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cglasso Fit a linearly constrained linear regression model with group lasso
regularization.

Description

Fit a linearly constrained regression model with group lasso regularization.

Usage

cglasso(y, Z, Zc = NULL, k, W = rep(1, times = p), intercept = TRUE,
A = kronecker(matrix(1, ncol = p), diag(k)), b = rep(0, times = k),
u = 1, mu_ratio = 1.01,
lam = NULL, nlam = 100,lambda.factor = ifelse(n < p1, 0.05, 0.001),
dfmax = p, pfmax = min(dfmax * 1.5, p), tol = 1e-8,
outer_maxiter = 1e+6, outer_eps = 1e-8,
inner_maxiter = 1e+4, inner_eps = 1e-8)
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Arguments

y respones vector with length n.

Z design matrix of dimension n× p1.

Zc design matrix for unpenalized variables. Default value is NULL.

k the group size in Z. The number of groups is p = p1/k.

W a vector in length p (the total number of groups), or a matrix with dimension
p1*p1. Default value is rep(1, times = p).

• a vector of penalization weights for the groups of coefficients. A zero
weight implies no shrinkage.

• a diagonal matrix with positive diagonal elements.

intercept Boolean, specifying whether to include an intercept. Default is TRUE.

A, b linear equalities of the form Aβp1 = b, where b is a vector with length k, and A
is a k × p1 matrix. Default values: b is a vector of 0’s and
A = kronecker(matrix(1,ncol = p),diag(k)).

u the inital value of the penalty parameter of the augmented Lagrange method
adopted in the outer loop. Default value is 1.

mu_ratio the increasing ratio of the penalty parameter u. Default value is 1.01. Inital val-
ues for scaled Lagrange multipliers are set as 0’s. If mu_ratio < 1, the program
automatically set the initial penalty parameter u as 0 and outer_maxiter as 1,
indicating that there is no linear constraint.

lam a user supplied lambda sequence. If lam is provided as a scaler and nlam> 1,
lam sequence is created starting from lam. To run a single value of lam, set
nlam= 1. The program will sort user-defined lambda sequence in decreasing
order.

nlam the length of the lam sequence. Default is 100. No effect if lam is provided.

lambda.factor the factor for getting the minimal lambda in lam sequence, where min(lam) =
lambda.factor * max(lam). max(lam) is the smallest value of lam for which
all penalized group are 0’s. If n >= p1, the default is 0.001. If n < p1, the
default is 0.05.

dfmax limit the maximum number of groups in the model. Useful for handling very
large p, if a partial path is desired. Default is p.

pfmax limit the maximum number of groups ever to be nonzero. For example once a
group enters the model along the path, no matter how many times it re-enters the
model through the path, it will be counted only once. Default is min(dfmax*1.5,p).

tol tolerance for coefficient to be considered as non-zero. Once the convergence
criterion is satisfied, for each element βj in coefficient vector β, βj = 0 if
βj < tol.

outer_maxiter, outer_eps

outer_maxiter is the maximun number of loops allowed for the augmented
Lagrange method; and outer_eps is the corresponding convergence tolerance.

inner_maxiter, inner_eps

inner_maxiter is the maximum number of loops allowed for blockwise-GMD;
and inner_eps is the corresponding convergence tolerance.
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Value

A list of

beta a matrix of coefficients.

lam the sequence of lambda values.

df a vector, the number of nonzero groups in estimated coefficients for Z at each
value of lambda.

npass total number of iteration.

error a vector of error flag.

classo Fit a linearly constrained linear regression model with lasso regular-
ization.

Description

Fit a linearly constrained linear model with lasso regularization.

Usage

classo(y, Z, Zc = NULL, intercept = TRUE, pf = rep(1, times = p),
lam = NULL, nlam = 100,lambda.factor = ifelse(n < p, 0.05, 0.001),
dfmax = p, pfmax = min(dfmax * 1.5, p),
u = 1, mu_ratio = 1.01, tol = 1e-10,
outer_maxiter = 3e+08, outer_eps = 1e-8,
inner_maxiter = 1e+6, inner_eps = 1e-8,
A = rep(1, times = p), b = 0, beta.ini)

Arguments

y a response vector with length n.

Z a design matrix, with dimension n× p.

Zc design matrix for unpenalized variables. Default value is NULL.

intercept Boolean, specifying whether to include an intercept. Default is TRUE.

pf penalty factor, a vector of length p. Zero implies no shrinkage. Default value
for each entry is 1.

lam a user supplied lambda sequence. If lam is provided as a scaler and nlam> 1,
lam sequence is created starting from lam. To run a single value of lam, set
nlam= 1. The program will sort user-defined lambda sequence in decreasing
order.

nlam the length of the lam sequence. Default is 100. No effect if lam is provided.

lambda.factor the factor for getting the minimal lambda in the lam sequence, where min(lam)
= lambda.factor * max(lam). max(lam) is the smallest value of lam for which
all penalized coefficients become zero. If n >= p, the default is 0.001. If
n < p, the default is 0.05.
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dfmax limit the maximum number of groups in the model. Useful for handling very
large p, if a partial path is desired. Default is p.

pfmax limit the maximum number of groups ever to be nonzero. For example once a
group enters the model along the path, no matter how many times it re-enters the
model through the path, it will be counted only once. Default is min(dfmax*1.5,p).

u the inital value of the penalty parameter of the augmented Lagrange method
adopted in the outer loop. Default value is 1.

mu_ratio the increasing ratio, with value at least 1, for u. Default value is 1.01. Inital
values for scaled Lagrange multipliers are set as 0. If mu_ratio < 1, the program
automatically set u as 0 and outer_maxiter as 1, indicating that there is no
linear constraint.

tol tolerance for the estimated coefficients to be considered as non-zero, i.e., if
abs(βj) < tol, set βj as 0. Default value is 1e-10.

outer_maxiter, outer_eps

outer_maxiter is the maximum number of loops allowed for the augmented
Lanrange method; and outer_eps is the corresponding convergence tolerance.

inner_maxiter, inner_eps

inner_maxiter is the maximum number of loops allowed for the coordinate
descent; and inner_eps is the corresponding convergence tolerance.

A, b linear equalities of the form Aβp = b, where b is a scaler, and A is a row-vector
of length p. Default values: b is 0 and A = matrix(1,ncol = p).

beta.ini inital value of the coefficients. Can be unspecified.

Value

A list of

beta a matrix of coefficients.

lam the sequence of lambda values.

df a vector, the number of nonzero coefficients for Z at each value of lambda.

npass total number of iteration.

error a vector of error flag.

coef.compCL extracts model estimated coefficients from a "compCL" object.

Description

gets the coefficients at the requested values for lam from a fitted "compCL" object.

Usage

## S3 method for class 'compCL'
coef(object, s = NULL, ...)
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Arguments

object fitted "compCL" object.

s value(s) of the penalty parameter lam at which coefficients are requested. De-
fault (NULL) is the entire sequence used to create the model.

... Not used.

Details

s is a vector of lambda values at which the coefficients are requested. If s is not in the lam sequence
used for fitting the model, the coef function will use linear interpolation, so the function should be
used with caution.

Value

The coefficients at the requested tuning parameter values in s.

Author(s)

Zhe Sun and Kun Chen

References

Lin, W., Shi, P., Peng, R. and Li, H. (2014) Variable selection in regression with compositional
covariates, https://academic.oup.com/biomet/article/101/4/785/1775476. Biometrika 101 785-979.

See Also

compCL and predict, plot and print methods for "compCL" object.

Examples

Comp_data = comp_Model(n = 50, p = 30)
Comp_fit = compCL(y = Comp_data$y, Z = Comp_data$X.comp, Zc = Comp_data$Zc,

intercept = Comp_data$intercept)
coef(Comp_fit)
coef(Comp_fit, s = Comp_fit$lam[50])
coef(Comp_fit, s = c(1, 0.5, 0.1))

coef.cv.compCL Extract estimated coefficients from a "cv.compCL" object.

Description

This function gets coefficients from a compCL object, using the stored "compCL.fit" object.

https://academic.oup.com/biomet/article/101/4/785/1775476
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Usage

## S3 method for class 'cv.compCL'
coef(object, trim = FALSE, s = c("lam.min", "lam.1se"), ...)

Arguments

object fitted "cv.compCL" object.

trim whether to use the trimmed result. Default is FASLE.

s value(s) of the penalty parameter lam at which coefficients are requested.

• s="lam.min" (default) stored in the cv.compCL object, which gives value
of lam that achieves the minimum cross-vadilation error.

• s="lambda.min" which gives the largest value of lam such that 1 standard
error above the minimum of the cross-validation errors is achieved.

• If s is numeric, it is taken as the value(s) of lam to be used.
• If s = NULL, the whole sequence of lam stored in the cv.compCGL object is

used.

... not used.

Details

s is a vector of lambda values at which the coefficients are requested. If s is not in the lam sequence
used for fitting the model, the coef function will use linear interpolation, so the function should be
used with caution.

Value

The coefficients at the requested tuning parameter values in s.

Author(s)

Zhe Sun and Kun Chen

References

Lin, W., Shi, P., Peng, R. and Li, H. (2014) Variable selection in regression with compositional
covariates, https://academic.oup.com/biomet/article/101/4/785/1775476. Biometrika 101 785-979.

See Also

cv.compCL and compCL, and predict and plot methods for "cv.compCL" object.

Examples

p = 30
n = 50
beta = c(1, -0.8, 0.6, 0, 0, -1.5, -0.5, 1.2)
beta = c(beta, rep(0, times = p - length(beta)))
Comp_data = comp_Model(n = n, p = p, beta = beta, intercept = FALSE)

https://academic.oup.com/biomet/article/101/4/785/1775476
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cvm1 <- cv.compCL(y = Comp_data$y, Z = Comp_data$X.comp,
Zc = Comp_data$Zc, intercept = Comp_data$intercept)

coef(cvm1)
coef(cvm1, s = NULL)
coef(cvm1, s = c(1, 0.5, 0.1))

coef.cv.FuncompCGL Extract estiamted coefficients from a "cv.FuncompCGL" object.

Description

This function gets the coefficients from a cross-validated FuncompCGL model, using the stored
"FuncompCGL.fit" object, and the optimal grid values of the penalty parameter lam and the degrees
of freedom k.

Usage

## S3 method for class 'cv.FuncompCGL'
coef(object, trim = FALSE, s = c("lam.min", "lam.1se"), k = NULL, ...)

Arguments

object fitted cv.FuncompCGL object.
trim logical; whether to use the trimmed result. Default is FALSE.
s value(s) of the penalty parameter lam at which coefficients are requested.

• s="lam.min"(default), grid value of lam and k stored in the "cv.FuncompCGL"
object such that the minimum cross-validation error is achieved.

• s="lam.1se", grid value of lam and k stored on the "cv.FuncompCGL"
object such that the 1 standard error above the miminum cross-validation
error is achieved.

• If s is numeric, it is taken as the value(s) of lam to be used. In this case, k
must be provided.

• If s = NULL, the whole sequence of lam stored in the cv.FuncompCGL object
is used.

k value(s) of the degrees of freedom of the basis function at which coefficents are
requested. k can be NULL (default) or integer(s).

• k = NULL, s must be either "lam.min" or "lam.1se".
• if k is an integer(s), it is taken as the value of k to be used and it must be

one(s) of these in the "cv.FuncompCGL" object.
... not used.

Details

s is a vector of lambda values at which the coefficients are requested. If s is not in the lam sequence
used for fitting the model, the coef function will use linear interpolation, so the function should be
used with caution.
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Value

The coefficients at the requested values of s and k. If k is a vector, a list of coefficient matrices is
returned.

Author(s)

Zhe Sun and Kun Chen

References

Sun, Z., Xu, W., Cong, X., Li G. and Chen K. (2020) Log-contrast regression with functional
compositional predictors: linking preterm infant’s gut microbiome trajectories to neurobehavioral
outcome, https://arxiv.org/abs/1808.02403 Annals of Applied Statistics

See Also

cv.FuncompCGL and FuncompCGL, and predict and plot methods for "cv.FuncompCGL" object.

Examples

df_beta = 5
p = 30
beta_C_true = matrix(0, nrow = p, ncol = df_beta)
beta_C_true[1, ] <- c(-0.5, -0.5, -0.5 , -1, -1)
beta_C_true[2, ] <- c(0.8, 0.8, 0.7, 0.6, 0.6)
beta_C_true[3, ] <- c(-0.8, -0.8 , 0.4 , 1 , 1)
beta_C_true[4, ] <- c(0.5, 0.5, -0.6 ,-0.6, -0.6)
Data <- Fcomp_Model(n = 50, p = p, m = 0, intercept = TRUE,

SNR = 4, sigma = 3, rho_X = 0, rho_T = 0.6, df_beta = df_beta,
n_T = 20, obs_spar = 1, theta.add = FALSE,
beta_C = as.vector(t(beta_C_true)))

cv_m1 <- cv.FuncompCGL(y = Data$data$y, X = Data$data$Comp,
Zc = Data$data$Zc, intercept = Data$data$intercept,
k = c(4,5), nfolds = 5, nlam = 50,
keep = TRUE)

coef(cv_m1)
coef(cv_m1, s = "lam.1se")
coef(cv_m1, s = c(0.5, 0.1, 0.05), k = c(4,5))
coef(cv_m1, s = NULL, k = c(4,5))

https://arxiv.org/abs/1808.02403
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coef.FuncompCGL Extract estimated coefficients from a "FuncompCGL" object.

