
Package ‘CollocInfer’
November 7, 2016

Version 1.0.4

Date 2016-10-14

Title Collocation Inference for Dynamic Systems

Author Giles Hooker <gjh27@cornell.edu>,
Luo Xiao <lx42@cornell.edu>,
James Ramsay <ramsay@psych.mcgill.ca>

Maintainer Giles Hooker <gjh27@cornell.edu>

Depends R (>= 2.4.0), fda

Imports MASS, Matrix, spam, deSolve, methods

Suggests pomp, SparseM, subplex, trust, maxLik

Description These functions implement collocation-inference
for continuous-time and discrete-time stochastic processes.
They provide model-based smoothing, gradient-matching,
generalized profiling and forwards prediction error methods.

License GPL (>= 2)

URL http://www.bscb.cornell.edu/~hooker

LazyData true

NeedsCompilation no

Repository CRAN

Date/Publication 2016-11-07 08:12:33

R topics documented:
CollocInfer-package . 2
ChemoData . 3
ChemoRMData . 3
CollocInferPlots . 4
FhNdata . 5
FhNest . 6
FitMatch . 6
forward.prediction.error . 8

1

http://www.bscb.cornell.edu/~hooker

2 CollocInfer-package

inneropt . 9
IntegrateForward . 11
make.findif . 12
make.lik . 13
make.logtrans . 15
make.proc . 16
make.transfer . 17
make.variance . 20
NSdata . 21
outeropt . 21
ParsMatch . 23
Profile.covariance . 25
ProfileObjective . 26
Profiling Routines . 29
SEIRdata . 33
setup . 34
Smooth.LS . 37
SplineEst . 41

Index 43

CollocInfer-package Collocation Inference in R

Description

Functions carry out collocation inference method for nonlinear continuous-time dynamic systems.
These are based on basis-expansion representations for the state of the system. Gradient-matching,
profiling and EM algorithms are supported.

Details

Package: CollocInfer
Type: Package
Version: 2.1.0
Date: 2009-08-19
License: GPL-2
LazyLoad: yes

Author(s)

Giles Hooker, Luo Xiao

Maintainer: Giles Hooker <giles.hooker@cornell.edu>

ChemoData 3

References

Ramsay, James O., Giles Hooker, Jiguo Cao and David Campbell (2007), "Parameter Estimation
in Ordinary Differential Equations: A Generalized Smoothing Approach", Journal of the Royal
Statistical Society, 69

Ramsay, James O., and Silverman, Bernard W. (2006), Functional Data Analysis, 2nd ed., Springer,
New York.

ChemoData Chemostat Example Data

Description

Five-species Chemostat Model

Usage

ChemoData

Format

• ChemoData A 61 by 2 matrix of data observed in a chemostat.

• ChemoTime A vector of 61 observation times corresponding to ChemoData.

• ChemoPars Named parameter vector as a starting point for estimation ChemoData.

• ChemoVarnames c('N','C1','C2','B','S'): the state variable names for the chemostat
system.

• ChemoParnames parameter names for the chemostat system.

Source

Yoshida, T., L. E. Jones, S. P. Ellner, G. F. Fussmann and N. G. Hairston, 2003, "Rapid evolution
drives ecological dynamics in a predator-prey system", Nature, 424, pp. 303-306.

ChemoRMData Rosenzweig-MacArthur Model Applied to Chemostat Data

Description

Two-Species Rosenzweig-MacArthur Model

Usage

ChemoRMData

4 CollocInferPlots

Format

• ChemoRMData A 108 by 2 matrix of data observed in a chemostat.

• ChemoRMPars Named parameter vector as a starting point for estimation in ChemoRMData.

• ChemoRMTime A vector of 108 observation times corresponding to ChemoData.

• RMparnames parameter names for the Rosenzweig-MacArthur system.

• RMvarnames the state variable names for the Rosenzweig-MacArthur system.

Source

Becks, L., S. P. Ellner, L. E. Jones, and N. G. Hairston, 2010, "Reduction of adaptive genetic
diversity radically alters eco-evolutionary community dynamics", Ecology Letters, 13, pp. 989-
997.

CollocInferPlots Diagnostic PLots for CollocInfer

Description

Diagnostic Plots on the Results of CollocInfer

Usage

CollocInferPlots(coefs,pars,lik,proc,times=NULL,data=NULL,
cols=NULL,datacols=NULL,datanames=NULL,ObsPlot=TRUE,DerivPlot=TRUE,
DerivResid=TRUE,newplot=FALSE,cex.axis=1.5,cex.lab=1.5,cex=1.5,lwd=2)

Arguments

coefs Vector giving the current estimate of the coefficients.

pars Vector of estimated parameters.

lik lik object defining the observation process.

proc proc object defining the state process.

times Vector observation times for the data.

data Matrix of observed data values.

cols Optional vector specifying a color for each state variable.

datacols Optional vector specifying a color for each observation dimension.

datanames Optional character vector specifying a glyph to plot the data. Taken from the
column-names of data if not given.

ObsPlot Should a plot of predictions and observations be given?

DerivPlot Should derivative diagnostics be produced?

DerivResid Should a plot of the difference between Dx and f(x) be produced?

FhNdata 5

newplot Should plots be opened in new devices? Note if this is FALSE, DerivePlot will
overwrite ObsPlot.

cex.axis Axis font size.

cex.lab Label font size.

cex Plotting point font size

lwd Plotting line width

Details

Timevec is taken to be the quadrature values. Three plots can be produced:

If ObsPlot=TRUE a plot is given of the predicted values of the observations along with the observa-
tions themselves (if given).

If DerivPlot=TRUE two plots are produced. The first gives the value of the derivative of the esti-
mated trajectory (dashed) and the value of the right-hand-side of the ordinary differential equation
in proc (hence the predicted derivative) (solid). The second plot gives their difference in the first
panel as well as the estimated trajectory in the second panel.

Value

A list containing elements used in plotting:

timevec Times at which the trajectories etc were evaluated.

traj Estimated value of the trajectory.

dtraj Derivative of the estimated trajectory.

ftraj Value of the derivative of the trajectory predicted by proc

otraj Predicted values of the observations from lik.

FhNdata FitzHugh-Nagumo data

Description

Data generated for FitzHugh-Nagumo Examples

Usage

FhNdata

Format

• FhNdata A 41 by 2 matrix of data generated from the FitzHugh Nagumo equations.

• FhNtimes A vector of 41 observation times corresponding to FhNdata.

• FhNpars Named parameter vector used to generate FhNdata.

• FhNvarnames c('V','R'): the state variable names for the FitzHugh Nagumo system.

• FhNparnames c('a','b','c') parameter names for the FitzHugh Nagumo system.

6 FitMatch

Source

James Ramsay, Giles Hooker David Campbell and Jiguo Cao, 2007. "Parameter Estimation for Dif-
ferential Equations: A Generalized Smoothing Approach". Journal of the Royal Statistical Society
Vol 69 No 5.

FhNest Estimated Parameters for FitzHugh-Nagumo data

Description

Parameters Estimated for FhN Data – used to speed up examples

Usage

FhNest

Format

• FhNestPars Estimated parameters for the FhN Data example.

• FhNestCoefs Estimated coefficients for the FhN Data example.

Source

James Ramsay, Giles Hooker David Campbell and Jiguo Cao, 2007. "Parameter Estimation for Dif-
ferential Equations: A Generalized Smoothing Approach". Journal of the Royal Statistical Society
Vol 69 No 5.

FitMatch Estimating Hidden States

Description

Estimating hidden states to maximize agreement with the process.

Usage

FitMatchOpt(coefs,which,pars,proc,meth='nlminb',control=list())

FitMatchErr(coefs,allcoefs,which,pars,proc,sgn=1)

FitMatchDC(coefs,allcoefs,which,pars,proc,sgn=1)

FitMatchDC2(coefs,allcoefs,which,pars,proc,sgn=1)

FitMatchList(coefs,allcoefs,which,pars,proc,sgn=1)

FitMatch 7

Arguments

coefs Vector giving the current estimate of the coefficients for the hidden states.

allcoefs Matrix giving the coefficients of all the states including initial values for coefs.

which Vector of indices of states to be estimated.

pars Parameters to be used for the processes.

proc proc object defining the state process.

sgn Is the minimizing (1) or maximizing (0)?

meth Optimization function currently one of ’nlminb’, ’MaxNR’, ’optim’ or ’trust’.

control Control object for optimization function.

