Package 'BayesDesign'

May 4, 2021

Type Package

Title Bayesian Single-Arm Design with Survival Endpoints

Version 0.1.1

Description The proposed event-driven approach for Bayesian two-stage single-arm phase II trial design is a novel clinical trial design and can be regarded as an extension of the Simon's two-stage design with the time-to-event endpoint. This design is motivated by cancer clinical trials with immunotherapy and molecularly targeted therapy, in which time-to-event endpoint is often a desired endpoint.

License GPL-2

Encoding UTF-8

NeedsCompilation no

Author Chia-Wei Hsu [aut, cre], Haitao Pan [aut], Jianrong Wu [aut]

Maintainer Chia-Wei Hsu <Chia-Wei.Hsu@stjude.org>

Repository CRAN

Index

Date/Publication 2021-05-04 06:30:16 UTC

R topics documented:

optimal_OneStage	. 2
optimal_TwoStage	. 3
tot_time	. 5
	-

optimal_OneStage

Obtain design settings for one-stage Bayesian Single-Arm Phase II Trial with Time-to-Event Endpoints

Description

Obtain design parameters, type I error, power and operating characteristics of the Bayesian Single-Arm Phase II Trial Designs with Time-to-Event Endpoints (Wu et al. 2021). The exponential distribution is assumed for the survival time. The gamma prior is used here

Usage

optimal_OneStage((alp	ohacı	utofi	Ξ,	power	cuto	ff,	S0,	
	х,	ta,	tf,	а	= 2,	delt	a, ı	ntria	al,
	con	nplet	te =	"p	bartia	al",	see	d = 8	8232)

Arguments

alphacutoff	the desired type I error to be controlled
powercutoff	the desired power to be achieved
SØ	the survival probability at timepoint x
x	the survival probability S0 at timepoint x
ta	accrual duration
tf	follow-up duration
а	shape parameter of prior distribution. The default value is $a = 2$
delta	hazard ratio
ntrial	the number of simulated trials
complete	whether output the full or partial information. The default value is complete = "partial". If want to show full results, it would be complete = "complete"
seed	the seed. The default value is seed = 8232

Value

optimal_OneStage() depending on the argument "complete", it returns a vector of partial information/complete information which includes:

partial information: (1) m: number of events of the whole design (2) n: number of patients of the whole design (3) k: total observation time of the whole design (4) typeI: type I error of the whole design (5) power: power of the whole design (6) ES1: expected sample size under alternative hypothesis (7) ES0: expected sample size under null hypothesis

full information: (1) eta: cutoff point of "Go" at final stage of analysis (2) zeta: cutoff point of "no-Go" at final stage of analysis (3) m: number of events of the whole design (4) n: number of patients of the whole design (5) k: total observation time of the whole design (6) typeI: type I error of the whole design (7) power: power of the whole design (8) ES1: expected sample size under alternative hypothesis (9) ES0: expected sample size under null hypothesis

optimal_TwoStage

Author(s)

Chia-Wei Hsu, Haitao Pan, Jianrong Wu

References

Jianrong Wu, Haitao Pan, Chia-Wei Hsu (2021). "Bayesian Single-Arm Phase II Trial Designs with Time-to-Event Endpoints." Pharmaceutical Statistics. Accepted

Examples

```
optimal_TwoStage
```

Obtain design settings for two-stage Bayesian Single-Arm Phase II Trial with Time-to-Event Endpoints

Description

Obtain design parameters, type I error, power and operating characteristics of the Bayesian Single-Arm Phase II Trial Designs with Time-to-Event Endpoints (Wu et al. 2021). The exponential distribution is assumed for the survival time. The gamma prior is used here

Usage

Arguments

alphacutoff	the desired type I error to be controlled
powercutoff	the desired power to be achieved
SØ	the survival probability at timepoint x
x	the survival probability S0 at timepoint x
ta	accrual duration
tf	follow-up duration
а	shape parameter of prior distribution. The default value is $a = 2$
delta	hazard ratio
frac	a information fraction for interim analysis. The fefault value is $frac = 0.5$
ntrial	the number of simulated trials
complete	whether output the full or partial information. The default value is complete = "partial". If want to show full results, it would be complete = "complete"
seed	the seed. The default value is seed = 8232

Value

optimal() depending on the argument "complete", it returns a vector of partial information/complete information which includes:

partial information: (1) m1: number of events at stage 1 (2) n1: number of patients at stage 1 (3) k1: total observation time at stage 1 (4) m: number of events of the whole design (5) n: number of patients of the whole design (6) k: total observation time of the whole design (7) typeI: type I error of the whole design (8) power: power of the whole design (9) PET1: early stopping probabilities under alternative hypothesis (10) ES1: expected sample size under alternative hypothesis (11) PET0: early stopping probabilities under null hypothesis (12) ES0: expected sample size under null hypothesis

full information: (1) eta: cutoff point of "Go" at final stage of analysis (2) xi: cutoff point of "no-Go" at final stage of analysis (3) m1: number of events at stage 1 (4) n1: number of patients at stage 1 (5) k1: total observation time at stage 1 (6) m: number of events of the whole design (7) n: number of patients of the whole design (8) k: total observation time of the whole design (9) typeI: type I error of the whole design (10) power: power of the whole design (11) PET1: early stopping probabilites under alternative hypothesis (12) ES1: expected sample size under alternative hypothesis (13) PET0: early stopping probabilites under null hypothesis (14) ES0: expected sample size under null hypothesis

Author(s)

Chia-Wei Hsu, Haitao Pan, Jianrong Wu

References

Jianrong Wu, Haitao Pan, Chia-Wei Hsu (2021). "Bayesian Single-Arm Phase II Trial Designs with Time-to-Event Endpoints." Pharmaceutical Statistics. Accepted

tot_time

Examples

```
tot_time
```

Sum up transformed observation time for each patient

Description

Sum up transformed observation time for each patient to get U in order to determine the trial: (1) goes to second stage (2) stops for futility (3) declares the treatment is promising and warrants for further study in a large scale phase III trial (4) declares the treatment is unpromising and is not worth for further study.

Usage

tot_time(obs_time, S0, x)

Arguments

obs_time	a vector. Each element represents an observation time of the patient
SØ	the survival probability at timepoint x
х	the survival probability S0 at timepoint x

Value

the function returns the total transformed observation time for all patients

Author(s)

Chia-Wei Hsu, Haitao Pan, Jianrong Wu

References

Jianrong Wu, Haitao Pan, Chia-Wei Hsu (2021). "Bayesian Single-Arm Phase II Trial Designs with Time-to-Event Endpoints." Pharmaceutical Statistics. Accepted

Examples

Index

optimal_OneStage, 2
optimal_TwoStage, 3

tot_time, 5