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aoa Area of Applicability

Description

This function estimates the Dissimilarity Index (DI) and the derived Area of Applicability (AOA)
of spatial prediction models by considering the distance of new data (i.e. a Raster Stack of spatial
predictors used in the models) in the predictor variable space to the data used for model training.
Predictors can be weighted based on the internal variable importance of the machine learning algo-
rithm used for model training. The AOA is derived by applying a threshold on the DI which is the
(outlier-removed) maximum DI of the cross-validated training data.

Usage

aoa(
newdata,
model = NA,
trainDI = NA,
cl = NULL,
train = NULL,
weight = NA,
variables = "all",
folds = NULL

)
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Arguments

newdata A RasterStack, RasterBrick, stars object, SpatRaster or data.frame containing
the data the model was meant to make predictions for.

model A train object created with caret used to extract weights from (based on variable
importance) as well as cross-validation folds. See examples for the case that no
model is available or for models trained via e.g. mlr3.

trainDI A trainDI object. Optional if trainDI was calculated beforehand.

cl A cluster object e.g. created with doParallel. Optional. Should only be used if
newdata is large.

train A data.frame containing the data used for model training. Optional. Only re-
quired when no model is given

weight A data.frame containing weights for each variable. Optional. Only required if
no model is given.

variables character vector of predictor variables. if "all" then all variables of the model
are used or if no model is given then of the train dataset.

folds Numeric or character. Optional. Folds for cross validation. E.g. Spatial cluster
affiliation for each data point. Should be used if replicates are present. Only
required if no model is given.

Details

The Dissimilarity Index (DI) and the corresponding Area of Applicability (AOA) are calculated. If
variables are factors, dummy variables are created prior to weighting and distance calculation.

Interpretation of results: If a location is very similar to the properties of the training data it will have
a low distance in the predictor variable space (DI towards 0) while locations that are very different
in their properties will have a high DI. See Meyer and Pebesma (2021) for the full documentation
of the methodology.

Value

An object of class aoa containing:

parameters object of class trainDI. see trainDI

DI raster or data frame. Dissimilarity index of newdata

AOA raster or data frame. Area of Applicability of newdata. AOA has values 0 (out-
side AOA) and 1 (inside AOA)

Note

If classification models are used, currently the variable importance can only be automatically re-
trieved if models were trained via train(predictors,response) and not via the formula-interface. Will
be fixed.

Author(s)

Hanna Meyer



4 aoa

References

Meyer, H., Pebesma, E. (2021): Predicting into unknown space? Estimating the area of applicability
of spatial prediction models. Methods in Ecology and Evolution 12: 1620-1633. doi: 10.1111/
2041210X.13650

See Also

calibrate_aoa, trainDI

Examples

## Not run:
library(sf)
library(raster)
library(caret)
library(viridis)
library(latticeExtra)

# prepare sample data:
dat <- get(load(system.file("extdata","Cookfarm.RData",package="CAST")))
dat <- aggregate(dat[,c("VW","Easting","Northing")],by=list(as.character(dat$SOURCEID)),mean)
pts <- st_as_sf(dat,coords=c("Easting","Northing"))
pts$ID <- 1:nrow(pts)
set.seed(100)
pts <- pts[1:30,]
studyArea <- stack(system.file("extdata","predictors_2012-03-25.grd",package="CAST"))[[1:8]]
trainDat <- extract(studyArea,pts,df=TRUE)
trainDat <- merge(trainDat,pts,by.x="ID",by.y="ID")

# visualize data spatially:
spplot(scale(studyArea))
plot(studyArea$DEM)
plot(pts[,1],add=TRUE,col="black")

# train a model:
set.seed(100)
variables <- c("DEM","NDRE.Sd","TWI")
model <- train(trainDat[,which(names(trainDat)%in%variables)],
trainDat$VW, method="rf", importance=TRUE, tuneLength=1,
trControl=trainControl(method="cv",number=5,savePredictions=T))
print(model) #note that this is a quite poor prediction model
prediction <- predict(studyArea,model)
plot(varImp(model,scale=FALSE))