Details

These routines allow the values of coefficients for some states to be optimized relative to the others.
That is, the objective defined by proc is minimized over those states specified in which leaving the
others constant. This would be typically done, for example, a smooth is taken to estimate some
states non-parametrically, but data is not available on all of them.

A number of optimization routines have been implemented in FitMatchOpt, some experimentation
is advised.

Value

FitMatchOpt A list containing

• coefs The optimized coefficients for all states.
• res The output of the optimization routine.

FitMatchErr The value of the process likelihood at the current estimated states.

FitMatchDC The derivative of FitMatchErr with respect to the elements coefs for the states
being estimated.

FitMatchDC2 The second derivative of FitMatchErr with respect to the elements coefs for
the states being estimated.

FitMatchList Returns a list with elements value, gradient and hessian given by the output
of FitMatchErr, FitMatchDC and FitMatchDC2.

See Also

ParsMatchErr, SplineCoefsErr, inneropt

Examples

###############################
Some Data
###############################

data(FhNdata)

8 forward.prediction.error

###############################
Basis Object
###############################

knots = seq(0,20,0.2)
norder = 3
nbasis = length(knots) + norder - 2
range = c(0,20)

bbasis = create.bspline.basis(range=range(FhNtimes),nbasis=nbasis,
norder=norder,breaks=knots)

Initial values for coefficients will be obtained by smoothing

fd.data = FhNdata[,1]

DEfd = smooth.basis(FhNtimes,fd.data,fdPar(bbasis,1,0.5))

coefs = cbind(DEfdfdcoefs,rep(0,nbasis))
colnames(coefs) = FhNvarnames

###
If We Only Observe One State, We Can Re-Smooth Others
###

profile.obj = LS.setup(pars=FhNpars,coefs=coefs,fn=make.fhn(),
basisvals=bbasis,lambda=1000,times=FhNtimes)

lik = profile.obj$lik
proc= profile.obj$proc

DD = Matrix(diag(1,200),sparse=TRUE)
tDD = t(DD)

fres = FitMatchOpt(coefs=coefs,which=2,pars=FhNpars,proc)

plot(fd(fres$coefs,bbasis))

forward.prediction.error

forward.prediction.error

Description

Forward prediction error objective for choice of lambda in square error criteria.

Usage

forward.prediction.error(times,data,coefs,lik,proc,pars,whichtimes=NULL)

inneropt 9

Arguments

times Vector observation times for the data.

data Matrix of observed data values.

coefs Vector giving the current estimate of the coefficients in the spline.

lik lik object defining the observation process.

proc proc object defining the state process.

pars Initial values of parameters to be estimated processes.

whichtimes Specifies the start and end times for forward prediction, given by indeces of
times. This can be one of

• A list, each element of the list is itself a list of length 2; the first element
gives the starting time to use and the second is a vector giving the prediction
times.

• A matrix, the first column giving the starting times and the second giving
the ending times.

If left NULL, whichtimes defaults to predicting one observation ahead from
each observation.

Details

Forward prediction error can be used to choose values of lambda in the profiled estimation routines.
The ordinary differential equation is solved starting from the starting times specified in whichtimes
and measured at the corresponding measurement times. The error is then recorded. This should then
be minimized by a grid search.

Value

The forwards prediction error from the estimates.

See Also

ProfileSSE, outeropt

inneropt Inner Optimization Functions

Description

Estmates coefficients given parameters.

Usage

inneropt(data,times,pars,coefs,lik,proc,in.meth='nlminb',control.in=list())

10 inneropt

Arguments

data Matrix of observed data values.

times Vector observation times for the data.

pars Initial values of parameters to be estimated processes.

coefs Vector giving the current estimate of the coefficients in the spline.

lik lik object defining the observation process.

proc proc object defining the state process.

in.meth Inner optimization function currently one of ’nlminb’, ’maxNR’, ’optim’, ’trust’
or ’SplineEst’. The last calls SplineEst.NewtRaph. This is fast but has poor
convergence.

control.in Control object for inner optimization function.

Details

This minimizes the objective function defined by the addition of the lik and proc objectives with
respect to the coefficients. A number of generic optimization routines can be used and some exper-
imentation is recommended.

Value

A list with elements

coefs A matrix giving he optimized coefficients.

res The results of the inner optimization function.

See Also

outeropt, Smooth.LS,LS.setup, multinorm.setup, SplineCoefsErr

Examples

Not run:
FitzHugh-Nagumo Equations

data(FhNdata) # Some data

knots = seq(0,20,0.2) # Create a basis
norder = 3
nbasis = length(knots) + norder - 2
range = c(0,20)

bbasis = create.bspline.basis(range=range(FhNtimes),nbasis=nbasis,
norder=norder,breaks=knots)

lambda = 10000 # Penalty value

DEfd = smooth.basis(FhNtimes,FhNdata,fdPar(bbasis,1,0.5)) # Smooth to estimate
coefficients first

IntegrateForward 11

coefs = DEfdfdcoefs
colnames(coefs) = FhNvarnames

profile.obj = LS.setup(pars=FhNpars,coefs=coefs,fn=make.fhn(),
basisvals=bbasis,lambda=lambda,times=FhNtimes)

lik = profile.obj$lik
proc= profile.obj$proc

res = inneropt(FhNdata,times=FhNtimes,FhNpars,coefs,lik,proc,in.meth='nlminb')

plot(fd(res$coefs,bbasis))

End(Not run)

IntegrateForward IntegrateForward

Description

Solves a differential equation going forward based on a proc object.

Usage

IntegrateForward(y0,ts,pars,proc,more)

Arguments

y0 Initial conditions to start from.

ts Vector of time points at which to report values of the differential equation solu-
tion.

pars Initial values of parameters to be estimated processes.

proc Object defining the state process. This can either be a function evaluating the
right hand side of the differential equation or a proc object. If a proc object is
given, proc$more$fn is assumed to give the right hand side of the differential
equation.

more If proc is a function, this contains a list of additional inputs.

Value

Returns the output from solving the differential equation using the lsoda routines. Specifically, it
returns a list with elements

• times The output times.

• states The output states.

12 make.findif

See Also

Profile.LS, Profile.multinorm

Examples

proc = make.SSEproc()
proc$more = make.fhn()
proc$more$names = c('V','R')

y0 = c(-1,1)
names(y0) = c('V','R')

pars = c(0.2,0.2,3)
names(pars) = c('a','b','c')

ts = seq(0,20,0.5)

value = IntegrateForward(y0,ts,pars,proc)

matplot(value$times,value$states)

make.findif Finite Difference Functions

Description

Returns a list of functions that calculate finite difference derivatives.

Usage

make.findif.ode()

make.findif.loglik()

make.findif.var()

Details

All these functions require the sepcification of more$eps to give the size of the finite differenc-
ing step. They also require more to specify the original object (ODE right hand side functions,
definitions of lik and proc objects).

Value

A list of functions that calculate the derivatives via finite differencing schemes.

make.findif.ode

calculates finite differences of a transform.

make.lik 13

make.findif.loglik

returns the finite differences to a calculated log likelihood; used within lik ob-
jects, or as more arguments to Cproc or Dproc.

make.findif.var

finite difference approximations to variances; mostly used in the Multinorm
functions.

See Also

LS.setup, multinorm.setup

Examples

Sum of squared errors with finite differencing to get right-hand-side derivatives

proc = make.SSEproc()
proc$more = make.findif.ode()

Finite differencing for the log likelihood

lik = make.findif.loglik()
lik$more = make.SSElik()

Multivariate normal transitions with finite differencing for mean and variance functions

lik = make.multinorm()
lik$more = c(make.findif.ode,make.findif.var)

Finite differencing for transition density of a discrete time system

proc = make.Dproc()
proc$more = make.findif.loglik()

make.lik Observation Process Distribution Function

Description

Returns a list of functions that calculate the observation process distribution and its derivatives;
designed to be used with the collocation inference functions.

