Package 'CARRoT'

June 8, 2021
Title Predicting Categorical and Continuous Outcomes Using One in Ten Rule

Version 2.5.2

Description Predicts categorical or continuous outcomes while concentrating on four key points. These are Cross-validation, Accuracy, Regression and Rule of Ten or "one in ten rule" (CARRoT). It performs the cross-validation specified number of times by partitioning the input into training and test set and fitting linear/multinomial/binary regression models to the training set. All regression models satisfying a rule of ten events per variable are fitted and the ones with the best predictive power are given as an output. Best predictive power is understood as highest accuracy in case of binary/multinomial outcomes, smallest absolute and relative errors in case of continuous outcomes. For binary case there is also an option of finding a regression model which gives the highest AUROC (Area Under Receiver Operating Curve) value. The option of parallel toolbox is also available. Methods are described in $\mathrm{Pe}-$ duzzi et al. (1996) doi:10.1016/S0895-4356(96)00236-3 and Rhemtulla et al. (2012) doi:10.1037/a0029315.
Depends R (>= 3.4.0)
License GPL-2
Encoding UTF-8
Imports stats,utils,nnet,doParallel,Rdpack,parallel,foreach
RoxygenNote 7.1.1
RdMacros Rdpack
NeedsCompilation yes
Author Alina Bazarova [aut, cre],
Marko Raseta [aut]
Maintainer Alina Bazarova a.bazarova@uni-koeln.de
Repository CRAN
Date/Publication 2021-06-08 10:10:02 UTC

R topics documented:

\qquad
AUC 2
av_out 3
comb 4
compute_max_length 4
compute_max_weight 5
compute_weights 6
cross_val 8
cub 10
find_int 11
find_sub 11
get_indices 12
get_predictions 13
get_predictions_lin 14
get_probabilities 15
make_numeric 16
make_numeric_sets 17
quadr 18
regr_ind 19
regr_whole 21
sum_weights_sub 23
Index 25

Description

Function enables efficient computation of area under receiver operating curve (AUC). Source: https://stat.ethz.ch/pipermail/r-help/2005-September/079872.html

Usage

AUC(probs, class)

Arguments

probs	probabilities
class	outcomes

Value

A value for AUC

Examples

AUC(runif(100, 0, 1), rbinom(100,1,0.3))
av_out Averaging out the predictive power

Description

Function which averages out the predictive power over all cross-validations

Usage

av_out(preds,crv,k)

Arguments

$$
\begin{array}{ll}
\text { preds } & \begin{array}{l}
\text { An } M \times c r v N \text { matrix consisting of crv horizontally concatenated } M \times N \text { matri- } \\
\text { ces. These } M \times N \text { matrices are the matrices of predictive powers for all feasible } \\
\text { regressions }(\mathrm{M} \text { is maximum feasible number of variables included in a regres- } \\
\text { sion, } \mathrm{N} \text { is the maximum feasible number of regressions of the fixed size; the row } \\
\text { index indicates the number of variables included in a regression) }
\end{array} \\
\mathrm{crv} & \begin{array}{l}
\text { number of cross-validations }
\end{array} \\
\mathrm{k} & \text { size of the test set for which the predictions are made }
\end{array}
$$

Value

Returns an $\mathrm{M} \times \mathrm{N}$ matrix of average predictive powers where M is maximum feasible number of variables included in a regression, N is the maximum feasible number of regressions of the fixed size; the row index indicates the number of variables included in a regression

Examples

```
#creating a matrix of predictive powers
preds<-cbind(matrix(runif(40,1,4),ncol=10),matrix(runif(40,1.5,4),ncol=10))
preds<-cbind(preds,matrix(runif(40,1,3.5),ncol=10))
#running the function
av_out(preds, 3,5)
```

```
comb Combining in a list
```


Description

Function for combining outputs in a list

Usage

comb (...)