#...then calculate the AOA of the trained model for the study area:
AOA <- aoa(studyArea,model)
plot(AOA)
spplot(AOA$DI, col.regions=viridis(100),main="Dissimilarity Index")
#plot predictions for the AOA only:
spplot(prediction, col.regions=viridis(100),main="prediction for the AOA")+
spplot(AOA$AOA,col.regions=c("grey","transparent"))

https://doi.org/10.1111/2041-210X.13650
https://doi.org/10.1111/2041-210X.13650
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####
# Calculating the AOA might be time consuming. Consider running it in parallel:
####
library(doParallel)
library(parallel)
cl <- makeCluster(4)
registerDoParallel(cl)
AOA <- aoa(studyArea,model,cl=cl)

####
#The AOA can also be calculated without a trained model.
#All variables are weighted equally in this case:
####
AOA <- aoa(studyArea,train=trainDat,variables=variables)
spplot(AOA$DI, col.regions=viridis(100),main="Dissimilarity Index")
spplot(AOA$AOA,main="Area of Applicability")

####
# The AOA can also be used for models trained via mlr3 (parameters have to be assigned manually):
####

library(mlr3)
library(mlr3learners)
library(mlr3spatial)
library(mlr3spatiotempcv)
library(mlr3extralearners)

# initiate and train model:
train_df <- trainDat[, c("DEM","NDRE.Sd","TWI", "VW")]
backend <- as_data_backend(train_df)
task <- as_task_regr(backend, target = "VW")
lrn <- lrn("regr.randomForest", importance = "mse")
lrn$train(task)

# cross-validation folds
rsmp_cv <- rsmp("cv", folds = 5L)$instantiate(task)

## predict:
prediction <- predict(studyArea,lrn$model)

### Estimate AOA
AOA <- aoa(studyArea,

train = as.data.frame(task$data()),
variables = task$feature_names,
weight = data.frame(t(lrn$importance())),
folds = rsmp_cv$instance[order(row_id)]$fold)

## End(Not run)
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bss Best subset feature selection

Description

Evaluate all combinations of predictors during model training

Usage

bss(
predictors,
response,
method = "rf",
metric = ifelse(is.factor(response), "Accuracy", "RMSE"),
maximize = ifelse(metric == "RMSE", FALSE, TRUE),
globalval = FALSE,
trControl = caret::trainControl(),
tuneLength = 3,
tuneGrid = NULL,
seed = 100,
verbose = TRUE,
...

)

Arguments

predictors see train

response see train

method see train

metric see train

maximize see train

globalval Logical. Should models be evaluated based on ’global’ performance? See
global_validation

trControl see train

tuneLength see train

tuneGrid see train

seed A random number

verbose Logical. Should information about the progress be printed?

... arguments passed to the classification or regression routine (such as randomFor-
est).
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Details

bss is an alternative to ffs and ideal if the training set is small. Models are iteratively fitted using all
different combinations of predictor variables. Hence, 2^X models are calculated. Don’t try running
bss on very large datasets because the computation time is much higher compared to ffs.

The internal cross validation can be run in parallel. See information on parallel processing of carets
train functions for details.

Value

A list of class train. Beside of the usual train content the object contains the vector "selectedvars"
and "selectedvars_perf" that give the best variables selected as well as their corresponding perfor-
mance. It also contains "perf_all" that gives the performance of all model runs.

Note

This variable selection is particularly suitable for spatial cross validations where variable selection
MUST be based on the performance of the model for predicting new spatial units. Note that bss
is very slow since all combinations of variables are tested. A more time efficient alternative is the
forward feature selection (ffs) (ffs).

