Package 'BiProbitPartial'

January 10, 2019
Type Package
Title Bivariate Probit with Partial Observability
Version 1.0.3
Date 2019-01-10
Author Michael Guggisberg and Amrit Romana
Maintainer Michael Guggisberg mguggisb@ida.org
Description A suite of functions to estimate, summarize
and perform predictions with the bivariate probit subject to partial observability.
The frequentist and Bayesian probabilistic philosophies are both supported. The frequentist method is estimated with maximum likelihood and the Bayesian method is estimated with a Markov Chain Monte Carlo (MCMC) algorithm developed by Rajbanhdari, A (2014) doi:10.1002/9781118771051.ch13.
License GPL-3
Imports $\operatorname{Rcpp}(>=0.12 .19)$, Formula($>=1.2-3$), optimr($>=2016-8.16$), pbivnorm($>=0.6 .0$), mvtnorm $(>=1.0-8), \operatorname{RcppTN}(>=0.2-2)$, $\operatorname{coda}(>=0.19-2)$
Depends numDeriv(>=2016.8-1)
Suggests sampleSelection
LinkingTo Rcpp, RcppArmadillo, RcppTN
RoxygenNote 6.1.0
Encoding UTF-8
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-01-10 22:12:04 UTC

R topics documented:

BiProbitPartial-package 2
BiProbitPartial 2
grad1 6
llhood1 7
MCMC1 8
predict.BiProbitPartialb 9
predict.BiProbitPartialf 11
SimDat 12
summary.optimrml 13
Index 14

BiProbitPartial-package

BiProbitPartial: Bivariate Probit with Partial Observability

Description

A suite of functions to estimate, summarize and perform predictions with the bivariate probit subject to partial observability. The frequentist and Bayesian probabilistic philosophies are both supported. The frequentist method is estimated with maximum likelihood and the Bayesian method is estimated with a Markov Chain Monte Carlo (MCMC) algorithm developed by Rajbanhdari, A (2014) doi:10.1002/9781118771051.ch13.

BiProbitPartial Bivariate probit with partial observability

Description

BiProbitPartial estimates a bivariate probit with partial observability model.
The bivariate probit with partial observability model is defined as follows. Let i denote the i th observation which takes values from 1 to N, X_{1} be a covariate matrix of dimension $N \times k_{1}, X_{2}$ be a covariate matrix of dimension $N \times k_{2}, X_{1 i}$ be the i th row of $X_{1}, X_{2 i}$ be the i th row of X_{2}, β_{1} be a coefficient vector of length k_{1} and β_{2} be a coefficient vector of length k_{2}. Define the latent response for stage one to be

$$
y_{1 i}^{\star}=X_{1 i} \beta_{1}+\epsilon_{1 i}
$$

and stage two to be

$$
y_{2 i}^{\star}=X_{2 i} \beta_{2}+\epsilon_{2 i} .
$$

Note the stages do not need to occur sequentially. Define the outcome of the first stage to be $y_{1 i}=1$ if $y_{1 i}^{\star}>0$ and $y_{1 i}=0$ if $y_{1 i}^{\star} \leq 0$. Define the outcome of the second stage to be $y_{2 i}=1$ if $y_{2 i}^{\star}>0$ and $y_{2 i}=0$ if $y_{2 i}^{\star} \leq 0$. The observed outcome is the product of the outcomes from the two stages

$$
z_{i}=y_{1 i} y_{2 i}
$$

The pair $\left(\epsilon_{1 i}, \epsilon_{2 i}\right)$ is distributed independently and identically multivariate normal with means $E\left[\epsilon_{1 i}\right]=E\left[\epsilon_{2 i}\right]=0$, variances $\operatorname{Var}\left[\epsilon_{1 i}\right]=\operatorname{Var}\left[\epsilon_{2 i}\right]=1$, and correlation (or equivalently covariance) $\operatorname{Cov}\left(\epsilon_{1 i}, \epsilon_{2 i}\right)=\rho$. A more general structural representation is presented in Poirier (1980).

The model can be estimated by Bayesian Markov Chain Monte Carlo (MCMC) or frequentist maximum likelihood methods. The correlation parameter ρ can be estimated or fixed. The MCMC algorithm used is a block Gibbs sampler within Metropolis-Hastings scheme developed by Rajbhandari (2014). The default maximum likelihood method is based off the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. A modification of the algorithm is used to include box constraints for when ρ is estimated. See optimr for details.