Arguments

... an argument of mapply used by this function

See Also

Function mapply

Examples

\#array of numbers to be separated in a list
$a<-1: 4$
\#running the function
comb (a)
compute_max_length Maximum number of the regressions

Description

Function which computes the maximum number of regressions with fixed number of variables based on the rule of thumb

Usage

compute_max_length(vari_col,k, c,we,minx,maxx,st)

Arguments

vari_col	number of predictors
k	maximum weight of the predictors
c	array of all indices of the predictors we
$\operatorname{minx} x$	arry of weights of the predictors. Continuous or categorical numerical variable is the number of categories has weight 1, otherwise it has weight $n-1$ where n
maxx	minimum number of predictors, 1 by default st
maximum number of predictors, total number of variables by default	
a subset of predictors to be always included into a predictive model	

Value

Integer correponding to maximum number of regressions of the same size

References

Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR (1996). "A simulation study of the number of events per variable in logistic regression analysis." Journal of Clinical Epidemiology, 49(12), 1373-1379. ISSN 0895-4356, doi: 10.1016/S08954356(96)002363, https://doi.org/ 10.1016/S0895-4356(96)00236-3.

Rhemtulla M, Brosseau-Liard PÉ, Savalei V (2012). "When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions." Psychological Methods, 17(3), 354-373. doi: 10.1037/a0029315.

See Also

Function uses combn

Examples

compute_max_length $(4,40,1: 4, c(1,1,2,1))$
compute_max_weight Maximum feasible weight of the predictors

Description

Function which computes maximal weight (multiplied by the corresponding EPV rule) of a regression according to the rule of thumb applied to the outcome variable. Weight of a regression equals the sum of weights of its predictors.

Usage

compute_max_weight(outi,mode)

Arguments

outi

set of outcomes
mode indicates the mode: 'linear' (linear regression), 'binary' (logistic regression), 'multin' (multinomial regression)

Details

For continuous outcomes it equals sample size divided by 10 , for multinomial it equals the size of the smallest category divided by 10

Value

returns an integer value of maximum allowed weight multiplied by 10

References

Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR (1996). "A simulation study of the number of events per variable in logistic regression analysis." Journal of Clinical Epidemiology, 49(12), 1373-1379. ISSN 0895-4356, doi: 10.1016/S08954356(96)002363, https://doi.org/ 10.1016/S0895-4356(96)00236-3.

Examples

```
    #continuous outcomes
    compute_max_weight(runif(100,0,1),'linear')
    #binary outcomes
    compute_max_weight(rbinom(100,1,0.4),'binary')
```

 compute_weights Weights of predictors

Description

Function which computes the weight of each predictor according to the rules of thumb and outputs it into corresponding array

Usage

compute_weights(vari_col, vari)

Arguments

vari_col number of predictors
vari set of predictors

Details

Continuous or categorical numerical variable with more then 5 categories has weight 1 , otherwise it has weight $\mathrm{n}-1$ where n is the number of categories

Value

Returns an array of weights of the size vari_col

References

Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR (1996). "A simulation study of the number of events per variable in logistic regression analysis." Journal of Clinical Epidemiology, 49(12), 1373-1379. ISSN 0895-4356, doi: 10.1016/S08954356(96)002363, https://doi.org/ 10.1016/S0895-4356(96)00236-3.

Rhemtulla M, Brosseau-Liard PÉ, Savalei V (2012). "When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions." Psychological Methods, 17(3), 354-373. doi: 10.1037/a0029315.

Examples

```
#creating data-set with for variables
a<-matrix(NA, nrow=100,ncol=4)
#binary variable
a[,1]=rbinom(100,1,0.3)
#continuous variable
a[,2]=runif(100,0,1)
#categorical numeric with les than 5 categories
a[,3]=t(rmultinom(100,1,c(0.2,0.3,0.5)))%*%c(1,2,3)
#categorical numeric with 5 categories
a[,4]=t(rmultinom(100,1,c(0.2,0.3,0.3,0.1,0.1)))%*%c(1,2,3,4,5)
#running the function
compute_weights(4,a)
```

```
cross_val Cross-validation run
```


Description

Function running a single cross-validation by partitioning the data into training and test set