Author(s)

Hanna Meyer

See Also

train,ffs, trainControl,CreateSpacetimeFolds

Examples

## Not run:
data(iris)
bssmodel <- bss(iris[,1:4],iris$Species)
bssmodel$perf_all

## End(Not run)

calibrate_aoa Calibrate the AOA based on the relationship between the DI and the
prediction error

Description

Performance metrics are calculated for moving windows of DI values of cross-validated training
data
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Usage

calibrate_aoa(
AOA,
model,
window.size = 5,
calib = "scam",
multiCV = FALSE,
length.out = 10,
maskAOA = TRUE,
showPlot = TRUE,
k = 6,
m = 2

)

Arguments

AOA the result of aoa

model the model used to get the AOA

window.size Numeric. Size of the moving window. See rollapply.

calib Character. Function to model the DI~performance relationship. Currently lm
and scam are supported

multiCV Logical. Re-run model fitting and validation with different CV strategies. See
details.

length.out Numeric. Only used if multiCV=TRUE. Number of cross-validation folds. See
details.

maskAOA Logical. Should areas outside the AOA set to NA?

showPlot Logical.

k Numeric. See mgcv::s

m Numeric. See mgcv::s

Details

If multiCV=TRUE the model is re-fitted and validated by length.out new cross-validations where
the cross-validation folds are defined by clusters in the predictor space, ranging from three clusters
to LOOCV. If the AOA threshold based on the calibration data from multiple CV is larger than the
original AOA threshold, the AOA is updated accordingly. See Meyer and Pebesma (2020) for the
full documentation of the methodology.

Value

A list of length 2 with the elements "AOA": rasterStack which contains the original DI and the AOA
(which might be updated if new test data indicate this option), as well as the expected performance
based on the relationship. Data used for calibration are stored in the attributes. The second element
is a plot showing the relationship.
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Author(s)

Hanna Meyer

References

Meyer, H., Pebesma, E. (2021): Predicting into unknown space? Estimating the area of applicability
of spatial prediction models. doi: 10.1111/2041210X.13650

See Also

aoa

Examples

## Not run:
library(sf)
library(raster)
library(caret)
library(viridis)
library(latticeExtra)

# prepare sample data:
library(sf)
library(raster)
library(caret)
# prepare sample data:
dat <- get(load(system.file("extdata","Cookfarm.RData",package="CAST")))
dat <- aggregate(dat[,c("VW","Easting","Northing")],by=list(as.character(dat$SOURCEID)),mean)
pts <- st_as_sf(dat,coords=c("Easting","Northing"))
pts$ID <- 1:nrow(pts)
studyArea <- stack(system.file("extdata","predictors_2012-03-25.grd",package="CAST"))[[1:8]]
dat <- extract(studyArea,pts,df=TRUE)
trainDat <- merge(dat,pts,by.x="ID",by.y="ID")

# train a model:
variables <- c("DEM","NDRE.Sd","TWI")
set.seed(100)
model <- train(trainDat[,which(names(trainDat)%in%variables)],

trainDat$VW,method="rf",importance=TRUE,tuneLength=1,
trControl=trainControl(method="cv",number=5,savePredictions=TRUE))

#...then calculate the AOA of the trained model for the study area:
AOA <- aoa(studyArea,model)

AOA_new <- calibrate_aoa(AOA,model)
plot(AOA_new$AOA[[3]])

## End(Not run)

https://doi.org/10.1111/2041-210X.13650
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CAST ’caret’ Applications for Spatial-Temporal Models

Description

Supporting functionality to run ’caret’ with spatial or spatial-temporal data. ’caret’ is a frequently
used package for model training and prediction using machine learning. CAST includes functions to
improve spatial-temporal modelling tasks using ’caret’. It supports Leave-Location-Out and Leave-
Time-Out cross-validation of spatial and spatial-temporal models and allows for spatial variable
selection to selects suitable predictor variables in view to their contribution to the spatial model
performance. CAST further includes functionality to estimate the (spatial) area of applicability of
prediction models by analysing the similarity between new data and training data.

