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2 CMLS-package

CMLS-package Constrained Multivariate Least Squares

Description

Solves multivariate least squares (MLS) problems subject to constraints on the coefficients, e.g.,
non-negativity, orthogonality, equality, inequality, monotonicity, unimodality, smoothness, etc. In-
cludes flexible functions for solving MLS problems subject to user-specified equality and/or in-
equality constraints, as well as a wrapper function that implements 24 common constraint options.
Also does k-fold or generalized cross-validation to tune constraint options for MLS problems. See
ten Berge (1993, ISBN:9789066950832) for an overview of MLS problems, and see Goldfarb and
Idnani (1983) <doi:10.1007/BF02591962> for a discussion of the underlying quadratic program-
ming algorithm.

Details

The DESCRIPTION file:

Package: CMLS
Type: Package
Title: Constrained Multivariate Least Squares
Version: 1.0-0
Date: 2018-06-06
Author: Nathaniel E. Helwig <helwig@umn.edu>
Maintainer: Nathaniel E. Helwig <helwig@umn.edu>
Depends: quadprog, parallel
Description: Solves multivariate least squares (MLS) problems subject to constraints on the coefficients, e.g., non-negativity, orthogonality, equality, inequality, monotonicity, unimodality, smoothness, etc. Includes flexible functions for solving MLS problems subject to user-specified equality and/or inequality constraints, as well as a wrapper function that implements 24 common constraint options. Also does k-fold or generalized cross-validation to tune constraint options for MLS problems. See ten Berge (1993, ISBN:9789066950832) for an overview of MLS problems, and see Goldfarb and Idnani (1983) <doi:10.1007/BF02591962> for a discussion of the underlying quadratic programming algorithm.
License: GPL (>=2)

Index of help topics:

CMLS-package Constrained Multivariate Least Squares
cmls Solve a Constrained Multivariate Least Squares

Problem
const Print or Return Constraint Options for cmls
cv.cmls Cross-Validation for cmls
mlsei Multivariate Least Squares with

Equality/Inequality Constraints
mlsun Multivariate Least Squares with Unimodality

(and E/I) Constraints

The cmls function provides a user-friendly interface for solving the MLS problem with 24 com-
mon constraint options (the const function prints or returns the different contraint options). The
cv.cmls function does k-fold or generalized cross-validation to tune the constraint options of the
cmls function. The mlsei function solves the MLS problem subject to user-specified equality
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and/or inequality (E/I) constraints on the coefficients. The mlsun function solves the MLS problem
subject to unimodality constraints and user-specified E/I constraints on the coefficients.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

Maintainer: Nathaniel E. Helwig <helwig@umn.edu>

References

Goldfarb, D., & Idnani, A. (1983). A numerically stable dual method for solving strictly convex
quadratic programs. Mathematical Programming, 27, 1-33.

Helwig, N. E. (in prep). Constrained multivariate least squares in R.

Ten Berge, J. M. F. (1993). Least Squares Optimization in Multivariate Analysis. Volume 25 of M
& T Series. DSWO Press, Leiden University. ISBN: 9789066950832

Turlach, B. A., & Weingessel, A. (2013). quadprog: Functions to solve Quadratic Programming
Problems. R package version 1.5-5. https://CRAN.R-project.org/package=quadprog

Examples

# See examples for cmls, cv.cmls, mlsei, and mlsun

cmls Solve a Constrained Multivariate Least Squares Problem

Description

Finds the p x m matrix B that minimizes the multivariate least squares problem

sum(( Y - X %*% B )^2)

subject to the specified constraints on the rows of B.

Usage

cmls(X, Y, const = "uncons", struc = NULL,
df = 10, degree = 3, intercept = TRUE,
backfit = FALSE, maxit = 1e3, eps = 1e-10,
del = 1e-6, XtX = NULL, mode.range = NULL)

Arguments

X Matrix of dimension n x p.

