Package 'Compositional'

July 8, 2022

Type Package

Title Compositional Data Analysis
Version 5.8
Date 2022-07-07
Author Michail Tsagris [aut, cre], Giorgos Athineou [aut], Abdulaziz Alenazi [ctb], Christos Adam [ctb]
Maintainer Michail Tsagris mtsagris@uoc.gr
Depends R (>= 4.0)
Imports codalm, Directional, doParallel, emplik, energy, FlexDir, foreach, glmnet, graphics, grDevices, MASS, mda, mixture, NlcOptim, nnet, parallel, pchc, RANN, Rfast, Rfast2, sn, stats
Description Regression, classification, contour plots, hypothesis testing and fitting of distributions for compositional data are some of the functions included.
The standard textbook for such data is John Aitchison's (1986) "The statistical analysis of compositional data". Relevant papers include:
a) Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. Fourth International International Workshop on Compositional Data Analysis.
b) Tsagris M. (2014). The k-NN algorithm for compositional data: a revised approach with and without zero values present. Journal of Data Science, 12(3):519--534.
c) Tsagris M. (2015). A novel, divergence based, regression for compositional data. Proceedings of the 28th Panhellenic Statistics Conference, 1518 April 2015, Athens, Greece, 430--444.
d) Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2):47--57.
e) Tsagris M., Preston S. and Wood A.T.A. (2016). Improved supervised classification for compositional data using the alpha-transformation. Journal of Classification, 33(2):243-261. doi:10.1007/s00357-016-9207-5.
f) Tsagris M., Preston S. and Wood A.T.A. (2017). Nonparametric hypothesis testing for equality of means on the simplex. Journal of Statistical Computation and Simulation, 87(2): 406--422. doi:10.1080/00949655.2016.1216554.
g) Tsagris M. and Stewart C. (2018). A Dirichlet regression model for compositional data with zeros. Lobachevskii Journal of Mathematics, 39(3): 398-412. doi:10.1134/S1995080218030198.
h) Alenazi A. (2019). Regression for compositional data with compositional data as predictor variables with or without zero values. Journal of Data Science, 17(1): 219--238. doi:10.6339/JDS.201901_17(1).0010.
i) Tsagris M. and Stewart C. (2020). A folded model for compositional data analysis. Australian and New Zealand Journal of Statistics, 62(2):249--277. doi:10.1111/anzs.12289.
j) Tsagris M., Alenazi A. and Stewart C. (2021). Nonparametric regression models for compositional data. arXiv:2002.05137. k) Alenazi A. (2021). Alenazi, A. (2021). A review of compositional data analysis and recent advances. Communications in Statistics-Theory and Methods (Accepted for publication). doi:10.1080/03610926.2021.2014890.
We further include functions for percentages (or proportions).
License GPL (>=2)
NeedsCompilation no
Repository CRAN
Date/Publication 2022-07-07 22:30:16 UTC

R topics documented:

Compositional-package 6
Aitchison's test for two mean vectors and/or covariance matrices 7
All pairwise additive log-ratio transformations 8
Alpha generalised correlations between two compositional datasets 9
ANOVA for the log-contrast regression versus the uncostrained log-contrast regression 10
Bayesian network learning with compositional data 11
Beta regression 13
Choose the number of principal components via reconstruction error 15
Column-wise MLE of some univariate distributions 16
Constrained linear least squares for compositional responses and predictors 17
Contour plot of mixtures of Dirichlet distributions in $\mathrm{S}^{\wedge} 2$ 18
Contour plot of the alpha multivariate normal in $\mathrm{S}^{\wedge} 2$ 20
Contour plot of the alpha-folded model in $\mathrm{S}^{\wedge} 2$ 21
Contour plot of the Dirichlet distribution in $\mathrm{S}^{\wedge} 2$ 22
Contour plot of the Flexible Dirichlet distribution in $\mathrm{S}^{\wedge} 2$ 23
Contour plot of the Gaussian mixture model in $\mathrm{S}^{\wedge} 2$ 24
Contour plot of the Kent distribution in $\mathrm{S}^{\wedge} 2$ 26
Contour plot of the kernel density estimate in $\mathrm{S}^{\wedge} 2$ 27
Contour plot of the normal distribution in $S^{\wedge} 2$ 28
Contour plot of the skew skew-normal distribution in $\mathrm{S}^{\wedge} 2$ 29
Contour plot of the t distribution in $S^{\wedge} 2$ 30
Cross validation for some compositional regression models 31
Cross validation for the alpha-k-NN regression with compositional predictor variables 33
Cross validation for the alpha-k-NN regression with compositional response data 34
Cross validation for the alpha-kernel regression with compositional response data 36
Cross validation for the kernel regression with Euclidean response data 37
Cross validation for the regularised and flexible discriminant analysis with composi- tional data using the alpha-transformation 38
Cross validation for the ridge regression 40
Cross validation for the ridge regression with compositional data as predictor using the alpha-transformation 42
Cross validation for the transformation-free linear regression for compositional responses and predictors 43
Cross-validation for the constrained linear least squares for compositional responses and predictors 45
Cross-validation for the Dirichlet discriminant analysis 46
Cross-validation for the LASSO Kullback-Leibler divergence based regression 47
Cross-validation for the LASSO log-ratio regression with compositional response 49
Cross-validation for the naive Bayes classifiers for compositional data 50
Cross-validation for the naive Bayes classifiers for compositional data using the alpha- transformation 51
Density of compositional data from Gaussian mixture models 53
Density of the Flexible Dirichlet distribution 54
Density of the folded normal distribution 55
Density values of a Dirichlet distribution 56
Density values of a mixture of Dirichlet distributions 57
Dirichlet discriminant analysis 58
Dirichlet random values simulation 59
Dirichlet regression 60
Distance based regression models for proportions 62
Divergence based regression for compositional data 64
Divergence based regression for compositional data with compositional data in the co- variates side using the alpha-transformation 66
Divergence matrix of compositional data 68
Empirical likelihood for a one sample mean vector hypothesis testing 69
Empirical likelihood hypothesis testing for two mean vectors 70
Energy test of equality of distributions using the alpha-transformation 72
Estimating location and scatter parameters for compositional data 73
Estimation of the probability left outside the simplex when using the alpha-transformation 74 74Estimation of the value of alpha in the folded model
Estimation of the value of alpha via the profile log-likelihood 77
Exponential empirical likelihood for a one sample mean vector hypothesis testing 78
Exponential empirical likelihood hypothesis testing for two mean vectors 79
Fast estimation of the value of alpha 81
Fitting a Flexible Dirichlet distribution 82
Gaussian mixture models for compositional data 84
Gaussian mixture models for compositional data using the alpha-transformation 86
Generate random folds for cross-validation 88
Greenacre's power transformation 89
Helper Frechet mean for compositional data 90
Helper functions for the Kullback-Leibler regression 91
Hotelling's multivariate version of the 1 sample t-test for Euclidean data 93
Hotelling's multivariate version of the 2 sample t-test for Euclidean data 94
Hypothesis testing for two or more compositional mean vectors 95
ICE plot for projection pursuit regression with compositional predictor variables 97
ICE plot for univariate kernel regression 98
Inverse of the alpha-transformation 100
James multivariate version of the t-test 101
Kernel regression with a numerical response vector or matrix 102
Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distri- butions 104
LASSO Kullback-Leibler divergence based regression 105
LASSO log-ratio regression with compositional response 106
Log-contrast logistic or Poisson regression with compositional predictor variables 108
Log-contrast regression with compositional predictor variables 109
Log-contrast regression with multiple compositional predictors 111
Log-likelihood ratio test for a Dirichlet mean vector 113
Log-likelihood ratio test for a symmetric Dirichlet distribution 114
Minimized Kullback-Leibler divergence between Dirichlet and logistic normal 115
Mixture model selection via BIC 116
Mixture model selection with the alpha-transformation using BIC 117
MLE for the multivariate t distribution 119
MLE of distributions defined in the $(0,1)$ interval 120
MLE of the Dirichlet distribution 122
MLE of the Dirichlet distribution via Newton-Rapshon 123
MLE of the folded model for a given value of alpha 124
MLE of the zero adjusted Dirichlet distribution 126
Multivariate analysis of variance 127
Multivariate analysis of variance (James test) 128
Multivariate kernel density estimation 129
Multivariate kernel density estimation for compositional data 130
Multivariate linear regression 131
Multivariate normal random values simulation on the simplex 132
Multivariate or univariate regression with compositional data in the covariates side using the alpha-transformation 134
Multivariate regression with compositional data 135
Multivariate skew normal random values simulation on the simplex 137
Multivariate t random values simulation on the simplex 138
Naive Bayes classifiers for compositional data 139
Naive Bayes classifiers for compositional data using the alpha-transformation 141
Non linear least squares regression for compositional data 142
Non parametric zero replacement strategies 143
Perturbation operation 144
Plot of the LASSO coefficients 145
Power operation 146
Principal component analysis 147
Principal component analysis using the alpha-transformation 149
Principal component generalised linear models 150
Principal coordinate analysis using the alpha-distance 152
Principal coordinate analysis using the Jensen-Shannon divergence 153
Projection pursuit regression for compositional data 154
Projection pursuit regression with compositional predictor variables 155
Proportionality correlation coefficient matrix 156
Quasi binomial regression for proportions 157
Random values generation from some univariate distributions defined on the $(0,1)$ interval 59
Regression with compositional data using the alpha-transformation 160
Regularised and flexible discriminant analysis for compositional data using the alpha- transformation 162
Regularised discriminant analysis for Euclidean data 163
Ridge regression 165
Ridge regression plot 166
Ridge regression with compositional data in the covariates side using the alpha-transformation 167Ridge regression with the alpha-transformation plot168
Simulation of compositional data from Gaussian mixture models 170
Simulation of compositional data from mixtures of Dirichlet distributions 171
Simulation of compositional data from the Flexible Dirichlet distribution 172
Simulation of compositional data from the folded normal distribution 173
Spatial median regression 174
Ternary diagram 175
Ternary diagram of regression models 177
The additive log-ratio transformation and its inverse 178
The alpha-distance 179
The alpha-IT transformation 180
The alpha-IT-distance 181
The alpha-k-NN regression for compositional response data 182
The alpha-k-NN regression with compositional predictor variables 184
The alpha-kernel regression with compositional response data 185
The alpha-transformation 186
The Box-Cox transformation applied to ratios of components 188
The ESOV-distance 189
The folded power transformation 190
The Frechet mean for compositional data 191
The Helmert sub-matrix 192
The k-nearest neighbours using the alpha-distance 193
The k-NN algorithm for compositional data 195
The pivot coordinate transformation and its inverse 197
Total variability 198
Transformation-free linear regression for compositional responses and predictors 199
Tuning of the alpha generalised correlations between two compositional datasets 200
Tuning of the bandwidth h of the kernel using the maximum likelihood cross validation 201
Tuning of the divergence based regression for compositional data with compositional data in the covariates side using the alpha-transformation 202
Tuning of the k-NN algorithm for compositional data 204
Tuning of the projection pursuit regression for compositional data 206
Tuning of the projection pursuit regression with compositional predictor variables 207
Tuning the number of PCs in the PCR with compositional data using the alpha-transformation 209
Tuning the parameters of the regularised discriminant analysis 210
Tuning the principal components with GLMs 212
Tuning the value of alpha in the alpha-regression 214
Two-sample test of high-dimensional means for compositional data 216
Unconstrained log-contrast logistic or Poisson regression with compositional predictor variables 217
Unconstrained log-contrast regression with compositional predictor variables 218
Unconstrained log-contrast regression with multiple compositional predictors 219
Unit-Weibull regression models for proportions 221
Zero adjusted Dirichlet regression 222
Index 225

Compositional-package Compositional Data Analysis

Description

A Collection of Functions for Compositional Data Analysis.

