Package 'BiplotML'

April 22, 2022
Title Biplots Estimation with Algorithms ML
Version 1.1.0
Date 2022-04-22
Maintainer Jose Giovany Babativa-Marquez gbabativam@gmail.com
Depends R (>=4.1), optimr, optimx, shapes
Description Logistic Biplot is a method that allows representing multivariate binary data on a subspace of low dimension, where each individual is represented by a point and each variable as vectors directed through the origin. The orthogonal projection of individuals onto these vectors predicts the expected probability that the characteristic occurs. The package contains new techniques to estimate the model parameters and con-
structs in each case the 'Logistic-Biplot'. References can be found in the help of each procedure.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
Suggests testthat, knitr, rmarkdown, RSpectra, dplyr (>=1.0.0), tidyr ($>=1.1 .0$), ggplot 2 ($>=3.3 .2$), ggrepel, pracma, mvtnorm

URL https://github.com/jgbabativam/BiplotML
BugReports https://github.com/jgbabativam/BiplotML/issues
NeedsCompilation no
Author Jose Giovany Babativa-Marquez [cre, aut]
(https://orcid.org/0000-0002-4989-7459)

Repository CRAN

Date/Publication 2022-04-22 21:20:02 UTC

R topics documented:

bootBLB 2
cv_LogBip 4
fitted_LB 5
gradientDesc 6
LogBip 7
Methylation 9
performanceBLB 10
plotBLB 12
pred_LB 13
proj_LogBip 14
sdv_MM 15
simBin 16
Index 18
bootBLB Fitting a Binary Logistic Biplot using bootstrap methodology

Description

This function estimates the vector μ, matrix A and matrix B using the optimization algorithm chosen by the user and applies a bootstrap methodology to determine the confidence ellipses.

Usage

bootBLB(
x,
$\mathrm{k}=2$,
$\mathrm{L}=0$,
method = "CG",
type = 1,
plot = TRUE,
sup = TRUE,
ellipses = FALSE,
maxit = NULL,
resamples = 100,
conf $=0.9$,
col.ind $=$ NULL
)

Arguments

x	Binary matrix.
k	Dimensions number. By default $\mathrm{k}=2$.
L	Penalization parameter. By default $\mathrm{L}=0$.
method	Method to be used to estimate the parameters. By default method="CG"
type	For the conjugate-gradients method. Takes value 1 for the Fletcher-Reeves up- date, 2 for Polak-Ribiere and 3 for Beale-Sorenson.
plot	Plot the Bootstrap Logistic Biplot.

sup	Boolean, if TRUE, rows that are not selected in each resample are treated as supplementary individuals. See details.
ellipses	Draw confidence ellipses. By default is FALSE. maxit
The maximum number of iterations. Defaults to 100 for the gradient methods, and 500 without gradient.	
resamples	Number of iterations in the bootstrap process. By default 100.
conf	Level confidence in the ellipses. By default conf $=0.90$ col.ind
Color for the rows.	

Details

Fitting when sup=TRUE ... whereas sup=FALSE ...

Value

Coordenates of the matrix A and B in resamples and Biplot

Author(s)

Giovany Babativa < gbabativam@gmail.com>

References

John C. Nash (2011). Unifying Optimization Algorithms to Aid Software System Users:optimx for R. Journal of Statistical Software. 43(9). 1-14.

John C. Nash (2014). On Best Practice Optimization Methods in R. Journal of Statistical Software. 60(2). 1-14.
Milan, L., \& Whittaker, J. (1995). Application of the parametric bootstrap to models that incorporate a singular value decomposition. Applied Statistics, 44, 31-49.
Vicente-Villardon, J.L. and Galindo, M. Purificacion (2006), Multiple Correspondence Analysis and related Methods. Chapter: Logistic Biplots. Chapman-Hall