Y Matrix of dimension n x m.

const Constraint code. See const for the 24 available options.
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struc Structural constraints (defaults to unstructured). See Note.

df Degrees of freedom for the spline basis (for smoothness constraints). See Note.

degree Polynomial degree for the spline basis (for smoothness constraints). See Note.

intercept Logical indicating whether the spline basis should contain an intercept (for
smoothness constraints). See Note.

backfit Estimate B via back-fitting (TRUE) or vectorization (FALSE). See Details.

maxit Maximum number of iterations for back-fitting algorithm. Ignored if backfit = FALSE.

eps Convergence tolerance for back-fitting algorithm. Ignored if backfit = FALSE.

del Stability tolerance for back-fitting algorithm. Ignored if backfit = FALSE.

XtX Crossproduct matrix: XtX = crossprod(X).

mode.range Mode search ranges (for unimodal constraints). See Note.

Details

If backfit = FALSE (default), a closed-form solution is used to estimate B whenever possible.
Otherwise a back-fitting algorithm is used, where the rows of B are updated sequentially until con-
vergence. The backfitting algorithm is determined to have converged when

mean((B.new - B.old)^2) < eps * (mean(B.old^2) + del),

where B.old and B.new denote the parameter estimates at iterations t and t + 1 of the backfitting
algorithm.

Value

Returns the estimated matrix B with attribute "df" (degrees of freedom), which gives the df for each
row of B.

Note

Structure constraints (struc) should be specified with a p x m matrix of logicals (TRUE/FALSE),
such that FALSE elements indicate a weight should be constrained to be zero. Default uses unstruc-
tured weights, i.e., a p x m matrix of all TRUE values.

Inputs df, degree, and intercept are only applicable when using one of the 12 constraints that
involves a spline basis, i.e., "smooth", "smonon", "smoper", "smpeno", "ortsmo", "orsmpe", "mon-
smo", "mosmno", "unismo", "unsmno", "unsmpe", "unsmpn".

Input mode.range is only applicable when using one of the 8 constraints that enforces unimodality:
"unimod", "uninon", "uniper", "unpeno", "unismo", "unsmno", "unsmpe", "unsmpn". Mode search
ranges (mode.range) should be specified with a 2 x p matrix of integers such that

1 <= mode.range[1,j] <= mode.range[2,j] <= m for all j = 1:p.

Default is mode.range = matrix(c(1, m), 2, p).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>
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References

Goldfarb, D., & Idnani, A. (1983). A numerically stable dual method for solving strictly convex
quadratic programs. Mathematical Programming, 27, 1-33.

Helwig, N. E. (in prep). Constrained multivariate least squares in R.

Ten Berge, J. M. F. (1993). Least Squares Optimization in Multivariate Analysis. Volume 25 of M
& T Series. DSWO Press, Leiden University. ISBN: 9789066950832

Turlach, B. A., & Weingessel, A. (2013). quadprog: Functions to solve Quadratic Programming
Problems. R package version 1.5-5. https://CRAN.R-project.org/package=quadprog

See Also

const prints/returns the contraint options.

cv.cmls performs k-fold cross-validation to tune the constraint options.

mlsei and mlsun are used to implement several of the constraints.

Examples

######***###### GENERATE DATA ######***######

# make X
set.seed(2)
n <- 50
m <- 20
p <- 2
Xmat <- matrix(rnorm(n*p), nrow = n, ncol = p)

# make B (which satisfies all constraints except monotonicity)
x <- seq(0, 1, length.out = m)
Bmat <- rbind(sin(2*pi*x), sin(2*pi*x+pi)) / sqrt(4.75)
struc <- rbind(rep(c(TRUE, FALSE), each = m / 2),

rep(c(FALSE, TRUE), each = m / 2))
Bmat <- Bmat * struc

# make noisy data
set.seed(1)
Ymat <- Xmat %*% Bmat + rnorm(n*m, sd = 0.25)

######***###### UNCONSTRAINED ######***######

# unconstrained
Bhat <- cmls(X = Xmat, Y = Ymat, const = "uncons")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# unconstrained and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "uncons", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
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######***###### NON-NEGATIVITY ######***######