Details

’caret’ Applications for Spatio-Temporal models

Author(s)

Hanna Meyer, Marvin Ludwig

References

• Meyer, H., Pebesma, E. (2022):Machine learning-based global maps of ecological variables
and the challenge of assessing them. Nature Communications. Accepted.

• Meyer, H., Pebesma, E. (2021): Predicting into unknown space? Estimating the area of appli-
cability of spatial prediction models. Methods in Ecology and Evolution. 12, 1620– 1633.

• Meyer, H., Reudenbach, C., Wöllauer, S., Nauss, T. (2019): Importance of spatial predictor
variable selection in machine learning applications - Moving from data reproduction to spatial
prediction. Ecological Modelling. 411, 108815.

• Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., Nauß, T. (2018): Improving perfor-
mance of spatio-temporal machine learning models using forward feature selection and target-
oriented validation. Environmental Modelling & Software 101: 1-9.

CreateSpacetimeFolds Create Space-time Folds

Description

Create spatial, temporal or spatio-temporal Folds for cross validation
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Usage

CreateSpacetimeFolds(
x,
spacevar = NA,
timevar = NA,
k = 10,
class = NA,
seed = sample(1:1000, 1)

)

Arguments

x data.frame containing spatio-temporal data

spacevar Character indicating which column of x identifies the spatial units (e.g. ID of
weather stations)

timevar Character indicating which column of x identifies the temporal units (e.g. the
day of the year)

k numeric. Number of folds. If spacevar or timevar is NA and a leave one location
out or leave one time step out cv should be performed, set k to the number of
unique spatial or temporal units.

class Character indicating which column of x identifies a class unit (e.g. land cover)

seed numeric. See ?seed

Details

Using "class" is helpful in the case that data are clustered in space and are categorical. E.g This is
the case for land cover classifications when training data come as training polygons. In this case the
data should be split in a way that entire polygons are held back (spacevar="polygonID") but at the
same time the distribution of classes should be similar in each fold (class="LUC").

Value

A list that contains a list for model training and a list for model validation that can directly be used
as "index" and "indexOut" in caret’s trainControl function

Note

Standard k-fold cross-validation can lead to considerable misinterpretation in spatial-temporal mod-
elling tasks. This function can be used to prepare a Leave-Location-Out, Leave-Time-Out or Leave-
Location-and-Time-Out cross-validation as target-oriented validation strategies for spatial-temporal
prediction tasks. See Meyer et al. (2018) for further information.

Author(s)

Hanna Meyer
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References

Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., Nauß, T. (2018): Improving performance of
spatio-temporal machine learning models using forward feature selection and target-oriented vali-
dation. Environmental Modelling & Software 101: 1-9.

See Also

trainControl,ffs

Examples

dat <- get(load(system.file("extdata","Cookfarm.RData",package="CAST")))
### Prepare for 10-fold Leave-Location-and-Time-Out cross validation
indices <- CreateSpacetimeFolds(dat,"SOURCEID","Date")
str(indices)
### Prepare for 10-fold Leave-Location-Out cross validation
indices <- CreateSpacetimeFolds(dat,spacevar="SOURCEID")
str(indices)
### Prepare for leave-One-Location-Out cross validation
indices <- CreateSpacetimeFolds(dat,spacevar="SOURCEID",
k=length(unique(dat$SOURCEID)))
str(indices)

ffs Forward feature selection

Description

A simple forward feature selection algorithm

Usage

ffs(
predictors,
response,
method = "rf",
metric = ifelse(is.factor(response), "Accuracy", "RMSE"),
maximize = ifelse(metric == "RMSE", FALSE, TRUE),
globalval = FALSE,
withinSE = FALSE,
minVar = 2,
trControl = caret::trainControl(),
tuneLength = 3,
tuneGrid = NULL,
seed = sample(1:1000, 1),
verbose = TRUE,
...