Details

Package: Compositional
Type: Package
Version: 5.8
Date: 2022-07-07
License: GPL-2

Maintainers

Michail Tsagris mtsagris@uoc.gr

Note

Acknowledgments:
Michail Tsagris would like to express his acknowledgments to Professor Andy Wood and Dr Simon Preston from the university of Nottingham for being his supervisors during his PhD in compositional data analysis. We would also like to express our acknowledgments to Profesor Kurt Hornik (and also the rest of the R core team) for his help with this package. Manos Papadakis, undergraduate student in the department of computer science, university of Crete, is also acknowledged for his programming tips. Ermanno Affuso from the university of South Alabama suggested that I have a default value in the "mkde"" function. Van Thang Hoang from Hasselt university spotted a bug in the "js.compreg" function and is greatly acknowledged for that. Claudia Wehrhahn Cortes spotted a bug in the "diri.reg"" function and she is greatly acknowledged for that. Philipp Kynast from Bruker Daltonik GmbH found a mistake in the function "mkde" which is now fixed. Jasmine Heyse from the university of Ghent spotted a bug in the function "kl.compreg" which is now fixed. Magne Neby suggested to add names in the covariance matrix of the divergence based regression models. John

Barry from the Centre for Environment, Fisheries, and Aquaculture Science (UK) suggested that I should add more explanation in the "diri.est" function. I hope it is clearer now. Charlotte Fabri and Laura Byrne spotted a possible problem in the function "zadr" and they are greatly acknowledged for that.

Author(s)

Michail Tsagris mtsagris@uoc.gr, Giorgos Athineou gioathineou@gmail.com, Abdulaziz Alenazi a.alenazi@nbu.edu.sa and Christos Adam pada4m4@gmail.com.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

```
Aitchison's test for two mean vectors and/or covariance matrices
    Aitchison's test for two mean vectors and/or covariance matrices
```


Description

Aitchison's test for two mean vectors and/or covariance matrices.

Usage

ait.test(x1, x2, type $=1$, alpha = 0.05)

Arguments

$x 1$ A matrix containing the compositional data of the first sample. Zeros are not allowed.
x2 A matrix containing the compositional data of the second sample. Zeros are not allowed.
type \quad The type of hypothesis test to perform. Type=1 refers to testing the equality of the mean vectors and the covariance matrices. Type $=2$ refers to testing the equality of the covariance matrices. Type $=2$ refers to testing the equality of the mean vectors.
alpha The significance level, set to 0.05 by default.

Details

The test is described in Aitchison (2003). See the references for more information.

Value

A vector with the test statistic, the p-value, the critical value and the degrees of freedom of the chi-square distribution.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

John Aitchison (2003). The Statistical Analysis of Compositional Data, p. 153-157. Blackburn Press.

See Also

```
comp.test, maovjames, el.test2, eel.test2,
```


Examples

```
x1 <- as.matrix(iris[1:50, 1:4])
x1 <- x1 / rowSums(x1)
x2 <- as.matrix(iris[51:100, 1:4])
x2 <- x2 / rowSums(x2)
ait.test(x1, x2, type = 1)
ait.test(x1, x2, type = 2)
ait.test(x1, x2, type = 3)
```

All pairwise additive log-ratio transformations

All pairwise additive log-ratio transformations

Description

All pairwise additive log-ratio transformations.

Usage

alr.all(x)

Arguments

x
A numerical matrix with the compositional data.

Details

The additive log-ratio transformation with the first component being the commn divisor is applied. Then all the other pairwise log-ratios are computed and added next to each column. For example, divide by the first component, then divide by the second component and so on. This means that no zeros are allowed.

Value

A matrix with all pairwise alr transformed data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

alr, alfa

Examples

x <- as.matrix(iris[, 2:4])
$x<-x / \operatorname{rowSums}(x)$
$y<-$ alr.all(x)

> Alpha generalised correlations between two compositional datasets $$
\alpha \text { generalised correlations between two compositional datasets }
$$

Description

α generalised correlations between two compositional datasets.

Usage

$\operatorname{acor}(\mathrm{y}, \mathrm{x}, \mathrm{a}$, type $=$ "dcor")

Arguments

$y \quad$ A matrix with the compositional data.
$x \quad$ A matrix with the compositional data.
a
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied. If more than one valuesare supplied the distance or canonical correlation are computed for all values.
type The type of correlation to compute, the distance correlation ("edist"), the canonical correlation ("cancor") or "both".

Details

The α-transformation is applied to each composition and then the distance correlation or the canonical correlation is computed. If one value of α is supplied the type="cancor" will return all eigenvalues. If more than one values of α are provided then the first eigenvalue only will be returned.

Value

A vector or a matrix depending on the length of the values of α and the type of the correlation to be computed.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

G.J. Szekely, M.L. Rizzo and N. K. Bakirov (2007). Measuring and Testing Independence by Correlation of Distances. Annals of Statistics, 35(6): 2769-2794.

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

acor.tune, aeqdist.etest, alfa, alfa.profile

Examples

```
y <- rdiri(30, runif(3) )
x <- rdiri(30, runif(4) )
acor(y, x, a = 0.4)
```

ANOVA for the log-contrast regression versus the uncostrained log-contrast regression ANOVA for the log-contrast regression versus the uncostrained logcontrast regression

Description

ANOVA for the log-contrast regression versus the uncostrained log-contrast regression.

Usage

lcreg.aov(mod0, mod1)

Arguments

$\bmod 0 \quad$ The log-contrast regression model. The object returned by lc.reg.
mod1 The unconstrained log-contrast regression model. The object returned by ulc. reg.

Details

An F-test is performed to test the zero-to-sum constraints of the regression coefficients.

Value

A vector with two vaues, the F-statistic and its associated p-value.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

lc.reg, ulc.reg, alfa.pcr, alfa.knn.reg

Examples

```
y <- iris[, 1]
x <- as.matrix(iris[, 2:4])
x <- x / rowSums(x)
mod0 <- lc.reg(y, x)
mod1 <- ulc.reg(y, x)
lcreg.aov(mod0, mod1)
```

Bayesian network learning with compositional data

Description

Bayesian network learning with compositional data.

Usage

```
compbn(x, type = "fedhc", max_k = 3, alpha = 0.05, robust = FALSE,
ini.stat \(=\) NULL, \(\mathrm{R}=\mathrm{NULL}\), restart \(=10\), tabu = 10, score = "bic-g",
blacklist = NULL, whitelist = NULL)
```


Arguments

X
type This can be either "fedhc", "pchc", "mmhc", "fedtabu", "pctabu" or "mmtabu".
max_k The maximum conditioning set to use in the conditional indepedence test (see Details). Integer, default value is 3
alpha The significance level for assessing the p-values.
robust Do you want outliers to be removed prior to applying the algorithms? If yes, set this to TRUE to u tilise the MCD.
ini.stat If the initial test statistics (univariate associations) are available, pass them through this parameter.
$R \quad$ If the correlation matrix is available, pass it here.
restart An integer, the number of random restarts.
tabu
score A character string, the label of the network score to be used in the algorithm. If none is specified, the default score is the Bayesian Information Criterion. Other available scores are: "bic-g" (default), "loglik-g", "aic-g", "bic-g" or "bge".
blacklist A data frame with two columns (optionally labeled "from" and "to"), containing a set of arcs not to be included in the graph.
whitelist A data frame with two columns (optionally labeled "from" and "to"), containing a set of arcs to be included in the graph.

Details

The FEDHC algorithm is implemented. The FBED algortihm (Borboudakis and Tsamardinos, 2019), without the backward phase, is implemented during the skeleton identification phase. Next, the Hill Climbing greedy search or the Tabu search is employed to score the network.
The PC algorithm as proposed by Spirtes et al. (2001) is first implemented followed by a scoring phase, such as hill climbing or tabu search. The PCHC was proposed by Tsagris (2021), while the PCTABU algorithm is the same but instead of the hill climbing scoring phase, the tabu search is employed.
The MMHC algorithm is implemented without performing the backward elimination during the skeleton identification phase. The MMHC as described in Tsamardinos et al. (2006) employs the MMPC algorithm during the skeleton construction phase and the Tabu search in the scoring phase. In this package, the mmhc function employs the Hill Climbing greedy search in the scoring phase while the mmtabu employs the Tabu search.

Value

A list including:

ini	A list including the output of the mmhc. skel function.
dag	A "bn" class output. A list including the outcome of the Hill-Climbing or the
Tabu search phase. See the package "bnlearn" for more details.	

scoring The score value.
runtime The duration of the algorithm.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagrismtsagris@uoc.gr.

References

Tsagris M. (2021). A new scalable Bayesian network learning algorithm with applications to economics. Computational Economics, 57(1):341-367.
Tsagris M. (2021). The FEDHC Bayesian network learning algorithm. https://arxiv.org/pdf/2012.00113.pdf.
Borboudakis G. and Tsamardinos I. (2019). Forward-backward selection with early dropping. Journal of Machine Learning Research, 20(8): 1-39.

Tsamardinos I., Brown E.L. and Aliferis F.C. (2006). The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning, 65(1): 31-78.

Spirtes P., Glymour C. and Scheines R. (2001). Causation, Prediction, and Search. The MIT Press, Cambridge, MA, USA, 3nd edition.

See Also

acor, alr, alfa

Examples

```
# simulate a dataset with continuous data
x <- rdiri( 100, runif(20) )
a <- compbn( log(x) )
```

Beta regression Beta regression

Description

Beta regression.

Usage

beta.reg(y, x, xnew = NULL)

Arguments

y
The response variable. It must be a numerical vector with proportions excluding 0 and 1.
x
The indendent variable(s). It can be a vector, a matrix or a dataframe with continuous only variables, a data frame with mixed or only categorical variables.
xnew If you have new values for the predictor variables (dataset) whose response values you want to predict insert them here.

