Package 'BinSegBstrap'

January 28, 2022

Title Piecewise Smooth Regression by Bootstrapped Binary Segmentation

Version 1.0-1

Depends R (>= 3.0.0)

Imports Rcpp (>= 0.12.3), stats

LinkingTo Rcpp

Suggests knitr

VignetteBuilder knitr

Description Provides methods for piecewise smooth regression. A piecewise smooth signal is estimated by applying a bootstrapped test recursively (binary segmentation approach). Each bootstrapped test decides whether the underlying signal is smooth on the currently considered subsegment or contains at least one further change-point.

License GPL-3

NeedsCompilation yes

Author McDaid Kate [aut], Pein Florian [aut, cre]

Maintainer Pein Florian <f.pein@lancaster.ac.uk>

Repository CRAN

Date/Publication 2022-01-27 23:10:10 UTC

R topics documented:

BinSegBstrap-package	2
BinSegBstrap	3
BstrapTest	4
estimateSingleCp	6

8

Index

BinSegBstrap-package Piecewise smooth regression by bootstrapped binary segmentation

Description

Provides methods for piecewise smooth regression. The main function BinSegBstrap estimates a piecewise smooth signal by applying a bootstrapped test recursively (binary segmentation approach). A single bootstrapped test for the hypothesis that the underlying signal is smooth versus the alternative that the underlying signal contains at least one change-point can be performed by the function BstrapTest. A single change-point is estimated by the function estimateSingleCp. More details can be found in the vignette. Parts of this work were inspired by Gijbels and Goderniaux (2004).

Acknowledgement

This work results from a summer research project at the University of Cambridge in 2019. Kate McDaid was supported by a bursary from the summer research programme of the Centre of Mathematics at the University of Cambridge. Florian Pein's position is funded by the EPSRC programme grant 'StatScale: Statistical Scalability for Streaming Data'.

References

Gijbels, I., Goderniaux, A-C. (2004) Bootstrap test for change-points in nonparametric regression. *Journal of Nonparametric Statistics* **16**(3-4), 591–611.

See Also

BinSegBstrap, BstrapTest, estimateSingleCp

Examples

```
n <- 200
signal <- sin(2 * pi * 1:n / n)
signal[51:100] <- signal[51:100] + 5
signal[151:200] <- signal[151:200] + 5
y <- rnorm(n) + signal
est <- BinSegBstrap(y = y)
plot(y)
lines(signal)
lines(est$est, col = "red")
n <- 100
signal <- sin(2 * pi * 1:n / n)
signal[51:100] <- signal[51:100] + 5</pre>
```

BinSegBstrap

```
y <- rnorm(n) + signal
test <- BstrapTest(y = y)
est <- estimateSingleCp(y = y)
plot(y)
lines(signal)
lines(est$est, col = "red")
```

BinSegBstrap Estimates a piecewise smooth signal

Description

A piecewise smooth signal is estimated by applying BstrapTest recursively (binary segmentation approach). The final estimator is estimated by kernel smoothing on each segment separately; a joint bandwidth is selected by crossvalidation. More details can be found in the vignette.

Usage

Arguments

У	a numeric vector containing the data points
bandwidth	the bandwidth, i.e. a numeric with values between $1 / \text{length}(y)$ and 0.5 . If missing exp(seq(log($10 / \text{length}(y)$), log(0.25), length.out = nbandwidth)) will be used. Crossvalidation will be performed if it is not a single numeric. Note that the test has almost no power when the bandwidth for the kernel smoother is too small, since then a change-point can be approximated well by a quickly changing smooth function.
nbandwidth	a single integer giving the number of bandwidths (see above) if bandwidth is missing
В	a single integer giving the number of bootstrap samples
alpha	a probability, i.e. a single numeric between 0 and 1, giving the significance level of the test
kernel	the kernel function, i.e. either a string or a function that takes a single numeric vector and returns the values of the kernel at those locations

Value

a list with the following components:

- est: the estimated signal

- cps: the estimated change-point locations

- bandwidth: the selected bandwidth

Examples

```
n <- 200
signal <- sin(2 * pi * 1:n / n)
signal[51:100] <- signal[51:100] + 5
signal[151:200] <- signal[151:200] + 5
y <- rnorm(n) + signal
# default bandwidth and kernel
est <- BinSegBstrap(y = y)
plot(y)
lines(signal)
lines(est$est, col = "red")
# fixed bandwidth
est <- BinSegBstrap(y = y, bandwidth = 0.1)
# user specified kernel
kernel <- function(x) 1 - abs(x) # triangular kernel
est <- BinSegBstrap(y = y, kernel = kernel)</pre>
```

BstrapTest

Bootstrap test for a single change-point

Description

Tests whether the underlying signal is smooth or contains at least one change-point. The smooth alternative is estimated by a (crossvalidated) kernel smoother. The single change-point alternative is estimated by estimateSingleCp. Its estimated jump size is used as a test statistic and the critical value is obtained by bootstrapping. More details can be found in the vignette.