# non-negative
Bhat <- cmls(X = Xmat, Y = Ymat, const = "nonneg")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# non-negative and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "nonneg", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

######***###### PERIODICITY ######***######

# periodic
Bhat <- cmls(X = Xmat, Y = Ymat, const = "period")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# periodic and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "period", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# periodic and non-negative
Bhat <- cmls(X = Xmat, Y = Ymat, const = "pernon")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# periodic and non-negative and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "pernon", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

######***###### SMOOTHNESS ######***######

# smooth
Bhat <- cmls(X = Xmat, Y = Ymat, const = "smooth")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# smooth and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "smooth", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# smooth and periodic
Bhat <- cmls(X = Xmat, Y = Ymat, const = "smoper")
mean((Bhat - Bmat)^2)
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attr(Bhat, "df")

# smooth and periodic and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "smoper", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# smooth and non-negative
Bhat <- cmls(X = Xmat, Y = Ymat, const = "smonon")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# smooth and non-negative and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "smonon", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# smooth and periodic and non-negative
Bhat <- cmls(X = Xmat, Y = Ymat, const = "smpeno")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# smooth and periodic and non-negative and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "smpeno", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

######***###### ORTHOGONALITY ######***######

# orthogonal
Bhat <- cmls(X = Xmat, Y = Ymat, const = "orthog")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# orthogonal and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "orthog", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# orthgonal and non-negative
Bhat <- cmls(X = Xmat, Y = Ymat, const = "ortnon")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# orthgonal and non-negative and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "ortnon", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# orthogonal and smooth
Bhat <- cmls(X = Xmat, Y = Ymat, const = "ortsmo")
mean((Bhat - Bmat)^2)



8 cmls

attr(Bhat, "df")

# orthogonal and smooth and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "ortsmo", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# orthogonal and smooth and periodic
Bhat <- cmls(X = Xmat, Y = Ymat, const = "orsmpe")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# orthogonal and smooth and periodic and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "orsmpe", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

######***###### UNIMODALITY ######***######

# unimodal
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unimod")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# unimodal and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unimod", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# unimodal and non-negative
Bhat <- cmls(X = Xmat, Y = Ymat, const = "uninon")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# unimodal and non-negative and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "uninon", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# unimodal and periodic
Bhat <- cmls(X = Xmat, Y = Ymat, const = "uniper")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# unimodal and periodic and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "uniper", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# unimodal and periodic and non-negative
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unpeno")
mean((Bhat - Bmat)^2)
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attr(Bhat, "df")

# unimodal and periodic and non-negative and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unpeno", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

######***###### UNIMODALITY AND SMOOTHNESS ######***######

# unimodal and smooth
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unismo")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# unimodal and smooth and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unismo", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# unimodal and smooth and non-negative
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unsmno")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# unimodal and smooth and non-negative and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unsmno", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# unimodal and smooth and periodic
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unsmpe")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# unimodal and smooth and periodic and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unsmpe", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# unimodal and smooth and periodic and non-negative
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unsmpn")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# unimodal and smooth and periodic and non-negative and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unsmpn", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

######***###### MONOTONICITY ######***######
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# make B
x <- 1:m
Bmat <- rbind(1 / (1 + exp(-(x - quantile(x, 0.5)))),