Usage

cross_val(
vari,
outi,
c,
rule,
part,
1,
we,
vari_col,
preds,
mode,
cmode,
predm, cutoff, objfun, $\operatorname{minx}=1$, maxx $=$ NULL, $\mathrm{nr}=\mathrm{NULL}$, maxw $=$ NULL, st $=$ NULL, corr $=1$
)

Arguments

vari	set of predictors
outi	array of outcomes
c	set of all indices of the predictors
rule	an Events per Variable (EPV) rule, defaults to 10
part	indicates partition of the original data-set into training and test set in a proportion $($ part-1) :1
l	number of observations
we	weights of the predictors
vari_col	overall number of predictors
preds	array to write predictions into, intially empty

mode	'binary' (logistic regression), 'multin' (multinomial regression)
cmode	'det' or ''; 'det' always predicts the more likely outcome as determined by the odds ratio; ' ' predicts certain outcome with probability corresponding to its odds ratio (more conservative). Option available for multinomial/logistic regression
predm	'exact ' or ' '; for logistic and multinomial regression; 'exact ' computes how many times the exact outcome category was predicted, ' ' computes how many times either the exact outcome category or its nearest neighbour was predicted
cutoff	cut-off value for logistic regression
objfun	'roc' for maximising the predictive power with respect to AUC, 'acc' for maximising predictive power with respect to accuracy.
minx	minimum number of predictors to be included in a regression, defaults to 1
maxx	maximum number of predictors to be included in a regression, defaults to maximum feasible number according to one in ten rule
$n \mathrm{r}$	a subset of the data-set, such that $1 /$ part of it lies in the test set and $1-1 /$ part is in the training set, defaults to empty set
maxw	maximum weight of predictors to be included in a regression, defaults to maximum weight according to one in ten rule
st	a subset of predictors to be always included into a predictive model, defaults to empty set
corr	maximum correlation between a pair of predictors in a model

Value

regr
regrr \quad An M x N matrix of sums of the relative errors for each element of the test set (only for mode = 'linear') for each feasible regression. M is maximum feasible number of variables included in a regression, N is the maximum feasible number of regressions of the fixed size; the row index indicates the number of variables included in a regression. Therefore each row corresponds to results obtained from running regressions with the same number of variables and columns correspond to different subsets of predictors used.
nvar Maximum feasible number of variables in the regression
An accuracy of always predicting the more likely outcome as suggested by the training set (only for mode = 'binary' and objfun = 'acc')

In regr and regrr NA values are possible since for some numbers of variables there are fewer feasible regressions than for the others.

See Also

Uses compute_max_weight, sum_weights_sub, make_numeric_sets, get_predictions_lin, get_predictions, get_probabilities, AUC, combn

Examples

\#creating variables
vari<-matrix(c(1:100, seq $(1,300,3))$, ncol=2)
\#creating outcomes
out<-rbinom(100,1,0.3)
\#creating array for predictions
preds<-array (NA, c(2,2))
\#running the function
cross_val(vari, out, $1: 2,10,10,100, c(1,1), 2$, preds, 'binary', 'det', 'exact', $0.5,{ }^{\prime} \operatorname{acc}$ ', nr=c $\left.(1,4)\right)$
cub Three-way interactions and squares

Description

Function transforms a set of predictors into a set of predictors, their squares, pairwise interactions, cubes and three-way interactions

Usage

cub(A, $\mathrm{n}=1000)$

Arguments

A
set of predictors
$\mathrm{n} \quad$ first n predictors, whose interactions with the rest should be taken into account, defaults to all of the predictors

Value

Returns the predictors including their squares, pairwise interactions, cubes and three-way interactions

Examples

$\operatorname{cub}(\operatorname{cbind}(1: 100, \operatorname{rnorm}(100), \operatorname{runif}(100), \operatorname{rnorm}(100,0,2)))$
find_int
Finding the interacting terms based on the index

Description

Function transforms an index of an array of two- or three-way interactions into two or three indices corresponding to the interacting variables

Usage

find_int(ind,N)

Arguments

ind	index to transform
N	number of interacting variables

Value

Returns two or three indices corredsponding to a combination of variables written under the given index

