
Package ‘CBDA’
April 16, 2018

Type Package

Title Compressive Big Data Analytics

Version 1.0.0

Maintainer Simeone Marino <simeonem@umich.edu>

Description Classification performed on Big Data. It uses concepts from compressive sens-
ing, and implements ensemble predictor (i.e., 'SuperLearner') and knockoff filter-
ing as the main machine learning and feature mining engines.

License GPL-3

URL https://github.com/SOCR/CBDA

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

Imports stats , utils , prettydoc , foreach , SuperLearner, parallel ,
doParallel

Depends R(>= 3.3.0)

VignetteBuilder knitr

Suggests knitr, rmarkdown , FNN , e1071 , missForest , knockoff ,
caret , smotefamily , xgboost , bartMachine , glmnet ,
randomForest

NeedsCompilation no

Author Simeone Marino [aut, cre],
Ivo Dinov [aut]

Repository CRAN

Date/Publication 2018-04-16 14:56:33 UTC

R topics documented:
CBDA . 2
CBDA.pipeline . 5
CBDA.training . 7

1

https://github.com/SOCR/CBDA

2 CBDA

CBDA_CleanUp . 10
CBDA_Consolidation . 11
CBDA_Consolidation.pipeline . 11
CBDA_initialization . 12
CBDA_spectrum_plots . 13
CBDA_Stopping_Criteria . 13
CBDA_Stopping_Criteria.pipeline . 14
CBDA_Top_Ranked . 15
CBDA_Validation . 16
CBDA_Validation.pipeline . 17

Index 19

CBDA Main Compressive Big Data Analytics - CBDA function

Description

This CBDA function comprises all the input specifications to run a set M of subsamples from the
Big Data [Xtemp, Ytemp]. We assume that the Big Data is already clean and harmonized. This
version 1.0.0 is fully tested ONLY on continuous features Xtemp and binary outcome Ytemp.

Usage

CBDA(Ytemp, Xtemp, label = "CBDA_package_test", alpha = 0.2, Kcol_min = 5,
Kcol_max = 15, Nrow_min = 30, Nrow_max = 50, misValperc = 0,
M = 3000, N_cores = 1, top = 1000, workspace_directory = tempdir(),
max_covs = 100, min_covs = 5, algorithm_list = c("SL.glm", "SL.xgboost",
"SL.glmnet", "SL.svm", "SL.randomForest", "SL.bartMachine"))

Arguments

Ytemp This is the output variable (vector) in the original Big Data

Xtemp This is the input variable (matrix) in the original Big Data

label This is the label appended to RData workspaces generated within the CBDA
calls

alpha Percentage of the Big Data to hold off for Validation

Kcol_min Lower bound for the percentage of features-columns sampling (used for the Fea-
ture Sampling Range - FSR)

Kcol_max Upper bound for the percentage of features-columns sampling (used for the Fea-
ture Sampling Range - FSR)

Nrow_min Lower bound for the percentage of cases-rows sampling (used for the Case Sam-
pling Range - CSR)

Nrow_max Upper bound for the percentage of cases-rows sampling (used for the Case Sam-
pling Range - CSR)

CBDA 3

misValperc Percentage of missing values to introduce in BigData (used just for testing, to
mimic real cases).

M Number of the BigData subsets on which perform Knockoff Filtering and Su-
perLearner feature mining

N_cores Number of Cores to use in the parallel implementation (default is set to 1 core)

top Top predictions to select out of the M (must be < M, optimal ~0.1*M)

workspace_directory

Directory where the results and workspaces are saved (set by default to tem-
pdir())

max_covs Top features to display and include in the Validation Step where nested models
are tested

min_covs Minimum number of top features to include in the initial model for the Valida-
tion Step (it must be greater than 2)

algorithm_list List of algorithms/wrappers used by the SuperLearner. By default is set to the
following list algorithm_list <- c("SL.glm","SL.xgboost", "SL.glmnet","SL.svm","SL.randomForest","SL.bartMachine")