Description

get the coefficients at the requested values for lam from a fitted FuncompCGL object.

Usage

## S3 method for class 'FuncompCGL'
coef(object, s = NULL, ...)

Arguments

object fitted FuncompCGL object.

s value(s) of the penalty parameter lam at which coefficients are requested. De-
fault (NULL) is the entire sequence used to create the model.

... Not used.

Details

s is a vector of lambda values at which the coefficients are requested. If s is not in the lam sequence
used for fitting the model, the coef function will use linear interpolation, so the function should be
used with caution.

Value

The coefficients at the requested tuning parameter values in s.

Author(s)

Zhe Sun and Kun Chen

References

Sun, Z., Xu, W., Cong, X., Li G. and Chen K. (2020) Log-contrast regression with functional
compositional predictors: linking preterm infant’s gut microbiome trajectories to neurobehavioral
outcome, https://arxiv.org/abs/1808.02403 Annals of Applied Statistics

See Also

FuncompCGL, and predict, plot and print methods for "FuncompCGL" object.

https://arxiv.org/abs/1808.02403
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Examples

df_beta = 5
p = 30
beta_C_true = matrix(0, nrow = p, ncol = df_beta)
beta_C_true[1, ] <- c(-0.5, -0.5, -0.5 , -1, -1)
beta_C_true[2, ] <- c(0.8, 0.8, 0.7, 0.6, 0.6)
beta_C_true[3, ] <- c(-0.8, -0.8 , 0.4 , 1 , 1)
beta_C_true[4, ] <- c(0.5, 0.5, -0.6 ,-0.6, -0.6)
Data <- Fcomp_Model(n = 50, p = p, m = 2, intercept = TRUE,

SNR = 2, sigma = 2, rho_X = 0, rho_T = 0.5, df_beta = df_beta,
n_T = 20, obs_spar = 1, theta.add = FALSE,
beta_C = as.vector(t(beta_C_true)))

m1 <- FuncompCGL(y = Data$data$y, X = Data$data$Comp , Zc = Data$data$Zc,
intercept = Data$data$intercept, k = df_beta)

coef(m1)
coef(m1, s = c(0.5, 0.1, 0.01))

coef.GIC.compCL Extracts estimated coefficients from a "GIC.compCL" object.

Description

This function gets coefficients from a compCL object, using the stored "compCL.fit" object.

Usage

## S3 method for class 'GIC.compCL'
coef(object, s = "lam.min", ...)

Arguments

object fitted "GIC.compCL" object.

s value(s) of the penalty parameter lam at which coefficients are requested.

• s="lam.min" (default) stored in the GIC.compCL object, which gives value
of lam that achieves the minimum value of GIC.

• If s is numeric, it is taken as the value(s) of lam to be used.
• If s = NULL, the whole sequence of lam stored in the GIC.compCGL object is

used.

... not used.

Details

s is a vector of lambda values at which the coefficients are requested. If s is not in the lam sequence
used for fitting the model, the coef function will use linear interpolation, so the function should be
used with caution.
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Value

The coefficients at the requested tuning parameter values in s.

Author(s)

Zhe Sun and Kun Chen

References

Lin, W., Shi, P., Peng, R. and Li, H. (2014) Variable selection in regression with compositional
covariates, https://academic.oup.com/biomet/article/101/4/785/1775476. Biometrika 101 785-979.

See Also

GIC.compCL and compCL, and predict, and plot methods for "GIC.compCL" object.

Examples

p = 30
n = 50
beta = c(1, -0.8, 0.6, 0, 0, -1.5, -0.5, 1.2)
beta = c(beta, rep(0, times = p - length(beta)))
Comp_data = comp_Model(n = n, p = p, beta = beta, intercept = FALSE)
GICm1 <- GIC.compCL(y = Comp_data$y, Z = Comp_data$X.comp, Zc = Comp_data$Zc,

intercept = Comp_data$intercept)
coef(GICm1)
coef(GICm1, s = c(1, 0.5, 0.1))

coef.GIC.FuncompCGL Extract model estimated coefficients from a "GIC.FuncompCGL" ob-
ject.

Description

This function gets coefficients from a "GIC.FuncompCGL" object, using the stored "FuncompCGL.fit"
object, and the optimal values of lam and k.

Usage

## S3 method for class 'GIC.FuncompCGL'
coef(object, s = "lam.min", k = NULL, ...)

https://academic.oup.com/biomet/article/101/4/785/1775476
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Arguments

object fitted GIC.FuncompCGL object.

s value(s) of the regularization parameter lam at which coefficients are requested.

• s="lam.min" (default), grid value of lam and k stored in "GIC.FuncompCGL"
object such that the minimun value of GIC is achieved.

• If s is numeric, it is taken as the value(s) of lam to be used. In this case, k
must be provided.

• If s = NULL, used the whole sequence of lam stored in the GIC.FuncompCGL
object.

k value(s) of degrees of freedom of the basis function at which coefficents are
requested. k can be NULL (default) or integer(s).

• k = NULL, s must be "lam.min".
• if k is integer(s), it is taken as the value of k to be used and it must be one(s)

of these in "GIC.FuncompCGL" model.

... not used.

Details

s is a vector of lambda values at which the coefficients are requested. If s is not in the lam sequence
used for fitting the model, the coef function will use linear interpolation, so the function should be
used with caution.

Value

The coefficients at the requested tuning parameter values in s.

Author(s)

Zhe Sun and Kun Chen

References

Sun, Z., Xu, W., Cong, X., Li G. and Chen K. (2020) Log-contrast regression with functional
compositional predictors: linking preterm infant’s gut microbiome trajectories to neurobehavioral
outcome, https://arxiv.org/abs/1808.02403 Annals of Applied Statistics

See Also

GIC.FuncompCGL and FuncompCGL, and predict and plot methods for "GIC.FuncompCGL" object.

Examples

df_beta = 5
p = 30
beta_C_true = matrix(0, nrow = p, ncol = df_beta)
beta_C_true[1, ] <- c(-0.5, -0.5, -0.5 , -1, -1)
beta_C_true[2, ] <- c(0.8, 0.8, 0.7, 0.6, 0.6)
beta_C_true[3, ] <- c(-0.8, -0.8 , 0.4 , 1 , 1)

https://arxiv.org/abs/1808.02403
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beta_C_true[4, ] <- c(0.5, 0.5, -0.6 ,-0.6, -0.6)
n = 50
k_list <- c(4,5)
Data <- Fcomp_Model(n = n, p = p, m = 0, intercept = TRUE,

SNR = 4, sigma = 3, rho_X = 0.6, rho_T = 0,
df_beta = df_beta, n_T = 20, obs_spar = 1, theta.add = FALSE,
beta_C = as.vector(t(beta_C_true)))

GIC_m1 <- GIC.FuncompCGL(y = Data$data$y, X = Data$data$Comp,
Zc = Data$data$Zc, intercept = Data$data$intercept,
k = k_list)

coef(GIC_m1)
coef(GIC_m1, s = c(0.05, 0.01), k = c(4,5))
coef(GIC_m1, s = NULL, k = c(4,5))

compCL Fit regularization path for log-contrast model of compositional data
with lasso penalty.

Description

Fit regression with compositional predictors via penalized log-contrast model which was proposed
by Lin et al. (2014) <doi:10.1093/biomet/asu031>. The model estimation is conducted by minimiz-
ing a linearly constrained lasso criterion. The regularization paths are computed at a grid of tuning
parameter lambda.

Usage

compCL(y, Z, Zc = NULL, intercept = TRUE,
lam = NULL, nlam = 100, lambda.factor = ifelse(n < p, 0.05, 0.001),
pf = rep(1, times = p), dfmax = p, pfmax = min(dfmax * 1.5, p),
u = 1, mu_ratio = 1.01, tol = 1e-10,
inner_maxiter = 1e+4, inner_eps = 1e-6,
outer_maxiter = 1e+08, outer_eps = 1e-8)

Arguments

y a response vector with length n.

Z a n×p design matrix of compositional data or categorical data. If Z is categorical
data, i.e., row-sums of Z differ from 1, the program automatically transforms Z
into compositional data by dividing each row by its sum. Z could NOT include
entry of 0’s.

Zc a n ∗ pc design matrix of control variables (not penalized). Default is NULL.

intercept Boolean, specifying whether to include an intercept. Default is FALSE.
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lam a user supplied lambda sequence. If lam is provided as a scaler and nlam> 1,
lam sequence is created starting from lam. To run a single value of lam, set
nlam= 1. The program will sort user-defined lambda sequence in decreasing
order.

nlam the length of the lam sequence. Default is 100. No effect if lam is provided.

lambda.factor the factor for getting the minimal lambda in the lam sequence, where min(lam)
= lambda.factor * max(lam). max(lam) is the smallest value of lam for which
all penalized coefficients become zero. If n >= p, the default is 0.001. If
n < p, the default is 0.05.

pf penalty factor, a vector of length p. Zero implies no shrinkage. Default value
for each entry is 1.

dfmax limit the maximum number of groups in the model. Useful for handling very
large p, if a partial path is desired. Default is p.

pfmax limit the maximum number of groups ever to be nonzero. For example once a
group enters the model along the path, no matter how many times it re-enters the
model through the path, it will be counted only once. Default is min(dfmax*1.5,p).

u the inital value of the penalty parameter of the augmented Lagrange method
adopted in the outer loop. Default value is 1.

mu_ratio the increasing ratio, with value at least 1, for u. Default value is 1.01. Inital
values for scaled Lagrange multipliers are set as 0’s. If mu_ratio < 1, the pro-
gram automatically set u as 0 and outer_maxiter as 1, indicating that there is
no linear constraints included.

tol tolerance for the estimated coefficients to be considered as non-zero, i.e., if
abs(βj) < tol, set βj as 0. Default value is 1e-10.

inner_maxiter, inner_eps

inner_maxiter is the maximun number of loops allowed in the coordinate de-
scent; and inner_eps is the corresponding convergence tolerance.

outer_maxiter, outer_eps

outer_maxiter is the maximum number of loops allowed in the Augmented
Lagrange method; and outer_eps is the corresponding convergence tolerance.

Details

The log-contrast regression model with compositional predictors is expressed as

y = Zβ + e, s.t.

p∑
j=1

βj = 0,

where Z is the n-by-p design matrix of log-transforemd compositional data, β is the p-vector of
regression cofficients, and e is an n-vector of random errors. If zero(s) exists in the original compo-
sitional data, user should pre-process these zero(s).
To enable variable selection, we conduct model estimation via linearly constrained lasso

argminβ(
1

2n
‖y − Zβ‖22 + λ‖β‖1), s.t.

p∑
j=1

βj = 0.
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Value

An object with S3 calss "compCL" is a list containing:

beta a matrix of coefficients for p+ pc + 1 rows. If intercept=FALSE, then the last
row of beta is set to 0’s.

lam the sequence of lam values used.

df the number of non-zero βp’s in estimated coefficients for Z at each value of lam.

npass total iterations.

error error messages. If 0, no error occurs.

call the call that produces this object.

dim dimension of the coefficient matrix beta.

Author(s)

Zhe Sun and Kun Chen

References

Lin, W., Shi, P., Peng, R. and Li, H. (2014) Variable selection in regression with compositional
covariates, https://academic.oup.com/biomet/article/101/4/785/1775476. Biometrika 101 785-979

See Also

coef, predict, print and plot methods for "compCL" object and cv.compCL and GIC.compCL.

Examples

p = 30
n = 50
beta = c(1, -0.8, 0.6, 0, 0, -1.5, -0.5, 1.2)
beta = c(beta, rep(0, times = p - length(beta)))
Comp_data = comp_Model(n = n, p = p, beta = beta, intercept = FALSE)
m1 <- compCL(y = Comp_data$y, Z = Comp_data$X.comp,

Zc = Comp_data$Zc, intercept = Comp_data$intercept)
print(m1)
plot(m1)
beta = coef(m1)
Test_data = comp_Model(n = 30, p = p, beta = Comp_data$beta, intercept = FALSE)
predmat = predict(m1, Znew = Test_data$X.comp, Zcnew = Test_data$Zc)

https://academic.oup.com/biomet/article/101/4/785/1775476
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comp_Model Simulation for log-contrast model.

Description

Simulate data for log-contrast model with a single set of compositional data.

Usage

comp_Model(n, p, rho = 0.2, sigma = 0.5, gamma = 0.5, add.on = 1:5,
beta = c(c(1, -0.8, 0.6, 0, 0, -1.5, -0.5, 1.2), rep(0, times = p - 8)),
beta0 = 1, intercept = TRUE)

Arguments

n sample size

p number of components in the compositional data

rho parameter used to generate the p × p autocorrelation matrix for correlations
among the components. Default is 0.2.

sigma standard deviation for the noise terms, which are iid normal with mean 0. De-
fault is 0.5.

gamma a scaler. For the high level mean component(s), log(p * gamma) is added to the
"non-normalized" data w_i before the data are converted to compositional.

add.on an index vector with value(s) in [1,p], specifying which component(s) of com-
positions is of high level mean. Default is 1:5.

beta coefficients for the compositional variables.

beta0 coefficient for the intercept. Default is 1.

intercept whether to include an intercept. Default is FALSE.