Usage

BiProbitPartial(formula, data, subset, na.action, philosophy = "bayesian", control = list())

Arguments

formula	an object of class Formula: a symbolic description of the model to be fitted. The details of model specification are given under 'Details'. an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment (formula), typically the environment from which BiProbitPartial is called.
data	
an optional vector specifying a subset of observations to be used in the fitting	
process.	
a function which indicates what should happen when the data contain NA obser-	
na.action	vations. The default is set by the na. action setting of options, and is na.fail if that is unset. The 'factory-fresh' default is na.omit. Another possible value is
NULL, no action. Value na.exclude can be useful.	

Details

Models for BiProbitPartial are specified symbolically. A typical model has the form response \sim terms1 | terms2 where response is the name of the (numeric binary) response vector and terms 1 and terms 2 are each a series of terms which specifies a linear predictor for latent response equations 1 and 2 . A terms 1 specification of the form first + second indicates all the terms in first together with all the terms in second with duplicates removed. A specification of the form first: second indicates the set of terms obtained by taking the interactions of all terms in first with all terms in second. The specification first*second indicates the cross of first and second. This is the same as first + second + first:second. Likewise for terms2.
A Formula has an implied intercept term for both equations. To remove the intercept from equation 1 use either response \sim terms $1-1 \mid$ terms2 or response $\sim 0+$ terms1 | terms2. It is analgous to remove the intercept from the equation 2.
If philosophy = "bayesian" is specified then the model is estimated by MCMC methods based on Rajbhandari (2014). The prior for the parameters in equations 1 and 2 is multivariate normal
with mean beta0 and covariance B 0 . The prior for ρ is truncated normal on the interval $[-1,1]$ with mean parameter rho0 and variance parameter v0 and is assumed to be apriori independent of the parameters in equations 1 and 2.

If philosophy = "frequentist" then the model is estimated by frequentist maximum likelihood using optimr from the package optimr.
The control argument is a list that can supply the tuning parameters of the Bayesian MCMC estimation and frequentist maximum likelihood estimation algorithms. For frequentist maximum likelihood the control argument is passed directly to control in the function optimr from the package optimr. If one wants to specify the method for the function optimr then method must be passed as an element of control. See optimr for further details.
The control argument can supply any of the following components for Bayesian MCMC estimation.
beta Numeric vector or list of nchains elements each a numeric vector supplying starting values for the coefficients in equations 1 and 2 . For each vector, the first k_{1} values are for the coefficients in the first equation. The second k_{2} values are for the coefficients in the second equation. Default is beta $=$ numeric $(k 1+k 2)$, a vector of zeros.
rho Numeric or list of nchains elements each a numeric starting value for ρ. Default is rho $=0$.
fixrho Logical value to determine if ρ is estimated. If fixrho $=\operatorname{TRUE}$ then ρ is fixed at value rho. Default is fixrho = FALSE.
S Number of MCMC iterations. Default is $S=1000$. For philosophy = "bayesian" only.
burn Number of initial pre-thinning MCMC iterations to remove after estimation. Default is burn $=$ floor $(S / 2)$, the floor of the number of MCMC iterations divided by 2. For philosophy = "bayesian" only.
thin Positive integer to keep every thin post-burn in MCMC draw and drop all others. Default is thin = 1, keep all post burn-in draws. For philosophy = "bayesian" only.
seed Positive integer for nchains $=1$ or list of nchains elements each a positive integer fixing the seed of the random number generator. Typically used for replication. Default is seed = NULL, no seed. For philosophy = "bayesian" only.
nchains Positive integer specifying the number of MCMC chains. Default is nchains $=1$. For philosophy = "bayesian" only.
beta0 Numeric vector supplying the prior mean for the coefficients of equations 1 and 2 . The first k_{1} components are for the coefficients of equation 1 . The second k_{2} components are for the coefficients of equation 2 . Default is beta0 $=$ numeric (k1 + k2 $)$, a vector of zeros. For philosophy = "bayesian" only.
B0 Numeric matrix supplying the prior covariace of the parameters of equations 1 and 2 . The first k_{1} rows are for the parameters of equation 1 . The second k_{2} rows are for the parameters of equation 2. Likewise for columns. If unspecified the default is set such that the inverse of $B 0$ is a zero matrix of dimension $\left(k_{1}+k_{2}\right) \times\left(k_{1}+k_{2}\right)$, a'flat' prior. For philosophy = "bayesian" only.
rho0 Numeric value supplying a prior parameter for ρ which is the mean of a normal distribution that is truncated to the interval $[-1,1]$. Default is rho $0=0$. For philosophy $=$ "bayesian" only.
$\mathbf{v 0}$ Numeric value supplying a prior parameter for ρ which is the variance of a normal distribution that is truncated to the interval $[-1,1]$. Default is v0 = 1. For philosophy = "bayesian" only.
nu Numeric degrees of freedom parameter for setting the degrees of freedom for ρ 's proposal tdistribution. Default is nu $=10$.
tauSq Numeric scaling parameter for scaling ρ 's proposal t-distribution. Default is tauSq $=1$.
\mathbf{P} Determines how aggressive proposal draws for ρ are. Set to $P=0$ normal or $P=-1$ for aggresive. See Rajbhandari (2014) and for details. Default is $P=0$. For philosophy $=$ "bayesian" only.
trace Numeric value determining the value of intermediate reporting. A negative value is no reporting, larger positive values provide higher degrees of reporting.