Details

Beta regression is fitted.

Value

A list including:
phi The estimated precision parameter.
info A matrix with the estimated regression parameters, their standard errors, Wald statistics and associated p-values.
loglik The log-likelihood of the regression model.
est The estimated values if xnew is not NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ferrari S.L.P. and Cribari-Neto F. (2004). Beta Regression for Modelling Rates and Proportions. Journal of Applied Statistics, 31(7): 799-815.

See Also

```
beta.est, prop.reg, diri.reg
```


Examples

```
y <- rbeta(300, 3, 5)
x <- matrix( rnorm(300 * 2), ncol = 2)
beta.reg(y, x)
```

Choose the number of principal components via reconstruction error Choose the number of principal components via reconstruction error

Description

Choose the number of principal components via reconstruction error.

Usage

choose.pc(x, graph = TRUE)

Arguments

$x \quad$ A numerical matrix with more rows than columns.
graph Should the plot of the PRESS values appear? Default value is TRUE.

Details

The functions allows for selecting the number of eigenvectors via the reconstruction error which is computed for all eigenvectors based on SVD.

Value

A list including:
values The eigenvalues of the covariance matrix.
cumprop The cumulative proportion of the eigenvalues of the covariance matrix.
per The differences in the cumulative proportion of the eigenvalues of the covariance matrix.
press The reconstruction error $\sqrt{\sum_{i j}\left(x_{i j}-\hat{x}_{i j}\right)^{2}}$ for each number of eigenvectors.
runtime The runtime of the algorithm.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Jolliffe I.T. (2002). Principal Component Analysis.

See Also

```
pcr, alfa.pcr, alfapcr.tune
```


Examples

```
library(MASS)
x <- as.matrix(fgl[, 2:9])
a <- choose.pc(x, graph = FALSE)
```

Column-wise MLE of some univariate distributions
Column-wise MLE of some univariate distributions

Description

Column-wise MLE of some univariate distributions.

Usage

```
colbeta.est(x, tol = 1e-07, maxiters = 100, parallel = FALSE)
collogitnorm.est(x)
colunitweibull.est(x, tol = 1e-07, maxiters = 100, parallel = FALSE)
colsimplex.est(x, tol = 1e-07)
```


Arguments

x
A numerical matrix with data. Each column refers to a different vector of observations of the same distribution. The values must by percentages, exluding 0 and 1 ,
tol The tolerance value to terminate the Newton-Fisher algorithm.
maxiters The maximum number of iterations to implement.
parallel Do you want to calculations to take place in parallel? The default value is FALSE

Details

For each column, the same distribution is fitted and its parameters and log-likelihood are computed.

Value

A matrix with two or three columns. The first one or the first two contain the parameter(s) of the distribution and the second or third column the relevant log-likelihood.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

N.L. Johnson, S. Kotz \& N. Balakrishnan (1994). Continuous Univariate Distributions, Volume 1 (2nd Edition).
N.L. Johnson, S. Kotz \& N. Balakrishnan (1970). Distributions in statistics: continuous univariate distributions, Volume 2.
J. Mazucheli, A. F. B. Menezes, L. B. Fernandes, R. P. de Oliveira \& M. E. Ghitany (2020). The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates. Journal of Applied Statistics, DOI:10.1080/02664763.2019.1657813.

See Also

censpois.mle, gammapois.mle

Examples

```
x <- matrix( rbeta(200, 3, 4), ncol = 4 )
a <- colbeta.est(x)
```

```
Constrained linear least squares for compositional responses and predictors
    Constrained linear least squares for compositional responses and pre-
    dictors
```


Description

Constrained linear least squares for compositional responses and predictors.

Usage

ols.compcomp(y, $x, r s=5, x n e w=N U L L)$

Arguments

$y \quad$ A matrix with the compositional data (dependent variable). Zero values are allowed.
$x \quad$ A matrix with the compositional predictors. Zero values are allowed.
rs The number of times to run the constrained optimisation using different random starting values each time.
xnew If you have new data use it, otherwise leave it NULL.

Details

The function performs least squares regression where the beta coefficients are constained to be positive and sum to 1 . We were inspired by the transformation-free linear regression for compositional responses and predictors of Fiksel, Zeger and Datta (2020).

Value

A list including:
runtime The time required by the regression.
mse The mean squared errors.
be The beta coefficients.
est The fitted of xnew if xnew is not NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Jacob Fiksel, Scott Zeger and Abhirup Datta (2020). A transformation-free linear regression for compositional outcomes and predictors. https://arxiv.org/pdf/2004.07881.pdf

See Also

cv.olscompcomp, tflr, kl.alfapcr

Examples

```
library(MASS)
set.seed(1234)
y <- rdiri(214, runif(4, 1, 3))
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
mod <- ols.compcomp(y, x, rs = 1)
mod
```

Contour plot of mixtures of Dirichlet distributions in $\mathrm{S}^{\wedge} 2$
Contour plot of mixtures of Dirichlet distributions in $S^{\wedge} 2$

Description

Contour plot of mixtures of Dirichlet distributions in S^{2}.

Usage

mixdiri.contour(a, prob, $n=100, x=$ NULL, cont. line $=$ FALSE)

Arguments

a
prob
n
x
cont.line Do you want the contour lines to appear? If yes, set this TRUE.

Details

The user can plot only the contour lines of a Dirichlet with a given vector of parameters, or can also add the relevant data should he/she wish to.

Value

A ternary diagram with the points and the Dirichlet contour lines.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

diri.contour, compnorm. contour, bivt.contour, comp.kerncontour, mix.compnorm.contour, diri.nr, dda

Examples

```
a <- matrix( c(12, 30, 45, 32, 50, 16), byrow = TRUE,ncol = 3)
prob <- c(0.5, 0.5)
mixdiri.contour(a, prob)
```

Contour plot of the alpha multivariate normal in $\mathrm{S}^{\wedge} 2$ Contour plot of the α multivariate normal in $S^{\wedge} 2$

Description

Contour plot of the α multivariate normal in S^{2}.

Usage

alfa.contour (m, s, a, $\mathrm{n}=100, \mathrm{x}=\mathrm{NULL}$, cont.line = FALSE)

Arguments

m The mean vector of the α multivariate normal model.
$\mathrm{s} \quad$ The covariance matrix of the α multivariate normal model.
a The value of a for the α-transformation.
$\mathrm{n} \quad$ The number of grid points to consider over which the density is calculated.
$x \quad$ This is either NULL (no data) or contains a 3 column matrix with compositional data.
cont.line Do you want the contour lines to appear? If yes, set this TRUE.

Details

The α-transformation is applied to the compositional data and then for a grid of points within the 2-dimensional simplex, the density of the α multivariate normal is calculated and the contours are plotted.

Value

The contour plot of the α multivariate normal appears.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

folded.contour, compnorm.contour, diri.contour, mix.compnorm.contour, bivt.contour, skewnorm. contour

Examples

```
x <- as.matrix(iris[, 1:3])
x <- x / rowSums(x)
a <- a.est(x)$best
m <- colMeans(alfa(x, a)$aff)
s <- cov(alfa(x, a)$aff)
alfa.contour(m, s, a)
```

Contour plot of the alpha-folded model in $\mathrm{S}^{\wedge} 2$
Contour plot of the α-folded model in $S^{\wedge} 2$

Description

Contour plot of the α-folded model in S^{2}.

Usage

folded.contour(mu, su, $\mathrm{p}, \mathrm{a}, \mathrm{n}=100, \mathrm{x}=\mathrm{NULL}$, cont.line = FALSE)

Arguments

mu	The mean vector of the folded model.
su	The covariance matrix of the folded model.
p	The probability inside the simplex of the folded model.
a	The value of a for the α-transformation.
n	The number of grid points to consider over which the density is calculated.
cont.line	This is either NULL (no data) or contains a 3 column matrix with compositional data.
	Do you want the contour lines to appear? If yes, set this TRUE.

Details

The α-transformation is applied to the compositional data and then for a grid of points within the 2-dimensional simplex the folded model's density is calculated and the contours are plotted.

Value

The contour plot of the folded model appears.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

Tsagris M. and Stewart C. (2020). A folded model for compositional data analysis. Australian and New Zealand Journal of Statistics, 62(2): 249-277. https://arxiv.org/pdf/1802.07330.pdf

See Also

alfa.contour, compnorm. contour, diri.contour, mix.compnorm.contour,bivt.contour, skewnorm.contour

Examples

```
x <- as.matrix(iris[, 1:3])
x <- x / rowSums(x)
a <- a.est(x)$best
mod <- alpha.mle(x, a)
folded.contour(mod$mu, mod$su, mod$p, a)
```

Contour plot of the Dirichlet distribution in $\mathrm{S}^{\wedge} 2$
Contour plot of the Dirichlet distribution in $S^{\wedge} 2$

Description

Contour plot of the Dirichlet distribution in S^{2}.

Usage

diri.contour ($\mathrm{a}, \mathrm{n}=100, \mathrm{x}=$ NULL, cont.line $=$ FALSE)

Arguments

a
n
x
cont.line

A vector with three elements corresponding to the 3 (estimated) parameters.
The number of grid points to consider over which the density is calculated.
This is either NULL (no data) or contains a 3 column matrix with compositional data. Do you want the contour lines to appear? If yes, set this TRUE.

Details

The user can plot only the contour lines of a Dirichlet with a given vector of parameters, or can also add the relevant data should he/she wish to.

Value

A ternary diagram with the points and the Dirichlet contour lines.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

mixdiri.contour, compnorm.contour, bivt.contour, comp.kerncontour, mix.compnorm.contour

Examples

```
x <- as.matrix( iris[, 1:3] )
x <- x / rowSums(x)
diri.contour( a = c(3, 4, 2) )
```

Contour plot of the Flexible Dirichlet distribution in $\mathrm{S}^{\wedge} 2$ Contour plot of the Flexible Dirichlet distribution in $S^{\wedge} 2$

Description

Contour plot of the Flexible Dirichlet distribution in S^{2}.

Usage

fd.contour(alpha, prob, tau, $\mathrm{n}=100$, $\mathrm{x}=$ NULL, cont.line $=$ FALSE)

Arguments

alpha A vector of the non-negative α parameters.
prob A vector of the clusters' probabilities. It must sum to one.
tau The non-negative scalar tau parameter.
$\mathrm{n} \quad$ The number of grid points to consider over which the density is calculated.
$x \quad$ This is either NULL (no data) or contains a 3 column matrix with compositional data.
cont.line Do you want the contour lines to appear? If yes, set this TRUE.

Details

The user can plot only the contour lines of a Dirichlet with a given vector of parameters, or can also add the relevant data should they wish to.