Details

The setup of this simulation follows Lin, W., Shi, P., Peng, R. and Li, H. (2014) Variable selection in
regression with compositional covariates, https://academic.oup.com/biomet/article/101/4/785/1775476.
Specifically, we first generate the correlation matrix among the components X.Sigma by rho with
an autoregressive correlation structure. we then generate the "non-normalized" data wi for each
subject from multivariate normal distribution with covariance X.Sigma and mean determined by
add.on and gamma. Each wi is a vector of length p. Finally, the compositional covariates are
obtained as

xij = exp(wij)/

p∑
k=1

exp(wik),

for each subject i = 1, ..., n and component j = 1, ..., p.

https://academic.oup.com/biomet/article/101/4/785/1775476
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Value

A list containing:

y a n-vector of the simulated response

X.comp a matrix of the simulated compositional predictors of dimension n× p

Z a matrix of the log-transformed compositional predictors

Zc a matrix of the simulated covariates

intercept whether an intercept is included

beta the true coefficient vector

Author(s)

Zhe Sun and Kun Chen

References

Lin, W., Shi, P., Peng, R. and Li, H. (2014) Variable selection in regression with compositional
covariates, https://academic.oup.com/biomet/article/101/4/785/1775476. Biometrika 101 785-979.

Examples

p = 30
beta = c(1, -0.8, 0.6, 0, 0, -1.5, -0.5, 1.2)
beta = c( beta, rep(0, times = p - length(beta)) )
Data = comp_Model(n = 50, p = p, intercept = FALSE,

rho = 0.2, sigma = 0.5, gamma = 0.5, add.on = 1:5,
beta = beta)

cv.compCL Cross-validation for compCL.

Description

k-fold cross-validation for compCL; produce a plot and return optimal values of lam.

Usage

cv.compCL(y, Z, Zc = NULL, intercept = FALSE, lam = NULL,
nfolds = 10, foldid, trim = 0, keep = FALSE, ...)

https://academic.oup.com/biomet/article/101/4/785/1775476
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Arguments

y response vector with length n.

Z z matrix as in compCL.

Zc Zc matrix as in compCL. Default is NULL.

intercept whether to include an intercept. Default is FALSE.

lam a user supplied lambda sequence. If lam is provided as a scaler and nlam> 1,
lam sequence is created starting from lam. To run a single value of lam, set
nlam= 1. The program will sort user-defined lambda sequence in decreasing
order.

nfolds number of folds, default is 10. The smallest allowable value is nfolds=3.

foldid an optional vector of values between 1 and the sample size n, providing the fold
assignments. If supplied, nfold can be missing.

trim percentage to be trimmed off the prediction errors from either side; default is 0.

keep If keep=TRUE, fitted models in cross validation are reported. Default is keep=FALSE.

... other arguments that can be passed to compCL.

Details

cross-validation and fit full data with selected model.

Value

an object of S3 class "cv.compCL" is returned, which is a list constaining:

compCL.fit a fitted compCL object for the full data.

lam the sequence of lam.

Ftrim a list of cross-validation results without trimming:

• cvm the mean cross-validated error - a vector of length length(lam).

• cvsd standard error of cvm.
• cvupper upper curve = cvm+cvsd.
• cvlo lower curve = cvm-cvsd.
• lam.min the optimal value of lam that gives minimum cross validation er-

ror.
• lam.1se the largest value of lam such that the error is within 1 standard

error of the minimum cvm.

Ttrim a list of cross-validation result with trim*100%, The structure is the same as that
for Ftrim.

foldid the values of foldid.

Author(s)

Zhe Sun and Kun Chen
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References

Lin, W., Shi, P., Peng, R. and Li, H. (2014) Variable selection in regression with compositional
covariates, https://academic.oup.com/biomet/article/101/4/785/1775476. Biometrika 101 785-979

See Also

compCL and cv.compCL, and coef, predict and plot methods for "cv.compCL" object.

Examples

p = 30
n = 50
beta = c(1, -0.8, 0.6, 0, 0, -1.5, -0.5, 1.2)
beta = c(beta, rep(0, times = p - length(beta)))
Comp_data = comp_Model(n = n, p = p, beta = beta, intercept = FALSE)
cvm1 <- cv.compCL(y = Comp_data$y, Z = Comp_data$X.comp,

Zc = Comp_data$Zc, intercept = Comp_data$intercept)

plot(cvm1)
coef(cvm1)
## selection by "lam.min" criterion
which(abs(coef(cvm1, s = "lam.min")[1:p]) > 0)
## selection by "lam.1se" criterion
which(abs(coef(cvm1, s= "lam.1se")[1:p]) > 0)

Comp_data2 = comp_Model(n = 30, p = p, beta = Comp_data$beta, intercept = FALSE)
y_hat = predict(cvm1, Znew = Comp_data2$X.comp, Zcnew = Comp_data2$Zc)
plot(Comp_data2$y, y_hat,

xlab = "Observed response", ylab = "Predicted response")

cv.FuncompCGL Cross-validation for FuncompCGL.

Description

k-fold cross-validation for FuncompCGL; produce a plot and return optimal values of lam and k.

Usage

cv.FuncompCGL(y, X, Zc = NULL, lam = NULL, nlam = 100, k = 4:10, ref = NULL,
foldid, nfolds = 10, W = rep(1,times = p - length(ref)),
trim = 0, outer_maxiter = 1e+06, keep = FALSE, ...)

https://academic.oup.com/biomet/article/101/4/785/1775476
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Arguments

y response vector with length n.

X a data frame or matrix.

• If nrow(X) > n, X should be a data frame or matrix of the functional com-
positional predictors with p columns for the values of the compositional
components, one column indicating the subject ID and one column of ob-
served time points. The order of the Subject ID should be the SAME as that
of y.

• If nrow(X)[1]=n, X is considered as the integrated design matrix, a n*(k*p
-length(ref)) matrix.

Zc a n× pc design matrix of unpenalized variables. Default is NULL.

lam a user supplied lambda sequence. If lam is provided as a scaler and nlam> 1,
lam sequence is created starting from lam. To run a single value of lam, set
nlam= 1. The program will sort user-defined lambda sequence in decreasing
order.

nlam the length of the lam sequence. Default is 100. No effect if lam is provided.

k a vector of integer values of the degrees of freedom; default is 4:10.

ref reference level (baseline), either an integer between [1, p] or NULL. Default value
is NULL.

• If ref is set to be an integer between [1,p], the group lasso penalized log-
contrast model (with log-ratios) is fitted with the ref-th component chosed
as baseline.

• If ref is set to be NULL, the linearly constrained group lasso penalized log-
contrast model is fitted.

foldid an optional vector of values between 1 and the sample size n, providing the fold
assignments. If supplied, nfold can be missing.

nfolds number of folds, default is 10. The smallest allowable value is nfolds=3.

W a vector of length p (the total number of groups), or a matrix with dimension
p1 × p1, where p1=(p -length(ref)) * k, or character specifying the function
used to calculate weight matrix for each group.

• a vector of penalization weights for the groups of coefficients. A zero
weight implies no shrinkage.

• a diagonal matrix with positive diagonal elements.
• if character string of function name or an object of type function to com-

pute the weights.

trim percentage to be trimmed off the prediction errors from either side; default is 0.

outer_maxiter maximum number of loops allowed for the augmented Lagrange method.

keep If keep=TRUE, fitted models in cross validation are reported. Default is keep=FALSE.

... other arguments that can be passed to FuncompCGL.

Details

k-fold cross validation.



22 cv.FuncompCGL

Value

An object of S3 class "cv.FuncompCGL" is return, which is a list containing:

FuncompCGL.fit a list of length length(k), with elements being the fitted FuncompCGL objects
of different degrees of freedom.

lam the sequence of lam.

Ftrim a list for cross validation results with trim = 0.

• cvm the mean cross-validated error - a matrix of dimension length(k)*length(lam).

• cvsd estimated standard error of cvm.
• cvup upper curve = cvm + cvsd.
• cvlo lower curve = cvm -cvsd.
• lam.min the optimal values of k and lam that give minimum cross valida-

tion error cvm.
• lam.1se the optimal values of k and lam that give cross validation error

withnin 1 standard error of the miminum cvm.

Ttrim a list of cross validation result with trim*100%. The structure is the same as that
for Ftrim.

fit.preval, foldid

fit.preval is the array of fitted models. Only kept when keep=TRUE.

Author(s)

Zhe Sun and Kun Chen

References

Sun, Z., Xu, W., Cong, X., Li G. and Chen K. (2020) Log-contrast regression with functional
compositional predictors: linking preterm infant’s gut microbiome trajectories to neurobehavioral
outcome, https://arxiv.org/abs/1808.02403 Annals of Applied Statistics

See Also

FuncompCGL and GIC.FuncompCGL, and predict, coef and plot methods for "cv.FuncompCGL"
object.

Examples

## generate training and testing data
df_beta = 5
p = 30
beta_C_true = matrix(0, nrow = p, ncol = df_beta)
beta_C_true[1, ] <- c(-0.5, -0.5, -0.5 , -1, -1)
beta_C_true[2, ] <- c(0.8, 0.8, 0.7, 0.6, 0.6)
beta_C_true[3, ] <- c(-0.8, -0.8 , 0.4 , 1 , 1)
beta_C_true[4, ] <- c(0.5, 0.5, -0.6 ,-0.6, -0.6)

n_train = 50

https://arxiv.org/abs/1808.02403
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n_test = 30
nfolds = 5
foldid <- sample(rep(seq(nfolds), length = n_train))
k_list <- c(4,5)

Data <- Fcomp_Model(n = n_train, p = p, m = 0, intercept = TRUE,
SNR = 4, sigma = 3, rho_X = 0.2, rho_T = 0.5,
df_beta = df_beta, n_T = 20, obs_spar = 1, theta.add = FALSE,
beta_C = as.vector(t(beta_C_true)))

arg_list <- as.list(Data$call)[-1]
arg_list$n <- n_test
Test <- do.call(Fcomp_Model, arg_list)

## cv_cgl: Constrained group lasso
cv_cgl <- cv.FuncompCGL(y = Data$data$y, X = Data$data$Comp,

Zc = Data$data$Zc, intercept = Data$data$intercept,
k = k_list, foldid = foldid,
keep = TRUE)

plot(cv_cgl,k = k_list)
cv_cgl$Ftrim[c("lam.min", "lam.1se")]
beta <- coef(cv_cgl, trim = FALSE, s = "lam.min")
k_opt <- cv_cgl$Ftrim$lam.min['df']
## plot path against L2-norm of group coefficients
plot(cv_cgl$FuncompCGL.fit[[as.character(k_opt)]])
## or plot path against L1-norm of group coefficients
plot(cv_cgl$FuncompCGL.fit[[as.character(k_opt)]], ylab = "L1")

m1 <- ifelse(is.null(ncol(Data$data$Zc)), 0, ncol(Data$data$Zc))
m1 <- m1 + Data$data$intercept
if(k_opt == df_beta) {

plot(Data$beta, col = "red", pch = 19,
ylim = range(c(range(Data$beta), range(beta))))

abline(v= seq(from = 0, to = (p*df_beta), by = df_beta ))
abline(h = 0)
points(beta)
if(m1 > 0) points(p*df_beta + 1:m1, tail(Data$beta, m1),

col = "blue", pch = 19)
} else {

plot(beta, ylim = range(c(range(Data$beta), range(beta))) )
abline(v= seq(from = 0, to = (p*k_opt), by = k_opt ))
abline(h = 0, col = "red")
if(m1 > 0) points(p*k_opt + 1:m1, tail(Data$beta, m1),

col = "blue", pch = 19)
}

beta_C <- matrix(beta[1:(p*k_opt)], byrow = TRUE, nrow = p)
## satisfies zero-sum constraints
cat("colSums:", colSums(beta_C))
Nonzero <- (1:p)[apply(beta_C, 1, function(x) max(abs(x)) >0)]
cat("selected groups:", Nonzero)

oldpar <- par(mfrow=c(2,1))
sseq <- Data$basis.info[, 1]
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beta_curve_true <- Data$basis.info[, -1] %*% t(beta_C_true)
Nonzero_true <- (1:p)[apply(beta_C_true, 1, function(x) max(abs(x)) >0)]
matplot(sseq, beta_curve_true, type = "l", ylim = range(beta_curve_true),

ylab = "True coeffcients curves", xlab = "TIME")
abline(a = 0, b = 0, col = "grey", lwd = 2)
text(0, beta_curve_true[1, Nonzero_true], labels = Nonzero_true)

beta_curve <- splines::bs(sseq, df = k_opt, intercept = TRUE) %*% t(beta_C)
matplot(sseq, beta_curve, type = "l", ylim = range(beta_curve_true),

ylab = "Estimated coefficient curves", xlab = "TIME")
abline(a = 0, b = 0, col = "grey", lwd = 2)
text(0, beta_curve[1, Nonzero], labels = Nonzero)
par(oldpar)

## plot L1-norm of the estimated coefficients for each component of the composition
plot(apply(abs(beta_C),1,sum), ylab = "L1-norm", xlab = "Component index")
## or plot L2-norm
plot(apply(abs(beta_C),1, function(x) sqrt(sum(x^2))),

ylab = "L2-norm", xlab = "Component index")