Examples

```
    find_int(28,9)
```

 find_sub Finds certain subsets of predictors

Description

Reorders the columns of matrix a according to the ordered elements of array s

Usage

find_sub(a,s,j,c,st)

Arguments

a
s
j
c
st

A $\mathrm{j} x \mathrm{~N}$ matrix, containing all possible subsets (N overall) of the size j of predictors' indices.
array of numbers of the size N
number of rows in a array of all indices of the predictors
a subset of predictors to be always included into a predictive model

Value

Returns a submatrix of matrix a which consits of columns determined by the input array s

Examples

```
#all two-element subsets of 1:3
a<-combn(3,2)
s<-c(3,2,3)
find_sub(a,s, 2,1:3)
```

get_indices Best regression

Description

Function which identifies regressions with the highest predictive power

Usage

get_indices(predsp,nvar, c, we,st,minx)

Arguments

predsp An M x N matrix of averaged out predictive power values. M is maximum feasible number of variables included in a regression, N is the maximum feasible number of regressions of the fixed size; the row index indicates the number of variables included in a regression.
nvar array of maximal number of variables for each cross-validation
C array of all indices of the prediction variables
we array of all weights of the prediction variables
st a subset of predictors to be always included into a predictive model
$\operatorname{minx} \quad$ minimum number of predictors, defaults to 1

Value

A list of arrays which contain indices of the predictors corresponfing to the best regressions

See Also

Uses sum_weights_sub, find_sub, combn

Examples

```
#creating a set of averaged out predictive powers
predsp<-matrix(NA,ncol=3,nrow=3)
predsp[1,]=runif(3,0.7,0.8)
predsp[2,]=runif(3,0.65,0.85)
predsp[3,1]=runif(1,0.4,0.5)
#running the function
get_indices(predsp,c(3,3,3),1:3,c(1,1,1))
```

```
get_predictions Predictions for multinomial regression
```


Description

Function which makes a prediction for multinomial/logistic regression based on the given cut-off value and probabilities.

Usage

get_predictions(p,k,cutoff, cmode, mode)

Arguments

p probabilities of the outcomes for the test set given either by an array (logistic regression) or by a matrix (multinomial regression)
$k \quad$ size of the test set
cutoff cut-off value of the probability
cmode 'det' or ''; 'det' always predicts the more likely outcome as determined by the odds ratio; ' ' predicts certain outcome with probability corresponding to its odds ratio (more conservative). Option available for multinomial/logistic regression
mode 'binary' (logistic regression), 'multin' (multinomial regression)

Value

Outputs the array of the predictions of the size of p.

See Also

Uses rbinom, rmultinom

Examples

```
    #binary mode
    get_predictions(runif(20,0.4,0.6),20,0.5,'det','binary')
    #creating a data-set for multinomial mode
    p1<-runif(20,0.4,0.6)
    p2<-runif(20,0.1,0.2)
    p3<-1-p1-p2
    #running the function
    get_predictions(matrix(c(p1,p2,p3),ncol=3),20,0.5,'det','multin')
```

get_predictions_lin Predictions for linear regression

Description

Function which runs a linear regression on a training set, computes predictions for the test set

Usage

get_predictions_lin(trset,testset,outc, k)

Arguments

trset values of predictors on the training set
testset values of predictors on the test set
outc values of predictors on the training set
k
length of the test set

Value

An array of continous variables of the length equal to the size of a testset

See Also

Function uses function lsfit and coef

Examples

```
trset<-matrix(c(rnorm(90, 2,4),runif(90,0,0.5),rbinom(90,1,0.5)),ncol=3)
testset<-matrix(c(rnorm(10, 2,4),runif(10,0,0.5),rbinom(10,1,0.5)),ncol=3)
get_predictions_lin(trset,testset,runif(90,0,1),10)
```

```
get_probabilities Probabilities for multinomial regression
```


Description

Function which computes probabilities of outcomes on the test set by applying regression parameters inferred by a run on the training set. Works for logistic or multinomial regression

Usage

get_probabilities(trset, testset,outc, mode)

Arguments

trset values of predictors on the training set
testset values of predictors on the test set
outc values of outcomes on the training set
mode 'binary' (logistic regression) or 'multin' (multinomial regression)

Details

In binary mode this function computes the probabilities of the event ' 0 '. In multinomial mode computes the probabilities of the events ' 0 ', $, 1^{\prime}, \ldots,{ }^{\prime} \mathrm{N}-1$ '.