1 / (1 + exp(-(x - quantile(x, 0.8)))))
struc <- rbind(rep(c(FALSE, TRUE), c(1 * m, 3 * m) / 4),

rep(c(FALSE, TRUE), c(m, m) / 2))
Bmat <- Bmat * struc

# make noisy data
set.seed(1)
Ymat <- Xmat %*% Bmat + rnorm(m*n, sd = 0.25)

# monotonic increasing
Bhat <- cmls(X = Xmat, Y = Ymat, const = "moninc")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# monotonic increasing and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "moninc", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# monotonic increasing and non-negative
Bhat <- cmls(X = Xmat, Y = Ymat, const = "monnon")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# monotonic increasing and non-negative and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "monnon", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# monotonic increasing and smooth
Bhat <- cmls(X = Xmat, Y = Ymat, const = "monsmo")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# monotonic increasing and smooth and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "monsmo", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# monotonic increasing and smooth and non-negative
Bhat <- cmls(X = Xmat, Y = Ymat, const = "mosmno")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

# monotonic increasing and smooth and non-negative and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "mosmno", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
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const Print or Return Constraint Options for cmls

Description

Prints or returns six letter constraint codes for cmls, along with corresponding descriptions.

Usage

const(x, print = TRUE)

Arguments

x Vector of six letter constraint codes. If missing, prints/returns all 24 options.

print Should constraint information be printed (print = TRUE) or returned as a data
frame (print = FALSE).

Value

Prints (or returns) constraint codes and descriptions.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (in prep). Constrained multivariate least squares in R.

See Also

Constraints are used in the cmls function.

Examples

# print some constraints
const(c("uncons", "smpeno"))

# return some constraints
const(c("uncons", "smpeno"), print = FALSE)

# print all constraints
const()

# return all constraints
const(print = FALSE)
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cv.cmls Cross-Validation for cmls

Description

Does k-fold or generalized cross-validation to tune the constraint options for cmls. Tunes the model
with respect to any combination of the arguments const, df, degree, and/or intercept.

Usage

cv.cmls(X, Y, nfolds = 2, foldid = NULL, parameters = NULL,
const = "uncons", df = 10, degree = 3, intercept = TRUE,
mse = TRUE, parallel = FALSE, cl = NULL, verbose = TRUE, ...)

Arguments

X Matrix of dimension n x p.

Y Matrix of dimension n x m.

nfolds Number of folds for k-fold cross-validation. Ignored if foldid argument is
provided. Set nfolds=1 for generalized cross-validation (GCV).

foldid Factor or integer vector of length n giving the fold identification for each obser-
vation.

parameters Parameters for tuning. Data frame with columns const, df, degree, and intercept.
See Details.

const Parameters for tuning. Character vector specifying constraints for tuning. See
Details.

df Parameters for tuning. Integer vector specifying degrees of freedom for tuning.
See Details.

degree Parameters for tuning. Integer vector specifying polynomial degrees for tuning.
See Details.

intercept Parameters for tuning. Logical vector specifying intercepts for tuning. See De-
tails.

mse If TRUE (default), the mean squared error is used as the CV loss function. Oth-
erwise the mean absolute error is used.

parallel Logical indicating if parSapply should be used. See Examples.

cl Cluster created by makeCluster. Only used when parallel = TRUE.

verbose If TRUE, tuning progress is printed via txtProgressBar. Ignored if parallel = TRUE.

... Additional arguments to the cmls function, e.g., struc, backfit, etc.
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Details

The parameters for tuning can be supplied via one of two options:

(A) Using the parameters argument. In this case, the argument parameters must be a data frame
with columns const, df, degree, and intercept, where each row gives a combination of parame-
ters for the CV tuning.

(B) Using the const, df, degree, and intercept arguments. In this case, the expand.grid func-
tion is used to create the parameters data frame, which contains all combinations of the arguments
const, df, degree, and intercept. Duplicates are removed before the CV tuning.

Value
best.parameters

Best combination of parameters, i.e., the combination that minimizes the cvloss.
top5.parameters

Top five combinations of parameters, i.e., the combinations that give the five
smallest values of the cvloss.

full.parameters

Full set of parameters. Data frame with cvloss (GCV, MSE, or MAE) for each
combination of parameters.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (in prep). Constrained multivariate least squares in R.