## set a thresholding for variable selection via cross-validation model
## example 1: cut by average L2-norm for estimated coefficient curves
Curve_L2 <- colSums(beta_curve^2)
Curve_L2 <- Curve_L2 - colSums(beta_curve[c(1, nrow(beta_curve)), ]^2) / 2
Curve_L2 <- Curve_L2 * (Data$basis.info[2,1] - Data$basis.info[1,1])
Curve_L2 <- sqrt(Curve_L2)
plot(Curve_L2, xlab = "Component index", ylab = "L2-norm for coefficient curves")
cutoff <- sum(Curve_L2) / p
Nonzero_cut <- (1:p)[which(Curve_L2 >= cutoff)]
Nonzero_cut
## example 2: cut by average L2-norm for estimated coefficient vectors
cutoff <- sum(apply(beta_C, 1, function(x) norm(x, "2")))/p
Nonzero_cut2 <- (1:p)[apply(beta_C, 1, function(x, a) norm(x, "2") >= a, a = cutoff)]
## example 3: cut by average L1-norm for estimated coefficient vectors
cutoff <- sum(abs(beta_C))/p
Nonzero_cut3 <- (1:p)[apply(beta_C, 1, function(x, a) sum(abs(x)) >= a, a = cutoff)]

y_hat <- predict(cv_cgl, Data$data$Comp, Data$data$Zc, s = "lam.min")
MSE <- sum((drop(Data$data$y) - y_hat)^2) / n_train
y_hat <- predict(cv_cgl, Test$data$Comp, Test$data$Zc, s = "lam.min")
PRE <- sum((drop(Test$data$y) - y_hat)^2) / n_test
cgl_result <- list(cv.result = cv_cgl, beta = beta,

Nonzero = c("Original" = Nonzero, "Cut" = Nonzero_cut),
MSE = MSE, PRE = PRE)

## cv_naive: ignoring the zero-sum constraints
## set mu_raio = 0 to identifying without linear constraints,
## no outer_loop for Lagrange augmented multiplier
cv_naive <- cv.FuncompCGL(y = Data$data$y, X = Data$data$Comp,

Zc = Data$data$Zc, intercept = Data$data$intercept,
k = k_list, foldid = foldid, keep = TRUE,
mu_ratio = 0)

plot(cv_naive, k = k_list)
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beta <- coef(cv_naive, trim = FALSE, s = "lam.min")
k_opt <- cv_naive$Ftrim$lam.min['df']
beta_C <- matrix(beta[1:(p*k_opt)], byrow = TRUE, nrow = p)
## does NOT satisfy zero-sum constraints
cat("colSums:", colSums(beta_C))
Nonzero <- (1:p)[apply(beta_C, 1, function(x) max(abs(x)) >0)]
beta_curve <- splines::bs(sseq, df = k_opt, intercept = TRUE) %*% t(beta_C)
Curve_L2 <- colSums(beta_curve^2) - colSums(beta_curve[c(1, nrow(beta_curve)), ]^2) / 2
Curve_L2 <- sqrt(Curve_L2 * (Data$basis.info[2,1] - Data$basis.info[1,1]))
cutoff <- sum(Curve_L2) / p
Nonzero_cut <- (1:p)[which(Curve_L2 >= cutoff)]
y_hat <- predict(cv_naive, Data$data$Comp, Data$data$Zc, s = "lam.min")
MSE <- sum((drop(Data$data$y) - y_hat)^2) / n_train
y_hat <- predict(cv_naive, Test$data$Comp, Test$data$Zc, s = "lam.min")
PRE <- sum((drop(Test$data$y) - y_hat)^2) / n_test
naive_result <- list(cv.result = cv_naive, beta = beta,

Nonzero = c("Original" = Nonzero, "Cut" = Nonzero_cut),
MSE = MSE, PRE = PRE)

## cv_base: random select a component as reference
## mu_ratio is set to 0 automatically once ref is set to a integer
ref = sample(1:p, 1)
cv_base <- cv.FuncompCGL(y = Data$data$y, X = Data$data$Comp,

Zc = Data$data$Zc, intercept = Data$data$intercept,
k = k_list, foldid = foldid, keep = TRUE,
ref = ref)

plot(cv_base, k = k_list)
beta <- coef(cv_base, trim = FALSE, s = "lam.min")
k_opt <- cv_base$Ftrim$lam.min['df']
beta_C <- matrix(beta[1:(p*k_opt)], byrow = TRUE, nrow = p)
## satisfies zero-sum constraints
cat("colSums:", colSums(beta_C))
Nonzero <- (1:p)[apply(beta_C, 1, function(x) max(abs(x)) >0)]
beta_curve <- splines::bs(sseq, df = k_opt, intercept = TRUE) %*% t(beta_C)
Curve_L2 <- colSums(beta_curve^2) - colSums(beta_curve[c(1, nrow(beta_curve)), ]^2) / 2
Curve_L2 <- sqrt(Curve_L2 * (Data$basis.info[2,1] - Data$basis.info[1,1]))
cutoff <- sum(Curve_L2) / p
Nonzero_cut <- (1:p)[which(Curve_L2 >= cutoff)]
y_hat <- predict(cv_base, Data$data$Comp, Data$data$Zc, s = "lam.min")
MSE <- sum((drop(Data$data$y) - y_hat)^2) / n_train
y_hat <- predict(cv_base, Test$data$Comp, Test$data$Zc, s = "lam.min")
PRE <- sum((drop(Test$data$y) - y_hat)^2) / n_test
base_result <- list(cv.result = cv_base, beta = beta,

Nonzero = c("Original" = Nonzero, "Cut" = Nonzero_cut),
MSE = MSE, PRE = PRE)

Fcomp_Model Simulation for functional composition data.
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Description

simulate functional compositional data.

Usage

Fcomp_Model(n, p, m = 0, intercept = TRUE,
interval = c(0, 1), n_T = 100, obs_spar = 0.6, discrete = FALSE,
SNR = 1, sigma = 2, Nzero_group = 4,
rho_X, Corr_X = c("CorrCS", "CorrAR"),
rho_T, Corr_T = c("CorrAR", "CorrCS"),
range_beta = c(0.5, 1), beta_c = 1, beta_C ,
theta.add = c(1, 2, 5, 6), gamma = 0.5,

basis_beta = c("bs", "OBasis", "fourier"), df_beta = 5, degree_beta = 3,
insert = c("FALSE", "X", "basis"), method = c("trapezoidal", "step"))

Arguments

n sample size.

p number of the components in the functional compositional data.

m size of unpenalized variables. The first ceiling(m/2) ones are generated with
independent bin(1,0.5) entries; while the last (m -ceiling(m/2)) ones are
generated with independent norm(0,1) entries. Default is 0.

intercept whether to include an intercept. Default is TRUE.

interval a vector of length 2 indicating the time domain. Default is c(0,1).

n_T an integer specifying length of the equally spaced time sequence on domian
interval.

obs_spar a percentage used to get sparse ovbservation. Each time point is with probability
obs_spar to be observed. It allows different subject to be observed on different
time points. obs_spar * n_T > 5 is required.

discrete logical (default is FALSE) specifying whether the functional compositional data
X is generated at different time points. If distrete = TRUE, generate X on
dense sequence created by max(ns_dense = 200 * diff(interval),5 * n_T)
and then for each subject, randomly sample n_T points.

SNR signal to noise ratio.

sigma variance used to generate the covariance matrix CovMIX = sigma^2 * kronecker(T.Sigma,X.Sigma).
The "non-normalized" data wi for each subject is genearted from multivariate
normal distribution with covariance CovMIX. T.Sigma and X.Sigma are correla-
tion matrices for time points and components, respectively.

Nzero_group an even integer specifying that the first Nzero_group compositional predictors
are with non-zero effects. Default is 4.

rho_X, rho_T parameters used to generate correlation matrices.

Corr_X, Corr_T character string specifying correlation structure bewteen components and be-
tween time points, respectively.

• "CorrCS"(Default for Corr_X) compound symmetry.
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• "CorrAR"(Default for Corr_T) autoregressive.
range_beta a sorted vector of length 2, specifying the range of coefficient matrix B of demen-

sion p× k. Specifically, each column of B is filled with Nzero_group/2 values
from the unifom distribution over range_beta and their negative counterparts.
Default is c(0.5,1).

beta_c value of coefficients for beta0 and beta_c (coefficients for intercept and time-
invariant predictors). Default is 1.

beta_C vectorized coefficient matrix. If missing, the program will generate beta_C ac-
cording to range_beta and Nzero_group.

theta.add logical or integer(s).
• If integer(s), a vector with value(s) in [1,p], indicating which compo-

nent(s) of compostions is of high level mean curve.
• If TRUE, the components c(1:ceiling(Nzero_group/2) and Nzero_group
+ (1:ceiling(Nzero_group/2))) are set to with high level mean.

• if FALSE, all mean curves are set to 0’s.
gamma for the high-level mean groups, log(p * gamma) is added on the "non-normalized"

data wi before the data are converted to be compositional.
basis_beta, df_beta, degree_beta

basis_fun, k and degree in FuncompCGL respectively.
insert a character string sepcifying method to perform functional interpolation.

• "FALSE"(Default) no interpolation.
• "X" linear interpolation of functional compositional data along the time

grid.
• "basis" the functional compositional data is interplolated as a step func-

tion along the time grid.
If insert = "X" or "basis", interplolation is conducted on sseq, where sseq
is the sorted sequence of all the observed time points.

method a character string sepcifying method used to approximate integral.
• "trapezoidal"(Default) Sum up areas under the trapezoids.
• "step" Sum up area under the rectangles.

Details

The setup of this simulation follows Sun, Z., Xu, W., Cong, X., Li G. and Chen K. (2020) Log-
contrast regression with functional compositional predictors: linking preterm infant’s gut micro-
biome trajectories to neurobehavioral outcome, https://arxiv.org/abs/1808.02403 Annals of Applied
Statistics.
Specifically, we first generate correlation matrix X.sigma for components of a composition based
on rho_X and Corr_X, and correlation matrix T.sigma for time points based on rho_T and Corr_T.
Then, the "non-normalized" data wi = [wi(t1)T , ..., wi(tnT

)T ] for each subject are generated from
multivariate normal distrubtion with covariance CovMIX = sigma^2 * kronecker(T.Sigma,X.Sigma),
and the mean vector is determined by theta.add and gamma. Each wi(tv) is a p-vector for each
time point v = 1, ..., Tn. Finally, the compositional data are obtained as

xij(tv) = exp(wij(tv))/sum
p
k=1exp(wik(tv)),

for each subject i = 1, ..., n, component of a composition j = 1, ..., p and time point v = 1, ..., nT .

https://arxiv.org/abs/1808.02403
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Value

a list including

data a list of observed data,

• y a vector of response variable,
• Comp a data frame of observed functional compositional data, a column of
Subject_ID, and a column of TIME,

• Zc a matrix of unpenalized variables with dimension n×m,
• intercept whether an intercept is included.

beta a length p*df_beta + m + 1 vector of coefficients

basis.info matrix of the basis function to generate the coefficient curves

data.raw a list consisting of

• Z_t.full the functional compositional data.
• Z_ITG integrated functional compositional data.
• Y.tru true response vector without noise.
• X functional "non-normalized" data W.

parameter a list of parameters used in the simulation.

Author(s)

Zhe Sun and Kun Chen

References

Sun, Z., Xu, W., Cong, X., Li G. and Chen K. (2020) Log-contrast regression with functional
compositional predictors: linking preterm infant’s gut microbiome trajectories to neurobehavioral
outcome, https://arxiv.org/abs/1808.02403 Annals of Applied Statistics

Examples

Data <- Fcomp_Model(n = 50, p = 30, m = 0, intercept = TRUE, Nzero_group = 4,
n_T = 20, SNR = 3, rho_X = 0, rho_T = 0.6,
df_beta = 5, obs_spar = 1, theta.add = FALSE)

FuncompCGL Fit regularization paths of sparse log-contrast regression with func-
tional compositional predictors.

Description

Fit the penalized log-contrast regression with functional compositional predictors proposed by Zhe
et al. (2020) <arXiv:1808.02403>. The model estimation is conducted by minimizing a linearly
constrained group lasso criterion. The regularization paths are computed for the group lasso penalty
at grid values of the regularization parameter lam and the degree of freedom of the basis function K.

https://arxiv.org/abs/1808.02403
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Usage

FuncompCGL(y, X, Zc = NULL, intercept = TRUE, ref = NULL,
k, degree = 3, basis_fun = c("bs", "OBasis", "fourier"),
insert = c("FALSE", "X", "basis"), method = c("trapezoidal", "step"),
interval = c("Original", "Standard"), Trange,
T.name = "TIME", ID.name = "Subject_ID",
W = rep(1,times = p - length(ref)),
dfmax = p - length(ref), pfmax = min(dfmax * 1.5, p - length(ref)),
lam = NULL, nlam = 100, lambda.factor = ifelse(n < p1, 0.05, 0.001),
tol = 1e-8, mu_ratio = 1.01,
outer_maxiter = 1e+6, outer_eps = 1e-8,
inner_maxiter = 1e+4, inner_eps = 1e-8)

Arguments

y response vector with length n.

X data frame or matrix.

• If nrow(X) > n, X should be a data frame or matrix of the functional com-
positional predictors with p columns for the values of the composition com-
ponents, a column indicating subject ID and a column of observation times.
Order of Subject ID should be the SAME as that of y. Zero entry is not
allowed.