Details

This function comprises all the input specifications to run a set M of subsamples from the Big
Data [Xtemp, Ytemp]. We assume that the Big Data is already clean and harmonized. After the
necessary data wrangling (i.e., imputation, normalization and rebalancing), an ensemble predictor
(i.e., SuperLearner) is applied to each subsample for training/learning. The list of algorithms used
by the SuperLearner is supplied by an external file to be placed in the working directory (e.g.:
CBDA_SL_library.m in our release). The file can contain any SuperLearner wrapper and any wrap-
pers properly defined by the user. The ensemble predictive model is then validated on a fraction
alpha of the Big Data. Each subsample generates a predictive model that is ranked based on perfor-
mance metrics (e.g., Mean Square Error-MSE and Accuracy) during the first validation step. After
all the M subsamples have been generated and each predictive model computed, the CBDA function
calls 4 more functions to perform i) CONSOLIDATION and ranking of the results where the top
predictive models are selected (top) and the more frequent features (BEST) are ranked and displayed
as well, ii) VALIDATION on the top ranked features (i.e., up to "max_covs" number of features)
where nested ensemble predictive models are generated in a bottom-up fashion, iii) Implementation
of STOPPING CRITERIA for the best/optimal ensemble predictive model (to avoid overfitting)
and iv) CLEAN UP step for deleting unnecessary workspaces generated by the CBDA protocol.
IMPORTANT - Memory limits to run CBDA: see https://stat.ethz.ch/R-manual/R-devel/
library/base/html/Memory-limits.html for various limitations on memory needs while run-
ning R under different OS. As far as CBDA is concerned, a CBDA object can be up to 200-300 Mb.
The space needed to save all the workspaces however may need to be as large as 1-5 Gb, depending
on the number of subsamples. We are working on an new CBDA implementation that reduces the
storage constraints.

Value

CBDA object with validation results and 3 RData workspaces

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Memory-limits.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/Memory-limits.html

4 CBDA

References

See https://github.com/SOCR/CBDA/releases for details on the CBDA protocol and the manuscript
"Controlled Feature Selection and Compressive Big Data Analytics: Applications to Big Biomed-
ical and Health Studies” [under review] authored by Simeone Marino, Jiachen Xu, Yi Zhao, Nina
Zhou, Yiwang Zhou, Ivo D. Dinov from the University of Michigan

Examples

Installation
Please upload the Windows binary and/or source CBDA_1.0.0 files from
the CBDA Github repository https://github.com/SOCR/CBDA/releases
Not run:
Installation from the Windows binary (recommended for Windows systems)
install.packages("/filepath/CBDA_1.0.0_binary_Windows.zip", repos = NULL, type = "win.binary")

Installation from the source (recommended for Macs and Linux systems)
install.packages("/filepath/CBDA_1.0.0_source_.tar.gz", repos = NULL, type = "source")

Initialization
This function call installs (if needed) and attaches all the necessary packages to run
the CBDA package v1.0.0. It should be run before any production run or test.
The output shows a table where for each package a TRUE or FALSE is displayed.
Thus the necessary steps can be pursued in case some package has a FALSE.
CBDA_initialization()

Set the specs for the synthetic dataset to be tested
n = 300 # number of observations
p = 100 # number of variables

Generate a nxp matrix of IID variables (e.g., ~N(0,1))
X1 = matrix(rnorm(n*p), nrow=n, ncol=p)

Setting the nonzero variables - signal variables
nonzero=c(1,100,200,300,400,500,600,700,800,900)

Set the signal amplitude (for noise level = 1)
amplitude = 10

Allocate the nonzero coefficients in the correct places
beta = amplitude * (1:p %in% nonzero)

Generate a linear model with a bias (e.g., white noise ~N(0,1))
ztemp <- function() X1 %*% beta + rnorm(n)
z = ztemp()

Pass it through an inv-logit function to
generate the Bernoulli response variable Ytemp
pr = 1/(1+exp(-z))
Ytemp = rbinom(n,1,pr)
X2 <- cbind(Ytemp,X1)

dataset_file ="Binomial_dataset_3.txt"

https://github.com/SOCR/CBDA/releases

CBDA.pipeline 5

Save the synthetic dataset
a <- tempdir()
write.table(X2, file = paste0(file.path(a),'/',dataset_file), sep=",")

The file is now stored in the directory a
a
list.files(a)