Note: If the Bayesian MCMC chains appear to not be converging and/or frequentist maximum likelihood produces errors with summary, the model may be unidentified. One possible solution is to add regressors to the first equation that are exluded from the second equation or visa-versa. See Poirier (1980) for more details.

Value

BiProbitPartial returns an $S \times\left(k_{1}+k_{2}+1\right) \times$ nchains array of MCMC draws of primary class mcmc.list and secondary class BiProbitPartialb, if philosophy = "bayesian". Each element in the first dimension represents a MCMC draw. The first k_{1} elements in the second dimension are draws for the coefficientss in the first equation. The next k_{2} elements of the second dimension are draws for the coefficients in the second equation. The last element of the second dimension are draws for the correlation parameter. The elements of the third dimension are the chains. If ρ was fixed (fixrho $=$ TRUE) then each draw for the last element in the second dimension is returned as the value it was fixed at (the starting value, rho).

If philosophy = "frequentist" a list equivalent to the output optimr with primary class optimrml and secondary class BiProbitPartialf.

Author(s)

BiProbitPartial was written by Michael Guggisberg. The majority of the MCMC estimation was written by Amrit Romana based on Rajbhandari (2014). The development of this package was partially funded by the Institude for Defense Analyses (IDA).

References

Poirier, Dale J. (1980). "Partial Observability in bivariate probit models" Journal of Econometrics 12, 209-217. (Identification)

Rajbhandari, Ashish (2014). "Identification and MCMC estimation of bivariate probit model with partial observability." Bayesian Inference in Social Sciences (eds I. Jeliazkov and X. Yang). (MCMC algorithm)

Examples

```
    data('Mroz87',package = 'sampleSelection')
    Mroz87$Z = Mroz87$lfp*(Mroz87$wage >= 5)
    f1 = BiProbitPartial(Z ~ educ + age + kids5 + kids618 + nwifeinc | educ + exper + city,
        data = Mroz87, philosophy = "frequentist")
    summary(f1)
    # Use the estimates from the frequenist philosophy as starting values
    b1 = BiProbitPartial(Z ~ educ + age + kids5 + kids618 + nwifeinc | educ + exper + city,
        data = Mroz87, philosophy = "bayesian",
        control = list(beta = f1$par[1:(length(f1$par)-1)], rho = tail(f1$par,1)))
    summary(b1)
    ## Not run: #The example used in the package sampleSelection is likely unidentified for
    this model
    f2 = BiProbitPartial(Z ~ educ + age + kids5 + kids618 + nwifeinc | educ,
        data = Mroz87, philosophy = "frequentist") #crashes
    summary(f2) #crashes (f2 non-existent)
    # Bayesian methods typically still work for unidentified models
    b2 = BiProbitPartial(Z ~ educ + age + kids5 + kids618 + nwifeinc | educ,
        data = Mroz87, philosophy = "bayesian",
        control = list(beta = f1$par[1:(length(f1$par)-3)], rho = tail(f1$par,1)))
    summary(b2)
    ## End(Not run)
```

 grad1 Gradient of bivariate probit with partial observability

Description

Gradient of bivariate probit with partial observability

Usage

grad1 (theta, X1, X2, Z, rho $=0, \mathrm{p}=\mathrm{NULL}$, summed $=\mathrm{T}$, fixrho = F)