• If nrow(X)[1]=n, X is considered as after taken integration, a n*(k*p -length(ref))
matrix.

Zc a n× pc design matrix of unpenalized variables. Default is NULL.

intercept Boolean, specifying whether to include an intercept. Default is TRUE.

ref reference level (baseline), either an integer between [1, p] or NULL. Default value
is NULL.

• If ref is set to be an integer between [1,p], the group lasso penalized log-
contrast model (with log-ratios) is fitted with the ref-th component chosed
as baseline.

• If ref is set to be NULL, the linearly constrained group lasso penalized log-
contrast model is fitted.

k an integer, degrees of freedom of the basis function.

degree degrees of freedom of the basis function. Default value is 3.

basis_fun method to generate basis:

• "bs"(Default) B-splines. See fucntion bs.
• "OBasis" Orthoganal B-splines. See function OBasis and package orthog-

onalsplinebasis.
• "fourier" Fourier basis. See fucntion create.fourier.basis and pack-

age fda.

insert a character string sepcifying method to perform functional interpolation.

• "FALSE"(Default) no interpolation.
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• "X" linear interpolation of functional compositional data along the time
grid.

• "basis" the functional compositional data is interplolated as a step func-
tion along the time grid.

If insert = "X" or "basis", interplolation is conducted on sseq, where sseq
is the sorted sequence of all the observed time points.

method a character string sepcifying method used to approximate integral.

• "trapezoidal"(Default) Sum up areas under the trapezoids.
• "step" Sum up area under the rectangles.

interval a character string sepcifying the domain of the integral.

• "Original"(Default) On the original time scale, interval = range(Time).
• "Standard" Time points are mapped onto [0, 1], interval = c(0,1).

Trange range of time points
T.name, ID.name

a character string specifying names of the time variable and the Subject ID vari-
able in X. This is only needed when X is a data frame or matrix of the functional
compositional predictors. Default are "TIME" and "Subject_ID".

W a vector of length p (the total number of groups), or a matrix with dimension
p1 × p1, where p1=(p -length(ref)) * k, or character specifying the function
used to calculate weight matrix for each group.

• a vector of penalization weights for the groups of coefficients. A zero
weight implies no shrinkage.

• a diagonal matrix with positive diagonal elements.
• if character string of function name or an object of type function to com-

pute the weights.

dfmax limit the maximum number of groups in the model. Useful for handling very
large p, if a partial path is desired. Default is p.

pfmax limit the maximum number of groups ever to be nonzero. For example once a
group enters the model along the path, no matter how many times it re-enters the
model through the path, it will be counted only once. Default is min(dfmax*1.5,p).

lam a user supplied lambda sequence. If lam is provided as a scaler and nlam> 1,
lam sequence is created starting from lam. To run a single value of lam, set
nlam= 1. The program will sort user-defined lambda sequence in decreasing
order.

nlam the length of the lam sequence. Default is 100. No effect if lam is provided.

lambda.factor the factor for getting the minimal lambda in lam sequence, where min(lam) =
lambda.factor * max(lam). max(lam) is the smallest value of lam for which
all penalized group are 0’s. If n >= p1, the default is 0.001. If n < p1, the
default is 0.05.

tol tolerance for coefficient to be considered as non-zero. Once the convergence
criterion is satisfied, for each element βj in coefficient vector β, βj = 0 if
βj < tol.
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mu_ratio the increasing ratio of the penalty parameter u. Default value is 1.01. Inital val-
ues for scaled Lagrange multipliers are set as 0’s. If mu_ratio < 1, the program
automatically set the initial penalty parameter u as 0 and outer_maxiter as 1,
indicating that there is no linear constraint.

outer_maxiter, outer_eps

outer_maxiter is the maximum number of loops allowed for the augmented
Lanrange method; and outer_eps is the corresponding convergence tolerance.

inner_maxiter, inner_eps

inner_maxiter is the maximum number of loops allowed for blockwise-GMD;
and inner_eps is the corresponding convergence tolerance.

Details

The functional log-contrast regression model for compositional predictors is defined as

y = 1nβ0 + Zcβc +

∫
T

Z(t)β(t)dt+ e, s.t.(1p)
Tβ(t) = 0∀t ∈ T,

where β0 is the intercept, βc is the regression coefficient vector with length pc corresponding to
the control variables, β(t) is the functional regression coefficient vector with length p as a funtion
of t and e is the random error vector with zero mean with length n. Moreover, Z(t) is the log-
transformed functional compostional data. If zero(s) exists in the original functional compositional
data, user should pre-process these zero(s). For example, if count data provided, user could replace
0’s with 0.5.
After adopting a truncated basis expansion approach to re-express β(t)

β(t) = BΦ(t),

where B is a p-by-k unkown but fixed coefficient matrix, and Φ(t) consists of basis with degree of
freedom k. We could write functional log-contrast regression model as

y = 1nβ0 + Zcβc + Zβ + e, s.t.

p∑
j=1

βj = 0k,

where Z is a n-by-pk matrix corresponding to the integral, β = vec(BT ) is a pk-vector with every
each k-subvector corresponding to the coefficient vector for the j-th compositional component.
To enable variable selection, FuncompCGL model is estimated via linearly constrained group lasso,

argminβ0,βc,β(
1

2n
‖y − 1nβ0 − Zcβc − Zβ‖22 + λ

p∑
j=1

‖βj‖2), s.t.

p∑
j=1

βj = 0k.

Value

An object with S3 class "FuncompCGL", which is a list containing:

Z the integral matrix for the functional compositional predictors with dimension
n× (pk).

lam the sequence of lam values.
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df the number of non-zero groups in the estimated coefficients for the functional
compositional predictors at each value of lam.

beta a matrix of coefficients with length(lam) columns and p1 +pc+1 rows, where
p_1=p*k. The first p1 rows are the estimated values for the coefficients for
the functional compositional preditors, and the last row is for the intercept. If
intercept = FALSE, the last row is 0’s.

dim dimension of the coefficient matrix.

sseq sequence of the time points.

call the call that produces this object.

Author(s)

Zhe Sun and Kun Chen

References

Sun, Z., Xu, W., Cong, X., Li G. and Chen K. (2020) Log-contrast regression with functional
compositional predictors: linking preterm infant’s gut microbiome trajectories to neurobehavioral
outcome, https://arxiv.org/abs/1808.02403 Annals of Applied Statistics.

Yang, Y. and Zou, H. (2015) A fast unified algorithm for computing group-lasso penalized learn-
ing problems, https://link.springer.com/article/10.1007/s11222-014-9498-5 Statistics and Comput-
ing 25(6) 1129-1141.

Aitchison, J. and Bacon-Shone, J. (1984) Log-contrast models for experiments with mixtures, Biometrika
71 323-330.

See Also

cv.FuncompCGL and GIC.FuncompCGL, and predict, coef, plot and print methods for "FuncompCGL"
object.

Examples

df_beta = 5
p = 30
beta_C_true = matrix(0, nrow = p, ncol = df_beta)
beta_C_true[1, ] <- c(-0.5, -0.5, -0.5 , -1, -1)
beta_C_true[2, ] <- c(0.8, 0.8, 0.7, 0.6, 0.6)
beta_C_true[3, ] <- c(-0.8, -0.8 , 0.4 , 1 , 1)
beta_C_true[4, ] <- c(0.5, 0.5, -0.6 ,-0.6, -0.6)
Data <- Fcomp_Model(n = 50, p = p, m = 0, intercept = TRUE,

SNR = 4, sigma = 3, rho_X = 0, rho_T = 0.6, df_beta = df_beta,
n_T = 20, obs_spar = 1, theta.add = FALSE,
beta_C = as.vector(t(beta_C_true)))

m1 <- FuncompCGL(y = Data$data$y, X = Data$data$Comp, Zc = Data$data$Zc,
intercept = Data$data$intercept, k = df_beta, tol = 1e-10)

print(m1)
plot(m1)
beta <- coef(m1)
arg_list <- as.list(Data$call)[-1]

https://arxiv.org/abs/1808.02403
https://link.springer.com/article/10.1007/s11222-014-9498-5
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arg_list$n <- 30
TEST <- do.call(Fcomp_Model, arg_list)
y_hat <- predict(m1, Znew = TEST$data$Comp, Zcnew = TEST$data$Zc)
plot(y_hat[, floor(length(m1$lam)/2)], TEST$data$y,

ylab = "Observed Response", xlab = "Predicted Response")

beta <- coef(m1, s = m1$lam[20])
beta_C <- matrix(beta[1:(p*df_beta)], nrow = p, byrow = TRUE)
colSums(beta_C)
Non.zero <- (1:p)[apply(beta_C, 1, function(x) max(abs(x)) > 0)]
Non.zero

GIC.compCL Compute information crieteria for the compCL model.

Description

Tune the penalty parameter codelam in the compCGL model by GIC, BIC, or AIC. This function
calculates the GIC, BIC, or AIC curve and returns the optimal value of lam.

Usage

GIC.compCL(y, Z, Zc = NULL, intercept = FALSE, lam = NULL, ...)

Arguments

y a response vector with length n.

Z a n×p design matrix of compositional data or categorical data. If Z is categorical
data, i.e., row-sums of Z differ from 1, the program automatically transforms Z
into compositional data by dividing each row by its sum. Z could NOT include
entry of 0’s.

Zc a n ∗ pc design matrix of control variables (not penalized). Default is NULL.

intercept Boolean, specifying whether to include an intercept. Default is FALSE.

lam a user supplied lambda sequence. If lam is provided as a scaler and nlam> 1,
lam sequence is created starting from lam. To run a single value of lam, set
nlam= 1. The program will sort user-defined lambda sequence in decreasing
order.

... other arguments that can be passed to compCL.

Details

The model estimation is conducted through minimizing the following criterion:

1

2n
‖y − Zβ‖22 + λ‖β‖1, s.t.

p∑
j=1

βj = 0.
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The GIC is defined as:

GIC(λ) = log σ̂2(λ) + (s(λ)− 1) log (max(p, n)) ∗ log (log n)/n,

where σ̂2(λ) = ‖y − Zβ̂(λ)‖22/n, β̂(λ) is the regularized estimator, and s(λ) is the number of
nonzero coefficients in β̂(λ). Because of the zero-sum constraint, the effective number of free
parameters is s(λ)− 1 for s(λ) ≥ 2. The optimal λ is selected by minimizing GIC(λ).

Value

an object of S3 class GIC.compCL is returned, which is a list:

compCL.fit a fitted compCL object.

lam the sequence of lam.

GIC a vector of GIC value(s).

lam.min the lam value that minimizes GIC(λ).

References

Lin, W., Shi, P., Peng, R. and Li, H. (2014) Variable selection in regression with compositional
covariates, https://academic.oup.com/biomet/article/101/4/785/1775476. Biometrika 101 785-979

Fan, Y., and Tang, C. Y. (2013) Tuning parameter selection in high dimensional penalized likeli-
hood, https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12001 Journal of the Royal Statisti-
cal Society. Series B 75 531-552

See Also

compCL and cv.compCL, and coef, predict and plot methods for "GIC.compCL" object.

Examples

p = 30
n = 50
beta = c(1, -0.8, 0.6, 0, 0, -1.5, -0.5, 1.2)
beta = c(beta, rep(0, times = p - length(beta)))
Comp_data = comp_Model(n = n, p = p, beta = beta, intercept = FALSE)
GICm1 <- GIC.compCL(y = Comp_data$y, Z = Comp_data$X.comp,

Zc = Comp_data$Zc, intercept = Comp_data$intercept)
coef(GICm1)
plot(GICm1)
test_data = comp_Model(n = 100, p = p, beta = Comp_data$beta, intercept = FALSE)
y_hat = predict(GICm1, Znew = test_data$X.comp, Zcnew = test_data$Zc)
plot(test_data$y, y_hat, xlab = "Observed value", ylab = "Predicted value")
abline(a = 0, b = 1, col = "red")

https://academic.oup.com/biomet/article/101/4/785/1775476
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12001
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GIC.FuncompCGL Compute information crieteria for the FuncompCGL model.

Description

Tune the grid values of the penalty parameter codelam and the degrees of freedom of the basis
function k in the FuncompCGL model by GIC, BIC, or AIC. This function calculates the GIC, BIC,
or AIC curve and returns the optimal values of lam and k.

Usage

GIC.FuncompCGL(y, X, Zc = NULL, lam = NULL, nlam = 100, k = 4:10, ref = NULL,
intercept = TRUE, W = rep(1,times = p - length(ref)),
type = c("GIC", "BIC", "AIC"),
mu_ratio = 1.01, outer_maxiter = 1e+6, ...)

Arguments

y response vector with length n.

X data frame or matrix.

• If nrow(X) > n, X should be a data frame or matrix of the functional com-
positional predictors with p columns for the values of the composition com-
ponents, a column indicating subject ID and a column of observation times.
Order of Subject ID should be the SAME as that of y. Zero entry is not
allowed.

• If nrow(X)[1]=n, X is considered as after taken integration, a n*(k*p -length(ref))
matrix.

Zc a n× pc design matrix of unpenalized variables. Default is NULL.

lam a user supplied lambda sequence. If lam is provided as a scaler and nlam> 1,
lam sequence is created starting from lam. To run a single value of lam, set
nlam= 1. The program will sort user-defined lambda sequence in decreasing
order.

nlam the length of the lam sequence. Default is 100. No effect if lam is provided.

k an integer vector specifying the degrees of freedom of the basis function.

ref reference level (baseline), either an integer between [1, p] or NULL. Default value
is NULL.