Load the Synthetic dataset
Data = read.csv(paste0(file.path(a),'/',dataset_file),header = TRUE)
Ytemp <- Data[,1] # set the outcome
original_names_Data <- names(Data)
cols_to_eliminate=1
Xtemp <- Data[-cols_to_eliminate] # set the matrix X of features/covariates
original_names_Xtemp <- names(Xtemp)

Add more wrappers/algorithms to the SuperLearner ensemble predictor
It can be commented out if only the default set of algorithms are used,
e.g., algorithm_list = c("SL.glm","SL.xgboost","SL.glmnet","SL.svm",
"SL.randomForest","SL.bartMachine")
This defines a "new" wrapper, based on the default SL.glmnet
SL.glmnet.0.75 <- function(..., alpha = 0.75,family="binomial"){

SL.glmnet(..., alpha = alpha, family = family)}

test_example <- c("SL.glmnet","SL.glmnet.0.75")

Call the Main CBDA function
Multicore functionality NOT enabled
CBDA_object <- CBDA(Ytemp , Xtemp , M = 12 , Nrow_min = 50, Nrow_max = 70,

top = 10, max_covs = 8 , min_covs = 3,algorithm_list = test_example ,
workspace_directory = a)

Multicore functionality enabled
test_example <- c("SL.xgboost","SL.svm")
CBDA_test <- CBDA(Ytemp , Xtemp , M = 40 , Nrow_min = 50, Nrow_max = 70,

N_cores = 2 , top = 30, max_covs = 20 ,
min_covs = 5 , algorithm_list = test_example ,

workspace_directory = a)

End(Not run)

CBDA.pipeline Training/Leaning Step for Compressive Big Data Analytics - LONI
PIPELINE

Description

The CBDA.pipeline() function comprises all the input specifications to run a set M of subsamples
from the Big Data [Xtemp, Ytemp]. We assume that the Big Data is already clean and harmonized.

6 CBDA.pipeline

This version 1.0.0 is fully tested ONLY on continuous features Xtemp and binary outcome Ytemp.

Usage

CBDA.pipeline(job_id, Ytemp, Xtemp, label = "CBDA_package_test",
alpha = 0.2, Kcol_min = 5, Kcol_max = 15, Nrow_min = 30,
Nrow_max = 50, misValperc = 0, M = 3000, N_cores = 1, top = 1000,
workspace_directory = setwd(tempdir()), max_covs = 100, min_covs = 5,
algorithm_list = c("SL.glm", "SL.xgboost", "SL.glmnet", "SL.svm",
"SL.randomForest", "SL.bartMachine"))

Arguments

job_id This is the ID for the job generator in the LONI pipeline interface
Ytemp This is the output variable (vector) in the original Big Data
Xtemp This is the input variable (matrix) in the original Big Data
label This is the label appended to RData workspaces generated within the CBDA

calls
alpha Percentage of the Big Data to hold off for Validation
Kcol_min Lower bound for the percentage of features-columns sampling (used for the Fea-

ture Sampling Range - FSR)
Kcol_max Upper bound for the percentage of features-columns sampling (used for the Fea-

ture Sampling Range - FSR)
Nrow_min Lower bound for the percentage of cases-rows sampling (used for the Case Sam-

pling Range - CSR)
Nrow_max Upper bound for the percentage of cases-rows sampling (used for the Case Sam-

pling Range - CSR)
misValperc Percentage of missing values to introduce in BigData (used just for testing, to

mimic real cases).
M Number of the BigData subsets on which perform Knockoff Filtering and Su-

perLearner feature mining
N_cores Number of Cores to use in the parallel implementation (default is set to 1 core)
top Top predictions to select out of the M (must be < M, optimal ~0.1*M)
workspace_directory

Directory where the results and workspaces are saved (set by default to tem-
pdir())

max_covs Top features to display and include in the Validation Step where nested models
are tested

min_covs Minimum number of top features to include in the initial model for the Valida-
tion Step (it must be greater than 2)

algorithm_list List of algorithms/wrappers used by the SuperLearner. By default is set to the
following list algorithm_list <- c("SL.glm","SL.xgboost", "SL.glmnet","SL.svm","SL.randomForest","SL.bartMachine")

Value

CBDA object with validation results and 3 RData workspaces

CBDA.training 7

CBDA.training Training/Learning Compressive Big Data Analytics - CBDA.training
function

Description

This CBDA function comprises all the input specifications to run a set M of subsamples from the
Big Data [Xtemp, Ytemp]. We assume that the Big Data is already clean and harmonized. This
version 1.0.0 is fully tested ONLY on continuous features Xtemp and binary outcome Ytemp. It
only performs the Training/Learning step of the CBDA protocol.