Value

Probabilities of the outcomes. In 'binary' mode returns an array of the size of the number of observations in a testset. In 'multin' returns an $M x N$ matrix where M is the size of the number of observations in a testset and N is the number of unique outcomes minus 1.

See Also

Function uses multinom and coef

Examples

```
trset<-matrix(c(rbinom(70, 1,0.5),runif(70,0.1)),ncol=2)
testset<-matrix(c(rbinom(10,1,0.5),runif(10,0.1)),ncol=2)
get_probabilities(trset,testset,rbinom(70,1,0.6),'binary')
```


Description

Function which turns a single categorical (non-numeric) variable into a numeric one (or several) by introducing dummy '0'/'1' variables.

Usage

make_numeric(vari, outcome, ra,mode)

Arguments

vari array of values to be transformed
outcome TRUE/FALSE indicates whether the variable vari is an outcome (TRUE) or a predictor (FALSE)
ra indices of the input array vari which indicate which values will be transformed
mode 'binary' (logistic regression), 'multin' (multinomial regression)

Details

This function is essentially a standard way to turn categorical non-numeric variables into numeric ones in order to run a regression

Value

Returned value is an $\mathrm{M} \times \mathrm{N}$ matrix where M is the length of the input array of indices ra and N is length(vari)-1.

Examples

```
#creating a non-numeric set
a<-t(rmultinom(100,1,c(0.2,0.3,0.5)))%*%c(1, 2, 3)
a[a==1]='red'
a[a==2]='green'
a[a==3]='blue'
#running the function
make_numeric(a,FALSE,sample(1:100,50), "linear")
make_numeric(a,TRUE,sample(1:100,50))
```


Description

Function which turns a set of predictors containing non-numeric variables into a fully numeric set

Usage

make_numeric_sets(a, ai,k,vari, ra,l,mode)

Arguments

a
ai array of indices of the array a
k index of the array ai
vari set of all predictors
ra array of sample indices of vari
1 size of the sample
mode 'binary' (logistic regression), 'multin' (multinomial regression)

Details

Function transforms the whole set of predictors into a numeric set by consecutively calling function make_numeric for each predictor

Value

Returns a list containing two objects: tr and test

tr	training set transformed into a numeric one
test	test set transformed into a numeric one

See Also

make_numeric

Examples

```
    #creating a categorical numeric variable
    a<-t(rmultinom(100,1,c(0.2,0.3,0.5)))%*%c(1,2,3)
    #creating an analogous non-numeric variable
    c<-array(NA,100)
    c[a==1]='red'
    c[a==2]='green'
    c[a==3]='blue'
    #creating a data-set
    b<-data.frame(matrix(c(a,rbinom(100,1,0.3),runif(100,0,1)),ncol=3))
    #making the first column of the data-set non-numeric
    b[,1]=data.frame(c)
    #running the function
    make_numeric_sets(combn(3,2),1:3,1,b,sample(1:100,60),100,"binary")
```

 quadr Pairwise interactions and squares

Description

Function transforms a set of predictors into a set of predictors, their squares and pairwise interactions

Usage

quadr ($\mathrm{A}, \mathrm{n}=1000$)

Arguments

A
n set of predictors
first n predictors, whose interactions with the rest should be taken into account, defaults to all of the predictors

Value

Returns the predictors including their squares and pairwise interactions

Examples

```
quadr(cbind(1:100,rnorm(100),runif(100),rnorm(100,0, 2)))
```


Description

One of the two main functions of the package. Identifies the predictors included into regressions with the highest average predictive power

Usage

```
    regr_ind(
        vari,
        outi,
        crv,
        cutoff = NULL,
        part = 10,
        mode,
        cmode = "det",
        predm = "exact",
        objfun = "acc",
        parallel = FALSE,
        cores,
        minx = 1,
        maxx = NULL,
        nr = NULL,
        maxw = NULL,
        st = NULL,
        rule = 10,
        corr = 1
    )
```