See Also

See the cmls and const functions for further details on the available constraint options.

Examples

# make X
set.seed(1)
n <- 50
m <- 20
p <- 2
Xmat <- matrix(rnorm(n*p), nrow = n, ncol = p)

# make B (which satisfies all constraints except monotonicity)
x <- seq(0, 1, length.out = m)
Bmat <- rbind(sin(2*pi*x), sin(2*pi*x+pi)) / sqrt(4.75)
struc <- rbind(rep(c(TRUE, FALSE), each = m / 2),

rep(c(FALSE, TRUE), each = m / 2))
Bmat <- Bmat * struc
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# make noisy data
Ymat <- Xmat %*% Bmat + rnorm(n*m, sd = 0.5)

# 5-fold CV: tune df (5,...,15) for const = "smooth"
kcv <- cv.cmls(X = Xmat, Y = Ymat, nfolds = 5,

const = "smooth", df = 5:15)
kcv$best.parameters
kcv$top5.parameters
plot(kcv$full.parameters$df, kcv$full.parameters$cvloss, t = "b")

# sample foldid for 5-fold CV
set.seed(2)
foldid <- sample(rep(1:5, length.out = n))

# 5-fold CV: tune df (5,...,15) w/ all 20 relevant constraints (no struc)
# using sequential computation (default)
myconst <- as.character(const(print = FALSE)$label[-c(13:16)])
system.time({

kcv <- cv.cmls(X = Xmat, Y = Ymat, foldid = foldid,
const = myconst, df = 5:15)

})
kcv$best.parameters
kcv$top5.parameters

# 5-fold CV: tune df (5,...,15) w/ all 20 relevant constraints (no struc)
# using parallel package for parallel computations
myconst <- as.character(const(print = FALSE)$label[-c(13:16)])
system.time({

cl <- makeCluster(detectCores())
kcv <- cv.cmls(X = Xmat, Y = Ymat, foldid = foldid,

const = myconst, df = 5:15,
parallel = TRUE, cl = cl)

stopCluster(cl)
})
kcv$best.parameters
kcv$top5.parameters

# 5-fold CV: tune df (5,...,15) w/ all 20 relevant constraints (w/ struc)
# using sequential computation (default)
myconst <- as.character(const(print = FALSE)$label[-c(13:16)])
system.time({

kcv <- cv.cmls(X = Xmat, Y = Ymat, foldid = foldid,
const = myconst, df = 5:15, struc = struc)

})
kcv$best.parameters
kcv$top5.parameters
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# 5-fold CV: tune df (5,...,15) w/ all 20 relevant constraints (w/ struc)
# using parallel package for parallel computations
myconst <- as.character(const(print = FALSE)$label[-c(13:16)])
system.time({

cl <- makeCluster(detectCores())
kcv <- cv.cmls(X = Xmat, Y = Ymat, foldid = foldid,

const = myconst, df = 5:15, struc = struc,
parallel = TRUE, cl = cl)

stopCluster(cl)
})
kcv$best.parameters
kcv$top5.parameters

mlsei Multivariate Least Squares with Equality/Inequality Constraints

Description

Finds the q x p matrix B that minimizes the multivariate least squares problem

sum(( Y - X %*% t(Z %*% B) )^2)

subject to t(A) %*% B[,j] >= b for all j = 1:p. Unique basis functions and constraints are
allowed for each column of B.

Usage

mlsei(X, Y, Z, A, b, meq,
backfit = FALSE, maxit = 1000,
eps = 1e-10, del = 1e-6,
XtX = NULL, ZtZ = NULL,
simplify = TRUE, catchError = FALSE)

Arguments

X Matrix of dimension n x p.

Y Matrix of dimension n x m.

Z Matrix of dimension m x q. Can also input a list (see Note). If missing, then
Z = diag(m) so that q = m.