Usage

CBDA.training(Ytemp, Xtemp, label = "CBDA_package_test", alpha = 0.2,
Kcol_min = 5, Kcol_max = 15, Nrow_min = 30, Nrow_max = 50,
misValperc = 0, M = 3000, N_cores = 1, top = 1000,
workspace_directory = tempdir(), max_covs = 100, min_covs = 5,
algorithm_list = c("SL.glm", "SL.xgboost", "SL.glmnet", "SL.svm",
"SL.randomForest", "SL.bartMachine"))

Arguments

Ytemp This is the output variable (vector) in the original Big Data

Xtemp This is the input variable (matrix) in the original Big Data

label This is the label appended to RData workspaces generated within the CBDA
calls

alpha Percentage of the Big Data to hold off for Validation

Kcol_min Lower bound for the percentage of features-columns sampling (used for the Fea-
ture Sampling Range - FSR)

Kcol_max Upper bound for the percentage of features-columns sampling (used for the Fea-
ture Sampling Range - FSR)

Nrow_min Lower bound for the percentage of cases-rows sampling (used for the Case Sam-
pling Range - CSR)

Nrow_max Upper bound for the percentage of cases-rows sampling (used for the Case Sam-
pling Range - CSR)

misValperc Percentage of missing values to introduce in BigData (used just for testing, to
mimic real cases).

M Number of the BigData subsets on which perform Knockoff Filtering and Su-
perLearner feature mining

N_cores Number of Cores to use in the parallel implementation (default is set to 1 core)

top Top predictions to select out of the M (must be < M, optimal ~0.1*M)
workspace_directory

Directory where the results and workspaces are saved (set by default to tem-
pdir())

8 CBDA.training

max_covs Top features to display and include in the Validation Step where nested models
are tested

min_covs Minimum number of top features to include in the initial model for the Valida-
tion Step (it must be greater than 2)

algorithm_list List of algorithms/wrappers used by the SuperLearner. By default is set to the
following list algorithm_list <- c("SL.glm","SL.xgboost", "SL.glmnet","SL.svm","SL.randomForest","SL.bartMachine")

Details

This function comprises all the input specifications to run a set M of subsamples from the Big
Data [Xtemp, Ytemp]. We assume that the Big Data is already clean and harmonized. After the
necessary data wrangling (i.e., imputation, normalization and rebalancing), an ensemble predictor
(i.e., SuperLearner) is applied to each subsample for training/learning. The list of algorithms used
by the SuperLearner is supplied by an external file to be placed in the working directory (e.g.:
CBDA_SL_library.m in our release). The file can contain any SuperLearner wrapper and any wrap-
pers properly defined by the user. The ensemble predictive model is then validated on a fraction
alpha of the Big Data. Each subsample generates a predictive model that is ranked based on per-
formance metrics (e.g., Mean Square Error-MSE and Accuracy) during the first validation step.
IMPORTANT - Memory limits to run CBDA: see https://stat.ethz.ch/R-manual/R-devel/
library/base/html/Memory-limits.html for various limitations on memory needs while run-
ning R under different OS. As far as CBDA is concerned, a CBDA object can be up to 200-300 Mb.
The space needed to save all the workspaces however may need to be as large as 1-5 Gb, depending
on the number of subsamples. We are working on an new CBDA implementation that reduces the
storage constraints.

