb.cons see mgcv::smoothCon
scale.penalty see mgcv::smoothCon
n see mgcv::smoothCon
dataX see mgcv::smoothCon
null.space.penalty

see mgcv::smoothCon
sparse.cons see mgcv::smoothCon
diagonal.penalty

see mgcv::smoothCon
apply.by see mgcv::smoothCon
modCon see mgcv::smoothCon
k see mgcv::ti
bs see mgcv::ti
m see mgcv::ti
d see mgcv::ti
by see mgcv::ti
fx see mgcv::ti
np see mgcv::ti
xt see mgcv::ti
id see mgcv::ti
sp see mgcv::ti
mc see mgcv::ti
pc see mgcv::ti
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Details

The most relevant arguments for BNSP users are the list of variables ..., knots, absorb.cons, bs,
and by.

Value

A design matrix that specifies a smooth term in a model.

Author(s)

Georgios Papageorgiou <gpapageo@gmail.com>
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