A Constraint matrix of dimension q x r. Can also input a list (see Note). If missing,
no constraints are imposed.
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b Consraint vector of dimension r x 1. Can also input a list (see Note). If missing,
then b = rep(0, r).

meq The first meq columns of A are equality constraints, and the remaining r - meq
are inequality constraints. Can also input a vector (see Note). If missing, then
meq = 0.

backfit Estimate B via back-fitting (TRUE) or vectorization (FALSE). See Details.

maxit Maximum number of iterations for back-fitting algorithm. Ignored if backfit = FALSE.

eps Convergence tolerance for back-fitting algorithm. Ignored if backfit = FALSE.

del Stability tolerance for back-fitting algorithm. Ignored if backfit = FALSE.

XtX Crossproduct matrix: XtX = crossprod(X).

ZtZ Crossproduct matrix: ZtZ = crossprod(Z).

simplify If Z is a list, should B be returned as a matrix (if possible)? See Note.

catchError If catchError = FASLE, an error induced by solve.QP will be returned. Oth-
erwise tryCatch will be used in attempt to catch the error.

Details

If backfit = FALSE (default), a closed-form solution is used to estimate B whenever possible.
Otherwise a back-fitting algorithm is used, where the columns of B are updated sequentially until
convergence. The backfitting algorithm is determined to have converged when

mean((B.new - B.old)^2) < eps * (mean(B.old^2) + del),

where B.old and B.new denote the parameter estimates at iterations t and t + 1 of the backfitting
algorithm.

Value

If Z is a list with qj = q for all j = 1, . . . , p, then...

B is returned as a q x p matrix when simplify = TRUE

B is returned as a list of length p when simplify = FALSE

If Z is a list with qj 6= q for some j, then B is returned as a list of length p.

Otherwise B is returned as a q x p matrix.

Note

The Z input can also be a list of length p where Z[[j]] contains a m x qj matrix. If qj = q for all
j = 1, . . . , p and simplify = TRUE, the output B will be a matrix. Otherwise B will be a list of
length p where B[[j]] contains a qj x 1 vector.

The A and b inputs can also be lists of length p where t(A[[j]]) %*% B[,j] >= b[[j]] for all
j = 1, . . . , p. If A and b are lists of length p, the meq input should be a vector of length p indicating
the number of equality constraints for each element of A.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>
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See Also

cmls calls this function for several of the constraints.

Examples

######***###### GENERATE DATA ######***######

# make X
set.seed(2)
n <- 50
m <- 20
p <- 2
Xmat <- matrix(rnorm(n*p), nrow = n, ncol = p)

# make B (which satisfies all constraints except monotonicity)
x <- seq(0, 1, length.out = m)
Bmat <- rbind(sin(2*pi*x), sin(2*pi*x+pi)) / sqrt(4.75)
struc <- rbind(rep(c(TRUE, FALSE), each = m / 2),

rep(c(FALSE, TRUE), each = m / 2))
Bmat <- Bmat * struc

# make noisy data
set.seed(1)
Ymat <- Xmat %*% Bmat + rnorm(n*m, sd = 0.25)

######***###### UNCONSTRAINED ######***######

# unconstrained
Bhat.cmls <- cmls(X = Xmat, Y = Ymat, const = "uncons")
Bhat.mlsei <- t(mlsei(X = Xmat, Y = Ymat))
mean((Bhat.cmls - Bhat.mlsei)^2)

# unconstrained and structured (note: cmls is more efficient)
Bhat.cmls <- cmls(X = Xmat, Y = Ymat, const = "uncons", struc = struc)
Amat <- vector("list", p)
meq <- rep(0, p)
for(j in 1:p){

meq[j] <- sum(!struc[j,])
if(meq[j] > 0){
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A <- matrix(0, nrow = m, ncol = meq[j])
A[!struc[j,],] <- diag(meq[j])
Amat[[j]] <- A

} else {
Amat[[j]] <- matrix(0, nrow = m, ncol = 1)