Arguments

vari
set of predictors
outi array of outcomes
crv number of cross-validations
cutoff cut-off value for mode 'binary'
part for each cross-validation partitions the dataset into training and test set in a proportion (part-1): part
mode 'binary' (logistic regression), 'multin' (multinomial regression)
cmode 'det' or ' '; 'det' always predicts the more likely outcome as determined by the odds ratio; ' ' predicts certain outcome with probability corresponding to its odds ratio (more conservative). Option available for multinomial/logistic regression

predm	'exact' or ' ' $;$ for logistic and multinomial regression; 'exact' computes how many times the exact outcome category was predicted, ' ' computes how many times either the exact outcome category or its nearest neighbour was predicted
objfun	'roc' for maximising the predictive power with respect to AUC, available only for mode= 'binary'; 'acc' for maximising predictive power with respect to accuracy.
parallel	TRUE if using parallel toolbox, FALSE if not. Defaults to FALSE
cores	number of cores to use in case of parallel=TRUE minx
maxx	maximum number of predictors to be included in a regression, defaults to max- imum feasible number according to one in ten rule
nr	a subset of the data-set, such that $1 /$ part of it lies in the test set and $1-1 /$ part is in the training set, defaults to empty set. This is to ensure that elements of this subset are included both in the training and in the test set.
maxw	maximum weight of predictors to be included in a regression, defaults to maxi- mum weight according to one in ten rule
st	a subset of predictors to be always included into a predictive model,defaults to empty set
rule	an Events per Variable (EPV) rule, defaults to 10 '
maximum correlation between a pair of predictors in a model	

Value

Prints the best predictive power provided by a regression, predictive accuracy of the empirical prediction (value of emp computed by cross_val for logistic and linear regression). Returns indices of the predictors included into regressions with the highest predictive power written in a list. For mode='linear' outputs a list of two lists. First list corresponds to the smallest absolute error, second corresponds to the smallest relative error

See Also

Uses compute_weights, make_numeric, compute_max_weight, compute_weights, compute_max_length, cross_val,av_out, get_indices

Examples

```
#creating variables for linear regression mode
variables_lin<-matrix(c(rnorm(56,0,1),rnorm(56,1,2)),ncol=2)
#creating outcomes for linear regression mode
outcomes_lin<-rnorm(56, 2,1)
#running the function
regr_ind(variables_lin,outcomes_lin,100,mode='linear',parallel=TRUE,cores=2)
```

\#creating variables for binary mode
vari<-matrix(c(1:100,seq(1,300,3)),ncol=2)
\#creating outcomes for binary mode
out<-rbinom(100,1, 0.3)
\#running the function
regr_ind(vari, out, 20, cutoff $=0.5$, part= $=10$, mode='binary', parallel=TRUE, cores=2, $n r=c(1,10,20)$, maxx=1)

```
regr_whole Best regressions
```


Description

Function which prints the highest predictive power, predictive accuracy of the empirical prediction (value of emp computed by cross_val for logistic regression), outputs the regression objects corresponding to the highest average predictive power and the indices of the variables included into regressions with the best predictive power. In the case of linear regression it outputs the best regressions with respect to both absolute and relative errors

Usage

regr_whole(
vari,
outi,
crv,
cutoff $=$ NULL,
part $=10$,
mode,
cmode = "det",
predm = "exact",
objfun = "acc",
parallel = FALSE,
cores = NULL,
$\operatorname{minx}=1$,
maxx $=$ NULL,
nr = NULL,
maxw = NULL,
st $=$ NULL,
rule $=10$,
corr = 1
)