)
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Arguments

predictors see train

response see train

method see train

metric see train

maximize see train

globalval Logical. Should models be evaluated based on ’global’ performance? See
global_validation

withinSE Logical Models are only selected if they are better than the currently best models
Standard error

minVar Numeric. Number of variables to combine for the first selection. See Details.

trControl see train

tuneLength see train

tuneGrid see train

seed A random number used for model training

verbose Logical. Should information about the progress be printed?

... arguments passed to the classification or regression routine (such as randomFor-
est).

Details

Models with two predictors are first trained using all possible pairs of predictor variables. The
best model of these initial models is kept. On the basis of this best model the predictor variables
are iteratively increased and each of the remaining variables is tested for its improvement of the
currently best model. The process stops if none of the remaining variables increases the model
performance when added to the current best model.

The internal cross validation can be run in parallel. See information on parallel processing of carets
train functions for details.

Using withinSE will favour models with less variables and probably shorten the calculation time

Per Default, the ffs starts with all possible 2-pair combinations. minVar allows to start the selection
with more than 2 variables, e.g. minVar=3 starts the ffs testing all combinations of 3 (instead of
2) variables first and then increasing the number. This is important for e.g. neural networks that
often cannot make sense of only two variables. It is also relevant if it is assumed that the optimal
variables can only be found if more than 2 are considered at the same time.

Value

A list of class train. Beside of the usual train content the object contains the vector "selectedvars"
and "selectedvars_perf" that give the order of the best variables selected as well as their correspond-
ing performance (starting from the first two variables). It also contains "perf_all" that gives the
performance of all model runs.
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Note

This variable selection is particularly suitable for spatial cross validations where variable selection
MUST be based on the performance of the model for predicting new spatial units. See Meyer et al.
(2018) and Meyer et al. (2019) for further details.

Author(s)

Hanna Meyer

References

• Gasch, C.K., Hengl, T., Gräler, B., Meyer, H., Magney, T., Brown, D.J. (2015): Spatio-
temporal interpolation of soil water, temperature, and electrical conductivity in 3D+T: the
Cook Agronomy Farm data set. Spatial Statistics 14: 70-90.

• Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., Nauß, T. (2018): Improving perfor-
mance of spatio-temporal machine learning models using forward feature selection and target-
oriented validation. Environmental Modelling & Software 101: 1-9. doi: 10.1016/j.envsoft.2017.12.001

• Meyer, H., Reudenbach, C., Wöllauer, S., Nauss, T. (2019): Importance of spatial predictor
variable selection in machine learning applications - Moving from data reproduction to spatial
prediction. Ecological Modelling. 411, 108815. doi: 10.1016/j.ecolmodel.2019.108815

See Also

train,bss, trainControl,CreateSpacetimeFolds

Examples

## Not run:
data(iris)
ffsmodel <- ffs(iris[,1:4],iris$Species)
ffsmodel$selectedvars
ffsmodel$selectedvars_perf

## End(Not run)

# or perform model with target-oriented validation (LLO CV)
#the example is described in Gasch et al. (2015). The ffs approach for this dataset is described in
#Meyer et al. (2018). Due to high computation time needed, only a small and thus not robust example
#is shown here.

## Not run:
#run the model on three cores:
library(doParallel)
cl <- makeCluster(3)
registerDoParallel(cl)

#load and prepare dataset:
dat <- get(load(system.file("extdata","Cookfarm.RData",package="CAST")))
trainDat <- dat[dat$altitude==-0.3&year(dat$Date)==2012&week(dat$Date)%in%c(13:14),]

https://doi.org/10.1016/j.envsoft.2017.12.001
https://doi.org/10.1016/j.ecolmodel.2019.108815
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#visualize dataset:
ggplot(data = trainDat, aes(x=Date, y=VW)) + geom_line(aes(colour=SOURCEID))

#create folds for Leave Location Out Cross Validation:
set.seed(10)
indices <- CreateSpacetimeFolds(trainDat,spacevar = "SOURCEID",k=3)
ctrl <- trainControl(method="cv",index = indices$index)

