Package 'CBT'

May 31, 2018

Type Package

Description

Title Confidence Bound Target Algorithm
Version 1.0
Date 2018-05-16
Author Hock Peng Chan and Shouri Hu
Maintainer Shouri Hu <e0054325@u.nus.edu></e0054325@u.nus.edu>
Description The Confidence Bound Target (CBT) algorithm is designed for infinite arms bandit problem. It is shown that CBT algorithm achieves the regret lower bound for general reward distributions. Reference: Hock Peng Chan and Shouri Hu (2018) <arxiv:1805.11793>.</arxiv:1805.11793>
License GPL-2
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2018-05-31 20:38:43 UTC
R topics documented:
CBT
Index
CBT Confidence Bound Target (CBT) Algorithm

ditribution in known whereas EMp_CBT does not. Ana_CBT performs analysis to real data.

CBT and EMp_CBT provide simution to infinite arms with Bernoulli Rewards. CBT assumes prior

CBT

Usage

```
CBT(n, prior, bn = log(log(n)), cn = log(log(n)))

Emp_CBT(n, prior, bn = log(log(n)), cn = log(log(n)))

Ana_CBT(n, data, bn = log(log(n)), cn = log(log(n)))
```

Arguments

n	total number of rewards.
prior	prior distribution on mean of the rewards. Currently avaiable priors: "Uniform", "Sine" and "Cosine".
bn	bn should increse slowly to infinity with n.
cn	cn should increse slowly to infinity with n.
data	A matrix or dataframe. Each column is a population.

Details

If bn or cn are not specified they assume the default value of log(log(n)). The confidence bound for an arm with t observations is

```
L = max(xbar/bn, xbar - cn * sigma/sqrt(t)),
```

where xbar and sigma are the mean and standard deviation of the rewards from that paticular arm. CBT is a non-recalling algorithm. An arm is played until its confidence bound L drops below the target mean μ_* , and it is not played after that.

If the prior distribution is unknown, we shall apply empirical CBT, in which the target mean μ_* is replaced by S/n, with S the sum of rewards among all arms played at current stage. Unlike CBT however empirical CBT is a recalling algorithm which decides from among all arms which to play further, rather than to consider only the current arm.

Value

A list including elements

regret cumulative regret generated by n rewards.

K total number of experimented arms.

Author(s)

Hock Peng Chan and Shouri Hu

References

H.P. Chan and S. Hu (2018) Infinite Arms Bandit: Optimality via Confidence Bounds <arXiv:1805.11793>

CBT 3

Examples

```
R = 1000

cum_regret = numeric(R)

arms = numeric(R)

for(i in 1:R){
  result = CBT(n = 10000, prior = "Sine")
   cum_regret[i] = result$regret
   arms[i] = result$K
}

mean(cum_regret)
sd(cum_regret)/sqrt(R)
mean(arms)
sd(arms)/sqrt(R)
```

Index

```
*Topic Confidence Bound
CBT, 1
*Topic Multi-armed Bandit
CBT, 1

Ana_CBT (CBT), 1

CBT, 1

Cosine_Prior (CBT), 1

Emp_CBT (CBT), 1

Sine_Prior (CBT), 1

Uniform_Prior (CBT), 1
```