Value

CBDA object with validation results and 3 RData workspaces

References

See https://github.com/SOCR/CBDA/releases for details on the CBDA protocol and the manuscript
"Controlled Feature Selection and Compressive Big Data Analytics: Applications to Big Biomed-
ical and Health Studies” [under review] authored by Simeone Marino, Jiachen Xu, Yi Zhao, Nina
Zhou, Yiwang Zhou, Ivo D. Dinov from the University of Michigan

Examples

Installation
Please upload the Windows binary and/or source CBDA_1.0.0 files from
the CBDA Github repository https://github.com/SOCR/CBDA/releases
Not run:
Installation from the Windows binary (recommended for Windows systems)
install.packages("/filepath/CBDA_1.0.0_binary_Windows.zip", repos = NULL, type = "win.binary")

Installation from the source (recommended for Macs and Linux systems)
install.packages("/filepath/CBDA_1.0.0_source_.tar.gz", repos = NULL, type = "source")

Initialization
This function call installs (if needed) and attaches all the necessary packages to run

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Memory-limits.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/Memory-limits.html
https://github.com/SOCR/CBDA/releases

CBDA.training 9

the CBDA package v1.0.0. It should be run before any production run or test.
The output shows a table where for each package a TRUE or FALSE is displayed.
Thus the necessary steps can be pursued in case some package has a FALSE.
CBDA_initialization()

Set the specs for the synthetic dataset to be tested
n = 300 # number of observations
p = 100 # number of variables

Generate a nxp matrix of IID variables (e.g., ~N(0,1))
X1 = matrix(rnorm(n*p), nrow=n, ncol=p)

Setting the nonzero variables - signal variables
nonzero=c(1,100,200,300,400,500,600,700,800,900)

Set the signal amplitude (for noise level = 1)
amplitude = 10

Allocate the nonzero coefficients in the correct places
beta = amplitude * (1:p %in% nonzero)

Generate a linear model with a bias (e.g., white noise ~N(0,1))
ztemp <- function() X1 %*% beta + rnorm(n)
z = ztemp()

Pass it through an inv-logit function to
generate the Bernoulli response variable Ytemp
pr = 1/(1+exp(-z))
Ytemp = rbinom(n,1,pr)
X2 <- cbind(Ytemp,X1)

dataset_file ="Binomial_dataset_3.txt"

Save the synthetic dataset
a <- tempdir()
write.table(X2, file = paste0(file.path(a),'/',dataset_file), sep=",")

The file is now stored in the directory a
a
list.files(a)

Load the Synthetic dataset
Data = read.csv(paste0(file.path(a),'/',dataset_file),header = TRUE)
Ytemp <- Data[,1] # set the outcome
original_names_Data <- names(Data)
cols_to_eliminate=1
Xtemp <- Data[-cols_to_eliminate] # set the matrix X of features/covariates
original_names_Xtemp <- names(Xtemp)

Add more wrappers/algorithms to the SuperLearner ensemble predictor
It can be commented out if only the default set of algorithms are used,
e.g., algorithm_list = c("SL.glm","SL.xgboost","SL.glmnet","SL.svm",
"SL.randomForest","SL.bartMachine")

10 CBDA_CleanUp

This defines a "new" wrapper, based on the default SL.glmnet
SL.glmnet.0.75 <- function(..., alpha = 0.75,family="binomial"){

SL.glmnet(..., alpha = alpha, family = family)}

test_example <- c("SL.glmnet","SL.glmnet.0.75")

Call the CBDA function
Multicore functionality NOT enabled
CBDA_object <- CBDA.training(Ytemp , Xtemp , M = 12 , Nrow_min = 50, Nrow_max = 70,

top = 10, max_covs = 8 , min_covs = 3,algorithm_list = test_example ,
workspace_directory = a)

Multicore functionality enabled
test_example <- c("SL.xgboost","SL.svm")
CBDA_test <- CBDA.training(Ytemp , Xtemp , M = 40 , Nrow_min = 50, Nrow_max = 70,

N_cores = 2 , top = 30, max_covs = 20 ,
min_covs = 5 , algorithm_list = test_example ,

workspace_directory = a)

End(Not run)

CBDA_CleanUp CBDA Clean up function for Compressive Big Data Analytics

Description

This CBDA cleans the current directory where all the intermediate workspaces have been created.