Usage

Arguments

У	a numeric vector containing the data points
bandwidth	the bandwidth, i.e. a numeric with values between $1 / \text{length}(y)$ and 0.5. If missing exp(seq(log(10 / length(y)), log(0.25), length.out = nbandwidth)) will be used. Crossvalidation will be performed if it is not a single numeric. Note that the test has almost no power when the bandwidth for the kernel smoother is too small, since then a change-point can be approximated well by a quickly changing smooth function.

4

nbandwidth	a single integer giving the number of bandwidths (see above) if bandwidth is missing $% \left(\left(x,y\right) \right) =\left(x,y\right) \right) =\left(x,y\right) +\left(x,y\right)$
В	a single integer giving the number of bootstrap samples
alpha	a probability, i.e. a single numeric between 0 and 1, giving the significance level of the test
kernel	the kernel function, i.e. either a string or a function that takes a single numeric vector and returns the values of the kernel at those locations

Value

a list with the following components:

- piecewiseSignal: the estimated signal with a single change-point
- cp: the estimated change-point location
- size: the estimated jump size
- bandwidth: the selected bandwidth for the piecewise signal
- bandwidthSmooth: the selected bandwidth for the smooth signal
- smoothSignal: the estimated smooth signal
- critVal: the by bootstrapping obtained critical value
- pValue: the p-Value of the test
- outcome: a boolean saying whether the test rejects the hypothesis of a smooth signal

Examples

```
n <- 100
signal <- sin(2 * pi * 1:n / n)</pre>
signal[51:100] <- signal[51:100] + 5</pre>
y <- rnorm(n) + signal</pre>
# default bandwidth and kernel
test <- BstrapTest(y = y)</pre>
if (test$outcome) {
  # null hypothesis of a smooth signal is rejected
  estimatedSignal <- test$piecewiseSignal</pre>
} else {
  # null hypothesis of a smooth signal is accepted
  estimatedSignal <- test$smoothSignal</pre>
}
plot(y)
lines(signal)
lines(estimatedSignal, col = "red")
# fixed bandwidth
test <- BstrapTest(y = y, bandwidth = 0.1)</pre>
# user specified kernel
kernel <- function(x) 1 - abs(x) # triangular kernel
test <- BstrapTest(y = y, kernel = kernel)</pre>
```

estimateSingleCp

Description

Estimates a single change-point in an otherwise smooth function. The change-point location is estimated as the maximum of the differences of left and right sided running means. The estimate left and right of the change-point are obtained by kernel smoothers. Windows of the running mean and kernel bandwidth are chosen by crossvalidation. More details can be found in the vignette.

Usage

Arguments

У	a numeric vector containing the data points
bandwidth	the bandwidth, i.e. a numeric with values between 1 / length(y) and 0.5. If missing exp(seq(log(2 / length(y)),log(0.25),length.out = nbandwidth)) will be used. Crossvalidation will be performed if it is not a single numeric
nbandwidth	a single integer giving the number of bandwidths (see above) if bandwidth is missing
kernel	the kernel function, i.e. either a string or a function that takes a single numeric vector and returns the values of the kernel at those locations

Value

- a list with the following components:
- est: the estimated function with a single change-point
- cp: the estimated change-point location
- size: the estimated jump size
- bandwidth: the selected bandwidth

Examples

```
n <- 100
signal <- sin(2 * pi * 1:n / n)
signal[51:100] <- signal[51:100] + 5
y <- rnorm(n) + signal
# default bandwidth and kernel
est <- estimateSingleCp(y = y)
plot(y)
```

estimateSingleCp

```
lines(signal)
lines(est$est, col = "red")
# fixed bandwidth
est <- estimateSingleCp(y = y, bandwidth = 0.1)
# user specified kernel
kernel <- function(x) 1 - abs(x) # triangular kernel
est <- estimateSingleCp(y = y, kernel = kernel)</pre>
```

Index

* nonparametric
 BinSegBstrap-package, 2
* package
 BinSegBstrap-package, 2

BinSegBstrap, 2, 3 BinSegBstrap-package, 2 BstrapTest, 2, 3, 4

estimateSingleCp, 2, 4, 6

list, *3*, *5*, *6*