#define potential predictors:
predictors <- c("DEM","TWI","BLD","Precip_cum","cday","MaxT_wrcc",
"Precip_wrcc","NDRE.M","Bt","MinT_wrcc","Northing","Easting")

#run ffs model with Leave Location out CV
set.seed(10)
ffsmodel <- ffs(trainDat[,predictors],trainDat$VW,method="rf",
tuneLength=1,trControl=ctrl)
ffsmodel

#compare to model without ffs:
model <- train(trainDat[,predictors],trainDat$VW,method="rf",
tuneLength=1, trControl=ctrl)
model
stopCluster(cl)

## End(Not run)

global_validation Evaluate ’global’ cross-validation

Description

Calculate validation metric using all held back predictions at once

Usage

global_validation(model)

Arguments

model an object of class train

Details

Relevant when folds are not representative for the entire area of interest. In this case, metrics like
R2 are not meaningful since it doesn’t reflect the general ability of the model to explain the entire
gradient of the response. Comparable to LOOCV, predictions from all held back folds are used here
together to calculate validation statistics.
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Value

regression (postResample) or classification (confusionMatrix) statistics

Author(s)

Hanna Meyer

See Also

CreateSpacetimeFolds

Examples

dat <- get(load(system.file("extdata","Cookfarm.RData",package="CAST")))
dat <- dat[sample(1:nrow(dat),500),]
indices <- CreateSpacetimeFolds(dat,"SOURCEID","Date")
ctrl <- caret::trainControl(method="cv",index = indices$index,savePredictions="final")
model <- caret::train(dat[,c("DEM","TWI","BLD")],dat$VW, method="rf", trControl=ctrl, ntree=10)
global_validation(model)

plot Plot CAST classes

Description

Generic plot function for trainDI and aoa

Usage

## S3 method for class 'trainDI'
plot(x, ...)

## S3 method for class 'aoa'
plot(x, samplesize = 1000, ...)

Arguments

x aoa object

... other params

samplesize numeric. How many prediction samples should be plotted?

Author(s)

Marvin Ludwig, Hanna Meyer

Marvin Ludwig, Hanna Meyer
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plot_ffs Plot results of a Forward feature selection or best subset selection

Description

A plotting function for a forward feature selection result. Each point is the mean performance of a
model run. Error bars represent the standard errors from cross validation. Marked points show the
best model from each number of variables until a further variable could not improve the results. If
type=="selected", the contribution of the selected variables to the model performance is shown.

Usage

plot_ffs(
ffs_model,
plotType = "all",
palette = rainbow,
reverse = FALSE,
marker = "black",
size = 1.5,
lwd = 0.5,
pch = 21,
...

)

Arguments

ffs_model Result of a forward feature selection see ffs

plotType character. Either "all" or "selected"

palette A color palette

reverse Character. Should the palette be reversed?

marker Character. Color to mark the best models

size Numeric. Size of the points

lwd Numeric. Width of the error bars

pch Numeric. Type of point marking the best models

... Further arguments for base plot if type="selected"

Author(s)

Marvin Ludwig and Hanna Meyer

See Also

ffs, bss
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Examples

## Not run:
data(iris)
ffsmodel <- ffs(iris[,1:4],iris$Species)
plot_ffs(ffsmodel)
#plot performance of selected variables only:
plot_ffs(ffsmodel,plotType="selected")

## End(Not run)

plot_geodist Plot euclidean nearest neighbor distances in geographic space or fea-
ture space

Description

Density plot of nearest neighbor distances in geographic space or feature space between training
data as well as between training data and prediction locations. Optional, the nearest neighbor dis-
tances between training data and test data or between training data and CV iterations is shown. The
plot can be used to check the suitability of a chosen CV method to be representative to estimate
map accuracy. Alternatively distances can also be calculated in the multivariate feature space.