Usage

make.SSElik()

make.multinorm()

14 make.lik

Details

These functions require more to be a list with elements:

• fn The transform function of the states to observations, or to their derivatives.

• dfdx The derivative of fn with respect to states.

• dfdp The derivative of fn with respect to parameters.

• d2fdx2 The second derivative of fn with respect to states.

• d2fdxdp The cross derivative of fn with respect to states and parameters.

make.Multinorm further requires:

• var.fn The variance given in terms of states and parameters.

• var.dfdx The derivative of var.fn with respect to states.

• var.dfdp The derivative of var.fn with respect to parameters.

• var.d2fdx2 The second derivative of var.fn with respect to states.

• var.d2fdxdp The cross derivative of var.fn with respect to states and parameters.

make.SSElik further requres weights giving weights to each observation.

Value

A list of functions that calculate the log observation distribution and its derivatives.

make.SSElik calculates weighted squared error between predictions (given by fn in more) and
observations

make.Multinorm calculates a multivariate normal distribution.

See Also

LS.setup, multinorm.setup

Examples

Straightforward sum of squares:

lik = make.SSElik()
lik$more = make.id()

Multivariate normal about an exponentiated state with constant variance

lik = make.multinorm()
lik$more = c(make.exp(),make.cvar())

make.logtrans 15

make.logtrans Log Transforms

Description

Functions to modify liklihood, transform, lik and proc objects so that the operate with the state
defined on a log scale.

Usage

make.logtrans()

make.exptrans()

make.logstate.lik()

make.exp.Cproc()

make.exp.Dproc()

Details

All functions require more to specify the original object (ODE right hand side functions, definitions
of lik and proc objects).

Value

A list of functions that calculate log transforms and derivatives in various contexts.

make.logtrans modifies the right hand side of a differential equation and its derivatives for a
loged state vector.

make.exptrans modfies a map from states to observations to a map from logged states to obser-
vations along with its derivatives.

make.logstate.lik

modifies a lik object for state vectors given on the log scale.

make.exp.Cproc Cproc with the state given on the log scale.

make.exp.Dproc Dproc with the state given on the log scale.

See Also

LS.setup, make.Cproc, make.Dproc

16 make.proc

Examples

Model the log of an SEIR process

proc = make.SSEproc()
proc$more = make.logtrans()
proc$more$more = make.SEIR()

Observe a linear combination of

lik = make.logstate.lik()
lik$more = make.SSElik()
lik$more$more = make.genlin()

SEIR Model with multivariate transition densities

proc = make.exp.Cproc()
proc$more = make.multinorm()
proc$more$more = c(make.SEIR(),make.cvar())

make.proc Process Distributions

Description

Functions to define process distributions in the collocation inference package.

Usage

make.Dproc()

make.Cproc()

make.SSEproc()

Details

All functions require more to specify this distribution. This should be a list containing

• fn The distribution specified.

• dfdx The derivative of fn with respect to states.

• dfdp The derivative of fn with respect to parameters.

• d2fdx2 The second derivative of fn with respect to states.

• d2fdxdp The cross derivative of fn with respect to states and parameters.

For Cproc and Dproc this should specify the distribution; for SSEproc it should specify the right
hand side of a differential equation.

make.transfer 17

Value

A list of functions that the process distribution

make.Cproc creates functions to evaluate the distribution of the derivative of the state vector
given the current state for continuous-time systems.

make.Dproc creates functions to evaluate the distribution of the next time point of the state
vector given the current state for discrete-state systems.

make.SSEproc treats the distribution of the derivative as an independent gaussian and cacluates
weighted sums of squared errors between derivatives and the prediction from
the current state.

See Also

LS.setup, multinorm.setup

Examples

FitzHugh-Nagumo Equations

proc = make.SSEproc()
proc$more = make.fhn()

Henon Map

proc = make.Dproc()
proc$more = make.Henon

SEIR with multivariate normal transitions

proc = make.Cproc()
proc$more = make.multinorm()
proc$more$more = c(make.SEIR(),make.var.SEIR())

make.transfer Transfer Functions

Description

Returns a list of functions that calculate the transform and its derivatives.

18 make.transfer

Usage

make.id()

make.exp()

make.exptrans()

make.genlin()

make.fhn()

make.Henon()

make.SEIR()

make.NS()

chemo.fun(times,y,p,more=NULL)

Arguments

All the functions created by make... functions, require the arguments needed
by chemo.fun

Evaluation times

timesy Values of the state at the evaluation times

p Parameters to be used

more A list of additional arguments, in this case NULL, for pomp.sekelton and pomp.dmeasure,
more should be a list containing a pomp object in the element pomp.obj.

Details

make.genlin requires the specification of further elements in the list. In particular the element
more should be a list containing

• mat a matrix defining the linear transform before any parameters are added. This may be all
zero, but it may also specify fixed elements, if desired.

• sub a k-by-3 matrix indicating which parameters should be entered into which elements of
mat. Each row is a triple giving the row and colum of mat to be specified and the element of
the parameter vector that should be substituted. sub over-rides any values in mat.

• force if input functions are given, these are given as a list.

• force.mat specifying the influence of the elements of force on the state variables. Defined
as in mat.

• force.sub defined as in sub, over-rides the elements of force.mat with parameter values.

make.diagnostics estimates forcing-function diagnostics as in Hooker, 2009 for goodness-of-fit
assessment. It requires

make.transfer 19

• psi Values of a basis expansion for forcing functions at the quadrature points.

• which Which states are to be forced?

• fn, dfdx, d2fdx2 Functions and derivatives as would be used to estimate parameters for the
original equations.

• pars Parameters to go into more$fn.

make.SEIR estimates parameters and a seasonal variation in the infection rate in an SEIR model. It
requires the specification of the seasonal change rate in more by a list with objects

• beta.fun A function to calculate beta, it should have arguments t, p and betadef and return
a matrix giving the value of beta at times t with parameters p.

• beta.dfdp Should calculate the derivative of beta.fun with respect to p, at times t return-
ing a matrix. The matrix should be of size length(t) by length(p) where p is the entire
parameter vector.

• betadef Additional inputs (eg bases) to beta.fun and beta.dfdp.

make.NS provides functions for the North Shore example. This is a possibly time-varying forced lin-
ear system of one dimension. It requires more to specify betabasis to describe the autoregressive
coefficient, and alphabasis to provide a contant in front of the functional data object rainfd.

chemo.fun Is a five-state predator-prey-resources model used as an example. It stands alone as a
function and should be used with the findif.ode functions.

Value

A list of functions that calculate the transform and its derivatives, in a form compatible with the
collocation inference functions.

make.id returns the identity transform.

make.exp returns the exponential transform.

make.genlin returns a linear combination transform – see details section below.

make.fhn returns the FitzHugh-Nagumo equations.

make.Henon reutrns the Henon map.

make.SEIR returns SEIR equations for estimating the shape of a seasonal forcing compo-
nent.

make.diagnostics

functions to perform forcing function diagnostics.

See Also

LS.setup, multinorm.setup

Examples

Observe the FitzHugh-Nagumo equations

proc = make.SSEproc()
proc$more = make.fhn()

20 make.variance

lik = make.SSElik()
lik$more = make.id()

Observe an unknown scalar transform of each component of a Henon map, given
in the first two elements of the parameter vector:

proc = make.Dproc()
proc$more = make.multinorm()
proc$more$more = c(make.Henon,make.cvar)

lik = make.multinorm()
lik$more = c(make.genlin,make.cvar)
lik$more$more = list(mat = matrix(0,2,2),sub=matrix(c(1,1,1,2,2,2),2,3,byrow=TRUE))

Model SEIR equations on the log scale and then exponentiate

lik = make.SSElik()
lik$more = make.exp()

proc = make.SSEproc()
proc$more = make.logtrans()
proc$more$more = make.SEIR()

make.variance Variance Functions

Description

Returns a list of functions that calculate a (possibly state and parameter dependent) variance.

