Package 'Barycenter'

May 4, 2018
Encoding latin1
Type Package
Title Regularized Wasserstein Distances and Barycenters
Version 1.3.1
Date 2018-04-05
Author Marcel Klatt
Maintainer Marcel Klatt marcel.klatt@stud.uni-goettingen.de
Description Computations of entropy regularized Wasserstein Distances, a.k.a. dual-Sinkhorn diver-gences, and entropy regularized Wasserstein Barycenters. Relevant papers are Marco Cu-turi (2013) arXiv:1306.0895, Marco Cuturi (2014) arXiv:1310.4375 and Ja-son Altschuler et al. arXiv:1705.09634.
License GPL-2
LazyData TRUE
LinkingTo Rcpp, RcppArmadillo
Depends R ($>=2.10 .0$), Rcpp ($>=0.11 .1$)
RoxygenNote 6.0.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2018-05-04 09:05:27 UTC
R topics documented:
eight 2
Greenkhorn 2
Sinkhorn 3
three 4
WaBarycenter 5
Index 7

```
eight MNIST dataset of the digit eight (small)
```


Description

A list of five images of the digit eight. Each image is a 28×28 matrix, representing the weights of the corresponding pixels scaled s.t. they sum up to one. The images are included in a list. This dataset is based on the MNIST dataset.

Usage

eight

Format

List

Examples

```
#Take a look into the dataset, e.g. the first image of the digit eight.
eight[[1]]
image(eight[[1]])
```

Greenkhorn Greenkhorn Distances (approximation to EMD)

Description

The Greenkhorn algorithm to approximate the earth movers distance (EMD), a.k.a. Wasserstein distance, between two probability vectors r and c with specified cost-matrix costm.

Usage

Greenkhorn(r, c, costm, lambda = 1, maxIter = 10000, tolerance=10^(-8))

Arguments

r
C
costm
lambda Non-negative regularization parameter (for small lambda the Sinkhorn Distance is close to the EMD).
maxIter Maximum number of iterations.
tolerance A threshold for the integrated stopping criterion based on marginal differences.

Value

Returns a list containing the regularized transport plan represented as a $n x m$ matrix as well as the Sinkhorn distance between the given marginals r and c.

Author(s)

Marcel Klatt

References

Altschuler, J., Weed, J. and Rigollet, P.: Near-linear time approximation algorithms for optimal transport via S Advances in Neural Information Processing Systems 30 (NIPS 2017)

Examples

```
#Sinkhorn Distances between the first image to the second image in the dataset eight.
#We creat costm simply using a distance matrix on the grid [0,1]x[0,1].
n <- seq(0,1,length.out = dim(eight[[1]])[2])
costm <- as.matrix(dist(expand.grid(n,rev(n)), diag=TRUE, upper=TRUE))
r <- matrix(eight[[1]],28*28,1)
c <- matrix(eight[[2]],1,28*28)
Greenkhorn(r, c, costm)$Distance
```

Sinkhorn Sinkhorn Distances (upper bound to EMD)

Description

The Sinkhorn algorithm to compute N dual-Sinkhorn divergences, i.e. upper bounds on the earth movers distance (EMD), a.k.a. Wasserstein distance.

Usage

Sinkhorn(a, b, costm, lambda $=1$, maxIter $=10000$, tolerance $=10^{\wedge}(-8)$)

Arguments

a
b
costm A matrix of pairwise distances/costs between bins described in a and bins in the b_{1}, \ldots, b_{N} histograms.
lambda Non-negative regularization parameter (for small lambda the Sinkhorn Distance is close to the EMD).
maxIter Maximum number of iterations.
tolerance A threshold for the integrated stopping criterion based on marginal differences.

Value

Returns the Sinkhorn Distances between the given bins. If a is given by a $d_{1} x 1$ column vector the function returns the distances

$$
\left[D\left(a, b_{1}\right), \ldots, D\left(a, b_{N}\right)\right]
$$

If a is given by a $d_{1} x N$ matrix the function returns the distances

$$
\left[D\left(a_{1}, b_{1}\right), \ldots, D\left(a_{N}, b_{N}\right)\right]
$$

If a and b are simply given by two $d_{1} x 1$ and $d_{2} x 1$ vectors each in the probability simplex, respectively, then the functions returns a list containing the Sinkhorn Distance as well as the corresponding regularized transport plan.

Author(s)

Marcel Klatt

References

Cuturi, M.: Sinkhorn Distances: Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems 26, 2013

Examples

```
#Sinkhorn Distances between the first image to the remaining four images in the dataset eight.
#We creat costm simply using a distance matrix on the grid [0,1]x[0,1].
n <- seq(0,1,length.out = dim(eight[[1]])[2])
costm <- as.matrix(dist(expand.grid(n,rev(n)), diag=TRUE, upper=TRUE))
a <- matrix(eight[[1]],28*28,1)
b <- matrix(c(eight[[2]],eight[[3]],eight[[4]],eight[[5]]), 28*28,4)
Sinkhorn(a, b, costm)
```


three

 MNIST dataset of the digit three
Description

A list of 4351 images of the digit three. Each image is a 28×28 matrix, representing the weights of the corresponding pixels scaled s.t. they sum up to one. The images are included in a large list. This dataset is based on the MNIST dataset.

Usage

three

Format

List

Examples

\#Take a look into the dataset, for example the 25 th image of the digit three. three[[25]]
image(three[[25]])
WaBarycenter Regularized Wasserstein Barycenters

Description

WaBarycenter takes in a list of matrices representing joint measures on the row and column space and outputs the corresponding Barycenter. The list has to consist of matrices having all the same dimensions, for instance, each matrix represents the normalized weights of the corresponding pixels of images.

Usage

WaBarycenter(images, maxIter $=10$, lambda $=$ FALSE, costm $=$ FALSE)

Arguments

images A list of matrices satisfying the prerequisites described above.
maxiter Maximum number of iterations.
lambda Non-negative regularization parameter (for large lambda the regularized Barycenter is close to its true counterpart). If FALSE the algorithm uses a lambda depending on costm.
costm A matrix of pairwise distances between the locations. If FALSE the algorithm uses the usual euclidean distance matrix on a $[0,1] \times[0,1]$ equidistant pixel grid.

Value

The Barycenter of the matrices, represented by a $n x m$ matrix.
Given the MNIST dataset, a Barycenter of the digit three is shown below. The Barycenter is based on 4351 images each represented by a 28×28 pixel grid, respectively. The values for lambda and maxIter were set by default. The dataset is also available in this package (c.f. three).

Author(s)

Marcel Klatt

References

Cuturi, M.: Fast Computation of Wasserstein Barycenters, Proceedings of the International Conference on Machine Learning, Beijing, China, 2014

Examples

\#Computation of a Barycenter based on five images representing the digit eight, respectively. WaBarycenter (eight, lambda=10)
\#For a more reasonable but longer computation!
\#\# Not run: WaBarycenter(eight)

Index

*Topic datasets
three, 4
*Topic dataset
eight, 2
eight, 2
Greenkhorn, 2
Sinkhorn, 3
three, 4,5
WaBarycenter, 5