Usage

plot_geodist(
x,
modeldomain,
type = "geo",
cvfolds = NULL,
testdata = NULL,
samplesize = 2000,
sampling = "regular",
variables = NULL,
showPlot = TRUE

)

Arguments

x object of class sf, training data locations

modeldomain raster or sf object defining the prediction area (see Details)

type "geo" or "feature". Should the distance be computed in geographic space or in
the normalized multivariate predictor space (see Details)

cvfolds optional. List of row indices of x that are held back in each CV iteration. See
e.g. ?createFolds or ?createSpaceTimeFolds

testdata optional. object of class sf: Data used for independent validation
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samplesize numeric. How many prediction samples should be used? Only required if mod-
eldomain is a raster (see Details)

sampling character. How to draw prediction samples? See spsample. Use sampling =
"Fibonacci" for global applications.

variables character vector defining the predictor variables used if type="feature. If not
provided all variables included in modeldomain are used.

showPlot logical

Details

The modeldomain is a sf polygon or a raster that defines the prediction area. The function takes a
regular point sample (amount defined by samplesize) from the spatial extent. If type = "feature", the
argument modeldomain (and if provided then also the testdata) has to include predictors. Predictor
values for x are optional if modeldomain is a raster. If not provided they are extracted from the
modeldomain rasterStack.

Value

A list including the plot and the corresponding data.frame containing the distances

Note

See Meyer and Pebesma (2022) for an application of this plotting function

Author(s)

Hanna Meyer, Edzer Pebesma, Marvin Ludwig

Examples

## Not run:
library(sf)
library(raster)
library(caret)

########### prepare sample data:
dat <- get(load(system.file("extdata","Cookfarm.RData",package="CAST")))
dat <- aggregate(dat[,c("DEM","TWI", "NDRE.M", "Easting", "Northing")],
by=list(as.character(dat$SOURCEID)),mean)
pts <- dat[,-1]
pts <- st_as_sf(pts,coords=c("Easting","Northing"))
st_crs(pts) <- 26911
pts_train <- pts[1:29,]
pts_test <- pts[30:42,]
studyArea <- raster::stack(system.file("extdata","predictors_2012-03-25.grd",package="CAST"))
studyArea = studyArea[[c("DEM","TWI", "NDRE.M", "NDRE.Sd", "Bt")]]

########### Distance between training data and new data:
dist <- plot_geodist(pts_train,studyArea)
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########### Distance between training data, new data and test data:
#mapview(pts_train,col.regions="blue")+mapview(pts_test,col.regions="red")
dist <- plot_geodist(pts_train,studyArea,testdata=pts_test)

########### Distance between training data, new data and CV folds:
folds <- createFolds(1:nrow(pts_train),k=3,returnTrain=FALSE)
dist <- plot_geodist(x=pts_train, modeldomain=studyArea, cvfolds=folds)

########### Distances in the feature space:
plot_geodist(x=pts_train, modeldomain=studyArea,
type = "feature",variables=c("DEM","TWI", "NDRE.M"))

dist <- plot_geodist(x=pts_train, modeldomain=studyArea, cvfolds = folds, testdata = pts_test,
type = "feature",variables=c("DEM","TWI", "NDRE.M"))

############ Example for a random global dataset
############ (refer to figure in Meyer and Pebesma 2022)
library(sf)
library(rnaturalearth)
library(ggplot2)

### Define prediction area (here: global):
ee <- st_crs("+proj=eqearth")
co <- ne_countries(returnclass = "sf")
co.ee <- st_transform(co, ee)

### Simulate a spatial random sample
### (alternatively replace pts_random by a real sampling dataset (see Meyer and Pebesma 2022):
sf_use_s2(FALSE)
pts_random <- st_sample(co, 2000)

### See points on the map:
ggplot() + geom_sf(data = co.ee, fill="#00BFC4",col="#00BFC4") +

geom_sf(data = pts_random, color = "#F8766D",size=0.5, shape=3) +
guides(fill = FALSE, col = FALSE) +
labs(x = NULL, y = NULL)

### plot distances:
dist <- plot_geodist(pts_random,co,showPlot=FALSE)
dist$plot+scale_x_log10(labels=round)

## End(Not run)

print Print CAST classes

Description

Generic print function for trainDI and aoa
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Usage

## S3 method for class 'trainDI'
print(x, ...)

show.trainDI(x, ...)