Value

A ternary diagram with the points and the Flexible Dirichlet contour lines.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

Ongaro A. and Migliorati S. (2013). A generalization of the Dirichlet distribution. Journal of Multivariate Analysis, 114, 412-426.

Migliorati S., Ongaro A. and Monti G. S. (2017). A structured Dirichlet mixture model for compositional data: inferential and applicative issues. Statistics and Computing, 27, 963-983.

See Also

fd.est, compnorm. contour, folded.contour, bivt.contour, comp.kerncontour, mix.compnorm.contour

Examples

```
fd.contour(alpha = c(10, 11, 12), prob = c(0.25, 0.25, 0.5), tau = 4)
```

Contour plot of the Gaussian mixture model in $\mathrm{S}^{\wedge} 2$
Contour plot of the Gaussian mixture model in $S^{\wedge} 2$

Description

Contour plot of the Gaussian mixture model in S^{2}.

Usage

mix.compnorm. contour (mod, type $=$ "alr", $n=100, x=$ NULL, cont.line $=$ FALSE)

Arguments

mod An object containing the output of a mix. compnorm model.
type The type of trasformation used, either the additive log-ratio ("alr"), the isometric log-ratio ("ilr") or the pivot coordinate ("pivot") transformation.
$\mathrm{n} \quad$ The number of grid points to consider over which the density is calculated.
x
A matrix with the compositional data.
cont.line Do you want the contour lines to appear? If yes, set this TRUE.

Details

The contour plot of a Gaussian mixture model is plotted. For this you need the (fitted) model.

Value

A ternary plot with the data and the contour lines of the fitted Gaussian mixture model.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam <pada4m4@gmail. com>.

References

Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas (2015). R package mixture: Mixture Models for Clustering and Classification

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

```
mix.compnorm, bic.mixcompnorm, diri.contour
```


Examples

```
x <- as.matrix(iris[, 1:3])
x <- x / rowSums(x)
mod <- mix.compnorm(x, 3, model = "EII")
mix.compnorm.contour(mod, "alr")
```

Contour plot of the Kent distribution in $\mathrm{S}^{\wedge} 2$
Contour plot of the Kent distribution in $S^{\wedge} 2$

Description

Contour plot of the Kent distribution in S^{2}.

Usage

kent.contour (G , param, $\mathrm{n}=100, \mathrm{x}=\mathrm{NULL}$, cont.line $=$ FALSE)

Arguments

G
A 3×3 matrix whose first column is the mean direction. The second and third columns are the major and minor axes respectively.
param A vector with the concentration kappa and ovalness β parameters (the ψ parameter has been absorbed inside the matrix G).
$\mathrm{n} \quad$ The number of grid points to consider over which the density is calculated.
$x \quad$ This is either NULL (no data) or contains a 3 column matrix with compositional data.
cont.line Do you want the contour lines to appear? If yes, set this TRUE.

Details

The user can plot only the contour lines of a Dirichlet with a given vector of parameters, or can also add the relevant data should they wish to.

Value

A ternary diagram with the points and the Dirichlet contour lines.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

Graf, M. (2020). Regression for compositions based on a generalization of the Dirichlet distribution. Statistical Methods \& Applications, (to appear).

See Also

compnorm. contour, bivt.contour, comp.kerncontour, mix.compnorm. contour

Examples

$\mathrm{G}<-\operatorname{matrix}(\mathrm{c}(0.05713382,0.96029716,0.27306608,-0.98809661$,
$0.01525976,0.15307588,0.1428314,-0.2785615,0.9497382)$, ncol $=3$)
param <- c $(2361.8401338,1171.3808172,0.1435577)$
kent.contour (G, param)

Contour plot of the kernel density estimate in $\mathrm{S}^{\wedge} 2$
Contour plot of the kernel density estimate in $S^{\wedge} 2$

Description

Contour plot of the kernel density estimate in S^{2}.

Usage

comp.kerncontour(x, type = "alr", $\mathrm{n}=50$, cont.line = FALSE)

Arguments

$x \quad$ A matrix with the compositional data. It has to be a 3 column matrix.
type \quad This is either "alr" or "ilr", corresponding to the additive and the isometric logratio transformation respectively.
$\mathrm{n} \quad$ The number of grid points to consider, over which the density is calculated.
cont.line Do you want the contour lines to appear? If yes, set this TRUE.

Details

The alr or the ilr transformation are applied to the compositional data. Then, the optimal bandwidth using maximum likelihood cross-validation is chosen. The multivariate normal kernel density is calculated for a grid of points. Those points are the points on the 2-dimensional simplex. Finally the contours are plotted.

Value

A ternary diagram with the points and the kernel contour lines.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

M.P. Wand and M.C. Jones (1995). Kernel smoothing, CrC Press.

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

```
diri.contour, mix.compnorm.contour, bivt.contour, compnorm.contour
```


Examples

```
x <- as.matrix(iris[, 1:3])
x <- x / rowSums(x)
comp.kerncontour(x, type = "alr", n = 20)
comp.kerncontour(x, type = "ilr", n = 20)
```

Contour plot of the normal distribution in $\mathrm{S}^{\wedge} 2$
Contour plot of the normal distribution in $S^{\wedge} 2$

Description

Contour plot of the normal distribution in S^{2}.

Usage

compnorm.contour(m, s, type = "alr", $\mathrm{n}=100, \mathrm{x}=$ NULL, cont.line = FALSE)

Arguments

$x \quad$ This is either NULL (no data) or contains a 3 column matrix with compositional
m
s The covariance matrix.

type

n
cont.line
The mean vector. data.

The type of trasformation used, either the additive log-ratio ("alr"), the isometric log-ratio ("ilr") or the pivot coordinate ("pivot") transformation.

The number of grid points to consider over which the density is calculated.

Do you want the contour lines to appear? If yes, set this TRUE.

Details

The alr or the ilr transformation is applied to the compositional data at first. Then for a grid of points within the 2-dimensional simplex the bivariate normal density is calculated and the contours are plotted along with the points.

Value

A ternary diagram with the points (if appear = TRUE) and the bivariate normal contour lines.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

See Also

diri.contour, mix.compnorm.contour, bivt.contour, skewnorm.contour

Examples

```
x <- as.matrix(iris[, 1:3])
x <- x / rowSums(x)
y <- Compositional::alr(x)
m <- colMeans(y)
s <- cov(y)
compnorm.contour(m, s)
```

Contour plot of the skew skew-normal distribution in $\mathrm{S}^{\wedge} 2$

Description

Contour plot of the skew skew-normal distribution in S^{2}.

Usage

skewnorm.contour(x, type = "alr", $\mathrm{n}=100$, appear = TRUE, cont.line = FALSE)

Arguments

$x \quad$ A matrix with the compositional data. It has to be a 3 column matrix.
type \quad This is either "alr" or "ilr", corresponding to the additive and the isometric logratio transformation respectively.
$\mathrm{n} \quad$ The number of grid points to consider over which the density is calculated.
appear \quad Should the available data appear on the ternary plot (TRUE) or not (FALSE)?
cont.line Do you want the contour lines to appear? If yes, set this TRUE.

Details

The alr or the ilr transformation is applied to the compositional data at first. Then for a grid of points within the 2 -dimensional simplex the bivariate skew skew-normal density is calculated and the contours are plotted along with the points.

Value

A ternary diagram with the points (if appear $=$ TRUE) and the bivariate skew skew-normal contour lines.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

Azzalini A. and Valle A. D. (1996). The multivariate skew-skewnormal distribution. Biometrika 83(4):715-726.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

diri.contour, mix.compnorm. contour, bivt.contour, compnorm.contour

Examples

```
x <- as.matrix(iris[51:100, 1:3])
x <- x / rowSums(x)
skewnorm.contour(x)
```

Contour plot of the t distribution in $S^{\wedge} 2$
Contour plot of the t distribution in $S^{\wedge} 2$

Description

Contour plot of the t distribution in S^{2}.

Usage

bivt.contour (x, type = "alr", $\mathrm{n}=100$, appear = TRUE, cont.line = FALSE)

Arguments

x	A matrix with compositional data. It has to be a 3 column matrix.
type	This is either "alr" or "ilr", corresponding to the additive and the isometric log- ratio transformation respectively.
n	The number of grid points to consider over which the density is calculated.
appear	Should the available data appear on the ternary plot (TRUE) or not (FALSE)?
cont.line	Do you want the contour lines to appear? If yes, set this TRUE.

Details

The alr or the ilr transformation is applied to the compositional data at first and the location, scatter and degrees of freedom of the bivariate t distribution are computed. Then for a grid of points within the 2-dimensional simplex the bivariate t density is calculated and the contours are plotted along with the points.

Value

A ternary diagram with the points (if appear = TRUE) and the bivariate t contour lines.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

diri.contour, mix.compnorm. contour, compnorm.contour, skewnorm.contour

Examples

x <- as.matrix(iris[, 1:3])
$\mathrm{x}<-\mathrm{x} / \operatorname{rowSums}(\mathrm{x})$
bivt. contour (x)
bivt. contour (x, type = "ilr")

Description

Cross validation for some compositional regression models.

Usage

cv.comp.reg(y, x, type $=$ "comp.reg", nfolds $=10$, folds $=$ NULL, seed $=$ NULL)

Arguments

y A matrix with compositional data. Zero values are allowed for some regression models.
x
type
The predictor variable(s).
This can be one of the following: "comp.reg", "robust", "kl.compreg", "js.compreg", "diri.reg" or "zadr".
nfolds The number of folds to be used. This is taken into consideration only if the folds argument is not supplied.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed If seed is TRUE the results will always be the same.

Details

A k-fold cross validation for a compositional regression model is performed.

Value

A list including:
runtime The runtime of the cross-validation procedure.
kl The Kullback-Leibler divergences for all runs.
js The Jensen-Shannon divergences for all runs.
perf The average Kullback-Leibler divergence and average Jensen-Shannon divergence.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

comp.reg, kl.compreg, compppr.tune, aknnreg.tune

Examples

```
y <- as.matrix( iris[, 1:3] )
y <- y / rowSums(y)
x <- iris[, 4]
mod <- cv.comp.reg(y, x)
```

Cross validation for the alpha-k-NN regression with compositional predictor variables
Cross validation for the $\alpha-k-N N$ regression with compositional predictor variables

Description

Cross validation for the $\alpha-\mathrm{k}-\mathrm{NN}$ regression with compositional predictor variables.