Arguments

vari	set of predictors
outi	array of outcomes
crv	number of cross-validations
cutoff	cut-off value for mode 'binary'
part	for each cross-validation partitions the dataset into training and test set in a proportion (part-1): part
mode	'binary ' (logistic regression), 'multin' (multinomial regression)
cmode	'det' or ''; 'det' always predicts the more likely outcome as determined by the odds ratio; ' ' predicts certain outcome with probability corresponding to its odds ratio (more conservative). Option available for multinomial/logistic regression
predm	'exact ' or ' '; for logistic and multinomial regression; 'exact' computes how many times the exact outcome category was predicted, ' ' computes how many times either the exact outcome category or its nearest neighbour was predicted
objfun	'roc' for maximising the predictive power with respect to AUC, available only for mode='binary'; 'acc' for maximising predictive power with respect to accuracy.
parallel	TRUE if using parallel toolbox, FALSE if not. Defaults to FALSE
cores	number of cores to use in case of parallel=TRUE
minx	minimum number of predictors to be included in a regression, defaults to 1
maxx	maximum number of predictors to be included in a regression, defaults to maximum feasible number according to one in ten rule
$n \mathrm{r}$	a subset of the data-set, such that $1 /$ part of it lies in the test set and $1-1 /$ part is in the training set, defaults to empty set. This is to ensure that elements of this subset are included both in the training and in the test set.
maxw	maximum weight of predictors to be included in a regression, defaults to maximum weight according to one in ten rule
st	a subset of predictors to be always included into a predictive model, defaults to empty set
rule	an Events per Variable (EPV) rule, defaults to 10
corr	maximum correlation between a pair of predictors in a model

Value

Prints the highest predictive power provided by a regression, predictive accuracy of the empirical prediction (value of emp computed by cross_val for logistic regression).
ind Indices of the predictors included into regressions with the best predictive power written in a list. For mode=' linear ' a list of two lists. First list corresponds to the smallest absolute error, second corresponds to the smallest relative error. This output is identical to the one from regr_ind

```
regr List of regression objects providing the best predictions. For mode='multin'
                and mode='binary'
regr_a List of regression objects providing the best predictions with respect to absolute
        error.For mode='linear'
regr_r List of regression objects providing the best predictions with respect to relative
        error.For mode='linear'
```


See Also

Uses regr_ind,lm, multinom

Examples

```
#creating variables for linear regression mode
variables_lin<-matrix(c(rnorm(56,0,1),rnorm(56,1,2)),ncol=2)
#creating outcomes for linear regression mode
outcomes_lin<-rnorm(56, 2,1)
#running the function
regr_whole(variables_lin,outcomes_lin, 20,mode='linear',parallel=TRUE,cores=2)
#creating variables for binary mode
vari<-matrix(c(1:100, seq(1,300,3)),ncol=2)
#creating outcomes for binary mode
out<-rbinom(100,1,0.3)
#running the function
regr_whole(vari,out, 20,cutoff=0.5,part=10,mode='binary',parallel=TRUE,cores=2)
```

```
sum_weights_sub Cumulative weights of the predictors' subsets
```


Description

Function which computes the sum of predictors' weights for each subset containing a fixed number of predictors

Usage

sum_weights_sub(a,m,we,st)

Arguments

a
m
we
an $m \times N$ matrix, containing all possible subsets (N overall) of the size m of predictors' indices; therefore each column of a defines a unique subset of the predictors
number of elements in each subset of indices
st array of weights of the predictors
a subset of predictors to be always included into a predictive model

Value

Returns an array of weights for predictors defined by each colun of the matrix a

Examples

```
#all two-element subsets of the set 1:3
a<-combn (3,2)
sum_weights_sub(a, 2, c(1, 2, 1))
```


Index

```
AUC, 2, 10
av_out, 3, 20
coef, 14, 15
comb, 4
combn, 5, 10, 12
compute_max_length, 4, 20
compute_max_weight, 5, 10, 20
compute_weights, 6,20
cross_val, 8, 20
cub, 10
find_int,11
find_sub, 11, 12
get_indices, 12, 20
get_predictions, 10, 13
get_predictions_lin, 10,14
get_probabilities, 10,15
lm,23
lsfit,14
make_numeric, 16, 17, 20
make_numeric_sets, 10,17
mapply,4
multinom, 15, 23
quadr, 18
rbinom, 13
regr_ind, 19, 23
regr_whole, 21
rmultinom, 13
sum_weights_sub, 10, 12,23
```