• If ref is set to be an integer between [1,p], the group lasso penalized log-
contrast model (with log-ratios) is fitted with the ref-th component chosed
as baseline.

• If ref is set to be NULL, the linearly constrained group lasso penalized log-
contrast model is fitted.

intercept Boolean, specifying whether to include an intercept. Default is TRUE.
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W a vector of length p (the total number of groups), or a matrix with dimension
p1 × p1, where p1=(p -length(ref)) * k, or character specifying the function
used to calculate weight matrix for each group.

• a vector of penalization weights for the groups of coefficients. A zero
weight implies no shrinkage.

• a diagonal matrix with positive diagonal elements.
• if character string of function name or an object of type function to com-

pute the weights.

type a character string specifying which crieterion to use. The choices include "GIC"
(default), "BIC", and "AIC".

mu_ratio the increasing ratio of the penalty parameter u. Default value is 1.01. Inital val-
ues for scaled Lagrange multipliers are set as 0’s. If mu_ratio < 1, the program
automatically set the initial penalty parameter u as 0 and outer_maxiter as 1,
indicating that there is no linear constraint.

outer_maxiter maximum number of loops allowed for the augmented Lanrange method.

... other arguments that could be passed to FuncompCL.

Details

The FuncompCGL model estimation is conducted through minimizing the linearly constrained group
lasso criterion

1

2n
‖y − 1nβ0 − Zcβc − Zβ‖22 + λ

p∑
j=1

‖βj‖2, s.t.
p∑
j=1

βj = 0k.

The tuning parameters can be selected by the generalized information crieterion (GIC),

GIC(λ, k) = log (σ̂2(λ, k)) + (s(λ, k)− 1)k log (max(p ∗ k + pc + 1, n)) log (log n)/n,

where σ̂2(λ, k) = ‖y − 1nβ̂0(λ, k) − Zcβ̂c(λ, k) − Zβ̂(λ, k)‖22/n with β̂0(λ, k), β̂c(λ, k) and
β̂(λ, k) being the regularized estimators of the regression coefficients, and s(λ, k) is the number of
nonzero coefficient groups in β̂(λ, k).

Value

An object of S3 class "GIC.FuncompCGL" is returned, which is a list containing:

FuncompCGL.fit a list of length length(k), with fitted FuncompCGL objects of different degrees
of freedom of the basis function.

lam the sequence of the penalty parameter lam.

GIC a k by length(lam) matirx of GIC values.

lam.min the optimal values of the degrees of freedom k and the penalty parameter lam.

MSE a k by length(lam) matirx of mean squared errors.
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References

Sun, Z., Xu, W., Cong, X., Li G. and Chen K. (2020) Log-contrast regression with functional
compositional predictors: linking preterm infant’s gut microbiome trajectories to neurobehavioral
outcome, https://arxiv.org/abs/1808.02403 Annals of Applied Statistics.

Fan, Y., and Tang, C. Y. (2013) Tuning parameter selection in high dimensional penalized likeli-
hood, https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12001 Journal of the Royal Statisti-
cal Society. Series B 75 531-552.

See Also

FuncompCGL and cv.FuncompCGL, and predict, coef and plot methods for "GIC.FuncompCGL"
object.

Examples

df_beta = 5
p = 30
beta_C_true = matrix(0, nrow = p, ncol = df_beta)
beta_C_true[1, ] <- c(-0.5, -0.5, -0.5 , -1, -1)
beta_C_true[2, ] <- c(0.8, 0.8, 0.7, 0.6, 0.6)
beta_C_true[3, ] <- c(-0.8, -0.8 , 0.4 , 1 , 1)
beta_C_true[4, ] <- c(0.5, 0.5, -0.6 ,-0.6, -0.6)
n_train = 50
n_test = 30
k_list <- c(4,5)
Data <- Fcomp_Model(n = n_train, p = p, m = 0, intercept = TRUE,

SNR = 4, sigma = 3, rho_X = 0.2, rho_T = 0.5,
df_beta = df_beta, n_T = 20, obs_spar = 1, theta.add = FALSE,
beta_C = as.vector(t(beta_C_true)))

arg_list <- as.list(Data$call)[-1]
arg_list$n <- n_test
Test <- do.call(Fcomp_Model, arg_list)

## GIC_cgl: Constrained group lasso
GIC_cgl <- GIC.FuncompCGL(y = Data$data$y, X = Data$data$Comp,

Zc = Data$data$Zc, intercept = Data$data$intercept,
k = k_list)

coef(GIC_cgl)
plot(GIC_cgl)
y_hat <- predict(GIC_cgl, Znew = Test$data$Comp, Zcnew = Test$data$Zc)
plot(Test$data$y, y_hat, xlab = "Observed response", ylab = "Predicted response")

## GIC_naive: ignoring the zero-sum constraints
## set mu_raio = 0 to identifying without linear constraints,
## no outer_loop for Lagrange augmented multiplier
GIC_naive <- GIC.FuncompCGL(y = Data$data$y, X = Data$data$Comp,

Zc = Data$data$Zc, intercept = Data$data$intercept,
k = k_list, mu_ratio = 0)

coef(GIC_naive)
plot(GIC_naive)

https://arxiv.org/abs/1808.02403
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12001
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y_hat <- predict(GIC_naive, Znew = Test$data$Comp, Zcnew = Test$data$Zc)
plot(Test$data$y, y_hat, xlab = "Observed response", ylab = "Predicted response")

## GIC_base: random select a component as reference
## mu_ratio is set to 0 automatically once ref is set to a integer
ref <- sample(1:p, 1)
GIC_base <- GIC.FuncompCGL(y = Data$data$y, X = Data$data$Comp,

Zc = Data$data$Zc, intercept = Data$data$intercept,
k = k_list, ref = ref)

coef(GIC_base)
plot(GIC_base)
y_hat <- predict(GIC_base, Znew = Test$data$Comp, Zcnew = Test$data$Zc)
plot(Test$data$y, y_hat, xlab = "Observed response", ylab = "Predicted response")

plot.compCL Plot solution paths from a "compCL" object.

Description

Produce a coefficient profile plot from a fitted "compCL" object.

Usage

## S3 method for class 'compCL'
plot(x, xlab = c("lam", "norm"), label = FALSE, ...)

Arguments

x fitted "compCL" model.

xlab what is on the X-axis. "lam" plots against the log-lambda sequence (default)
and "norm" against the L1-norm of the coefficients.

label if TRUE, label the curve with the variable sequence numbers. Default is FALSE.

... other graphical parameters.

Details

A coefficient profile plot for the compositional predictors is produced.

Value

No return value. Side effect is a base R plot.

Author(s)

Zhe Sun and Kun Chen
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References

Lin, W., Shi, P., Peng, R. and Li, H. (2014) Variable selection in regression with compositional
covariates, https://academic.oup.com/biomet/article/101/4/785/1775476. Biometrika 101 785-979.

See Also

compCL and print, predict and coef methods for "compCL" object.

Examples

Comp_data = comp_Model(n = 50, p = 30)
Comp_fit = compCL(y = Comp_data$y, Z = Comp_data$X.comp, Zc = Comp_data$Zc,

intercept = Comp_data$intercept)
plot(Comp_fit)
plot(Comp_fit, xlab = "norm", label = TRUE)

plot.cv.compCL Plot the cross-validation curve produced by "cv.compCL" object.

Description

Plot the cross-validation curve with its upper and lower standard deviation curves.

Usage

## S3 method for class 'cv.compCL'
plot(x, xlab = c("log", "-log", "lambda"), trim = FALSE, ...)

Arguments

x fitted "cv.compCL" object.

xlab what is on the X-axis, "log" plots against log(lambda) (default), "-log" against
-log(lambda), and "lambda" against lambda.

trim logical; whether to use the trimmed result. Default is FALSE.

... other graphical parameters.

Details

A cross-validation curve is produced.

Value

No return value. Side effect is a base R plot.

Author(s)

Zhe Sun and Kun Chen

https://academic.oup.com/biomet/article/101/4/785/1775476
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References

Lin, W., Shi, P., Peng, R. and Li, H. (2014) Variable selection in regression with compositional
covariates, https://academic.oup.com/biomet/article/101/4/785/1775476. Biometrika 101 785-979.

See Also

cv.compCL and compCL, and coef and plot methods for "cv.compCL" object.

Examples

p = 30
n = 50
beta = c(1, -0.8, 0.6, 0, 0, -1.5, -0.5, 1.2)
beta = c(beta, rep(0, times = p - length(beta)))
Comp_data = comp_Model(n = n, p = p, intercept = FALSE)
cvm1 <- cv.compCL(y = Comp_data$y, Z = Comp_data$X.comp,

Zc = Comp_data$Zc, intercept = Comp_data$intercept)
plot(cvm1)
plot(cvm1, xlab = "-log")

plot.cv.FuncompCGL Plot the cross-validation curve produced by "cv.FuncompCGL".

Description

Plot the cross-validation curve with its upper and lower standard deviation curves.

Usage

## S3 method for class 'cv.FuncompCGL'
plot(x, xlab = c("log", "-log", "lambda"), trim = FALSE, k, ...)

Arguments

x fitted "cv.FuncompCGL" model.

xlab what is on the X-axis, "log" plots against log(lambda) (default), "-log" against
-log(lambda), and "lambda" against lambda.

trim logical; whether to use the trimmed result. Default is FALSE.

k a vector or character string

• if character string, either "lam.1se" or "lam.min".
• if it is an integer vector, specify the set of degrees of freedom k to plot.
• if it is missing (default), cross-validation curves for k that are associated

with lambda.min (blue) and lambda.1se (red) are plotted.

... other graphical parameters.

https://academic.oup.com/biomet/article/101/4/785/1775476
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Details

A cross-validation curve is produced.

Value

No return value. Side effect is a base R plot.

Author(s)

Zhe Sun and Kun Chen

References

Sun, Z., Xu, W., Cong, X., Li G. and Chen K. (2020) Log-contrast regression with functional
compositional predictors: linking preterm infant’s gut microbiome trajectories to neurobehavioral
outcome, https://arxiv.org/abs/1808.02403 Annals of Applied Statistics

See Also

cv.FuncompCGL and FuncompCGL, and predict and coef methods for "cv.FuncompCGL" object.

Examples

df_beta = 5
p = 30
beta_C_true = matrix(0, nrow = p, ncol = df_beta)
beta_C_true[1, ] <- c(-0.5, -0.5, -0.5 , -1, -1)
beta_C_true[2, ] <- c(0.8, 0.8, 0.7, 0.6, 0.6)
beta_C_true[3, ] <- c(-0.8, -0.8 , 0.4 , 1 , 1)
beta_C_true[4, ] <- c(0.5, 0.5, -0.6 ,-0.6, -0.6)
Data <- Fcomp_Model(n = 50, p = p, m = 0, intercept = TRUE,

SNR = 4, sigma = 3, rho_X = 0, rho_T = 0.6, df_beta = df_beta,
n_T = 20, obs_spar = 1, theta.add = FALSE,
beta_C = as.vector(t(beta_C_true)))

k_list <- 4:5
cv_m1 <- cv.FuncompCGL(y = Data$data$y, X = Data$data$Comp,

Zc = Data$data$Zc, intercept = Data$data$intercept,
k = k_list, nfolds = 5, keep = TRUE)

plot(cv_m1)
plot(cv_m1, xlab = "-log", k = k_list)

https://arxiv.org/abs/1808.02403
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plot.FuncompCGL Plot solution paths from a "FuncompCGL" object.

Description

Produce a coefficient profile plot of the coefficient paths for a fitted "FuncompCGL" object.

Usage

## S3 method for class 'FuncompCGL'
plot(x, ylab = c("L2", "L1"), xlab = c("log", "-log", "lambda"), ...)

Arguments

x fitted "FuncompCGL" object.

ylab what is the on Y-axis, "L2" (default) plots against the L2-norm of each group of
coefficients, "L1" against L1-norm.

xlab what is on the X-axis, "log" plots against log(lambda) (default), "-log" against
-log(lambda), and "lambda" against lambda.

... other graphical parameters.

Details

A solution path plot is produced.

Value

No return value. Side effect is a base R plot.

Author(s)

Zhe Sun and Kun Chen

References

Sun, Z., Xu, W., Cong, X., Li G. and Chen K. (2020) Log-contrast regression with functional
compositional predictors: linking preterm infant’s gut microbiome trajectories to neurobehavioral
outcome, https://arxiv.org/abs/1808.02403 Annals of Applied Statistics

See Also

FuncompCGL, and predict, coef and print methods for "FuncompCGL" object.

https://arxiv.org/abs/1808.02403
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Examples

df_beta = 5
p = 30
beta_C_true = matrix(0, nrow = p, ncol = df_beta)
beta_C_true[1, ] <- c(-0.5, -0.5, -0.5 , -1, -1)
beta_C_true[2, ] <- c(0.8, 0.8, 0.7, 0.6, 0.6)
beta_C_true[3, ] <- c(-0.8, -0.8 , 0.4 , 1 , 1)
beta_C_true[4, ] <- c(0.5, 0.5, -0.6 ,-0.6, -0.6)
Data <- Fcomp_Model(n = 50, p = p, m = 0, intercept = TRUE,

SNR = 4, sigma = 3, rho_X = 0, rho_T = 0.6, df_beta = df_beta,
n_T = 20, obs_spar = 1, theta.add = FALSE,
beta_C = as.vector(t(beta_C_true)))

m1 <- FuncompCGL(y = Data$data$y, X = Data$data$Comp, Zc = Data$data$Zc,
intercept = Data$data$intercept, k = df_beta, tol = 1e-10)

plot(m1)
plot(m1, ylab = "L1", xlab = "-log")

plot.GIC.compCL Plot the GIC curve produced by "GIC.compCL" object.