Usage

alfaknnreg.tune $(y, x, a=\operatorname{seq}(-1,1, b y=0.1), k=2: 10, n f o l d s=10$, apostasi $=$ "euclidean", method $=$ "average", folds $=$ NULL, seed $=$ NULL, graph $=$ FALSE)

Arguments

$y \quad$ The response variable, a numerical vector.
$x \quad$ A matrix with the available compositional data. Zeros are allowed.
a A vector with a grid of values of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.
$\mathrm{k} \quad$ The number of nearest neighbours to consider. It can be a single number or a vector.
nfolds The number of folds. Set to 10 by default.
apostasi The type of distance to use, either "euclidean" or "manhattan".
method If you want to take the average of the reponses of the k closest observations, type "average". For the median, type "median" and for the harmonic mean, type "harmonic".
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed If seed is TRUE the results will always be the same.
graph If graph is TRUE (default value) a filled contour plot will appear.

Details

A k-fold cross validation for the $\alpha-\mathrm{k}-\mathrm{NN}$ regression for compositional response data is performed.

Value

A list including:
mspe The mean square error of prediction.
performance The minimum mean square error of prediction.
opt_a The optimal value of α.
opt_k The optimal value of k.
runtime The runtime of the cross-validation procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Michail Tsagris, Abdulaziz Alenazi and Connie Stewart (2020). Non-parametric regression models for compositional data. https://arxiv.org/pdf/2002.05137.pdf

See Also

alfa.rda, alfa.fda, rda.tune

Examples

```
library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
y <- fgl[, 1]
mod <- alfaknnreg.tune(y, x, a = seq(0.2, 0.4, by = 0.1), k = 2:4, nfolds = 5)
```

```
Cross validation for the alpha-k-NN regression with compositional response data
                        Cross validation for the \alpha-k-NN regression with compositional re-
                        sponse data
```


Description

Cross validation for the $\alpha-\mathrm{k}-\mathrm{NN}$ regression with compositional response data.

Usage

aknnreg.tune(y, $x, a=\operatorname{seq}(0.1,1, b y=0.1), k=2: 10$, apostasi = "euclidean", nfolds $=10$, folds $=$ NULL, seed $=$ NULL, rann $=$ FALSE)

Arguments

y A matrix with the compositional response data. Zeros are allowed.
$x \quad$ A matrix with the available predictor variables.
a A vector with a grid of values of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.
k
The number of nearest neighbours to consider. It can be a single number or a vector.
apostasi The type of distance to use, either "euclidean" or "manhattan".
nfolds The number of folds. Set to 10 by default.

folds	If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed	You can specify your own seed number here or leave it NULL.
rann	If you have large scale datasets and want a faster k-NN search, you can use kd- trees implemented in the R package "RANN". In this case you must set this argument equal to TRUE. Note however, that in this case, the only available distance is by default "euclidean".

Details

A k-fold cross validation for the $\alpha-\mathrm{k}-\mathrm{NN}$ regression for compositional response data is performed.

Value

A list including:
kl The Kullback-Leibler divergence for all combinations of α and k.
js The Jensen-Shannon divergence for all combinations of α and k.
klmin The minimum Kullback-Leibler divergence.
jsmin The minimum Jensen-Shannon divergence.
kl.alpha The optimal α that leads to the minimum Kullback-Leibler divergence.
kl.k The optimal k that leads to the minimum Kullback-Leibler divergence.
js.alpha The optimal α that leads to the minimum Jensen-Shannon divergence.
js.k The optimal k that leads to the minimum Jensen-Shannon divergence.
runtime \quad The runtime of the cross-validation procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Michail Tsagris, Abdulaziz Alenazi and Connie Stewart (2021). Non-parametric regression models for compositional data. https://arxiv.org/pdf/2002.05137.pdf

See Also

aknn.reg, akernreg.tune, akern.reg, alfa.rda, alfa.fda, rda.tune

Examples

```
y <- as.matrix( iris[, 1:3] )
y <- y / rowSums(y)
x <- iris[, 4]
mod <- aknnreg.tune(y, x, a = c(0.4, 0.6), k = 2:4, nfolds = 5)
```

Cross validation for the alpha-kernel regression with compositional response data Cross validation for the α-kernel regression with compositional response data

Description

Cross validation for the α-kernel regression with compositional response data.

Usage

akernreg.tune $(y, x, a=\operatorname{seq}(0.1,1, b y=0.1), h=\operatorname{seq}(0.1,1$, length $=10)$, type = "gauss", nfolds = 10, folds = NULL, seed = NULL)

Arguments

y A matrix with the compositional response data. Zeros are allowed.
$x \quad$ A matrix with the available predictor variables.
a A vector with a grid of values of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.
h A vector with the bandwidth value(s) to consider.
type \quad The type of kernel to use, "gauss" or "laplace".
nfolds The number of folds. Set to 10 by default.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed You can specify your own seed number here or leave it NULL.

Details

A k-fold cross validation for the α-kernel regression for compositional response data is performed.

Value

A list including:
kl
js
klmin
jsmin
kl.alpha
kl.h
js.alpha
js.h
runtime

The Kullback-Leibler divergence for all combinations of α and h.
The Jensen-Shannon divergence for all combinations of α and h.
The minimum Kullback-Leibler divergence.
The minimum Jensen-Shannon divergence.
The optimal α that leads to the minimum Kullback-Leibler divergence.
The optimal h that leads to the minimum Kullback-Leibler divergence.
The optimal α that leads to the minimum Jensen-Shannon divergence.
The optimal h that leads to the minimum Jensen-Shannon divergence.
The runtime of the cross-validation procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Michail Tsagris, Abdulaziz Alenazi and Connie Stewart (2021). Non-parametric regression models for compositional data. https://arxiv.org/pdf/2002.05137.pdf

See Also

akern.reg, aknnreg.tune, aknn.reg, alfa.rda, alfa.fda, rda.tune

Examples

```
y <- as.matrix( iris[, 1:3] )
y <- y / rowSums(y)
x <- iris[, 4]
mod <- akernreg.tune(y, x, a = c(0.4, 0.6), h = c(0.1, 0.2), nfolds = 5)
```

```
Cross validation for the kernel regression with Euclidean response data
    Cross validation for the kernel regression with Euclidean response
    data
```


Description

Cross validation for the kernel regression with Euclidean response data.

Usage

kernreg.tune (y, x, h = seq(0.1, 1, length = 10), type = "gauss", nfolds = 10, folds = NULL, seed = NULL, graph = FALSE, ncores = 1)

Arguments

y A matrix or a vector with the Euclidean response.
$x \quad$ A matrix with the available predictor variables.
h A vector with the bandwidth value(s) h to consider.
type \quad The type of kernel to use, "gauss" or "laplace".
nfolds The number of folds. Set to 10 by default.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed You can specify your own seed number here or leave it NULL.
graph If graph is TRUE (default value) a plot will appear.
ncores \quad The number of cores to use. Default value is 1.

38Cross validation for the regularised and flexible discriminant analysis with compositional data using the alpha-transformation

Details

A k -fold cross validation for the kernel regression with a euclidean response is performed.

Value

A list including:
mspe \quad The mean squared prediction error (MSPE) for each fold and value of h.
$h \quad$ The optimal h that leads to the minimum MSPE.
performance The minimum MSPE.
runtime The runtime of the cross-validation procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Wand M. P. and Jones M. C. (1994). Kernel smoothing. CRC press.

See Also

kern.reg, aknnreg.tune, aknn.reg

Examples

```
y <- iris[, 1]
x <- iris[, 2:4]
mod <- kernreg.tune(y, x, h = c(0.1, 0.2, 0.3) )
```

Cross validation for the regularised and flexible discriminant analysis with compositional data using Cross validation for the regularised and flexible discriminant analysis with compositional data using the α-transformation

Description

Cross validation for the regularised and flexible discriminant analysis with compositional data using the α-transformation.

Usage

alfarda.tune(x, ina, $a=\operatorname{seq}(-1,1$, by $=0.1)$, nfolds $=10$, gam $=\operatorname{seq}(0,1$, by $=0.1)$, del $=\operatorname{seq}(0,1$, by $=0.1)$, ncores = 1, folds = NULL, stratified = TRUE, seed = NULL)
alfafda.tune(x, ina, a $=\operatorname{seq}(-1,1$, by $=0.1)$, nfolds = 10, folds $=$ NULL, stratified $=$ TRUE, seed $=$ NULL, graph $=$ FALSE)

Arguments

x	A matrix with the available compositional data. Zeros are allowed.
ina	A group indicator variable for the avaiable data.
a	A vector with a grid of values of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.
nfolds	The number of folds. Set to 10 by default. A vector of values between 0 and 1. It is the weight of the pooled covariance and the diagonal matrix.
gam	A vector of values between 0 and 1. It is the weight of the LDA and QDA. The number of cores to use. If it is more than 1 parallel computing is performed.
ncores	It is advisable to use it if you have many observations and or many variables, otherwise it will slow down th process.
folds	If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
stratified	Do you want the folds to be created in a stratified way? TRUE or FALSE. seed
You can specify your own seed number here or leave it NULL.	
graph	If graph is TRUE (default value) a filled contour plot will appear.

Details

A k-fold cross validation is performed.

Value

For the alfa.rda a list including:

res	The estimated optimal rate and the best values of α, gamma and delta.
percent	For the best value of α the averaged over all folds best prates of correct clas- sification. It is a matrix, where rows correspond to the γ values and columns correspond to δ values.
se	The estimated standard errors of the "percent" matrix.
runtime	The runtime of the cross-validation procedure.

For the alfa.fda a list including:
per \quad The performance of the fda in each fold for each value of α.
performance The average performance for each value of α.
opt_a The optimal value of α.
runtime The runtime of the cross-validation procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Giorgos Athineou gioathineou@gmail.com and Michail Tsagris mtsagris@uoc.gr.

References

Friedman Jerome, Trevor Hastie and Robert Tibshirani (2009). The elements of statistical learning, 2nd edition. Springer, Berlin
Tsagris M.T., Preston S. and Wood A.T.A. (2016). Improved classification for compositional data using the α-transformation. Jounal of Classification, 33(2):243-261.
Hastie, Tibshirani and Buja (1994). Flexible Disriminant Analysis by Optimal Scoring. Journal of the American Statistical Association, 89(428):1255-1270.

See Also

alfa.rda, alfanb.tune, cv.dda, compknn.tune, rda.tune, cv.compnb

Examples

```
library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
ina <- fgl[, 10]
moda <- alfarda.tune(x, ina, a = seq(0.7, 1, by = 0.1), nfolds = 10,
gam = seq(0.1, 0.3, by = 0.1), del = seq(0.1, 0.3, by = 0.1))
```

Cross validation for the ridge regression
Cross validation for the ridge regression

Description

Cross validation for the ridge regression is performed. There is an option for the GCV criterion which is automatic.

