Package 'CautiousLearning'

July 18, 2019

Type Package
Title Control Charts with Guaranteed In-Control Performance and Cautious Parameters Learning
Version 1.0.1
Date 2019-06-30
Author Giovanna Capizzi and Guido Masarotto
Maintainer Giovanna Capizzi <giovanna.capizzi@unipd.it></giovanna.capizzi@unipd.it>
Description Design and use of control charts for detecting mean changes based on a delayed updating of the in-control parameter estimates. See Capizzi and Masarotto (2019) <doi:10.1080 00224065.2019.1640096=""> for the description of the method.</doi:10.1080>
License MIT + file LICENSE
Imports Rcpp (>= 1.0.0), spc
LinkingTo Rcpp, sitmo, BH
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-07-18 13:30:04 UTC

R topics documented:

CautiousLearning-package	1
cautiousLearning	2
lesign	3
omp	5
imulation	6

```
CautiousLearning-package
```

Guaranteed In-Control Control Chart Performance with Cautious Parameter Learning

Description

Functions in this package allow to design, study and apply control charts based on the cautious parameter learning approach described in Capizzi and Masarotto (2019).

On system where the openMP standard is supported, these functions can take advantage of the computing power offered by a multicore workstation. See omp for the default setting.

Details

The package includes the following functions:

- Computation of the control limits via stochastic approximation: x.cl, ewma.cl, cusum.cl;
- Estimation errors and conditional run-length simulation: ruv and rcrl;
- Application to real data: cautiousLearning;
- Controlling the number of used openMP cores and the random number generator seeds: hasOMP, setOMPThreads and setSITMOSeeds.

Author(s)

Giovanna Capizzi <giovanna.capizzi@unipd.it> and Guido Masarotto <guido.masarotto@unipd.it> Maintainer: Giovanna Capizzi

References

Capizzi, G. and Masarotto, G. (2019) "Guaranteed In-Control Control Chart Performance with Cautious Parameter Learning", accepted for publication in *Journal of Quality Technology*, a copy of the paper can be obtained from the authors.

cautiousLearning Applications of control charts based on the cautious learning approach

Description

This function applies and, optionally, plots a control chart based on the cautious learning approach described in Capizzi and Masarotto (2019).

Usage

```
cautiousLearning(chart, x, mu0, s0, plot = TRUE)
```

cautiousLearning

Arguments

chart	list with the same elements as those returned by ${\tt x.cl}, {\tt ewma.cl} \ {\tt and} \ {\tt cusum.cl}.$
х	numeric vector containing the Phase II data.
mu0, s0	estimates of the in-control mean and standard deviation obtained by the Phase I reference sample.
plot	if TRUE the control statistics and the cautiuos control limits are plotted.

Value

The function returns (invisibly when plot==TRUE) a numeric matrix containing

Author(s)

Giovanna Capizzi and Guido Masarotto

References

Capizzi, G. and Masarotto, G. (2019) "Guaranteed In-Control Control Chart Performance with Cautious Parameter Learning", accepted for publication in *Journal of Quality Technology*, a copy of the paper can be obtained from the authors.

Examples

```
## EWMA control chart (nominal ARL=500,
## initial estimates based on 100 in-control observations)
chart <- list(chart = "EWMA",</pre>
               lambda = 0.2,
               limit = c(Linf=3.187, Delta=0.427, A=1.5, B=50, m=100))
## Phase I estimates
set.seed(12345)
xic <- rnorm(100, 12 , 3)
m0 <- mean(xic)</pre>
s0 <- sd(xic)
## Phase II observations (one sigma mean shift starting at i=501)
x <- c(rnorm(500, 12, 3), rnorm(50, 15, 3))
## Monitoring
y <- cautiousLearning(chart, x, m0, s0)</pre>
head(y)
tail(y)
```

design

Description

These functions compute the control limits of X (x.cl), EWMA (ewma.cl) and CUSUM (cusum.cl) control charts based on the cautious learning approach. The stochastic approximation algorithm, described in the Appendix A of Capizzi and Masarotto (2019), is used.

When openMP is supported, computation can be distribuited on multiple cores. See omp.