Usage

make.cvar()

make.var.SEIR()

Details

make.cvar requires the specification of further elements in the list. In particular the element more
should be a list containing

Value

A list of functions that calculate a variance function and its derivatives, in a form compatible with
the collocation inference functions.

make.cvar returns a variance that is constant but may depend on parameters
make.var.SEIR returns a state-dependent transition covariance matrix calculated for the SEIR

equations.

NSdata 21

See Also

make.multinorm

Examples

Multivariate normal observation of the state vector.

lik = make.multinorm()
lik$more = c(make.id(),make.cvar())

NSdata North Shore data

Description

Groundwater Data from Vancouver’s North Shore

Usage

NSgroundwater

Format

• NSgroundwater A 315 by 1 matrix of data on groundwater level collected in vancouver.

• NStimes A vector of 315 observation times corresponding to NSgroundwater.

• NSrainfall Rainfall as a covariate to NSgroundwater; this quantity is lagged by 3 days.

outeropt Outer Optimization Functions

Description

Outer optimization; performs profiled estimation.

Usage

outeropt(data,times,pars,coefs,lik,proc,
in.meth='nlminb',out.meth='nlminb',
control.in=list(),control.out=list(),active=1:length(pars))

22 outeropt

Arguments

data Matrix of observed data values.

times Vector observation times for the data.

pars Initial values of parameters to be estimated processes.

coefs Vector giving the current estimate of the coefficients in the spline.

lik lik object defining the observation process.

proc proc object defining the state process.

in.meth Inner optimization function currently one of ’nlminb’, ’maxNR’, ’optim’ or
’SplineEst’. The last calls SplineEst.NewtRaph. This is fast but has poor
convergence.

out.meth Outer optimization function to be used, one of ’optim’ (defaults to BFGS routine
in optim unless control.out$meth specifies otherwise), ’nlminb’, ’maxNR’ #,
’trust’ or ’subplex’. When squared error is being used, ’ProfileGN’ and ’nls’
can also be given. The former of these calls Profile.GausNewt, a fast but
naive Gauss-Newton solver.

control.in Control object for inner optimization function.

control.out Control object for outer optimization function.

active Indices indicating which parameters of pars should be estimated; defaults to all
of them.

Details

The outer optimization for parameters looks only at the objective defined by the lik object. For
every parameter value, coefs are optimized by inneropt and then the value of lik for these coef-
ficients is computed.

A number of optimization routines can be used here, some experimentation is recommended. Li-
braries for these optimization routines are not pre-loaded. Where these functions take options as
explicit arguments instead of a list, they should be listed in control.out and will be called by their
names.

The routine creates temporary files ’curcoefs.tmp’ and ’optcoefs.tmp’ to update coefficients as pars
evolves. These overwrite existing files of those names and are deleted before the function termi-
nates.

Value

A list containing

pars Optimized parameters

coefs Optimized coefficients at pars

res The result of the outer optimization.

counter A set of parameters and objective values for each successful iteration.

See Also

inneropt, Profile.LS, ProfileSSE, ProfileErr, LS.setup, multinorm.setup

ParsMatch 23

Examples

Not run:
data(FhNdata)

knots = seq(0,20,0.2) # Create a basis
norder = 3
nbasis = length(knots) + norder - 2
range = c(0,20)

bbasis = create.bspline.basis(range=range,nbasis=nbasis,norder=norder,breaks=knots)

lambda = 10000 # Penalty value

DEfd = smooth.basis(FhNtimes,FhNdata,fdPar(bbasis,1,0.5)) # Smooth to estimate
coefficients first

coefs = DEfdfdcoefs
colnames(coefs) = FhNvarnames

profile.obj = LS.setup(pars=FhNpars,coefs=coefs,fn=make.fhn(),basisvals=bbasis,
lambda=lambda,times=FhNtimes)

lik = profile.obj$lik
proc= profile.obj$proc

res = outeropt(data=FhNdata,times=FhNtimes,pars=FhNpars,coefs=coefs,lik=lik,proc=proc,
in.meth="nlminb",out.meth="nlminb",control.in=NULL,control.out=NULL)

plot(res$coefs,main='outeropt')
print(blah)

End(Not run)

ParsMatch Estimate of Parameters from Smooth

Description

Objective function and derivatives to estimate parameters with a fixed smooth.

Usage

ParsMatchOpt(pars,coefs,proc,active=1:length(pars),meth='nlminb',control=list())

ParsMatchErr(pars,coefs,proc,active=1:length(pars),allpars,sgn=1)

ParsMatchDP(pars,coefs,proc,active=1:length(pars),allpars,sgn=1)

ParsMatchList(pars,coefs,proc,active=1:length(pars),allpars,sgn=1)

24 ParsMatch

Arguments

pars Initial values of parameters to be estimated processes.

coefs Vector giving the current estimate of the coefficients in the spline.

proc proc object defining the state process.

active Incides indicating which parameters of allpar should be estimated; defaults to
all of them.

allpars Vector of all parameters, the assignment allpar[active]=pars is made ini-
tially.

sgn Is the minimizing (1) or maximizing (0)?

meth Optimization function currently one of ’nlminb’, ’MaxNR’, ’optim’ or ’trust’.

control Control object for optimization function.

Details

These routines fix the estimated states at the value given by coefs and estimate pars to maximize
agreement between the fixed state and the objective given by the proc object.

A number of optimization routines have been implemented in FitMatchOpt, some experimentation
is advised.

Value

ParsMatchOpt A list containing:

• parsThe entire parameter vector after optimization.
• resThe output of the optimization routine.

ParsMatchErr The value of the process likelihood at the current estimated states.

ParsMatchDP The derivative fo ParsMatchErr with respect to pars[active].

ParsMatchList A list with entries value and gradient given by the output of ParsMatchErr
and ParsMatchDP respectively.

See Also

FitMatchErr, SplineCoefsErr, inneropt

Examples

data(FhNdata)

###############################
Basis Object
###############################

knots = seq(0,20,0.2)
norder = 3
nbasis = length(knots) + norder - 2
range = c(0,20)

Profile.covariance 25

bbasis = create.bspline.basis(range=range(FhNtimes),nbasis=nbasis,
norder=norder,breaks=knots)

Initial values for coefficients will be obtained by smoothing

DEfd = smooth.basis(FhNtimes,FhNdata,fdPar(bbasis,1,0.5)) # Smooth to estimate
coefficients first

coefs = DEfdfdcoefs
colnames(coefs) = FhNvarnames

#################################
Initial Parameter Guesses
#################################

profile.obj = LS.setup(pars=FhNpars,coefs=coefs,fn=make.fhn(),basisvals=bbasis,
lambda=1000,times=FhNtimes)

lik = profile.obj$lik
proc= profile.obj$proc

pres = ParsMatchOpt(FhNpars,coefs,proc)

npars = pres$pars

Profile.covariance Profile.covariance

Description

Newey-West estimate of covariance of parameter estimates from profiling.

Usage

Profile.covariance(pars,active=NULL,times,data,coefs,lik,proc,
in.meth='nlminb',control.in=NULL,eps=1e-6,GN=FALSE)

Arguments

pars Initial values of parameters to be estimated processes.

active Incides indicating which parameters of pars should be estimated; defaults to all
of them.

times Vector observation times for the data.

data Matrix of observed data values.

coefs Vector giving the current estimate of the coefficients in the spline.

lik lik object defining the observation process.

26 ProfileObjective

proc proc object defining the state process.

in.meth Inner optimization function currently one of ’nlminb’, ’MaxNR’, ’optim’ or
’house’. The last calls SplineEst.NewtRaph. This is fast but has poor con-
vergence.

control.in Control object for inner optimization functions.

eps Step-size for finite difference estimate of second derivatives.

GN Indicator of whether a Gauss-Newton approximation for the Hessian should be
employed. Only valid for least-squares methods.

Details

Currently assumes a lag-5 auto-correlation among observation vectors.

Value

Returns a Newey-West estimate of the covariance matrix of the parameter estimates.

See Also

ProfileErr, ProfileSSE, Profile.LS, Profile.multinorm

Examples

See example in Profile.LS

ProfileObjective Profile Estimation with Collocation Inference

Description

Profile estimation and objective functions for collocation estimation of parameters in continuous-
time stochastic processes.