Arguments

theta numeric vector of dimension equal to that of the free parameter space
X1 numeric matrix of covariates for the first equation
X2 numeric matrix of covariates for the second equation
Z numeric matrix or column vecotr of response observations
rho numeric value for rho if fixed
p
summed
fixrho
numeric precomputed probabilities of $\operatorname{Pr}(\mathrm{Y} 1=1, \mathrm{Y} 2=1)$
logical if the gradient observations should be summed
logical if rho should be fixed

Value

if summed is TRUE then the function returns the numeric column sum of the gradient matrix, else it returns a numeric vector with each entry a value of the gradient vector
llhood1 log likelihood of bivariate probit with partial observability

Description

\log likelihood of bivariate probit with partial observability

Usage

llhood1(theta, X1, X2, Z, rho = 0, p = NULL, summed = T, fixrho = F)

Arguments

theta numeric vector of dimension equal to that of the free parameter space
X1 numeric matrix of covariates for the first equation
X2 numeric matrix of covariates for the second equation
Z numeric matrix or column vecotr of response observations
rho numeric value for rho if fixed
p numeric precomputed probabilities of $\operatorname{Pr}(\mathrm{Y} 1=1, \mathrm{Y} 2=1)$
summed logical if the log likelihood observations should be summed
fixrho logical if rho should be fixed

Value

if summed is TRUE then the function returns the numeric sum of the likelihood vector, else it returns a numeric vector with each entry a value of the likelihood vector

MCMC algorithm to sample from bivariate probit with partial observability

Description

MCMC1() produces MCMC draws from the posterior of the bivariate probit with partial observability. It does not perform input validation. It is reccomended to use BiProbitPartial instead of this function. BiProbitPartial performs input validation and then calls this function if philosophy == "bayesian".

Usage

MCMC1 (X1, X2, Z, beta1, beta2, rho, fixho, S, beta0, B0inv, rho0, v0, nu, P, tauSq, seed)

Arguments

X1
X2 a matrix of covariates for the second equation
Z a matrix of response values
beta1 a matrix of starting values for betal
beta2 a matrix of starting values for beta2
rho a numeric starting value for rho
fixrho a logical determining if rho is fixed
S a numeric for the number of MCMC iterations
beta0 a matrix of the beta prior mean parameter
B0inv a matrix of the inverse of beta prior covariance parameter
rho0 a numeric for the mu prior parameter for rho
v0 a numeric for the Sigma prior parameter for rho
nu a numeric for MCMC tuning parameter 1
$P \quad$ a numeric for MCMC tuning parameter 2
tauSq a numeric for MCMC tuning parameter 3
seed a numeric seed for determining the random draw sequence

Value

a matrix of MCMC draws

```
predict.BiProbitPartialb
```

predict method for class 'BiProbitPartialb'

Description

Note this produces a Bayesian posterior predictive distribution. This accounts for estimation uncertainty. If you desire a simple prediction that does not account for estimation uncertainty then the frequentist philosophy should be used. If nchains is greater than 1 then the chains are combined.

Usage

```
    ## S3 method for class 'BiProbitPartialb'
    predict(object, newdata, k1, k2,
        mRule = c(0.5, 0.5), jRule = NULL, ...)
```


Arguments

object a object of class BiProbitPartialb
newdata a matrix of column dimension $\mathrm{k} 1+\mathrm{k} 2$ where the first k 1 columns correspond to the predictors of the first equations and the second k2 columns correspond to predictors of the second equation. If intercepts were used they need to be explicitly input.
k1 a numeric declaring the number of covariates (including intercept) in the first equation
k2 a numeric declaring the number of covariates (including intercept) in the second equation
mRule a vector of length 1 or 2 . This is the marginal decision rule for classifying the outcomes for stages 1 and 2 . Stage 1 is classified as 1 if the probability of stage 1 being 1 is greater than or equal to mRule[1]. Likewise for stage 2 . If length of mRule is 1 then that value is recycled. The values of mRule must be between 0 and 1 . The default value is mRule $=c(0.5,0.5)$.
jRule an optional numerical value between 0 and 1. If specified then the observable outcome (both stages being 1) is 1 if the joint probability of both stages being 1 is greater than $j R$ ule. If $j R u l e$ is unspecified or set to NULL then the observable outcome is the product of the marginal outcomes. The default value is jRule $=$ NULL. Note, if jRule is specified then the observable outcome might not equal the product of stages 1 and 2 .