Usage

ridge.tune $(y, x, n f o l d s=10$, lambda $=\operatorname{seq}(0,2$, by $=0.1)$, folds $=$ NULL, ncores $=1$, seed $=$ NULL, graph $=$ FALSE)

Arguments

$y \quad$ A numeric vector containing the values of the target variable. If the values are proportions or percentages, i.e. strictly within 0 and 1 they are mapped into R using the logit transformation.
$x \quad$ A numeric matrix containing the variables.
nfolds The number of folds in the cross validation.
lambda A vector with the a grid of values of λ to be used.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
ncores The number of cores to use. If it is more than 1 parallel computing is performed.
seed You can specify your own seed number here or leave it NULL.
graph If graph is set to TRUE the performances for each fold as a function of the λ values will appear.

Details

A k-fold cross validation is performed. This function is used by alfaridge. tune.

Value

A list including:
$\mathrm{msp} \quad$ The performance of the ridge regression for every fold.
mspe \quad The values of the mean prediction error for each value of λ.
lambda \quad The value of λ which corresponds to the minimum MSPE.
performance The minimum MSPE.
runtime The time required by the cross-validation procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Giorgos Athineou gioathineou@gmail.com and Michail Tsagris mtsagris@uoc.gr.

References

Hoerl A.E. and R.W. Kennard (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1):55-67.

Brown P. J. (1994). Measurement, Regression and Calibration. Oxford Science Publications.

See Also

> ridge.reg, alfaridge.tune

Examples

```
y <- as.vector(iris[, 1])
x <- as.matrix(iris[, 2:4])
ridge.tune( y, x, nfolds = 10, lambda = seq(0, 2, by = 0.1), graph = TRUE )
```

42Cross validation for the ridge regression with compositional data as predictor using the alpha-transformation

Cross validation for the ridge regression with compositional data as predictor using the alpha-transf
Cross validation for the ridge regression with compositional data as predictor using the α-transformation

Description

Cross validation for the ridge regression is performed. There is an option for the GCV criterion which is automatic. The predictor variables are compositional data and the α-transformation is applied first.

Usage

alfaridge.tune(y, x, nfolds $=10$, $a=\operatorname{seq}(-1,1$, by $=0.1)$, lambda $=\operatorname{seq}(0,2$, by $=0.1)$, folds = NULL, ncores = 1 , graph = TRUE, col.nu = 15, seed = NULL)

Arguments

$y \quad$ A numeric vector containing the values of the target variable. If the values are proportions or percentages, i.e. strictly within 0 and 1 they are mapped into R using the logit transformation.
x
A numeric matrix containing the compositional data, i.e. the predictor variables. Zero values are allowed.
nfolds The number of folds in the cross validation.
a
A vector with the a grid of values of α to be used.
lambda A vector with the a grid of values of λ to be used.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
ncores The number of cores to use. If it is more than 1 parallel computing is performed. It is advisable to use it if you have many observations and or many variables, otherwise it will slow down th process.
graph If graph is TRUE (default value) a filled contour plot will appear.
col.nu A number parameter for the filled contour plot, taken into account only if graph is TRUE.
seed You can specify your own seed number here or leave it NULL.

Details

A k-fold cross validation is performed.

Cross validation for the transformation-free linear regression for compositional responses and predictors 43

Value
If graph is TRUE a fileld contour a filled contour will appear. A list including:
mspe \quad The MSPE where rows correspond to the α values and the columns to the number of principal components.
best.par \quad The best pair of α and λ.
performance The minimum mean squared error of prediction.
runtime The run time of the cross-validation procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Giorgos Athineou <gioathineou@ gmail.com> and Michail Tsagris mtsagris@uoc.gr.

References

Hoerl A.E. and R.W. Kennard (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1):55-67.
Brown P. J. (1994). Measurement, Regression and Calibration. Oxford Science Publications.
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

```
alfa.ridge, ridge.tune
```


Examples

```
library(MASS)
y <- as.vector(fgl[, 1])
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
alfaridge.tune( y, x, nfolds = 10, a = seq(0.1, 1, by = 0.1),
lambda = seq(0, 1, by = 0.1) )
```

Cross validation for the transformation-free linear regression for compositional responses and predic
Cross validation for the transformation-free linear regression for com-
positional responses and predictors

Description

Cross validation for the transformation-free linear regression for compositional responses and predictors.

44Cross validation for the transformation-free linear regression for compositional responses and predictors

Usage

cv.tflr(y, x, nfolds = 10, folds = NULL, seed = NULL)

Arguments

y A matrix with compositional response data. Zero values are allowed.
$x \quad$ A matrix with compositional predictors. Zero values are allowed.
nfolds The number of folds to be used. This is taken into consideration only if the folds argument is not supplied.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed If seed is TRUE the results will always be the same.

Details

A k-fold cross validation for the transformation-free linear regression for compositional responses and predictors is performed.

Value

A list including:
runtime The runtime of the cross-validation procedure.
kl The Kullback-Leibler divergences for all runs.
js The Jensen-Shannon divergences for all runs.
perf The average Kullback-Leibler divergence and average Jensen-Shannon divergence.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagrismtsagris@uoc.gr.

See Also

tflr, cv.olscompcomp, klalfapcr.tune

Examples

```
library(MASS)
y <- rdiri(214, runif(3, 1, 3))
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
mod <- cv.tflr(y, x)
mod
```

Cross-validation for the constrained linear least squares for compositional responses and predictors
Cross-validation for the constrained linear least squares for compositional responses and predictors

Description

Cross-validation for the constrained linear least squares for compositional responses and predictors.

Usage

cv.olscompcomp (y, $x, r s=5$, tol $=1 \mathrm{e}-4, \mathrm{nfolds}=10$, folds = NULL, seed = NULL)

Arguments

y A matrix with compositional response data. Zero values are allowed.
$x \quad$ A matrix with compositional predictors. Zero values are allowed.
rs The number of times to run the constrained optimisation using different random starting values each time.
tol The threshold upon which to stop the iterations of the constrained optimisation.
nfolds The number of folds to be used. This is taken into consideration only if the folds argument is not supplied.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed You can specify your own seed number here or leave it NULL.

Details

The function performs k-fold cross-validation for the least squares regression where the beta coefficients are constained to be positive and sum to 1 .

Value

A list including:
runtime The runtime of the cross-validation procedure.
kl The Kullback-Leibler divergences for all runs.
js The Jensen-Shannon divergences for all runs.
perf The average Kullback-Leibler divergence and average Jensen-Shannon divergence.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

ols.compcomp, cv.tflr, klalfapcr.tune

Examples

```
library(MASS)
set.seed(1234)
y <- rdiri(214, runif(3, 1, 3))
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
mod <- cv.olscompcomp(y, x, rs = 1, tol = 1e-4, nfolds = 5, seed = 12345)
mod
```

Cross-validation for the Dirichlet discriminant analysis
Cross-validation for the Dirichlet discriminant analysis

Description

Cross-validation for the Dirichlet discriminant analysis.

Usage

cv.dda(x, ina, nfolds $=10$, folds $=$ NULL, stratified $=$ TRUE, seed $=$ NULL)

Arguments

x
ina
folds A list with the indices of the folds.
nfolds The number of folds to be used. This is taken into consideration only if "folds" is NULL.
stratified Do you want the folds to be selected using stratified random sampling? This preserves the analogy of the samples of each group. Make this TRUE if you wish.
seed If you set this to TRUE, the same folds will be created every time.

Details

This function estimates the performance of the Dirichlet discriminant analysis via k-fold crossvalidation.

Value

A list including:
percent The percentage of correct classification
runtime The duration of the cross-validation proecdure.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Friedman J., Hastie T. and Tibshirani R. (2017). The elements of statistical learning. New York: Springer.

Thomas P. Minka (2003). Estimating a Dirichlet distribution. http://research.microsoft.com/en-us/um/people/minka/papers/dirichlet/minka-dirichlet.pdf

See Also

dda, alfanb.tune, alfarda.tune, compknn.tune, cv.compnb

Examples

```
x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
mod <- cv.dda(x, ina = iris[, 5] )
```

```
Cross-validation for the LASSO Kullback-Leibler divergence based regression
                    Cross-validation for the LASSO Kullback-Leibler divergence based re-
                        gression
```


Description

Cross-validation for the LASSO Kullback-Leibler divergence based regression.

Usage

cv.lasso.klcompreg(y, x, alpha = 1, type = "grouped", nfolds = 10, folds $=$ NULL, seed $=$ NULL, graph $=$ FALSE)

Arguments

y	A numerical matrix with compositional data with or without zeros.
x	A matrix with the predictor variables.
alpha	The elastic net mixing parameter, with $0 \leq \alpha \leq 1$. The penalty is defined as a weighted combination of the ridge and of the Lasso regression. When $\alpha=1$
LASSO is applied, while $\alpha=0$ yields the ridge regression.	
type	This information is copied from the package glmnet. If "grouped" then a grouped lasso penalty is used on the multinomial coefficients for a variable. This ensures they are all in our out together. The default in our case is "grouped".
nfolds	The number of folds for the K-fold cross validation, set to 10 by default. If you have the list with the folds supply it here. You can also leave it NULL
seed	and it will create folds. graph
	You can specify your own seed number here or leave it NULL.
	If graph is TRUE (default value) a filled contour plot will appear.

Details

The K-fold cross validation is performed in order to select the optimal value for λ, the penalty parameter in LASSO.

Value

The outcome is the same as in the R package glmnet. The extra addition is that if "graph = TRUE", then the plot of the cross-validated object is returned. The contains the logarithm of λ and the deviance. The numbers on top of the figure show the number of set of coefficients for each component, that are not zero.

Author(s)

Michail Tsagris and Abdulaziz Alenazi.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Abdulaziz Alenazi a.alenazi@nbu.edu.sa.

References

Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, Vol. 33(1), 1-22.

See Also

lasso.klcompreg, lassocoef.plot, lasso.compreg, cv.lasso.compreg, kl.compreg

Examples

```
library(MASS)
y <- rdiri( 214, runif(4, 1, 3) )
x <- as.matrix( fgl[, 2:9] )
mod <- cv.lasso.klcompreg(y, x)
```

Cross-validation for the LASSO log-ratio regression with compositional response Cross-validation for the LASSO log-ratio regression with compositional response

Description

Cross-validation for the LASSO log-ratio regression with compositional response.

Usage

```
    cv.lasso. \(\operatorname{compreg}(\mathrm{y}, \mathrm{x}, \mathrm{alpha}=1, \mathrm{nfolds}=10\),
    folds \(=\) NULL, seed \(=\) NULL, graph \(=\) FALSE)
```


Arguments

y A numerical matrix with compositional data. Zero values are not allowed as the additive log-ratio transformation (alr) is applied to the compositional response prior to implementing the LASSO algortihm.
$x \quad$ A matrix with the predictor variables.
alpha The elastic net mixing parameter, with $0 \leq \alpha \leq 1$. The penalty is defined as a weighted combination of the ridge and of the Lasso regression. When $\alpha=1$ LASSO is applied, while $\alpha=0$ yields the ridge regression.
nfolds The number of folds for the K-fold cross validation, set to 10 by default.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed You can specify your own seed number here or leave it NULL.
graph If graph is TRUE (default value) a filled contour plot will appear.