Usage

Profile.GausNewt(pars,times,data,coefs,lik,proc,in.meth="nlminb",
control.in=NULL,active=1:length(pars),
control=list(reltol=1e-6,maxit=50,maxtry=15,trace=1))

ProfileSSE(pars,allpars,times,data,coefs,lik,proc,in.meth='nlminb',
control.in=NULL,active=1:length(pars),dcdp=NULL,oldpars=NULL,
use.nls=TRUE,sgn=1)

ProfileErr(pars,allpars,times,data,coefs,lik,proc,in.meth = "house",
control.in=NULL,sgn=1,active=1:length(allpars))

ProfileObjective 27

ProfileDP(pars,allpars,times,data,coefs,lik,proc,in.meth = "house",
control.in=NULL,sgn=1,sumlik=1,active=1:length(allpars))

ProfileList(pars,allpars,times,data,coefs,lik,proc,in.meth = "house",
control.in=NULL,sgn=1,active=1:length(allpars))

Arguments

pars Initial values of parameters to be estimated processes.

allpars Full parameter vector including pars. Assignment allpars[active] = pars
is always made.

times Vector observation times for the data.

data Matrix of observed data values.

coefs Vector giving the current estimate of the coefficients in the spline.

lik lik object defining the observation process.

proc proc object defining the state process.

in.meth Inner optimization function currently one of ’nlminb’, ’MaxNR’, ’optim’ or
’house’. The last calls SplineEst.NewtRaph. This is fast but has poor con-
vergence.

control.in Control object for inner optimization function.

sgn Is the minimizing (1) or maximizing (0)?

active Incides indicating which parameters of pars should be estimated; defaults to all
of them.

oldpars Starting parameter values for the Q-function in the EM algorithm.

dcdp Estimate for the gradient of the optimized coefficients with respect to parame-
ters; used internally.

use.nls In ProfileSSE, is ’nls’ being used in the outer-optimization?

sumlik In ProfileDP and ProfileDP.AllPar; should the gradient be given for each obser-
vation, or summed over them?

control A list giving control parameters for Newton-Raphson optimization. It should
contain

• reltol Relative tollerance criterion for the gradient and improvement before
termination.

• maxit Maximum number of iterations.

• maxtry Maximum number of halving-steps to try before declaring no im-
provement is possible.

• trace How much iteration history to output; 0 surpresses all output, a posi-
tive value outputs parameters and improvement at each iteration.

28 ProfileObjective

Details

Profile.GausNewt provides a simple implementation of Gauss-Newton optimization and may not
result in optimized values that are as good as other optimizers in R.

When Profile.GausNewt is not being used, ProfileSEE and ProfileERR create the following
temporary files:

• counter.tmpThe number of halving-steps taken on the current optimization step.

• curcoefs.tmpThe current estimates of the coefficients.

• optcoefs.tmpThe optimal estimates of the coefficients in the iteration history.

These need to be removed manually when the optimization is finished. optcoefs.tmp will contain
the optimal value of coefs for plotting the estimated trajectories.

Value

Profile.GausNewt

Output of a simple Gaus-Newton iteration to optimizing the objective function
when the observation likelihood takes the form of a sum of squared errors. Re-
turns a list with the following elements:

• pars The optimized value of the parameters.

• in.res The result of the inner optimization.

• value The value of the optimized sum of squared errors.

ProfileSSE Output for the outer optimization when the observation likelihood is given by
squared error. This is a list with the following elements

• value The value of the outer optimization criterion.

• gradient The derivative of f with respect to pars.

• coefs The optimized value of coefs for the current value of pars.

• dcdp The derivative of the optimized value of coefs at the current value of
pars.

ProfileErr The outer optimization criterion in the general case: the value of the observation
likelihood at the profiled estimates of coefs.

ProfileDP The derivative of ProfileErr with respect to allpars[active].

ProfileList Returns the results of ProfileErr and ProfileDP as a list with elements value and
gradient

See Also

outeropt, Profile.LS, Profile.multinorm, LS.setup, multinorm.setup

Profiling Routines 29

Profiling Routines Profile Estimation Functions

Description

These functions are wrappers that create lik and proc functions and run generalized profiling.

Usage

Profile.LS(fn,data,times,pars,coefs=NULL,basisvals=NULL,lambda,
fd.obj=NULL,more=NULL,weights=NULL,quadrature=NULL,
likfn = make.id(), likmore = NULL,
in.meth='nlminb',out.meth='nls',

control.in,control.out,eps=1e-6,active=NULL,posproc=FALSE,
poslik=FALSE,discrete=FALSE,names=NULL,sparse=FALSE)

Profile.multinorm(fn,data,times,pars,coefs=NULL,basisvals=NULL,var=c(1,0.01),
fd.obj=NULL,more=NULL,quadrature=NULL,
in.meth='nlminb',out.meth='optim',
control.in,control.out,eps=1e-6,active=NULL,

posproc=FALSE,poslik=FALSE,discrete=FALSE,names=NULL,sparse=FALSE)

Arguments

fn A function giving the right hand side of a differential/difference equation. The
function should have arguments

• times The times at which the RHS is being evaluated.
• x The state values at those times.
• p Parameters to be entered in the system.
• more An object containing additional inputs to fn

It should return a matrix of the same dimension of x giving the right hand side
values.
If fn is given as a single function, its derivatives are estimated by finite-differencing
with stepsize eps. Alternatively, a list can be supplied with elements:

• fn Function to calculate the right hand side should accept a matrix of state
values at .

• dfdx Function to calculate the derivative with respect to x

• dfdp Function to calculate the derivative with respect to p

• d2fdx2 Function to calculate the second derivative with respect to x

• d2fdxdp Function to calculate the second derivative with respect to x and p

These functions take the same arguments as fn and should output multidimen-
sional arrays with the dimensions ordered according to time, state, deriv1, de-
riv2; here derivatives with respect to x always precede derivatives with respect
to p.

30 Profiling Routines

data Matrix of observed data values.

times Vector observation times for the data.

pars Initial values of parameters to be estimated processes.

coefs Vector giving the current estimate of the coefficients in the spline.

basisvals Values of the collocation basis to be used. This can either be a basis object from
the fda package, or a list elements:

• bvals.obs A matrix giving the values of the basis at the observation times
• bvals A matrix giving the values of the basis at the quadrature times
• dbvals A matrix giving the derivative of the basis at the quadrature times

lambda (Profile.LS only) Penalty value trading off fidelity to data with fidelity to dif-
ferential equations.

var (profile.Cproc or profile.Dproc) A vector of length 2, giving

fd.obj (Optional) A functional data object; if this is non-null, coefs and basisvals is
extracted from here.

more An object specifying additional arguments to fn.

weights (Profile.LS only)

quadrature Quadrature points, should contain two elements (if not NULL)

• qpts Quadrature points; defaults to midpoints between knots
• qwts Quadrature weights; defaults to normalizing by the length of qpts.

in.meth Inner optimization function to be used, currently one of ’nlminb’, ’MaxNR’,
’optim’ or ’house’. The last calls SplineEst.NewtRaph. This is fast but has
poor convergence.

out.meth Outer optimization function to be used, depending on the type of method

• Profile.LS One of ’nls’ or ’ProfileGN’; the latter calls Profile.GausNewt
which is fast but may have poor convergence.

• Profile.multinorm One of ’optim’ (defaults to BFGS routine in optim
unless control.out$meth specifies otherwise), ’nlminb’, or ’maxNR’.

control.in Control object for inner optimization function.

control.out Control object for outer optimization function.

eps Finite differencing step size, if needed.

active Incides indicating which parameters of pars should be estimated; defaults to all
of them.

posproc Should the state vector be constrained to be positive? If this is the case, the state
is represented by an exponentiated basis expansion in the proc object.

poslik Should the state be exponentiated before being compared to the data? When
the state is represented on the log scale (posproc=TRUE), this is an alternative to
taking the log of the data.

discrete Is this a discrete-time or a continuous-time system? If discrete, the derivative is
instead taken to be the value at the next time point.

names The names of the state variables if not given by the column names of coefs.