## S3 method for class 'aoa'
print(x, ...)

show.aoa(x, ...)

Arguments

x aoa object

... other params

trainDI Calculate Dissimilarity Index of training data

Description

This function estimates the Dissimilarity Index (DI) of within the training data set used for a pre-
diction model. Predictors can be weighted based on the internal variable importance of the machine
learning algorithm used for model training.

Usage

trainDI(model = NA, train = NULL, variables = "all", weight = NA, folds = NULL)

Arguments

model A train object created with caret used to extract weights from (based on variable
importance) as well as cross-validation folds

train A data.frame containing the data used for model training. Only required when
no model is given

variables character vector of predictor variables. if "all" then all variables of the model
are used or if no model is given then of the train dataset.

weight A data.frame containing weights for each variable. Only required if no model is
given.

folds Numeric or character. Folds for cross validation. E.g. Spatial cluster affiliation
for each data point. Only required if no model is given.



22 trainDI

Value

A list of class trainDI containing:

train A data frame containing the training data

weight A data frame with weights based on the variable importance.

variables Names of the used variables

catvars Which variables are categorial

scaleparam Scaling parameters. Output from scale

trainDist_avrg A data frame with the average eucildean distance of each training point to every
other point

trainDist_avrgmean

The mean of trainDist_avrg. Used for normalizing the DI

trainDI Dissimilarity Index of the training data

threshold The DI threshold used for inside/outside AOA
lower_threshold

The lower DI threshold. Currently unused.

Note

This function is called within aoa to estimate the DI and AOA of new data. However, it may also
be used on its own if only the DI of training data is of interest, or to facilitate a parallelization of
aoa by avoiding a repeated calculation of the DI within the training data.

Author(s)

Hanna Meyer, Marvin Ludwig

References

Meyer, H., Pebesma, E. (2021): Predicting into unknown space? Estimating the area of applicability
of spatial prediction models. doi: 10.1111/2041210X.13650

See Also

aoa

Examples

## Not run:
library(sf)
library(raster)
library(caret)
library(viridis)
library(latticeExtra)
library(ggplot2)

# prepare sample data:
dat <- get(load(system.file("extdata","Cookfarm.RData",package="CAST")))

https://doi.org/10.1111/2041-210X.13650
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dat <- aggregate(dat[,c("VW","Easting","Northing")],by=list(as.character(dat$SOURCEID)),mean)
pts <- st_as_sf(dat,coords=c("Easting","Northing"))
pts$ID <- 1:nrow(pts)
set.seed(100)
pts <- pts[1:30,]
studyArea <- stack(system.file("extdata","predictors_2012-03-25.grd",package="CAST"))[[1:8]]
trainDat <- extract(studyArea,pts,df=TRUE)
trainDat <- merge(trainDat,pts,by.x="ID",by.y="ID")

# visualize data spatially:
spplot(scale(studyArea))
plot(studyArea$DEM)
plot(pts[,1],add=TRUE,col="black")

# train a model:
set.seed(100)
variables <- c("DEM","NDRE.Sd","TWI")
model <- train(trainDat[,which(names(trainDat)%in%variables)],
trainDat$VW, method="rf", importance=TRUE, tuneLength=1,
trControl=trainControl(method="cv",number=5,savePredictions=T))
print(model) #note that this is a quite poor prediction model
prediction <- predict(studyArea,model)
plot(varImp(model,scale=FALSE))

#...then calculate the DI of the trained model:
DI = trainDI(model=model)
plot(DI)

# the DI can now be used to compute the AOA:
AOA = aoa(studyArea, model = model, trainDI = DI)
print(AOA)
plot(AOA)

## End(Not run)
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