Usage

CBDA_CleanUp(label = "CBDA_package_test", workspace_directory = tempdir())

Arguments

label This is the label appended to RData workspaces generated within the CBDA
calls

workspace_directory

Directory where the results and workspaces are saved

Value

value

CBDA_Consolidation 11

CBDA_Consolidation CBDA Consolidation function for Compressive Big Data Analytics

Description

This CBDA function consolidates all the M workspaces generated in the Learning/Training step
into a single workspace. It also ranks all the predictive models and selects the **top** ones to be
sifted for top predictive features to be passed to the next step (i.e., **the Validation Step**).

Usage

CBDA_Consolidation(top, max_covs, M, misValperc, range_k, range_n, label,
workspace_directory = tempdir())

Arguments

top Top predictions to select out of the M

max_covs Top features to display and include in the Validation Step where nested models
are tested

M Number of the BigData subsets on which perform Knockoff Filtering and Su-
perLearner feature mining

misValperc Percentage of missing values to introduce in BigData (used just for testing, to
mimic real cases).

range_k Features Sampling Range - FSR

range_n Cases Sampling Range - CSR

label This is the label appended to RData workspaces generated within the CBDA
calls

workspace_directory

Directory where the results and workspaces are saved

Value

value

CBDA_Consolidation.pipeline

CBDA Consolidation function for Compressive Big Data Analytics -
LONI pipeline

Description

This CBDA function consolidates all the M workspaces generated in the Learning/Training step
into a single workspace. It also ranks all the predictive models and selects the **top** ones to be
sifted for top predictive features to be passed to the next step (i.e., **the Validation Step**).

12 CBDA_initialization

Usage

CBDA_Consolidation.pipeline(top, max_covs, M, misValperc, range_k, range_n,
label, workspace_directory = tempdir())

Arguments

top Top predictions to select out of the M

max_covs Top features to display and include in the Validation Step where nested models
are tested

M Number of the BigData subsets on which perform Knockoff Filtering and Su-
perLearner feature mining

misValperc Percentage of missing values to introduce in BigData (used just for testing, to
mimic real cases).

range_k Features Sampling Range - FSR

range_n Cases Sampling Range - CSR

label This is the label appended to RData workspaces generated within the CBDA
calls

workspace_directory

Directory where the results and workspaces are saved

Value

value

CBDA_initialization CBDA Initialization function for Compressive Big Data Analytics

Description

This CBDA function installs and attaches all the packages needed to run the CBDA. A user-defined
list of packages can be passed as argument. Itis recommended to first execute the function without
any arguments.

Usage

CBDA_initialization(pkg = c("missForest", "stats", "utils", "prettydoc",
"foreach", "SuperLearner", "knockoff", "caret", "smotefamily", "parallel",
"doParallel", "glmnet"), install = FALSE)

Arguments

pkg List of packages to install and attach for running the CBDA algorithm. A default
list is already defined.

install Option to setup installation and attachment of the listed package. Set to FALSE
by default

CBDA_spectrum_plots 13

Value

value

CBDA_spectrum_plots CBDA Spectrum plot function for Compressive Big Data Analytics

Description

This CBDA function generates histograms of the feature counts/densities as returned by the Accu-
racy and MSE metrics after the Learning/Training step.

Usage

CBDA_spectrum_plots(top)

Arguments

top Top ranked predictive models from the Learning/Training step

Value

value

CBDA_Stopping_Criteria

Stopping Criteria function for Compressive Big Data Analytics

Description

This CBDA function generates a stopping criteria for the *max_covs - min_covs* nested predictive
models generated in the previous step. It also populates the CBDA object.

Usage

CBDA_Stopping_Criteria(label = "CBDA_package_test", Kcol_min = 5,
Kcol_max = 15, Nrow_min = 30, Nrow_max = 50, misValperc = 0,
M = 3000, workspace_directory = tempdir(), max_covs = 100,
min_covs = 5, lambda = 1.005)

14 CBDA_Stopping_Criteria.pipeline

Arguments

label This is the label appended to RData workspaces generated within the CBDA
calls

Kcol_min Lower bound for the percentage of features-columns sampling (used for the Fea-
ture Sampling Range - FSR)

Kcol_max Upper bound for the percentage of features-columns sampling (used for the Fea-
ture Sampling Range - FSR)

Nrow_min Lower bound for the percentage of cases-rows sampling (used for the Case Sam-
pling Range - CSR)

Nrow_max Upper bound for the percentage of cases-rows sampling (used for the Case Sam-
pling Range - CSR)

misValperc Percentage of missing values to introduce in BigData (used just for testing, to
mimic real cases).