See Also

plotBLB, performanceBLB

Examples

```
data("Methylation")
set.seed(02052020)
out.sup <- bootBLB(x = Methylation, ellipses = FALSE)
out <- bootBLB(x = Methylation, sup = FALSE, ellipses = TRUE)
```

```
cv_LogBip Cross-Validation for logistic biplot
```


Description

This function run cross-validation for logistic biplot

Usage

cv_LogBip(
data,
$\mathrm{k}=0: 5$,
K = 7,
method = "MM",
type = NULL,
plot = TRUE,
maxit = NULL
)

Arguments

data	Binary matrix.
k	Dimensions to analyze. By default $\mathrm{k}=1: 3$.
K	folds. By default $\mathrm{K}=7$.
method	Method to be used to estimate the parameters. By default method="MM"
type	For the conjugate-gradients method. Takes value 1 for the Fletcher-Reeves up- date, 2 for Polak-Ribiere and 3 for Beale-Sorenson.
plot	draw the graph. By default plot=TRUE
maxit	The maximum number of iterations. Defaults to 100 for the gradient methods, and 2000 for MM algorithm.

Value

Training error and generalization error for a logistic biplot model.

Author(s)

Giovany Babativa gbabativam@gmail.com

References

Bro R and Kjeldahl K and Smilde AK. (2008). Cross-validation of component models: a critical look at current methods. Analytical and bioanalytical chemistry. 390(5):1241-1251
Wold S. (1978). Cross-validatory estimation of the number of components in factor and principal components models. Technometrics. 20(4):397-405.

See Also

```
LogBip,pred_LB,fitted_LB,simBin
```


Examples

```
set.seed(1234)
x <- simBin(n = 100, p = 50, k = 3, D = 0.5, C = 20)
# cross-validation with coordinate descendent MM algorithm
cv_MM <- cv_LogBip(data = x$X, k=0:5, method = "MM", maxit = 1000)
# cross-validation with CG Fletcher-Reeves algorithm
cv_CG <- cv_LogBip(data = x$X, k=0:5, method = "CG", type = 1)
# cross-validation with projection data and block coordinate descending algorithm
cv_PB <- cv_LogBip(data = x$X, k=0:5, method = "PDLB", maxit = 1000)
```

fitted_LB Fitted values using Logistic Biplot

Description

Compute the predicted matrix or log-odds for a logistic biplot model

Usage

fitted_LB(object, type = c("link", "response"))

Arguments

object BiplotML object
type the type of fitting required. type = "link" gives output on the logit scale and type $=$ "response" gives output on the probability scale

Value

This function returns the predicted matrix or the log-odds of a binary logistic biplot model.

Author(s)

Giovany Babativa gbabativam@gmail.com

Examples

```
data("Methylation")
LB <- LogBip(Methylation, plot = FALSE)
Theta <- fitted_LB(LB, type = "link")
Pi <- fitted_LB(LB, type = "response")
```

```
    gradientDesc Gradient function for Binary Logistic Biplot
```


Description

This function computes the parameters of A and B in Binary Logistic Biplot under algorithm of Descendent Gradient.

Usage

gradientDesc (x,
k = 2,
rate $=0.001$,
converg $=0.001$,
max_iter,
plot $=$ FALSE,
)

Arguments

x	Binary matrix.
k	Dimensions number. By default $\mathrm{k}=2$.
rate	The value of the rate of descent α in the algorithm of descending gradient. By default $\alpha=0.001$.
converg	Tolerance limit to achieve convergence. By default converg $=0.001$
max_iter	Maximum iterations number.
plot	Plot the Logistic Biplot.
\ldots	other arguments

Details

We note that the Binary Logistic Biplot is defined as:

$$
\operatorname{logit}\left(\pi_{i j}\right)=\log \left(\frac{\pi_{i j}}{1-\pi_{i j}}\right)=\mu_{j}+\sum_{s=1}^{k} b_{j s} a_{i s}=\mu_{j}+\mathbf{a}_{\mathbf{i}}^{\mathbf{T}} \mathbf{b}_{\mathbf{j}}
$$

Also, note that the gradient is:

$$
\nabla \ell=\left(\frac{\partial \ell}{\partial \mu}, \frac{\partial \ell}{\partial \mathbf{A}}, \frac{\partial \ell}{\partial \mathbf{B}}\right)==\left((\Pi-\mathbf{X})^{T},(\Pi-\mathbf{X}) \mathbf{B},(\Pi-\mathbf{X})^{T} A\right)
$$

Value

The coefficients of A and B matrix.