Description

Plot the CIC curve as a function of the lam values.

Usage

## S3 method for class 'GIC.compCL'
plot(x, xlab = c("log", "-log", "lambda"), ...)

Arguments

x fitted "GIC.compCL" object.

xlab what is on the X-axis, "log" plots against log(lambda) (default), "-log" against
-log(lambda), and "lambda" against lambda.

... other graphical parameters.

Details

A GIC curve is produced.

Value

No return value. Side effect is a base R plot.

Author(s)

Zhe Sun and Kun Chen
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References

Lin, W., Shi, P., Peng, R. and Li, H. (2014) Variable selection in regression with compositional
covariates, https://academic.oup.com/biomet/article/101/4/785/1775476. Biometrika 101 785-979.

See Also

GIC.compCL and compCL, and predict and coef methods for "GIC.compCL" object.

Examples

p = 30
n = 50
beta = c(1, -0.8, 0.6, 0, 0, -1.5, -0.5, 1.2)
beta = c(beta, rep(0, times = p - length(beta)))
Comp_data = comp_Model(n = n, p = p, beta = beta, intercept = FALSE)
GICm1 <- GIC.compCL(y = Comp_data$y, Z = Comp_data$X.comp,

Zc = Comp_data$Zc, intercept = Comp_data$intercept)
plot(GICm1)
plot(GICm1, xlab = "-log")

plot.GIC.FuncompCGL Plot the GIC curve produced by "GIC.FuncompCGL" object.

Description

Plot the GIC curve as a function of the lam values used for different degree of freedom k.

Usage

## S3 method for class 'GIC.FuncompCGL'
plot(x, xlab = c("log", "-log", "lambda"), k, ...)

Arguments

x fitted "GIC.FuncompCGL" object.

xlab what is on the X-axis, "log" plots against log(lambda) (default), "-log" against
-log(lambda), and "lambda" against lambda.

k value(s) of the degrees of freedom at which GIC cuvre(s) are plotted.

• if missing (default), GIC curve for k that is associated with "lam.min"
(RED) stored on x is plotted.

• if it is an integer vector, specify what set of degrees of freedom to plot.

... other graphical parameters.

Details

A GIC curve is produced.

https://academic.oup.com/biomet/article/101/4/785/1775476
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Value

No return value. Side effect is a base R plot.

Author(s)

Zhe Sun and Kun Chen

References

Sun, Z., Xu, W., Cong, X., Li G. and Chen K. (2020) Log-contrast regression with functional
compositional predictors: linking preterm infant’s gut microbiome trajectories to neurobehavioral
outcome, https://arxiv.org/abs/1808.02403 Annals of Applied Statistics

See Also

GIC.FuncompCGL and FuncompCGL, and predict and coef methods for "GIC.FuncompCGL" object.

Examples

df_beta = 5
p = 30
beta_C_true = matrix(0, nrow = p, ncol = df_beta)
beta_C_true[1, ] <- c(-0.5, -0.5, -0.5 , -1, -1)
beta_C_true[2, ] <- c(0.8, 0.8, 0.7, 0.6, 0.6)
beta_C_true[3, ] <- c(-0.8, -0.8 , 0.4 , 1 , 1)
beta_C_true[4, ] <- c(0.5, 0.5, -0.6 ,-0.6, -0.6)
Data <- Fcomp_Model(n = 50, p = p, m = 0, intercept = TRUE,

SNR = 4, sigma = 3, rho_X = 0.6, rho_T = 0,
df_beta = df_beta, n_T = 20, obs_spar = 1, theta.add = FALSE,
beta_C = as.vector(t(beta_C_true)))

k_list <- c(4,5)
GIC_m1 <- GIC.FuncompCGL(y = Data$data$y, X = Data$data$Comp,

Zc = Data$data$Zc, intercept = Data$data$intercept,
k = k_list)

plot(GIC_m1)
plot(GIC_m1, xlab = "-log", k = k_list)

predict.compCL Make predictions based on a "compCL" object.

Description

Make predictions based on a fitted "compCL" object.

Usage

## S3 method for class 'compCL'
predict(object, Znew, Zcnew = NULL, s = NULL, ...)

https://arxiv.org/abs/1808.02403
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Arguments

object fitted "compCL" object.

Znew z matrix as in compCL with new compositional data or categorical data.

Zcnew Zc matrix as in compCL with new data for other covariates. Default is NULL

s value(s) of the penalty parameter lam at which predictions are required. Default
is the entire sequence used in the fitted object.

... not used.

Details

s is the vector at which predictions are requested. If s is not in the lambda sequence used for fitting
the model, the predict function uses linear interpolation.

Value

predicted values at the requested values of s.

Author(s)

Zhe Sun and Kun Chen

References

Lin, W., Shi, P., Peng, R. and Li, H. (2014) Variable selection in regression with compositional
covariates, https://academic.oup.com/biomet/article/101/4/785/1775476. Biometrika 101 785-979.

See Also

compCL and coef, predict and plot methods for "compCL" object.

Examples

Comp_data = comp_Model(n = 50, p = 30)
Comp_data2 = comp_Model(n = 30, p = 30, beta = Comp_data$beta)
m1 = compCL(y = Comp_data$y, Z = Comp_data$X.comp,

Zc = Comp_data$Zc, intercept = Comp_data$intercept)
predict(m1, Znew = Comp_data2$X.comp, Zcnew = Comp_data2$Zc)
predict(m1, Znew = Comp_data2$X.comp, Zcnew = Comp_data2$Zc, s = c(1, 0.5, 0.1))

https://academic.oup.com/biomet/article/101/4/785/1775476
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predict.cv.compCL Make predictions based on a "cv.compCL" object.

Description

This function makes prediction based on a cross-validated compCL model, using the stored compCL.fit
object.

Usage

## S3 method for class 'cv.compCL'
predict(object, Znew, Zcnew = NULL, s = c("lam.min", "lam.1se" ),

trim = FALSE, ...)

Arguments

object fitted "cv.compCL" model.

Znew z matrix as in compCL with new compositional data or categorical data.

Zcnew Zc matrix as in compCL with new data for other covariates. Default is NULL

s specify the lam at which prediction(s) is requested.

• s = "lam.min" (default), value of lam that obtains the minimun value of
cross-validation error.

• s = "lam.1se" value of lam that obtains 1 standard error above the miminum
of the cross-validation errors.

• if s is numeric, it is taken as the value(s) of lam to be used.
• if s = NULL, uses the whole sequence of lam stored in the "cv.compCL"

object.

trim Whether to use the trimmed result. Default is FASLE.

... not used.

Details

s is the vector at which predictions are requested. If s is not in the lambda sequence used for fitting
the model, the predict function uses linear interpolation.

Value

predicted values at the requested values of s.

Author(s)

Zhe Sun and Kun Chen
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References

Lin, W., Shi, P., Peng, R. and Li, H. (2014) Variable selection in regression with compositional
covariates, https://academic.oup.com/biomet/article/101/4/785/1775476. Biometrika 101 785-979.

See Also

cv.compCL and compCL, and coef and plot methods for "cv.compCL" object.

Examples

p = 30
n = 50
beta = c(1, -0.8, 0.6, 0, 0, -1.5, -0.5, 1.2)
beta = c( beta, rep(0, times = p - length(beta)) )
Comp_data = comp_Model(n = n, p = p, beta = beta, intercept = FALSE)
test_data = comp_Model(n = 30, p = p, beta = beta, intercept = FALSE)
cvm1 <- cv.compCL(y = Comp_data$y, Z = Comp_data$X.comp,

Zc = Comp_data$Zc, intercept = Comp_data$intercept)
y_hat = predict(cvm1, Znew = test_data$X.comp, Zcnew = test_data$Zc)
predmat = predict(cvm1, Znew = test_data$X.comp, Zcnew = test_data$Zc, s = NULL)
plot(test_data$y, y_hat, xlab = "Observed response", ylab = "Predicted response")
abline(a = 0, b = 1, col = "red")

predict.cv.FuncompCGL Make predictions based on a "cv.FuncompCGL" object.

Description

This function makes prediction based on a cv.FuncompCGL object, using the stored "FuncompCGL.fit"
object and the optimal values of the regularization parameter lam and the degrees of freedom k.

Usage

## S3 method for class 'cv.FuncompCGL'
predict(object, Znew, Zcnew = NULL,

s = c("lam.1se", "lam.min"), k = NULL, trim = FALSE, ...)

Arguments

object fitted cv.FuncompCGL object.

Znew data frame or matrix X as in FuncompCGL with new functional compositional data
at which prediction is to be made.

Zcnew matrix Zc as in FuncompCGL with new values of time-invariate covariates at
which prediction is to be made. Default is NULL.

s value(s) of the penalty parameter lam at which coefficients are requested.

https://academic.oup.com/biomet/article/101/4/785/1775476
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• s="lam.min"(default), grid value of lam and k stored in the "cv.FuncompCGL"
object such that the minimum cross-validation error is achieved.

• s="lam.1se", grid value of lam and k stored on the "cv.FuncompCGL"
object such that the 1 standard error above the miminum cross-validation
error is achieved.

• If s is numeric, it is taken as the value(s) of lam to be used. In this case, k
must be provided.

• If s = NULL, the whole sequence of lam stored in the cv.FuncompCGL object
is used.

k value(s) of the degrees of freedom of the basis function at which coefficents are
requested. k can be NULL (default) or integer(s).

• k = NULL, s must be either "lam.min" or "lam.1se".
• if k is an integer(s), it is taken as the value of k to be used and it must be

one(s) of these in the "cv.FuncompCGL" object.

trim logical; whether to use the trimmed result. Default is FALSE.

... Other arguments passed to predict.FuncompCGL

Details

s is the vector at which predictions are requested. If s is not in the lam sequence used for fitting the
model, the predict function uses linear interpolation.
If the data frame X is provided in FuncompCGL mode, the integral for new data newx is taken the
same as that in the fitted FuncompCGL model. This means that the parameters degree, basis_fun,
insert, method, inteval, Trange, and K are exactly the same as these in the provided object.
If insert="X" or "basis", sseq is the sorted sequence of all the observed time points in fitting
FuncompCGL model and all the observed time points in newx. Then interpolation is conducted on
sseq. If matrix X after integral is provided in the FuncompCGL object, these parameters are required.

Value

The prediction values at the requested value(s) for s and k. If k is a vector, a list of prediction matrix
is returned, otherwise a prediction matrix is returned.

Author(s)

Zhe Sun and Kun Chen

References

Sun, Z., Xu, W., Cong, X., Li G. and Chen K. (2020) Log-contrast regression with functional
compositional predictors: linking preterm infant’s gut microbiome trajectories to neurobehavioral
outcome, https://arxiv.org/abs/1808.02403 Annals of Applied Statistics

See Also

cv.FuncompCGL and FuncompCGL, and coef and plot methods for "cv.FuncompCGL" object.

https://arxiv.org/abs/1808.02403
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Examples

df_beta = 5
p = 30
beta_C_true = matrix(0, nrow = p, ncol = df_beta)
beta_C_true[1, ] <- c(-0.5, -0.5, -0.5 , -1, -1)
beta_C_true[2, ] <- c(0.8, 0.8, 0.7, 0.6, 0.6)
beta_C_true[3, ] <- c(-0.8, -0.8 , 0.4 , 1 , 1)
beta_C_true[4, ] <- c(0.5, 0.5, -0.6 ,-0.6, -0.6)
n_train = 50
n_test = 30
Data <- Fcomp_Model(n = n_train, p = p, m = 0, intercept = TRUE,

SNR = 4, sigma = 3, rho_X = 0, rho_T = 0.6, df_beta = df_beta,
n_T = 20, obs_spar = 1, theta.add = FALSE,
beta_C = as.vector(t(beta_C_true)))

arg_list <- as.list(Data$call)[-1]
arg_list$n <- n_test
Test <- do.call(Fcomp_Model, arg_list)
k_list = c(4,5)
cv_m1 <- cv.FuncompCGL(y = Data$data$y, X = Data$data$Comp,

Zc = Data$data$Zc, intercept = Data$data$intercept,
k = k_list, nfolds = 5)

y_hat = predict(cv_m1, Znew = Test$data$Comp, Zcnew = Test$data$Zc)
predict(cv_m1, Znew = Test$data$Comp, Zcnew = Test$data$Zc, s = "lam.1se")
predict(cv_m1, Znew = Test$data$Comp, Zcnew = Test$data$Zc, s = c(0.5, 0.1, 0.05), k = k_list)
plot(Test$data$y, y_hat, xlab = "Observed Response", ylab = "Predicted Response")

predict.FuncompCGL Make prediction from a "FuncompCGL" object.