Profiling Routines 31

sparse Should sparse matrices be used for basis values? This option can save memory
when ProfileGausNewt and SplineEstNewtRaph are called. Otherwise sparse
matrices will be converted to full matrices and this can slow the code down.

likfn Defines a map from the trajectory to the observations. This should be in the
same form as fn. If a function is given, derivatives are estimated by finite dif-
ferencing, otherwise a list is expected to provide the same derivatives as fn. If
poslik=TRUE, the states are exponentiated before the likfn is evaluated and the
derivatives are updated to account for this. Defaults to the identity transform.

likmore A list containing additional inputs to likfn if needed, otherwise set to NULL

Details

These functional all carry out the profiled optimization method of Ramsay et al 2007. Profile.LS
uses a sum of squared errors criteria for both fit to data and the fit of the derivatives to a differential
equation. Profile.multinorm uses multivariate normal approximations. discrete changes the
system to a discrete-time difference equation with the right hand side function giving the transition
function.

Note that these all call outeropt, which creates temporary files ’curcoefs.tmp’ and ’optcoefs.tmp’
to update coefficients as pars evolves. These overwrite existing files of those names and are deleted
before the function terminates.

Value

A list with elements

pars Optimized parameters

coefs Optimized coefficients at pars

lik The lik object generated

proc The proc item generated

data The data used in doing the fitting.

times The vector of times at which the observations were made

See Also

outeropt, ProfileErr, ProfileSSE, LS.setup, multinorm.setup

Examples

###############################
Data
###############################

data(FhNdata)

###############################
Basis Object
###############################

32 Profiling Routines

knots = seq(0,20,0.2)
norder = 3
nbasis = length(knots) + norder - 2
range = c(0,20)

bbasis = create.bspline.basis(range=range(FhNtimes),nbasis=nbasis,
norder=norder,breaks=knots)

Start from pre-estimated values to speed up optimization

data(FhNest)

spars = FhNestPars
coefs = FhNestCoefs

lambda = 10000

res1 = Profile.LS(make.fhn(),data=FhNdata,times=FhNtimes,pars=spars,coefs=coefs,
basisvals=bbasis,lambda=lambda,in.meth='nlminb',out.meth='nls')

Covar = Profile.covariance(pars=res1$pars,times=FhNtimes,data=FhNdata,
coefs=res1$coefs,lik=res1$lik,proc=res1$proc)

Not run:
Alternative, starting from perturbed coefficients -- takes too long for
automatic checks in CRAN

Initial values for coefficients will be obtained by smoothing

DEfd = smooth.basis(FhNtimes,FhNdata,fdPar(bbasis,1,0.5)) # Smooth to estimate
coefficients first

coefs = DEfdfdcoefs
colnames(coefs) = FhNvarnames

###############################
Optimization
###############################

spars = c(0.25,0.15,2.5) # Perturbed parameters
names(spars)=FhNparnames
lambda = 10000

res1 = Profile.LS(make.fhn(),data=FhNdata,times=FhNtimes,pars=spars,coefs=coefs,
basisvals=bbasis,lambda=lambda,in.meth='nlminb',out.meth='nls')

par(mfrow=c(2,1))
plotfit.fd(FhNdata,FhNtimes,fd(res1$coefs,bbasis))

End(Not run)

SEIRdata 33

Not run:
##
An Explicitly Multivariate Normal Formation
##

var = c(1,0.0001)

res2 = Profile.multinorm(make.fhn(),FhNdata,FhNtimes,pars=res1$pars,
res1$coefs,bbasis,var=var,out.meth='nlminb', in.meth='nlminb')

End(Not run)

SEIRdata SEIR data

Description

Data generated for SEIR Examples

Usage

SEIRdata

Format

• SEIRdata A 261 by 1 matrix of data generated from the SEIR Gillespie process run over 5
years.

• SEIRtimes A vector of 261 observation times corresponding to SEIRdata.

• SEIRpars Named parameter vector used to generate SEIRdata.

• SEIRvarnames c('V','R'): the state variable names for the SEIR system.

• SEIRparnames parameter names for the SEIR system.

Source

Giles Hooker, Stephen P. Ellner, David Earn and Laura Roditi, 2010. "Parameterizing State-space
Models for Infectious Disease Dynamics by Generalized Profiling: Measles in Ontario", Technical
Report, Cornell University.

34 setup

setup Setup Functions for proc and lik objects

Description

These functions set up lik and proc objects of squared error and multinormal processes.

Usage

LS.setup(pars,coefs=NULL,fn,basisvals=NULL,lambda,fd.obj=NULL,
more=NULL,data=NULL,weights=NULL,times=NULL,quadrature=NULL,
likfn = make.id(), likmore = NULL,eps=1e-6,
posproc=FALSE,poslik=FALSE,discrete=FALSE,names=NULL,sparse=FALSE)

multinorm.setup(pars,coefs=NULL,fn,basisvals=NULL,var=c(1,0.01),fd.obj=NULL,
more=NULL,data=NULL,times=NULL,quadrature=NULL,eps=1e-6,posproc=FALSE,
poslik=FALSE,discrete=FALSE,names=NULL,sparse=FALSE)

Arguments

pars Initial values of parameters to be estimated processes.

coefs Vector giving the current estimate of the coefficients in the spline.

fn A function giving the right hand side of a differential/difference equation. The
function should have arguments

• times The times at which the RHS is being evaluated.
• x The state values at those times.
• p Parameters to be entered in the system.
• more An object containing additional inputs to fn

It should return a matrix of the same dimension of x giving the right hand side
values.
If fn is given as a single function, its derivatives are estimated by finite-differencing
with stepsize eps. Alternatively, a list can be supplied with elements:

• fn Function to calculate the right hand side should accept a matrix of state
values at .

• dfdx Function to calculate the derivative with respect to x

• dfdp Function to calculate the derivative with respect to p

• d2fdx2 Function to calculate the second derivative with respect to x

• d2fdxdp Function to calculate the second derivative with respect to x and p

These functions take the same arguments as fn and should output multidimen-
sional arrays with the dimensions ordered according to time, state, deriv1, de-
riv2; here derivatives with respect to x always precede derivatives with respect
to p.
fn can also be given as a pomp object (see the pomp package), in which case it is
interfaced to CollocInfer through pomp.skeleton using a finite differencing.

setup 35

basisvals Values of the collocation basis to be used. This can either be a basis object from
the fda package, or a list elements:

• bvals.obs A matrix giving the values of the basis at the observation times
• bvals A matrix giving the values of the basis at the quadrature times
• dbvals A matrix giving the derivative of the basis at the quadrature times

For discrete systems, it may also be specified as a matrix, in which case bvals$bvals
is obtained by deleting the last row and bvals$dbvals is obtained by deleting
the first/
If left as NULL, it is taken from fd.obj for discrete=FALSE and defaults to
an identity matrix of the same dimension as the number of observations for
discrete=TRUE systems.

lambda (LS.setup only) Penalty value trading off fidelity to data with fidelity to differ-
ential equations.

var (profile.Cproc or profile.Dproc) A vector of length 2, giving

fd.obj (Optional) A functional data object; if this is non-null, coefs and basisvals is
extracted from here.

more An object specifying additional arguments to fn.

data The data to be used, this can be a matrix, or a three-dimensional array. If the
latter, the middle dimension is taken to be replicates. The data are returned, if
replicated they are returned in a concatenated form.

weights (LS.setup only)

times Vector observation times for the data. If the data are replicated, times are re-
turned in a concatenated form.

quadrature Quadrature points, should contain two elements (if not NULL)

• qpts Quadrature points; defaults to midpoints between knots
• qwts Quadrature weights; defaults to normalizing by the length of qpts.

eps Finite differencing step size, if needed.

posproc Should the state vector be constrained to be positive? If this is the case, the state
is represented by an exponentiated basis expansion in the proc object.

poslik Should the state be exponentiated before being compared to the data? When the
state is represented on the log scale TRUE, this is an alternative to taking the log
of the data.

discrete Is this a discrete or continuous-time system?

names The names of the state variables if not given by the column names of coefs.

sparse Should sparse matrices be used for basis values? This option can save memory
when ProfileGausNewt and SplineEstNewtRaph are called. Otherwise sparse
matrices will be converted to full matrices and this can slow the code down.

likfn Defines a map from the trajectory to the observations. This should be in the
same form as fn. If a function is given, derivatives are estimated by finite dif-
ferencing, otherwise a list is expected to provide the same derivatives as fn. If
poslik=TRUE, the states are exponentiated before the likfn is evaluated and the
derivatives are updated to account for this. Defaults to the identity transform.

likmore A list containing additional inputs to likfn if needed, otherwise set to NULL

36 setup

Details

These functions provide basic setup utilities for the collocation inference methods. They define lik
and proc objects for sum of squared errors and multivariate normal log likelihoods with nonlinear
transfer functions describing the evolution of the state vector.