Author(s)

Giovany Babativa < gbabativam@gmail.com>

References

Vicente-Villardon, J.L. and Galindo, M. Purificacion (2006), Multiple Correspondence Analysis and related Methods. Chapter: Logistic Biplots. Chapman-Hall

See Also

```
plotBLB,performanceBLB
```


Examples

```
data('Methylation')
set.seed(02052020)
MatGD <- gradientDesc(x = Methylation, k=2, max_iter=10000)
outGD <- gradientDesc(x = Methylation, k=2, max_iter=10000, plot = TRUE)
```

LogBip

Fitting a Binary Logistic Biplot using optimization methods

Description

This function estimates the vector μ, matrix A and matrix B using the optimization algorithm chosen by the user. The PDLB method allows to enter a binary matrix with missing data

Usage

```
LogBip(
    x,
    k = 2,
    method = "MM",
    type = NULL,
    plot = TRUE,
    maxit = NULL,
    endsegm = 0.9,
    label.ind = FALSE,
    col.ind = NULL,
```

```
    draw = c("biplot", "ind", "var"),
    random_start = FALSE,
    L = 0,
    cv_LogBip = FALSE
)
```


Arguments

x
k
method Method to be used to estimate the parameters. By default method="CG"
type For the conjugate-gradients method. Takes value 1 for the Fletcher-Reeves update, 2 for Polak-Ribiere and 3 for Beale-Sorenson.
plot Plot the Bootstrap Logistic Biplot.
maxit The maximum number of iterations. Defaults to 100 for the gradient methods, and 500 without gradient.
endsegm The segment starts at 0.5 and ends at this value. By default endsegm $=0.90$.
label.ind By default the row points are not labelled.
col.ind Color for the rows marks.
draw The graph to draw ("ind" for the individuals, "var" for the variables and "biplot" for the row and columns coordinates in the same graph)
random_start Logical value; whether to randomly inititalize the parameters. If FALSE, algorithm will use an SVD as starting value.
$L \quad$ Penalization parameter. By default $L=0$.
cv_LogBip Indicates if the procedure is being used for cross validation.

Details

The methods that can be used to estimate the parameters of a logistic biplot

- For methods based on the conjugate gradient use method = "CG" and
type $=1$ for the Fletcher Reeves; type $=2$ for Polak Ribiere; type $=3$ for Hestenes Stiefel and type $=4$ for Dai Yuan.
- To use the iterative coordinate descendent MM algorithm then method = "MM".
- If the binary matrix X has missing data, use method $=$ "PDLB". In case it's required to estimate the row coordinates of other individuals, this method is also the most appropriate. For more details see the paper "Logistic biplot with missing data".
- To use the BFGS formula, method = "BFGS".

Value

Coordenates of the matrix A and B , threshold for classification rule. Furthemore, for the PDLB method, the imputed matrix is returned.

Author(s)

Giovany Babativa gbabativam@gmail.com

References

Babativa-Marquez, J. G., \& Vicente-Villardon, J. L. (2022). Logistic biplot with missing data. In Process.
Babativa-Marquez, J. G., \& Vicente-Villardon, J. L. (2021). Logistic Biplot by Conjugate Gradient Algorithms and Iterated SVD. Mathematics, 9(16).
John C. Nash (2011). Unifying Optimization Algorithms to Aid Software System Users:optimx for R. Journal of Statistical Software. 43(9). 1-14.

John C. Nash (2014). On Best Practice Optimization Methods in R. Journal of Statistical Software. 60(2). 1-14.