}
}
Bhat.mlsei <- t(mlsei(X = Xmat, Y = Ymat, A = Amat, meq = meq))
mean((Bhat.cmls - Bhat.mlsei)^2)

######***###### NON-NEGATIVITY ######***######

# non-negative
Bhat.cmls <- cmls(X = Xmat, Y = Ymat, const = "nonneg")
Bhat.mlsei <- t(mlsei(X = Xmat, Y = Ymat, A = diag(m)))
mean((Bhat.cmls - Bhat.mlsei)^2)

# non-negative and structured (note: cmls is more efficient)
Bhat.cmls <- cmls(X = Xmat, Y = Ymat, const = "nonneg", struc = struc)
eye <- diag(m)
meq <- rep(0, p)
for(j in 1:p){

meq[j] <- sum(!struc[j,])
Amat[[j]] <- eye[,sort(struc[j,], index.return = TRUE)$ix]

}
Bhat.mlsei <- t(mlsei(X = Xmat, Y = Ymat, A = Amat, meq = meq))
mean((Bhat.cmls - Bhat.mlsei)^2)

# see internals of cmls.R for further examples

mlsun Multivariate Least Squares with Unimodality (and E/I) Constraints

Description

Finds the q x p matrix B that minimizes the multivariate least squares problem

sum(( Y - X %*% t(Z %*% B) )^2)

subject to Z %*% B[,j] is unimodal and t(A) %*% B[,j] >= b for all j = 1:p. Unique basis
functions and constraints are allowed for each column of B.

Usage

mlsun(X, Y, Z, A, b, meq,
mode.range = NULL, maxit = 1000,
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eps = 1e-10, del = 1e-6,
XtX = NULL, ZtZ = NULL,
simplify = TRUE, catchError = FALSE)

Arguments

X Matrix of dimension n x p.

Y Matrix of dimension n x m.

Z Matrix of dimension m x q. Can also input a list (see Note). If missing, then
Z = diag(m) so that q = m.

A Constraint matrix of dimension q x r. Can also input a list (see Note). If missing,
no equality/inequality (E/I) constraints are imposed.

b Consraint vector of dimension r x 1. Can also input a list (see Note). If missing,
then b = rep(0, r).

meq The first meq columns of A are equality constraints, and the remaining r - meq
are inequality constraints. Can also input a vector (see Note). If missing, then
meq = 0.

mode.range Mode search ranges, which should be a 2 x p matrix of integers such that
1 <= mode.range[1,j] <= mode.range[2,j] <= m for all j = 1:p. Default
is mode.range = matrix(c(1, m), 2, p).

maxit Maximum number of iterations for back-fitting algorithm. Ignored if backfit = FALSE.

eps Convergence tolerance for back-fitting algorithm. Ignored if backfit = FALSE.

del Stability tolerance for back-fitting algorithm. Ignored if backfit = FALSE.

XtX Crossproduct matrix: XtX = crossprod(X).

ZtZ Crossproduct matrix: ZtZ = crossprod(Z).

simplify If Z is a list, should B be returned as a matrix (if possible)? See Note.

catchError If catchError = FASLE, an error induced by solve.QP will be returned. Oth-
erwise tryCatch will be used in attempt to catch the error.

Details

A back-fitting algorithm is used to estimate B, where the columns of B are updated sequentially
until convergence (outer loop). For each column of B, (the inner loop of) the algorithm searches for
the j-th mode across the search range specified by the j-th column of mode.range. The backfitting
algorithm is determined to have converged when

mean((B.new - B.old)^2) < eps * (mean(B.old^2) + del),

where B.old and B.new denote the parameter estimates at outer iterations t and t + 1 of the back-
fitting algorithm.

Value

If Z is a list with qj = q for all j = 1, . . . , p, then...

B is returned as a q x p matrix when simplify = TRUE

B is returned as a list of length p when simplify = FALSE
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If Z is a list with qj 6= q for some j, then B is returned as a list of length p.