• LS.setup Creates sum of squares functions

• multinorm.setup Creates multinormal log likelihoods for a continuous-time system.

Value

A list with elements

coefs Starting values for coefs

lik The lik object generated

proc The proc item generated

data The data matrix, concatenated if from a 3d array.

times The vector of observation times, concatenated if data is a 3d array.

See Also

inneropt, outeropt, Profile.LS, Profile.multinorm, Smooth.LS, Smooth.multinorm

Examples

FitzHugh-Nagumo

t = seq(0,20,0.05) # Observation times

pars = c(0.2,0.2,3) # Parameter vector
names(pars) = c('a','b','c')

knots = seq(0,20,0.2) # Create a basis
norder = 3
nbasis = length(knots) + norder - 2
range = c(0,20)

bbasis = create.bspline.basis(range=range,nbasis=nbasis,norder=norder,breaks=knots)

lambda = 10000 # Penalty value

coefs = matrix(0,nbasis,2) # Coefficient matrix

profile.obj = LS.setup(pars=pars,coefs=coefs,fn=make.fhn(),basisvals=bbasis,
lambda=lambda,times=t)

Using multinorm

var = c(1,0.01)

Smooth.LS 37

profile.obj = multinorm.setup(pars=pars,coefs=coefs,fn=make.fhn(),
basisvals=bbasis,var=var,times=t)

Henon - discrete

hpars = c(1.4,0.3)
t = 1:200

coefs = matrix(0,200,2)
lambda = 10000

profile.obj = LS.setup(pars=hpars,coefs=coefs,fn=make.Henon(),basisvals=NULL,
lambda=lambda,times=t,discrete=TRUE)

Smooth.LS Model-Based Smoothing Functions

Description

Perform the inner optimization to estimate coefficients given parameters.

Usage

Smooth.LS(fn,data,times,pars,coefs=NULL,basisvals=NULL,lambda,fd.obj=NULL,
more=NULL,weights=NULL,quadrature=NULL,likfn = make.id(),
likmore = NULL,in.meth='nlminb',control.in,eps=1e-6,
posproc=FALSE,poslik=FALSE,discrete=FALSE,names=NULL,
sparse=FALSE)

Smooth.multinorm(fn,data,times,pars,coefs=NULL,basisvals=NULL,var=c(1,0.01),
fd.obj=NULL,more=NULL,quadrature=NULL,in.meth='nlminb',
control.in,eps=1e-6,posproc=FALSE,poslik=FALSE,discrete=FALSE,
names=NULL,sparse=FALSE)

Arguments

fn A function giving the right hand side of a differential/difference equation. The
function should have arguments

• times The times at which the RHS is being evaluated.
• x The state values at those times.
• p Parameters to be entered in the system.
• more An object containing additional inputs to fn

It should return a matrix of the same dimension of x giving the right hand side
values.
If fn is given as a single function, its derivatives are estimated by finite-differencing
with stepsize eps. Alternatively, a list can be supplied with elements:

38 Smooth.LS

• fn Function to calculate the right hand side should accept a matrix of state
values at .

• dfdx Function to calculate the derivative with respect to x

• dfdp Function to calculate the derivative with respect to p

• d2fdx2 Function to calculate the second derivative with respect to x

• d2fdxdp Function to calculate the second derivative with respect to x and p

These functions take the same arguments as fn and should output multidimen-
sional arrays with the dimensions ordered according to time, state, deriv1, de-
riv2; here derivatives with respect to x always precede derivatives with respect
to p.

data Matrix of observed data values.

times Vector observation times for the data.

pars Initial values of parameters to be estimated processes.

coefs Vector giving the current estimate of the coefficients in the spline.

basisvals Values of the collocation basis to be used. This can either be a basis object from
the fda package, or a list elements:

• bvals.obs A matrix giving the values of the basis at the observation times
• bvals A matrix giving the values of the basis at the quadrature times
• dbvals A matrix giving the derivative of the basis at the quadrature times

lambda (Smooth.LS only) Penalty value trading off fidelity to data with fidelity to dif-
ferential equations.

var (Smooth.multinorm) A vector of length 2, giving

fd.obj (Optional) A functional data object; if this is non-null, coefs and basisvals is
extracted from here.

more An object specifying additional arguments to fn.

weights (Smooth.LS only)

quadrature Quadrature points, should contain two elements (if not NULL)

• qpts Quadrature points; defaults to midpoints between knots
• qwts Quadrature weights; defaults to normalizing by the length of qpts.

in.meth Inner optimization function to be used, currently one of ’nlminb’, ’MaxNR’,
’optim’ or ’SplineEst’. The last calls SplineEst.NewtRaph. This is fast but has
poor convergence.

control.in Control object for inner optimization function.

eps Finite differencing step size, if needed.

posproc Should the state vector be constrained to be positive? If this is the case, the state
is represented by an exponentiated basis expansion in the proc object.

poslik Should the state be exponentiated before being compared to the data? When
the state is represented on the log scale (posproc=TRUE), this is an alternative to
taking the log of the data.

discrete Is this a discrete or continuous-time system?

names The names of the state variables if not given by the column names of coefs.

Smooth.LS 39

sparse Should sparse matrices be used for basis values? This option can save memory
when ProfileGausNewt and SplineEstNewtRaph are called. Otherwise sparse
matrices will be converted to full matrices and this can slow the code down.

likfn Defines a map from the trajectory to the observations. This should be in the
same form as fn. If a function is given, derivatives are estimated by finite dif-
ferencing, otherwise a list is expected to provide the same derivatives as fn. If
poslik=TRUE, the states are exponentiated before the likfn is evaluated and the
derivatives are updated to account for this. Defaults to the identity transform.

likmore A list containing additional inputs to likfn if needed, otherwise set to NULL

Details

These routines create lik and proc objects and call inneropt.

Value

A list with elements

coefs Optimized coefficients at pars

lik The lik object generated

proc The proc item generated

res The result of the optimization method

data The data used in doing the fitting.

times The vector of times at which the observations were made

See Also

inneropt, LS.setup, multinorm.setup, SplineCoefsErr

Examples

###############################
Data
###############################

data(FhNdata)

###############################
Basis Object
###############################

knots = seq(0,20,0.2)
norder = 3
nbasis = length(knots) + norder - 2
range = c(0,20)

bbasis = create.bspline.basis(range=range(FhNtimes),nbasis=nbasis,
norder=norder,breaks=knots)

40 Smooth.LS

Start from pre-estimated values to speed up optimization

data(FhNest)

spars = FhNestPars
coefs = FhNestCoefs

lambda = 10000

res1 = Smooth.LS(make.fhn(),data=FhNdata,times=FhNtimes,pars=spars,coefs=coefs,
basisvals=bbasis,lambda=lambda,in.meth='nlminb')

Not run:
Henon system

hpars = c(1.4,0.3) # Parameters
t = 1:200

x = c(-1,1) # Create some dataa
X = matrix(0,200+20,2)
X[1,] = x

for(i in 2:(200+20)){ X[i,] = make.Henon()$ode(i,X[i-1,],hpars,NULL) }

X = X[20+1:200,]

Y = X + 0.05*matrix(rnorm(200*2),200,2)

basisvals = diag(rep(1,200)) # Basis is just identiy
coefs = matrix(0,200,2)

For sum of squared errors

lambda = 10000

res1 = Smooth.LS(make.Henon(),data=Y,times=t,pars=hpars,coefs,basisvals=basisvals,
lambda=lambda,in.meth='nlminb',discrete=TRUE)

End(Not run)

Not run:
For multinormal transitions

var = c(1,0.01)

res2 = Smooth.multinorm(make.Henon(),data=Y,t,pars=hpars,coefs,basisvals=NULL,
var=var,in.meth='nlminb',discrete=TRUE)

SplineEst 41

End(Not run)

SplineEst Spline Estimation Functions

Description

Model-based smoothing; estimation, objective criterion and derivatives.