Nocedal, J.;Wright, S. (2006). Numerical optimization; Springer Science \& Business Media.
Vicente-Villardon, J.L. and Galindo, M. Purificacion (2006), Multiple Correspondence Analysis and related Methods. Chapter: Logistic Biplots. Chapman-Hall

See Also

```
plotBLB,pred_LB,fitted_LB
```


Examples

```
data("Methylation")
# If the binary matrix has no missing data and does not require the projection
# of supplementary individuals, you can use an coordinate descendent MM algorithm
res_MM <- LogBip(x = Methylation, method = "MM", maxit = 1000)
# If the binary matrix has missing data or requires the projection of supplementary
#individuals, use a method based on data projection with a block coordinate descent algorithm
data("Methylation")
set.seed(12345)
n <- nrow(Methylation)
p <- ncol(Methylation)
miss <- matrix(rbinom(n*p, 1, 0.2), n, p) #I simulate some missing data
miss <- ifelse(miss == 1, NA, miss)
x <- Methylation + miss #Matrix containing missing data
out <- LogBip(x, method = "PDLB", maxit = 1000)
```

Methylation Binary data set of 48 human cell lines.

Description

A dataset containing the BRCA (breast invasive carcinoma) for 48 human cell lines, where each variable is a likely cancer driver or suppressor gene. A gene is labeled as ' 1 ' when it is classified as mutated in a sample and as ' 0 ' when classified as wild type.

Usage

Methylation

Format

A data frame with 48 rows and 9 variables:
GSTM1 Glutathione S-Transferase Mu 1, is a Protein Coding gene
C1orf70 Chromosome 1 Open Reading Frame 70, Transmembrane Protein
DNM3 Dynamin 3, is a Protein Coding gene
THY1 Thy-1 Cell Surface Antigen, is a Protein Coding gene
ADCY4 Adenylate Cyclase 4, is a Protein Coding gene
GSTT1 Glutathione S-Transferase Theta 1, is a Protein Coding gen
FILIP1L Filamin A Interacting Protein 1 Like, is a Protein Coding gene
DUSP22 Dual Specificity Phosphatase 22, is a Protein Coding gene
NAPRT1 Nicotinic Acid Phosphoribosyltransferase

Source

https://www.cancerrxgene.org
performanceBLB Performance comparison of severals estimation algorithms

Description

This function computes the estimates of A and B matrix with severals algorithms.

Usage

performanceBLB(xi, $k=2, L=0$, method $=N U L L$, maxit $=$ NULL)

Arguments

xi Binary matrix.
$\mathrm{k} \quad$ Dimensions number. By default $\mathrm{k}=2$.
$\mathrm{L} \quad$ Penalization parameter. By default $\mathrm{L}=0$.
method use value 1 for algorithms without gradient, 2 with gradient, 3 quasi-newton methods or 4 for all methods. By default method $=2$.
maxit The maximum number of iterations. Defaults to 100 for the gradient methods, and 500 without gradient.

Details

This function compare the process time and convergence of different algorithms without gradient, with gradient or quasi-newton method for estimating the parameters in a Binary Logistic Biplot

Value

data frame with method, time of process, convergence and number of evaluations

Author(s)

Giovany Babativa gbabativam@gmail.com

References

John C. Nash (2011). Unifying Optimization Algorithms to Aid Software System Users:optimx for R. Journal of Statistical Software. 43(9). 1-14.