Details

The K-fold cross validation is performed in order to select the optimal value for λ, the penalty parameter in LASSO.

Value

The outcome is the same as in the R package glmnet. The extra addition is that if "graph = TRUE", then the plot of the cross-validated object is returned. The contains the logarithm of λ and the mean squared error. The numbers on top of the figure show the number of set of coefficients for each component, that are not zero.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, Vol. 33(1), 1-22.

See Also

lasso.compreg, lasso.klcompreg, lassocoef.plot, cv.lasso.klcompreg, comp.reg

Examples

library(MASS)
$y<-\operatorname{rdiri}(214, \operatorname{runif}(4,1,3))$
$x<-$ as.matrix(fgl[, 2:9])
$\bmod <-\mathrm{cv} . \operatorname{lasso.compreg}(\mathrm{y}, \mathrm{x})$

```
Cross-validation for the naive Bayes classifiers for compositional data
    Cross-validation for the naive Bayes classifiers for compositional data
```


Description

Cross-validation for the naive Bayes classifiers for compositional data.

Usage

$$
\begin{gathered}
\text { cv.compnb (x, ina, type }=\text { "beta", folds }=\text { NULL, nfolds }=10, \\
\text { stratified }=\text { TRUE, seed }=\text { NULL, pred.ret }=\text { FALSE })
\end{gathered}
$$

Arguments

X
ina A vector of data. The response variable, which is categorical (factor is acceptable).
type The type of naive Bayes, "beta", "logitnorm", "cauchy", "laplace", "gamma", "normlog" or "weibull". For the last 4 distributions, the negative of the logarithm of the compositional data is applied first.
folds A list with the indices of the folds.
nfolds The number of folds to be used. This is taken into consideration only if "folds" is NULL.
stratified Do you want the folds to be selected using stratified random sampling? This preserves the analogy of the samples of each group. Make this TRUE if you wish.
seed You can specify your own seed number here or leave it NULL.
pred.ret If you want the predicted values returned set this to TRUE.

Value

A list including:
preds If pred.ret is TRUE the predicted values for each fold are returned as elements in a list.
crit A vector whose length is equal to the number of k and is the accuracy metric for each k. For the classification case it is the percentage of correct classification.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Friedman J., Hastie T. and Tibshirani R. (2017). The elements of statistical learning. New York: Springer.

See Also

comp.nb

Examples

```
x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
mod <- cv.compnb(x, ina = iris[, 5] )
```

```
Cross-validation for the naive Bayes classifiers for compositional data using the alpha-transformatic
                    Cross-validation for the naive Bayes classifiers for compositional data
                        using the \alpha-transformation
```


Description

Cross-validation for the naive Bayes classifiers for compositional data using the α-transformation.

Usage

alfanb.tune(x, ina, $a=\operatorname{seq}(-1,1$, by $=0.1)$, type = "gaussian",
folds $=$ NULL, nfolds $=10$, stratified $=$ TRUE, seed $=$ NULL)

52Cross-validation for the naive Bayes classifiers for compositional data using the alpha-transformation

Arguments

X
ina
a
type
folds
nfolds
stratified
seed

A matrix with the available data, the predictor variables.
A vector of data. The response variable, which is categorical (factor is acceptable).

This can be a vector of values or a single number.
The type of naive Bayes, "gaussian", "cauchy" or "laplace".
A list with the indices of the folds.
The number of folds to be used. This is taken into consideration only if "folds" is NULL.
Do you want the folds to be selected using stratified random sampling? This preserves the analogy of the samples of each group. Make this TRUE if you wish.
You can specify your own seed number here or leave it NULL.

Details

This function estimates the performance of the naive Bayes classifier for each value of α of the α-transformation.

Value

A list including:
crit A vector whose length is equal to the number of k and is the accuracy metric for each k. For the classification case it is the percentage of correct classification.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Friedman J., Hastie T. and Tibshirani R. (2017). The elements of statistical learning. New York: Springer.

See Also

```
alfa.nb, alfarda.tune, compknn.tune, cv.dda, cv.compnb
```


Examples

```
x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
mod <- alfanb.tune(x, ina = iris[, 5], a = c(0, 0.1, 0.2) )
```

Density of compositional data from Gaussian mixture models

Description

Simulation of compositional data from Gaussian mixture models.

Usage

dmix.compnorm(x, mu, sigma, prob, type = "alr", logged = TRUE)

Arguments

x	A vector or a matrix with compositional data.
prob	A vector with mixing probabilities. Its length is equal to the number of clusters.
mu	A matrix where each row corresponds to the mean vector of each cluster.
sigma	An array consisting of the covariance matrix of each cluster.
type	The type of trasformation used, either the additive log-ratio ("alr"), the isometric log-ratio ("ilr") or the pivot coordinate ("pivot") transformation.
logged	A boolean variable specifying whether the logarithm of the density values to be returned. It is set to TRUE by default.

Details

A sample from a multivariate Gaussian mixture model is generated.

Value

A vector with the density values.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas (2015). R package mixture: Mixture Models for Clustering and Classification.

See Also

mix.compnorm, bic.mixcompnorm

Examples

```
p <- c(1/3, 1/3, 1/3)
mu <- matrix(nrow = 3, ncol = 4)
s <- array( dim = c(4, 4, 3) )
x <- as.matrix(iris[, 1:4])
ina <- as.numeric(iris[, 5])
mu <- rowsum(x, ina) / 50
s[, , 1] <- cov(x[ina == 1, ])
s[, , 2] <- cov(x[ina == 2, ])
s[, , 3] <- cov(x[ina == 3, ])
y <- rmixcomp(100, p, mu, s, type = "alr")$x
mod <- dmix.compnorm(y, mu, s, p)
```

Density of the Flexible Dirichlet distribution
Density of the Flexible Dirichlet distribution

Description

Density of the Flexible Dirichlet distribution

Usage

dfd(x, alpha, prob, tau)

Arguments

$x \quad$ A vector or a matrix with compositional data.
alpha A vector of the non-negative α parameters.
prob A vector of the clusters' probabilities. It must sum to one.
tau The non-negative scalar tau parameter.

Details

For more information see the references.

Value

The density value(s).

Author(s)

Michail Tsagris ported from the R package FlexDir. mtsagris@uoc.gr.

References

Ongaro A. and Migliorati S. (2013). A generalization of the Dirichlet distribution. Journal of Multivariate Analysis, 114, 412-426.
Migliorati S., Ongaro A. and Monti G. S. (2017). A structured Dirichlet mixture model for compositional data: inferential and applicative issues. Statistics and Computing, 27, 963-983.

See Also

fd.est, rfd

Examples

```
alpha <- c(12, 11, 10)
prob <- c(0.25, 0.25, 0.5)
tau <- 8
x <- rfd(20, alpha, prob, tau)
dfd(x, alpha, prob, tau)
```

Density of the folded normal distribution
Density of the folded model normal distribution

Description

Density of the folded model normal distribution.

Usage

dfolded(x, a, p, mu, su, logged = TRUE)

Arguments

$x \quad$ A vector or a matrix with compositional data. No zeros are allowed.
a
The value of α.
$\mathrm{p} \quad$ The probability inside the simplex of the folded model.
mu The mean vector.
su The covariance matrix.
logged A boolean variable specifying whether the logarithm of the density values to be returned. It is set to TRUE by default.

Details

Density values of the folded model.

Value

The density value(s).

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagrismtsagris@uoc.gr.

References

Tsagris M. and Stewart C. (2020). A folded model for compositional data analysis. Australian and New Zealand Journal of Statistics, 62(2): 249-277. https://arxiv.org/pdf/1802.07330.pdf

See Also

rfolded, a.est, folded.contour

Examples

```
s <- c(0.1490676523, -0.4580818209, 0.0020395316, -0.0047446076, -0.4580818209,
1.5227259250, 0.0002596411, 0.0074836251, 0.0020395316, 0.0002596411,
0.0365384838, -0.0471448849, -0.0047446076, 0.0074836251, -0.0471448849,
0.0611442781)
s <- matrix(s, ncol = 4)
m <- c(1.715, 0.914, 0.115, 0.167)
x <- rfolded(100, m, s, 0.5)
mod <- a.est(x)
den <- dfolded(x, mod$best, mod$p, mod$mu, mod$su)
```


Description

Density values of a Dirichlet distribution.

Usage

ddiri(x, a, logged = TRUE)

Arguments

x
a
logged

A matrix containing compositional data. This can be a vector or a matrix with the data.

A vector of parameters. Its length must be equal to the number of components, or columns of the matrix with the compositional data and all values must be greater than zero.
A boolean variable specifying whether the logarithm of the density values to be returned. It is set to TRUE by default.

Details

The density of the Dirichlet distribution for a vector or a matrix of compositional data is returned.

Value

A vector with the density values.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.

See Also

```
diri.nr, diri.est, diri.contour, rdiri, dda
```


Examples

```
x <- rdiri( 100, c(5, 7, 4, 8, 10, 6, 4) )
a <- diri.est(x)
f <- ddiri(x, a$param)
sum(f)
a
```

Density values of a mixture of Dirichlet distributions
Density values of a mixture of Dirichlet distributions

Description

Density values of a mixture of Dirichlet distributions.

Usage

dmixdiri(x, a, prob, logged = TRUE)

Arguments

$x \quad$ A vector or a matrix with compositional data. Zeros are not allowed.
a A matrix where each row contains the parameters of each Dirichlet component.
prob A vector with the mixing probabilities.
logged A boolean variable specifying whether the logarithm of the density values to be returned. It is set to TRUE by default.

Details

The density of the mixture of Dirichlet distribution for a vector or a matrix of compositional data is returned.

Value

A vector with the density values.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ye X., Yu Y. K. and Altschul S. F. (2011). On the inference of Dirichlet mixture priors for protein sequence comparison. Journal of Computational Biology, 18(8), 941-954.

See Also

rmixdiri, mixdiri.contour

Examples

```
a <- matrix( c(12, 30, 45, 32, 50, 16), byrow = TRUE,ncol = 3)
prob <- c(0.5, 0.5)
x <- rmixdiri(100, a, prob)$x
f <- dmixdiri(x, a, prob)
```

Dirichlet discriminant analysis
Dirichlet discriminant analysis

Description

Dirichlet discriminant analysis.

Usage

dda(xnew, x, ina)

Arguments

xnew A matrix with the new compositional predictor data whose class you want to predict. Zeros are allowed.
x
ina
A matrix with the available compositional predictor data. Zeros are allowed.
A vector of data. The response variable, which is categorical (factor is acceptable).