M Number of the BigData subsets on which perform Knockoff Filtering and Su-
perLearner feature mining

workspace_directory

Directory where the results and workspaces are saved

max_covs Top features to include in the Validation Step where nested models are tested

min_covs Minimum number of top features to include in the initial model for the Valida-
tion Step

lambda Fisher test threshold for MSE (=1.005 by default)

Value

value

CBDA_Stopping_Criteria.pipeline

Stopping Criteria function for Compressive Big Data Analytics

Description

This CBDA function generates a stopping criteria for the *max_covs - min_covs* nested predictive
models generated in the previous step. It also populates the CBDA object.

Usage

CBDA_Stopping_Criteria.pipeline(label = "CBDA_package_test", Kcol_min = 5,
Kcol_max = 15, Nrow_min = 30, Nrow_max = 50, misValperc = 0,
M = 3000, workspace_directory = tempdir(), max_covs = 100,
min_covs = 5, lambda = 1.005)

CBDA_Top_Ranked 15

Arguments

label This is the label appended to RData workspaces generated within the CBDA
calls

Kcol_min Lower bound for the percentage of features-columns sampling (used for the Fea-
ture Sampling Range - FSR)

Kcol_max Upper bound for the percentage of features-columns sampling (used for the Fea-
ture Sampling Range - FSR)

Nrow_min Lower bound for the percentage of cases-rows sampling (used for the Case Sam-
pling Range - CSR)

Nrow_max Upper bound for the percentage of cases-rows sampling (used for the Case Sam-
pling Range - CSR)

misValperc Percentage of missing values to introduce in BigData (used just for testing, to
mimic real cases).

M Number of the BigData subsets on which perform Knockoff Filtering and Su-
perLearner feature mining

workspace_directory

Directory where the results and workspaces are saved

max_covs Top features to include in the Validation Step where nested models are tested

min_covs Minimum number of top features to include in the initial model for the Valida-
tion Step

lambda Fisher test threshold for MSE (=1.005 by default)

Value

value

CBDA_Top_Ranked CBDA Top-Ranked selection function for Compressive Big Data Ana-
lytics

Description

This CBDA function has all the features of the *Consolidation()* function but allows to choose a
different **top** value (i.e., different from the one specified in the main *CBDA()* function

Usage

CBDA_Top_Ranked(top_new = 500, label = "CBDA_package_test", Kcol_min = 5,
Kcol_max = 15, Nrow_min = 30, Nrow_max = 50, misValperc = 0,
M = 3000, workspace_directory = getwd())

16 CBDA_Validation

Arguments

top_new The new value for the Top predictions to select out of the M

label This is the label appended to RData workspaces generated within the CBDA
calls

Kcol_min Lower bound for the percentage of features-columns sampling (used for the Fea-
ture Sampling Range - FSR)

Kcol_max Upper bound for the percentage of features-columns sampling (used for the Fea-
ture Sampling Range - FSR)

Nrow_min Lower bound for the percentage of cases-rows sampling (used for the Case Sam-
pling Range - CSR)

Nrow_max Upper bound for the percentage of cases-rows sampling (used for the Case Sam-
pling Range - CSR)

misValperc Percentage of missing values to introduce in BigData (used just for testing, to
mimic real cases).

M Number of the BigData subsets on which perform Knockoff Filtering and Su-
perLearner feature mining

workspace_directory

Directory where the results and workspaces are saved

Value

value

CBDA_Validation CBDA Validation function for Compressive Big Data Analytics

Description

This CBDA function generates *max_covs - min_covs* nested models based on the ranking re-
turned by the *Consolidation* function. It also consolidates all the *max_covs - min_covs* workspaces
into a single one.