Description

Make prediction based on a fitted FuncompCGL object.

Usage

## S3 method for class 'FuncompCGL'
predict(object, Znew, Zcnew = NULL, s = NULL,

T.name = "TIME", ID.name = "Subject_ID",
Trange, interval, insert, basis_fun, degree, method, sseq,
...)

Arguments

object fitted FuncompCGL object.

Znew data frame or matrix X as in FuncompCGL with new functional compositional data
at which prediction is to be made.
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Zcnew matrix Zc as in FuncompCGL with new values of time-invariate covariates at
which prediction is to be made. Default is NULL.

s value(s) of the penalty parameter lam at which predictions are requested. Default
is the entire sequence used to fit the model.

T.name a character string specifying names of the time variable and the Subject ID vari-
able in X. This is only needed when X is a data frame or matrix of the functional
compositional predictors. Default are "TIME" and "Subject_ID".

ID.name a character string specifying names of the time variable and the Subject ID vari-
able in X. This is only needed when X is a data frame or matrix of the functional
compositional predictors. Default are "TIME" and "Subject_ID".

Trange, interval, insert, basis_fun, degree, method

the same as those in FuncompCGL.

sseq full set of potential time points of observations; used for interpolation when
insert = "X" or insert = "basis".

... not used.

Details

s is the vector at which predictions are requested. If s is not in the lam sequence used for fitting the
model, the predict function uses linear interpolation.
If the data frame X is provided in FuncompCGL mode, the integral for new data newx is taken the
same as that in the fitted FuncompCGL model. This means that the parameters degree, basis_fun,
insert, method, inteval, Trange, and K are exactly the same as these in the provided object.
If insert="X" or "basis", sseq is the sorted sequence of all the observed time points in fitting
FuncompCGL model and all the observed time points in newx. Then interpolation is conducted on
sseq. If matrix X after integral is provided in the FuncompCGL object, these parameters are required.

Value

predicted values at the requested value(s) for s.

Author(s)

Zhe Sun and Kun Chen

References

Sun, Z., Xu, W., Cong, X., Li G. and Chen K. (2020) Log-contrast regression with functional
compositional predictors: linking preterm infant’s gut microbiome trajectories to neurobehavioral
outcome, https://arxiv.org/abs/1808.02403 Annals of Applied Statistics

See Also

FuncompCGL, and coef, plot and print methods for "FuncompCGL" object.

https://arxiv.org/abs/1808.02403
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Examples

p = 30
n_train = 50
n_test = 30
df_beta = 5
beta_C_true = matrix(0, nrow = p, ncol = df_beta)
beta_C_true[1, ] <- c(-0.5, -0.5, -0.5 , -1, -1)
beta_C_true[2, ] <- c(0.8, 0.8, 0.7, 0.6, 0.6)
beta_C_true[3, ] <- c(-0.8, -0.8 , 0.4 , 1 , 1)
beta_C_true[4, ] <- c(0.5, 0.5, -0.6 ,-0.6, -0.6)
Data <- Fcomp_Model(n = n_train, p = p, m = 0, intercept = TRUE,

SNR = 2, sigma = 2,
rho_X = 0, rho_T = 0.5, df_beta = df_beta,
n_T = 20, obs_spar = 1, theta.add = c(3,4,5),
beta_C = as.vector(t(beta_C_true)))

m1 <- FuncompCGL(y = Data$data$y, X = Data$data$Comp , Zc = Data$data$Zc,
intercept = Data$data$intercept, k = df_beta)

arg_list <- as.list(Data$call)[-1]
arg_list$n <- n_test
TEST <- do.call(Fcomp_Model, arg_list)
predmat <- predict(m1, Znew = TEST$data$Comp, Zcnew = TEST$data$Zc)
predmat <- predict(m1, Znew = TEST$data$Comp, Zcnew = TEST$data$Zc, s = c(0.5, 0.1, 0.05))

predict.GIC.compCL Make predictions based on a "GIC.compCL" object.

Description

This function makes prediction based on a "GIC.compCL" model, using the stored "compCL.fit"
object and the optimal value of lambda.

Usage

## S3 method for class 'GIC.compCL'
predict(object, Znew, Zcnew = NULL, s = "lam.min", ...)

Arguments

object fitted "GIC.compCL" model.
Znew z matrix as in compCL with new compositional data or categorical data.
Zcnew Zc matrix as in compCL with new data for other covariates. Default is NULL
s specify the lam at which prediction(s) is requested.

• s = "lam.min" (default), lam that obtains the minimun value of GIC values.
• if s is numeric, it is taken as the value(s) of lam to be used.
• if s = NULL, uses the whole sequence of lam stored in the "GIC.compCL"

object.
... not used.
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Details

s is the vector at which predictions are requested. If s is not in the lambda sequence used for fitting
the model, the predict function uses linear interpolation.

Value

predicted values at the requested values of s.

Author(s)

Zhe Sun and Kun Chen

References

Lin, W., Shi, P., Peng, R. and Li, H. (2014) Variable selection in regression with compositional
covariates, https://academic.oup.com/biomet/article/101/4/785/1775476. Biometrika 101 785-979.

See Also

GIC.compCL and compCL, and coef and plot methods for "GIC.compCL".

Examples

p = 30
n = 50
beta = c(1, -0.8, 0.6, 0, 0, -1.5, -0.5, 1.2)
beta = c(beta, rep(0, times = p - length(beta)))
Comp_data = comp_Model(n = n, p = p, beta = beta, intercept = FALSE)
test_data = comp_Model(n = 100, p = p, beta = beta, intercept = FALSE)
GICm1 <- GIC.compCL(y = Comp_data$y, Z = Comp_data$X.comp,

Zc = Comp_data$Zc, intercept = Comp_data$intercept)
y_hat = predict(GICm1, Znew = test_data$X.comp, Zcnew = test_data$Zc)
predmat = predict(GICm1, Znew = test_data$X.comp, Zcnew = test_data$Zc, s = c(1, 0.5, 1))
plot(test_data$y, y_hat, xlab = "Observed value", ylab = "Predicted value")
abline(a = 0, b = 1, col = "red")

predict.GIC.FuncompCGL

Make predictions based on a "GIC.FuncompCGL" object.

Description

This function makes prediction based on a "GIC.FuncompCGL" object, using the stored "FuncompCGL.fit"
object and the optimal values of the regularization parameter lam and the degrees of freedom k.

https://academic.oup.com/biomet/article/101/4/785/1775476
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Usage

## S3 method for class 'GIC.FuncompCGL'
predict(object, Znew, Zcnew = NULL,

s = "lam.min", k = NULL, ...)

Arguments

object fitted GIC.FuncompCGL object.

Znew data frame or matrix X as in FuncompCGL with new functional compositional data
at which prediction is to be made.

Zcnew matrix Zc as in FuncompCGL with new values of time-invariate covariates at
which prediction is to be made. Default is NULL.

s value(s) of the regularization parameter lam at which coefficients are requested.

• s="lam.min" (default), grid value of lam and k stored in "GIC.FuncompCGL"
object such that the minimun value of GIC is achieved.

• If s is numeric, it is taken as the value(s) of lam to be used. In this case, k
must be provided.

• If s = NULL, used the whole sequence of lam stored in the GIC.FuncompCGL
object.

k value(s) of degrees of freedom of the basis function at which coefficents are
requested. k can be NULL (default) or integer(s).

• k = NULL, s must be "lam.min".
• if k is integer(s), it is taken as the value of k to be used and it must be one(s)

of these in "GIC.FuncompCGL" model.

... Other arguments passed to predict.FuncompCGL

Details

s is the vector at which predictions are requested. If s is not in the lam sequence used for fitting the
model, the predict function uses linear interpolation.
If the data frame X is provided in FuncompCGL mode, the integral for new data newx is taken the
same as that in the fitted FuncompCGL model. This means that the parameters degree, basis_fun,
insert, method, inteval, Trange, and K are exactly the same as these in the provided object.
If insert="X" or "basis", sseq is the sorted sequence of all the observed time points in fitting
FuncompCGL model and all the observed time points in newx. Then interpolation is conducted on
sseq. If matrix X after integral is provided in the FuncompCGL object, these parameters are required.

Value

The prediction values at the requested value(s) for s and k. If k is a vector, a list of prediction matrix
is returned, otherwise a prediction matrix is returned.

Author(s)

Zhe Sun and Kun Chen
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References

Sun, Z., Xu, W., Cong, X., Li G. and Chen K. (2020) Log-contrast regression with functional
compositional predictors: linking preterm infant’s gut microbiome trajectories to neurobehavioral
outcome, https://arxiv.org/abs/1808.02403 Annals of Applied Statistics

See Also

GIC.FuncompCGL and FuncompCGL, and coef and plot methods for "GIC.FuncompCGL" object.

Examples

df_beta = 5
p = 30
beta_C_true = matrix(0, nrow = p, ncol = df_beta)
beta_C_true[1, ] <- c(-0.5, -0.5, -0.5 , -1, -1)
beta_C_true[2, ] <- c(0.8, 0.8, 0.7, 0.6, 0.6)
beta_C_true[3, ] <- c(-0.8, -0.8 , 0.4 , 1 , 1)
beta_C_true[4, ] <- c(0.5, 0.5, -0.6 ,-0.6, -0.6)
n_train = 50
n_test = 30
k_list <- c(4,5)
Data <- Fcomp_Model(n = n_train, p = p, m = 0, intercept = TRUE,

SNR = 4, sigma = 3, rho_X = 0.6, rho_T = 0,
df_beta = df_beta, n_T = 20, obs_spar = 1, theta.add = FALSE,
beta_C = as.vector(t(beta_C_true)))

arg_list <- as.list(Data$call)[-1]
arg_list$n <- n_test
Test <- do.call(Fcomp_Model, arg_list)
GIC_m1 <- GIC.FuncompCGL(y = Data$data$y, X = Data$data$Comp,

Zc = Data$data$Zc, intercept = Data$data$intercept,
k = k_list)

y_hat <- predict(GIC_m1, Znew = Test$data$Comp, Zcnew = Test$data$Zc)
predict(GIC_m1, Znew = Test$data$Comp, Zcnew = Test$data$Zc, s = NULL, k = k_list)
plot(Test$data$y, y_hat, xlab = "Observed response", ylab = "Predicted response")

print.compCL Print a "compCL" object.

Description

print the number of nonzero coefficients for the compositional varaibles at each step along the
compCL path.

Usage

## S3 method for class 'compCL'
print(x, digits = max(3, getOption("digits") - 3), ...)

https://arxiv.org/abs/1808.02403
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Arguments

x fitted "compCL" object.

digits significant digits in printout.

... not used.

Value

a two-column matrix; the first column DF gives the number of nonzero coefficients for the compo-
sitional predictors and the second column Lam gives the corresponding lam values.

Author(s)

Zhe Sun and Kun Chen

References

Lin, W., Shi, P., Peng, R. and Li, H. (2014) Variable selection in regression with compositional
covariates, https://academic.oup.com/biomet/article/101/4/785/1775476. Biometrika 101 785-979.

See Also

compCL and coef, predict and plot methods for "compCL" object.

Examples

Comp_data = comp_Model(n = 50, p = 30)
Comp_fit = compCL(y = Comp_data$y, Z = Comp_data$X.comp,

Zc = Comp_data$Zc, intercept = Comp_data$intercept)
print(Comp_fit)

print.FuncompCGL Print a "FuncompCGL" object.

Description

print the number of nonzero coefficient curves for the functional compositional predictors at each
lam along the FuncompCGL path.

Usage

## S3 method for class 'FuncompCGL'
print(x, digits = max(3, getOption("digits") - 3), ...)

https://academic.oup.com/biomet/article/101/4/785/1775476
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Arguments

x fitted FuncompCGL object.

digits significant digits in printout.

... not used.

Value

a two-column matrix; the first column DF gives the number of nonzero coefficients and the second
column Lam gives the correspondint lam values.

Author(s)

Zhe Sun and Kun Chen

References

Sun, Z., Xu, W., Cong, X., Li G. and Chen K. (2020) Log-contrast regression with functional
compositional predictors: linking preterm infant’s gut microbiome trajectories to neurobehavioral
outcome, https://arxiv.org/abs/1808.02403 Annals of Applied Statistics

See Also

FuncompCGL, and coef, predict and plot methods for "FuncompCGL" object.

Examples

df_beta = 5
p = 30
beta_C_true = matrix(0, nrow = p, ncol = df_beta)
beta_C_true[1, ] <- c(-0.5, -0.5, -0.5 , -1, -1)
beta_C_true[2, ] <- c(0.8, 0.8, 0.7, 0.6, 0.6)
beta_C_true[3, ] <- c(-0.8, -0.8 , 0.4 , 1 , 1)
beta_C_true[4, ] <- c(0.5, 0.5, -0.6 ,-0.6, -0.6)
Data <- Fcomp_Model(n = 50, p = p, m = 2, intercept = TRUE,

SNR = 2, sigma = 2, rho_X = 0, rho_T = 0.5, df_beta = df_beta,
n_T = 20, obs_spar = 1, theta.add = FALSE,
beta_C = as.vector(t(beta_C_true)))

m1 <- FuncompCGL(y = Data$data$y, X = Data$data$Comp ,
Zc = Data$data$Zc, intercept = Data$data$intercept,
k = df_beta)

print(m1)

https://arxiv.org/abs/1808.02403
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