Otherwise B is returned as a q x p matrix.

Note

The Z input can also be a list of length p where Z[[j]] contains a m x qj matrix. If qj = q for all
j = 1, . . . , p and simplify = TRUE, the output B will be a matrix. Otherwise B will be a list of
length p where B[[j]] contains a qj x 1 vector.

The A and b inputs can also be lists of length p where t(A[[j]]) %*% B[,j] >= b[[j]] for all
j = 1, . . . , p. If A and b are lists of length p, the meq input should be a vector of length p indicating
the number of equality constraints for each element of A.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Goldfarb, D., & Idnani, A. (1983). A numerically stable dual method for solving strictly convex
quadratic programs. Mathematical Programming, 27, 1-33.

Helwig, N. E. (in prep). Constrained multivariate least squares in R.

Ten Berge, J. M. F. (1993). Least Squares Optimization in Multivariate Analysis. Volume 25 of M
& T Series. DSWO Press, Leiden University. ISBN: 9789066950832

Turlach, B. A., & Weingessel, A. (2013). quadprog: Functions to solve Quadratic Programming
Problems. R package version 1.5-5. https://CRAN.R-project.org/package=quadprog

See Also

cmls calls this function for the unimodality constraints.

Examples

######***###### GENERATE DATA ######***######

# make X
set.seed(2)
n <- 50
m <- 20
p <- 2
Xmat <- matrix(rnorm(n*p), nrow = n, ncol = p)

# make B (which satisfies all constraints except monotonicity)
x <- seq(0, 1, length.out = m)
Bmat <- rbind(sin(2*pi*x), sin(2*pi*x+pi)) / sqrt(4.75)
struc <- rbind(rep(c(TRUE, FALSE), each = m / 2),

rep(c(FALSE, TRUE), each = m / 2))
Bmat <- Bmat * struc

# make noisy data
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set.seed(1)
Ymat <- Xmat %*% Bmat + rnorm(n*m, sd = 0.25)

######***###### UNIMODALITY ######***######

# unimodal
Bhat.cmls <- cmls(X = Xmat, Y = Ymat, const = "unimod")
Bhat.mlsun <- t(mlsun(X = Xmat, Y = Ymat))
mean((Bhat.cmls - Bhat.mlsun)^2)

# unimodal and structured
Bhat.cmls <- cmls(X = Xmat, Y = Ymat, const = "unimod", struc = struc)
Amat <- vector("list", p)
meq <- rep(0, p)
for(j in 1:p){

meq[j] <- sum(!struc[j,])
if(meq[j] > 0){

A <- matrix(0, nrow = m, ncol = meq[j])
A[!struc[j,],] <- diag(meq[j])
Amat[[j]] <- A

} else {
Amat[[j]] <- matrix(0, nrow = m, ncol = 1)

}
}
Bhat.mlsun <- t(mlsun(X = Xmat, Y = Ymat, A = Amat, meq = meq))
mean((Bhat.cmls - Bhat.mlsun)^2)

# unimodal and non-negative
Bhat.cmls <- cmls(X = Xmat, Y = Ymat, const = "uninon")
Bhat.mlsun <- t(mlsun(X = Xmat, Y = Ymat, A = diag(m)))
mean((Bhat.cmls - Bhat.mlsun)^2)

# unimodal and non-negative and structured
Bhat.cmls <- cmls(X = Xmat, Y = Ymat, const = "uninon", struc = struc)
eye <- diag(m)
meq <- rep(0, p)
for(j in 1:p){

meq[j] <- sum(!struc[j,])
Amat[[j]] <- eye[,sort(struc[j,], index.return = TRUE)$ix]

}
Bhat.mlsun <- t(mlsun(X = Xmat, Y = Ymat, A = Amat, meq = meq))
mean((Bhat.cmls - Bhat.mlsun)^2)

# see internals of cmls.R for further examples
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