Usage

SplineEst.NewtRaph(coefs,times,data,lik,proc,pars,
control=list(reltol=1e-12,maxit=1000,maxtry=10,trace=0))

SplineCoefsList(coefs,times,data,lik,proc,pars,sgn=1)

SplineCoefsErr(coefs,times,data,lik,proc,pars,sgn=1)

SplineCoefsDC(coefs,times,data,lik,proc,pars,sgn=1)

SplineCoefsDP(coefs,times,data,lik,proc,pars,sgn=1)

SplineCoefsDC2(coefs,times,data,lik,proc,pars,sgn=1)

SplineCoefsDCDP(coefs,times,data,lik,proc,pars,sgn=1)

Arguments

coefs Vector giving the current estimate of the coefficients in the spline.

times Vector observation times for the data.

data Matrix of observed data values.

lik lik object defining the observation process.

proc proc object defining the state process.

pars Parameters to be used for the processes.

sgn Is the minimizing (1) or maximizing (0)?

control A list giving control parameters for Newton-Raphson optimization. It should
contain

• reltol Relative tollerance criterion for the gradient and improvement before
termination.

• maxit Maximum number of iterations.
• maxtry Maximum number of halving-steps to try before declaring no im-

provement is possible.
• trace How much iteration history to output; 0 surpresses all output, a posi-

tive value outputs parameters and improvement at each iteration.

42 SplineEst

Details

SplineEst.NewtRaph performs a simple Newton-Raphson estimate for the optimal value of the
coefficients. This estimate lacks the convergence checks of other estimation packages, but may
yeild a fast solution when needed.

Value
SplineEst.NewtRaph

Returns a list that is the result of the optimization with elements

• value The final objective criterion.
• coefs The optimizing value of the coefficients.
• g The gradient at the optimizing value.
• H The Hessian at the optimizing value.

SplineCoefsList

Collates the gradient calculations and returns a list with elements

• value Output of SplineCoefsErr
• gradient Output of SplineCoefsDC
• Hessian Output of SplineCoefsDC2

SplineCoefsErr The complete data log likelihood for the smooth; the inner optimization objec-
tive.

SplineCoefsDC The derivative of SplineCoefsErr with respect to coefs.

SplineCoefsDP The derivative of SplineCoefsErr with respect to pars.

SplineCoefsDC2 The second derivative of SplineCoefsErr with respect to coefs.
SplineCoefsDCDP

The second derivative of SplineCoefsErr with respect to coefs and pars.

The output of gradients is in terms of an array with dimensions corresponding to derivatives. Deriva-
tives with with respect to coefficients are given in dimensions before those that give derivatives with
respect to parameters.

See Also

inneropt, Smooth.LS

Index

chemo.fun (make.transfer), 17
ChemoData, 3
ChemoParnames (ChemoData), 3
ChemoPars (ChemoData), 3
ChemoRMData, 3
ChemoRMPars (ChemoRMData), 3
ChemoRMTime (ChemoRMData), 3
ChemoTime (ChemoData), 3
ChemoVarnames (ChemoData), 3
CollocInfer (CollocInfer-package), 2
CollocInfer-package, 2
CollocInferPlots, 4

FhNdata, 5
FhNest, 6
FhNestCoefs (FhNest), 6
FhNestPars (FhNest), 6
FhNparnames (FhNdata), 5
FhNpars (FhNdata), 5
FhNtimes (FhNdata), 5
FhNvarnames (FhNdata), 5
FitMatch, 6
FitMatchDC (FitMatch), 6
FitMatchDC2 (FitMatch), 6
FitMatchErr, 24
FitMatchErr (FitMatch), 6
FitMatchList (FitMatch), 6
FitMatchOpt (FitMatch), 6
forward.prediction.error, 8

inneropt, 7, 9, 22, 24, 36, 39, 42
IntegrateForward, 11

LS.setup, 10, 13–15, 17, 19, 22, 28, 31, 39
LS.setup (setup), 34

make.Cproc, 15
make.Cproc (make.proc), 16
make.cvar (make.variance), 20
make.diagnostics (make.transfer), 17

make.Dproc, 15
make.Dproc (make.proc), 16
make.exp (make.transfer), 17
make.exp.Cproc (make.logtrans), 15
make.exp.Dproc (make.logtrans), 15
make.exptrans (make.transfer), 17
make.fhn (make.transfer), 17
make.findif, 12
make.genlin (make.transfer), 17
make.Henon (make.transfer), 17
make.id (make.transfer), 17
make.lik, 13
make.logstate.lik (make.logtrans), 15
make.logtrans, 15
make.multinorm, 21
make.multinorm (make.lik), 13
make.NS (make.transfer), 17
make.proc, 16
make.SEIR (make.transfer), 17
make.SSElik (make.lik), 13
make.SSEproc (make.proc), 16
make.transfer, 17
make.var.SEIR (make.variance), 20
make.variance, 20
multinorm.setup, 10, 13, 14, 17, 19, 22, 28,

31, 39
multinorm.setup (setup), 34

NSdata, 21
NSgroundwater (NSdata), 21
NSrainfall (NSdata), 21
NStimes (NSdata), 21

outeropt, 9, 10, 21, 28, 31, 36

ParsMatch, 23
ParsMatchDP (ParsMatch), 23
ParsMatchErr, 7
ParsMatchErr (ParsMatch), 23
ParsMatchList (ParsMatch), 23

43

44 INDEX

ParsMatchOpt (ParsMatch), 23
pomp.dmeasure (make.lik), 13
pomp.skeleton (make.transfer), 17
Profile.covariance, 25
Profile.GausNewt (ProfileObjective), 26
Profile.LS, 12, 22, 26, 28, 36
Profile.LS (Profiling Routines), 29
Profile.multinorm, 12, 26, 28, 36
Profile.multinorm (Profiling Routines),

29
ProfileDP (ProfileObjective), 26
ProfileErr, 22, 26, 31
ProfileErr (ProfileObjective), 26
ProfileList (ProfileObjective), 26
ProfileObjective, 26
ProfileSSE, 9, 22, 26, 31
ProfileSSE (ProfileObjective), 26
Profiling Routines, 29

RMparnames (ChemoRMData), 3
RMvarnames (ChemoRMData), 3

SEIRdata, 33
SEIRparnames (SEIRdata), 33
SEIRpars (SEIRdata), 33
SEIRtimes (SEIRdata), 33
SEIRvarnames (SEIRdata), 33
setup, 34
Smooth.LS, 10, 36, 37, 42
Smooth.multinorm, 36
Smooth.multinorm (Smooth.LS), 37
SplineCoefsDC (SplineEst), 41
SplineCoefsDC2 (SplineEst), 41
SplineCoefsDCDP (SplineEst), 41
SplineCoefsDP (SplineEst), 41
SplineCoefsErr, 7, 10, 24, 39
SplineCoefsErr (SplineEst), 41
SplineCoefsList (SplineEst), 41
SplineEst, 41
SplineEst.NewtRaph (SplineEst), 41

	CollocInfer-package
	ChemoData
	ChemoRMData
	CollocInferPlots
	FhNdata
	FhNest
	FitMatch
	forward.prediction.error
	inneropt
	IntegrateForward
	make.findif
	make.lik
	make.logtrans
	make.proc
	make.transfer
	make.variance
	NSdata
	outeropt
	ParsMatch
	Profile.covariance
	ProfileObjective
	Profiling Routines
	SEIRdata
	setup
	Smooth.LS
	SplineEst
	Index