Usage

```
x.cl(m, arl0, alpha = 0.1, beta = 0.05, H = 200, A = 1.5, B = 50,
Ninit = 1000, Nfinal = 30000)
ewma.cl(lambda, m, arl0, alpha = 0.1, beta = 0.05, H = 200, A = 1.5, B = 50,
Ninit = 1000, Nfinal = 30000)
cusum.cl(k, m, arl0, alpha = 0.1, beta = 0.05, H = 200, A = 1.5, B = 50,
Ninit = 1000, Nfinal = 30000)
```

Arguments

lambda	EWMA smoothing constant.	
k	CUSUM reference value.	
m	number of in-control observations used to estimate the process mean and stan- dard deviation at the beginning of the monitoring phase.	
arlO, alpha,	beta, H	
	desired in-control average run-length and constants defining the empirical guar- anteed in-control performance condition. See equations (2) and (6) in Capizzi and Masarotto (2019).	
А, В	constants controlling when the parameters estimate are updated. See equation (3) in Capizzi and Masarotto (2019). If $A=NA$ and $B=NA$, the no-learning control limits are computed.	
Ninit, Nfina	L	
	number of iterations used in the stochastic approximation algorithm. See Capizzi and Masarotto (2019), Appendix A.	

Value

A list with the following elements:

chart	string describing the control chart ("X", "EWMA" or "CUSUM").
lambda	EWMA smoothing constant (only when chart=="EWMA").
k	CUSUM reference value (only when chart=="CUSUM").

omp

limit	numeric vector of length equal to five containing the constants defining the cau-
	tiuos learning control limits, i.e, L_{∞} , Δ , A, B and m (see equation (3) and (4)
	in Capizzi and Masarotto (2019)).

Author(s)

Giovanna Capizzi and Guido Masarotto

References

Capizzi, G. and Masarotto, G. (2019) "Guaranteed In-Control Control Chart Performance with Cautious Parameter Learning", accepted for publication in *Journal of Quality Technology*, a copy of the paper can be obtained from the authors.

Examples

```
## Only for testing: the number of iterations is reduced
## to reduce the computing time
Ninit <- 50
Nfinal <- 100
H <- 50
x.cl(100, 500, Ninit=Ninit, Nfinal=Nfinal, H=H)
x.cl(100, 500, A=NA, B=NA, Ninit=Ninit, Nfinal=Nfinal, H=H)
ewma.cl(0.2, 100, 500, Ninit=Ninit, Nfinal=Nfinal, H=H)
cusum.cl(1, 100, 500, Ninit=Ninit, Nfinal=Nfinal, H=H)
## Using the default number of iterations
x.cl(100, 500)
x.cl(100, 500, A=NA, B=NA)
ewma.cl(0.2,100, 500)
cusum.cl(1, 100, 500)
```

```
omp
```

Support for parallel computation

Description

The functions can be used

- to check if the current system supports the openMP standard;
- to control the number of used cores;
- to set the seeds of the random number generators.

Usage

```
hasOMP()
```

```
setOMPThreads (nthreads)
```

setSITMOSeeds(seed)

Arguments

nthreads	number of OpenMP threads to be used.
seed	number between 0 and 1 used to set the seeds of the random number generators in each threads.

Details

Each openMP thread (or the single thread used on systems where openMP is not supported) uses a separate sitmo random number generator. See sitmo-package.

Value

Function has OMP returns TRUE/FALSE if the system supports/does not support openMP.

Functions setOMPThreads and setSITMOSeeds do not return any value.

Note

When the package is loaded, the following code is automatically executed

- if (hasOMP()) setOMPThreads(parallel::detectCores())
- setSITMOSeeds(runif(1))

Author(s)

Giovanna Capizzi and Guido Masarotto

simulation

Estimation errors and conditional run-length simulation

Description

Function ruv simulates the standardized estimation errors at the starting of the monitoring phase (see Section 2.3 of Capizzi and Masarotto (2019)).

Function rcrl simulates, under different in-control or out-control scenarios, the conditional runlength given the standardized estimation errors. When openMP is supported, computation can be distribuited on multiple cores. See omp.

Usage

```
ruv(n, m)
rcrl(n, chart, u, v, tau, delta, omega, maxrl = 1000000L)
```

simulation

Arguments

n	number of simulated values.
m	number of in-control observations available at the starting of the monitoring phase.
chart	list with the same elements as those returned by $\verb+x.cl, ewma.cl$ and <code>cusum.cl</code> .
u, v	values of the estimation errors (scalars).
tau, delta, c	mega
	when i <tau, are="" as="" distributed="" n(mu,sigma^2)="" observations="" random="" variables;<br="">when i>=tau, observations are distributed as N(mu+delta*sigma, (omega*sigma)^2) random variables.</tau,>
maxrl	run-length are truncated at i=maxrl.

Value

ruv	numeric matrix of dimension nx2.
rcrl	integer vector of length n.

Author(s)

Giovanna Capizzi and Guido Masarotto

References

Capizzi, G. and Masarotto, G. (2019) "Guaranteed In-Control Control Chart Performance with Cautious Parameter Learning", accepted for publication in *Journal of Quality Technology*, a copy of the paper can be obtained from the authors.

Examples