John C. Nash (2014). On Best Practice Optimization Methods in R. Journal of Statistical Software. 60(2). 1-14.
Vicente-Villardon, J.L. and Galindo, M. Purificacion (2006), Multiple Correspondence Analysis and related Methods. Chapter: Logistic Biplots. Chapman-Hall

See Also

gradientDesc

Examples

```
data('Methylation')
set.seed(123456)
########### Gradient Methods
performanceBLB(xi = Methylation)
performanceBLB(xi = Methylation, maxit = 150)
########### Without Gradient Methods
performanceBLB(xi = Methylation, method = 1)
performanceBLB(xi = Methylation, method = 1, maxit = 100)
############ Quasi-Newton Methods
performanceBLB(xi = Methylation, method = 3)
performanceBLB(xi = Methylation, method = 3, maxit = 100)
############ All methods
performanceBLB(x = Methylation, method = 4)
```

```
plotBLB Plot a Binary Logistic Biplot using a BiplotML object
```


Description

Plot the bootstrap binary logistic biplot and draw confidence ellipses on the individuals of an object BiplotML.

```
Usage
    plotBLB(
        x,
        dim = c(1, 2),
        col.ind = NULL,
        col.var = "#0E185F",
        label.ind = FALSE,
        draw = c("biplot", "ind", "var"),
        titles = NULL,
        ellipses = FALSE,
        endsegm = 0.75,
        repel = FALSE,
        xylim = NULL
    )
```


Arguments

x	Object class BiplotML.
dim	Dimensions plot. By default Dim1 and Dim2.
col.ind	Color for the individuals.
col.var	Color for the variables.
label.ind	By default the row points are not labelled.
draw	The graph to draw ("ind" for the individuals, "var" for the variables and "biplot" for the row and columns coordinates in the same graph)
titles	Title for the Biplot
ellipses	If ellipses=TRUE, draw confidence ellipses around the rows. endsegm
Represents where the segment of a variable ends on the logit probability scale. By default endsegm=0.75	
repel	Repel overlapping text labels. vector specifying the minimum and maximum of the x-axis and y-axis. For example, you can use xylim=c(-10, 10).

Details

If draw = "ind", then the biplot is plotted only for individuals and if draw = "var" then is plotted only for the variables.

Value

Returns the Biplot of the individuals and variables.

Author(s)

Giovany Babativa gbabativam@gmail.com

References

Meulman, J. J., \& Heiser, W. J. (1983). The display of bootstrap solutions in multidimensional scaling. Murray Hill, NJ: Bell Laboratories. (Technical memorandum)
Vicente-Villardon, J.L. and Galindo, M. Purificacion (2006), Multiple Correspondence Analysis and related Methods. Chapter: Logistic Biplots. Chapman-Hall

See Also

```
bootBLB
```


Examples

```
data("Methylation")
set.seed(123456)
outBLB <- bootBLB(x = Methylation, sup = TRUE, plot=FALSE)
plotBLB(x = outBLB, titles = "Methylation Logistic Biplot", ellipses = FALSE)
plotBLB(x = outBLB, titles = "Methylation LogBiplot", endsegm = 0.95)
plotBLB(x = outBLB, label.ind = TRUE, titles = "Methylation LogBiplot")
```

```
pred_LB Predict logistic biplot and thresholds by variable
```


Description

Predicts the binary matrix and calculates the optimal thresholds per variable that minimize the Balanced Accuracy (BACC)

Usage

pred_LB(object, x, ncuts $=100$)

Arguments

object BiplotML object
$x \quad$ Binary matrix.
ncuts \quad Number of equidistant cuts between 0 and 1 that will be evaluated. By default ncuts $=100$

Details

The threshold for each variable is lowered to minimize the Balanced Accuracy (BACC).

$$
B A C C=\frac{1}{2}\left(\frac{T P}{T P+F N}+\frac{T N}{T N+F P}\right)
$$

where TP is the number of true positives, TN is the number of true negatives, FP is the number of false positives and FN is the number of false negatives

Value

This function returns the thresholds per variable, the predicted matrix, the confusion matrix and the BACC.

Examples

```
data("Methylation")
LB <- LogBip(Methylation, plot = FALSE)
out <- pred_LB(LB, Methylation)
```

proj_LogBip

Fitting a Binary Logistic Biplot with Missing Data Using Data Projection and a Block Coordinate Descending Algorithm

Description

This function impute the missing values of a binary dataset X, and estimates the vector μ, matrix A and matrix B using data projection model with a block coordinate descending algorithm.