Value

method predict.bBiProbitPArtial returns a data.frame with columns
linPredict1 Predicted mean of the first stage latent outcome. This is tyically not interesting for a Bayesian analysis.
linPredict2 Predicted mean of the second stage latent outcome. This is tyically not interesting for a Bayesian analysis.
p1. Probability the outcome of the first stage is 1
p. 1 Probability the outcome of the second stage is 1
p00 Probability the outcome of both stages is 0
p01 Probability the outcome of the first stage is 0 and the second stage is 1
p10 Probability the outcome of stage 1 is 1 and stage 2 is 0
p11 Probability the outcome of both stages are 1
yHat1 Classification of the outcome for stage 1. This value is 1 if $p 1>=m R u l e[1]$ and 0 else
yHat2 Classification of the outcome for stage 2. This value is 1 if $p 2>=m R u l e[2]$ and 0 else
ZHat Classification of the observable outcome. If jRule is specified then this value is 1 if $\mathrm{p} 12>=\mathrm{jRule}$ and 0 else. If jRule is unspecified then this value is the element-wise product of yHat 1 and yHat2.

Examples

```
##
# Perform a prediction with the same covariates the model is estimated with
##
data('Mroz87',package = 'sampleSelection')
Mroz87$Z = Mroz87$lfp*(Mroz87$wage >= 5)
# Run the frequentist version first to get starting values
f1 = BiProbitPartial(Z ~ educ + age + kids5 + kids618 + nwifeinc | educ + exper + city,
    data = Mroz87, philosophy = "frequentist")
b1 = BiProbitPartial(Z ~ educ + age + kids5 + kids618 + nwifeinc | educ + exper + city,
    data = Mroz87, philosophy = "bayesian",
    control = list(beta = f1$par[1:(length(f1$par)-1)], rho = tail(f1$par,1)))
library(Formula)
eqn = Formula::Formula( ~ educ + age + kids5 + kids618 + nwifeinc | educ + exper + city)
matrix1 = model.matrix(eqn, lhs = 0, rhs=1, data= Mroz87)
matrix2 = model.matrix(eqn, lhs = 0, rhs=2, data= Mroz87)
newdat = cbind(matrix1,matrix2)
preds1 = predict(b1,newdat,k1 = dim(matrix1)[2],k2 = dim(matrix2)[2])
head(preds1)
preds2 = predict(b1,newdat,k1 = dim(matrix1)[2],k2 = dim(matrix2)[2], jRule = .25)
# Compare predicted outcome with realized outcome
head(cbind(Mroz87$Z,preds1$ZHat,preds2$ZHat),20)
```

predict.BiProbitPartialf
predict method for class 'BiProbitPartialf'

Description

Note, this is a simple frequentist prediction and does not account for estimation uncertainty. If one wants to account for estimation uncertainty it is reccomended to use the Bayesian philosophy.

Usage

\#\# S3 method for class 'BiProbitPartialf'
predict(object, newdata, $m R u l e=c(0.5,0.5)$, jRule = NULL, ...)

Arguments

object a object of class BiProbitPartialf
newdata a matrix of column dimension $\mathrm{k} 1+\mathrm{k} 2$ where the first k 1 columns correspond to the predictors of the first equations and the second k 2 columns correspond to predictors of the second equation. If intercepts were used they need to be explicitly input.
mRule a vector of length 1 or 2 . This is the marginal decision rule for classifying the outcomes for stages 1 and 2 . Stage 1 is classified as 1 if the probability of stage 1 being 1 is greater than or equal to mRule[1]. Likewise for stage 2 . If length of mRule is 1 then that value is recycled. The values of mRule must be between 0 and 1 . The default value is mRule $=c(0.5,0.5)$.
jRule an optional numerical value between 0 and 1. If specified then the observable outcome (both stages being 1) is 1 if the joint probability of both stages being 1 is greater than j Rule. If $j R u l e$ is unspecified or set to NULL then the observable outcome is the product of the marginal outcomes. The default value is jRule $=$ NULL. Note, if jRule is specified then the observable outcome might not equal the product of stages 1 and 2 .
... unused