Usage

CBDA_Validation(label = "CBDA_package_test", alpha = 0.2, Kcol_min = 5,
Kcol_max = 15, Nrow_min = 30, Nrow_max = 50, misValperc = 0,
M = 3000, N_cores = 1, top = 1000, workspace_directory = tempdir(),
max_covs = 100, min_covs = 5)

CBDA_Validation.pipeline 17

Arguments

label This is the label appended to RData workspaces generated within the CBDA
calls

alpha Percentage of the Big Data to hold off for Validation

Kcol_min Lower bound for the percentage of features-columns sampling (used for the Fea-
ture Sampling Range - FSR)

Kcol_max Upper bound for the percentage of features-columns sampling (used for the Fea-
ture Sampling Range - FSR)

Nrow_min Lower bound for the percentage of cases-rows sampling (used for the Case Sam-
pling Range - CSR)

Nrow_max Upper bound for the percentage of cases-rows sampling (used for the Case Sam-
pling Range - CSR)

misValperc Percentage of missing values to introduce in BigData (used just for testing, to
mimic real cases).

M Number of the BigData subsets on which perform Knockoff Filtering and Su-
perLearner feature mining

N_cores Number of Cores to use in the parallel implementation

top Top predictions to select out of the M

workspace_directory

Directory where the results and workspaces are saved

max_covs Top features to display and include in the Validation Step where nested models
are tested

min_covs Minimum number of top features to include in the initial model for the Valida-
tion Step

Value

value

CBDA_Validation.pipeline

CBDA Validation function for Compressive Big Data Analytics - LONI
pipeline version

Description

This CBDA function generates *max_covs - min_covs* nested models based on the ranking re-
turned by the *Consolidation* function. It also consolidates all the *max_covs - min_covs* workspaces
into a single one.

18 CBDA_Validation.pipeline

Usage

CBDA_Validation.pipeline(job_id_val, Ytemp, Xtemp,
label = "CBDA_package_test", alpha = 0.2, Kcol_min = 5, Kcol_max = 15,
Nrow_min = 30, Nrow_max = 50, misValperc = 0, M = 3000, N_cores = 1,
top = 1000, workspace_directory = tempdir(), max_covs = 100,
min_covs = 5)

Arguments

job_id_val This is the ID for the job generator in the LONI pipeline interface

Ytemp This is the output variable (vector) in the original Big Data

Xtemp This is the input variable (matrix) in the original Big Data

label This is the label appended to RData workspaces generated within the CBDA
calls

alpha Percentage of the Big Data to hold off for Validation

Kcol_min Lower bound for the percentage of features-columns sampling (used for the Fea-
ture Sampling Range - FSR)

Kcol_max Upper bound for the percentage of features-columns sampling (used for the Fea-
ture Sampling Range - FSR)

Nrow_min Lower bound for the percentage of cases-rows sampling (used for the Case Sam-
pling Range - CSR)

Nrow_max Upper bound for the percentage of cases-rows sampling (used for the Case Sam-
pling Range - CSR)

misValperc Percentage of missing values to introduce in BigData (used just for testing, to
mimic real cases).

M Number of the BigData subsets on which perform Knockoff Filtering and Su-
perLearner feature mining

N_cores Number of Cores to use in the parallel implementation

top Top predictions to select out of the M
workspace_directory

Directory where the results and workspaces are saved

max_covs Top features to display and include in the Validation Step where nested models
are tested

min_covs Minimum number of top features to include in the initial model for the Valida-
tion Step

Value

value

Index

CBDA, 2
CBDA.pipeline, 5
CBDA.training, 7
CBDA_CleanUp, 10
CBDA_Consolidation, 11
CBDA_Consolidation.pipeline, 11
CBDA_initialization, 12
CBDA_spectrum_plots, 13
CBDA_Stopping_Criteria, 13
CBDA_Stopping_Criteria.pipeline, 14
CBDA_Top_Ranked, 15
CBDA_Validation, 16
CBDA_Validation.pipeline, 17

19

	CBDA
	CBDA.pipeline
	CBDA.training
	CBDA_CleanUp
	CBDA_Consolidation
	CBDA_Consolidation.pipeline
	CBDA_initialization
	CBDA_spectrum_plots
	CBDA_Stopping_Criteria
	CBDA_Stopping_Criteria.pipeline
	CBDA_Top_Ranked
	CBDA_Validation
	CBDA_Validation.pipeline
	Index