Usage

proj_LogBip(x, k = 2, max_iters = 1000, random_start $=$ FALSE, epsilon $=1 \mathrm{e}-05$)

Arguments

x	binary matrix.
k	dimensions number. By default $\mathrm{k}=2$.
max_iters	maximum iterations.
random_start	random initialization
epsilon	convergence criteria

Value

Imputed X matrix and coordenates of the matrix \mathbf{A} and \mathbf{B}, and μ

Author(s)

Giovany Babativa < gbabativam@gmail.com>

References

Babativa-Marquez, J. G., \& Vicente-Villardon, J. L. (2022). Logistic biplot with missing data. Babativa-Marquez, J. G., \& Vicente-Villardon, J. L. (2021). Logistic Biplot by Conjugate Gradient Algorithms and Iterated SVD. Mathematics, 9(16). Vicente-Villardon, J.L. and Galindo, M. Purificacion (2006), Multiple Correspondence Analysis and related Methods. Chapter: Logistic Biplots. Chapman-Hall

See Also

cv_LogBip

Examples

```
data("Methylation")
set.seed(12345)
n <- nrow(Methylation)
p <- ncol(Methylation)
miss <- matrix(rbinom(n*p, 1, 0.2), n, p) #I simulate some missing data
miss <- ifelse(miss == 1, NA, miss)
x <- Methylation + miss #Matrix containing missing data
out <- LogBip(x, method = "PDLB", maxit = 1000)
```

```
sdv_MM
```

Fitting a Binary Logistic Biplot using coordinate descendent MM algorithm

Description

This function estimates the vector μ, matrix A and matrix B using coordinate descendent MM algorithm.

```
Usage
    sdv_MM(
        x,
        k = 2,
        iterations = 1000,
        truncated = TRUE,
        random = FALSE,
        epsilon = 1e-04
    )
```


Arguments

x	binary matrix.
k	dimensions number. By default $\mathrm{k}=2$.
iterations	maximum iterations.
truncated	if TRUE, find the k largest singular values and vectors of a matrix.
random	random initialization
epsilon	convergence criteria

Value

Coordenates of the matrix A and B , and μ

Author(s)

Giovany Babativa gbabativam@gmail.com

References

Babativa-Marquez, J. G., \& Vicente-Villardon, J. L. (2021). Logistic Biplot by Conjugate Gradient Algorithms and Iterated SVD. Mathematics, 9(16).
Vicente-Villardon, J.L. and Galindo, M. Purificacion (2006), Multiple Correspondence Analysis and related Methods. Chapter: Logistic Biplots. Chapman-Hall

See Also

cv_LogBip

Examples

```
data("Methylation")
out <- sdv_MM(x = Methylation)
```

simBin Multivariate binary data

Description

Simulate a binary data matrix based on a latent variables model

Usage

$\operatorname{simBin}(\mathrm{n}, \mathrm{p}, \mathrm{k}, \mathrm{D}, \mathrm{C}=1)$

Arguments

n
p number of columns
k number of underlying dimensions in the model
D sparsity control
C variance control

Value

X: binary matrix, P: predicted matrix, Theta: matrix of natural parameters, A: row markers, B: column markers, mu: offset term, D: sparsity level, n: number of rows, p : number of columns

Author(s)

Giovany Babativa gbabativam@gmail.com

See Also

cv_LogBip

Examples

$x<-\operatorname{simBin}(n=100, p=50, k=3, D=0.5)$

Index

```
* datasets
    Methylation, }
bootBLB, 2, 13
cv_LogBip, 4, 15-17
fitted_LB, 5, 5,9
gradientDesc, 6,11
LogBip, 5, 7
Methylation, }
performanceBLB, 3, 7, 10
plotBLB, 3, 7, 9, 12
pred_LB, 5, 9, 13
proj_LogBip,14
sdv_MM, 15
simBin, 5, 16
```