Value

method predict.fBiProbitPArtial returns a data.frame with columns
linPredict1 Predicted mean of the first stage latent outcome
linPredict2 Predicted mean of the second stage latent outcome
p1. Probability the outcome of the first stage is 1
p. 1 Probability the outcome of the second stage is 1
p00 Probability the outcome of both stages is 0
p01 Probability the outcome of the first stage is 0 and the second stage is 1
p10 Probability the outcome of stage 1 is 1 and stage 2 is 0
p11 Probability the outcome of both stages are 1
yHat1 Classification of the outcome for stage 1 . This value is 1 if $p 1>=m R u l e[1]$ and 0 else
yHat2 Classification of the outcome for stage 2. This value is 1 if $\mathrm{p} 2>=m R u l e[2]$ and 0 else
ZHat Classification of the observable outcome. If jRule is specified then this value is 1 if p12 >= jRule and 0 else. If $j R u l e$ is unspecified then this value is the element-wise product of yHat 1 and yHat2.

Examples

```
##
# Perform a prediction with the same covariates the model is estimated with
##
data('Mroz87',package = 'sampleSelection')
Mroz87$Z = Mroz87$lfp*(Mroz87$wage >= 5)
f1 = BiProbitPartial(Z ~ educ + age + kids5 + kids618 + nwifeinc | educ + exper + city,
    data = Mroz87, philosophy = "frequentist")
library(Formula)
eqn = Formula::Formula( ~ educ + age + kids5 + kids618 + nwifeinc | educ + exper + city)
matrix1 = model.matrix(eqn, lhs = 0, rhs=1, data= Mroz87)
matrix2 = model.matrix(eqn, lhs = 0, rhs=2, data= Mroz87)
newdat = cbind(matrix1,matrix2)
preds1 = predict(f1,newdat)
head(preds1)
preds2 = predict(f1,newdat, jRule = . 25)
# Compare predicted outcome with realized outcome
head(cbind(Mroz87$Z, preds1$ZHat,preds2$ZHat),20)
```

SimDat This is data to be included in my package

Description

Simulated data of 10,000 observations from a multivariate normal distribution. The true coefficients for equation 1 are 0 and 1 . The true coefficients for equation 2 are 0 and -1 . The true ρ is 0 .

Author(s)

Michael Guggisberg mguggisb@ida.org

```
    summary.optimrml Summary method for class 'optimrml'
```


Description

Summary method for class 'optimrml'

Usage

\#\# S3 method for class 'optimrml'
summary (object, ...)

Arguments

object Object of class optimrml

Value

matrix summary of estimates. The columns are
Estimate Maximum likelihood point estimate
Std. Error Asymptotic standard error estimate of maximum likelihood point estimators using numerical hessian
\mathbf{z} value z value for zero value null hypothesis using asymptotic standard error estimate
$\operatorname{Pr}(>|\mathbf{z}|) \mathrm{P}$ value for a two sided null hyptothesis test using the z value

Examples

```
data('Mroz87',package = 'sampleSelection')
Mroz87$Z = Mroz87$lfp*(Mroz87$wage >= 5)
f1 = BiProbitPartial(Z ~ educ + age + kids5 + kids618 + nwifeinc | educ + exper + city,
        data = Mroz87, philosophy = "frequentist")
summary(f1)
b1 = BiProbitPartial(Z ~ educ + age + kids5 + kids618 + nwifeinc | educ + exper + city,
        data = Mroz87, philosophy = "bayesian",
        control = list(beta = f1$par[1:(length(f1$par)-1)], rho = tail(f1$par,1)))
summary(b1)
```


Index

*Topic data

SimDat, 12
_PACKAGE (BiProbitPartial-package), 2
as.data.frame, 3
BiProbitPartial, 2
BiProbitPartial-package, 2
Formula, 3
grad1, 6
llhood1, 7
MCMC1, 8
na.exclude, 3
na.fail, 3
na.omit, 3
optimr, 3-5
options, 3
predict.BiProbitPartialb, 9
predict.BiProbitPartialf, 11
SimDat, 12
summary.optimrml, 13