Details

The funcitons performs maximum likelihood discriminant analysis using the Dirichlet distribution.

Value

A vector with the estimated group.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Friedman J., Hastie T. and Tibshirani R. (2017). The elements of statistical learning. New York: Springer.

Thomas P. Minka (2003). Estimating a Dirichlet distribution. http://research.microsoft.com/en-us/um/people/minka/papers/dirichlet/minka-dirichlet.pdf

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

cv.dda, comp.nb, alfa.rda, alfa.knn, comp.knn, mix.compnorm, diri.reg, zadr

Examples

```
x <- Compositional::rdiri(100, runif(5) )
ina <- rbinom(100, 1, 0.5) + 1
mod <- dda(x, x, ina )
```

```
Dirichlet random values simulation
    Dirichlet random values simulation
```


Description

Dirichlet random values simulation.

Usage

rdiri(n, a)

Arguments

n
a

The sample size, a numerical value.
A numerical vector with the parameter values.

Details

The algorithm is straightforward, for each vector, independent gamma values are generated and then divided by their total sum.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

diri.est, diri.nr, diri.contour

Examples

x <- rdiri(100, c(5, 7, 1, 3, 10, 2, 4))
diri.est(x)

```
Dirichlet regression Dirichlet regression
```


Description

Dirichlet regression.

Usage

diri.reg(y, x, plot = FALSE, xnew = NULL)
diri.reg2(y, x, xnew = NULL)

Arguments

y A matrix with the compositional data (dependent variable). Zero values are not allowed.
x
The predictor variable(s), they can be either continuous or categorical or both.
plot
A boolean variable specifying whether to plot the leverage values of the observations or not. This is taken into account only when xnew = NULL.
xnew If you have new data use it, otherwise leave it NULL.

Details

A Dirichlet distribution is assumed for the regression. This involves numerical optimization. The function "diri.reg2" allows for the covariates to be linked with the precision parameter ϕ via the exponential link function $\phi=e^{x * b}$.

Value

A list including:
runtime The time required by the regression.
loglik The value of the log-likelihood.
phi The precision parameter. If covariates are linked with it (function "diri.reg2"), this will be a vector.
phipar The coefficients of the phi parameter if it is linked to the covariates.
std.phi The standard errors of the coefficients of the phi parameter is it linked to the covariates.
log.phi The logarithm of the precision parameter.
std.logphi The standard error of the logarithm of the precision parameter.
be
The beta coefficients.
seb The standard error of the beta coefficients.
sigma \quad Th covariance matrix of the regression parameters (for the mean vector and the phi parameter) in the function "diri.reg2".
lev The leverage values.
est For the "diri.reg" this contains the fitted or the predicted values (if xnew is not NULL). For the "diri.reg2" if xnew is NULL, this is also NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Maier, Marco J. (2014) DirichletReg: Dirichlet Regression for Compositional Data in R. Research Report Series/Department of Statistics and Mathematics, 125. WU Vienna University of Economics and Business, Vienna. http://epub.wu.ac.at/4077/1/Report125.pdf
Gueorguieva, Ralitza, Robert Rosenheck, and Daniel Zelterman (2008). Dirichlet component regression and its applications to psychiatric data. Computational statistics \& data analysis 52(12): 5344-5355.

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

js.compreg, kl.compreg, ols.compreg, comp.reg, alfa.reg, diri.nr, dda

Examples

```
x <- as.vector(iris[, 4])
y <- as.matrix(iris[, 1:3])
y <- y / rowSums(y)
mod1 <- diri.reg(y, x)
mod2 <-diri.reg2(y, x)
mod3 <- comp.reg(y, x)
```

Distance based regression models for proportions

Description

Distance based regression models for proportions.

Usage

ols.prop.reg(y, $x, \operatorname{cov}=$ FALSE, tol $=1 \mathrm{e}-07$, maxiters $=100$)
helling.prop.reg(y, x, tol $=1 \mathrm{e}-07$, maxiters $=100$)

Arguments

y
x
cov Should the covariance matrix be returned? TRUE or FALSE.
tol The tolerance value to terminate the Newton-Raphson algorithm. This is set to 10^{-9} by default.
maxiters The maximum number of iterations before the Newton-Raphson is terminated automatically.

Details

We are using the Newton-Raphson, but unlike R's built-in function "glm" we do no checks and no extra calculations, or whatever. Simply the model. The functions accept binary responses as well (0 or 1).

Value

A list including:
sse The sum of squres of errors for the "ols.prop.reg" function.
be The estimated regression coefficients.
seb The standard error of the regression coefficients if "cov" is TRUE.
covb The covariance matrix of the regression coefficients in "ols.prop.reg" if "cov" is TRUE.

H
iters The number of iterations required by the Newton-Raphson.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Papke L. E. \& Wooldridge J. (1996). Econometric methods for fractional response variables with an application to 401(K) plan participation rates. Journal of Applied Econometrics, 11(6): 619-632.

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

```
propreg, beta.reg
```


Examples

```
y <- rbeta(100, 1, 4)
x <- matrix(rnorm(100 * 2), ncol = 2)
a1 <- ols.prop.reg(y, x)
a2 <- helling.prop.reg(y, x)
```


Description

Regression for compositional data based on the Kullback-Leibler the Jensen-Shannon divergence and the symmetric Kullback-Leibler divergence.

Usage

kl. compreg (y, x, con $=$ TRUE,$B=1$, ncores $=1$, xnew $=$ NULL, tol $=1 \mathrm{e}-07$, maxiters $=50$)
js.compreg(y, x, con = TRUE, $B=1$, ncores $=1$, xnew $=$ NULL)
tv.compreg(y, x, con = TRUE, $B=1$, ncores $=1$, xnew = NULL)
symkl.compreg (y, x, con $=$ TRUE, $B=1$, ncores $=1$, xnew $=$ NULL)

Arguments

y A matrix with the compositional data (dependent variable). Zero values are allowed.
x
con If this is TRUE (default) then the constant term is estimated, otherwise the model includes no constant term.

B If B is greater than 1 bootstrap estimates of the standard error are returned. If $B=1$, no standard errors are returned.
ncores If ncores is 2 or more parallel computing is performed. This is to be used for the case of bootstrap. If $\mathrm{B}=1$, this is not taken into consideration.
xnew If you have new data use it, otherwise leave it NULL.
tol The tolerance value to terminate the Newton-Raphson procedure.
maxiters The maximum number of Newton-Raphson iterations.

Details

In the kl.compreg the Kullback-Leibler divergence is adopted as the objective function. In case of problematic convergence the "multinom" function by the "nnet" package is employed. This will obviously be slower. The js.compreg uses the Jensen-Shannon divergence and the symkl.compreg uses the symmetric Kullback-Leibler divergence. The tv.compreg uses the Total Variation divergence. There is no actual log-likelihood for neither regression.

Value

A list including:
runtime The time required by the regression.
iters The number of iterations required by the Newton-Raphson in the kl.compreg function.
loglik The log-likelihood. This is actually a quasi multinomial regression. This is bascially minus the half deviance, or $-\sum_{i=1}^{n} y_{i} \log y_{i} / \hat{y}_{i}$.
be The beta coefficients.
covbe The covariance matrix of the beta coefficients, if bootstrap is chosen, i.e. if B > 1.
est The fitted values of xnew if xnew is not NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Murteira, Jose MR, and Joaquim JS Ramalho 2016. Regression analysis of multivariate fractional data. Econometric Reviews 35(4): 515-552.

Tsagris, Michail (2015). A novel, divergence based, regression for compositional data. Proceedings of the 28th Panhellenic Statistics Conference, 15-18/4/2015, Athens, Greece. https://arxiv.org/pdf/1511.07600.pdf

Endres, D. M. and Schindelin, J. E. (2003). A new metric for probability distributions. Information Theory, IEEE Transactions on 49, 1858-1860.

Osterreicher, F. and Vajda, I. (2003). A new class of metric divergences on probability spaces and its applicability in statistics. Annals of the Institute of Statistical Mathematics 55, 639-653.

See Also

```
diri.reg, ols.compreg, comp.reg
```


Examples

```
library(MASS)
x <- as.vector(fgl[, 1])
y <- as.matrix(fgl[, 2:9])
y <- y / rowSums(y)
mod1<- kl.compreg(y, x, B = 1, ncores = 1)
mod2 <- js.compreg(y, x, B = 1, ncores = 1)
```

66Divergence based regression for compositional data with compositional data in the covariates side using the alpha-transformatio

Divergence based regression for compositional data with compositional data in the covariates side usi Divergence based regression for compositional data with compositional data in the covariates side using the α-transformation

Description

Divergence based regression for compositional data with compositional data in the covariates side using the α-transformation.

Usage

kl.alfapcr(y, x, covar = NULL, a, k, xnew = NULL, B = 1, ncores = 1, tol = 1e-07, maxiters = 50)

Arguments

$y \quad$ A numerical matrixc with compositional data with or without zeros.
$x \quad$ A matrix with the predictor variables, the compositional data. Zero values are allowed.
covar If you have other covariates as well put themn here.
a The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.
k
A number at least equal to 1 . How many principal components to use.
xnew A matrix containing the new compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.

B If B is greater than 1 bootstrap estimates of the standard error are returned. If $B=1$, no standard errors are returned.
ncores If ncores is 2 or more parallel computing is performed. This is to be used for the case of bootstrap. If $\mathrm{B}=1$, this is not taken into consideration.
tol The tolerance value to terminate the Newton-Raphson procedure.
maxiters The maximum number of Newton-Raphson iterations.

Details

The α-transformation is applied to the compositional data first, the first k principal component scores are calcualted and used as predictor variables for the Kullback-Leibler divergence based regression model.

Divergence based regression for compositional data with compositional data in the covariates side using the alpha-transformation6

Value

A list including:
runtime \quad The time required by the regression.
iters The number of iterations required by the Newton-Raphson in the kl.compreg function.
loglik The log-likelihood. This is actually a quasi multinomial regression. This is bascially minus the half deviance, or $-\operatorname{sum}_{i=1}^{n} y_{i} \log y_{i} / \hat{y}_{i}$.
be The beta coefficients.
seb The standard error of the beta coefficients, if bootstrap is chosen, i.e. if B >1.
est The fitted values of xnew if xnew is not NULL.

Author(s)

Initial code by Abdulaziz Alenazi. Modifications by Michail Tsagris.
R implementation and documentation: Abdulaziz Alenazi <a. alenazi@nbu. edu. sa> and Michail Tsagris mtsagris@uoc.gr.

References

Alenazi A. (2019). Regression for compositional data with compositioanl data as predictor variables with or without zero values. Journal of Data Science, 17(1): 219-238. http://www.jdsonline.com/file_download/688/01+No.10+315+REGRESSION+FOR+COMPOSITIONAL+DATA+WITH+COMPOSITIO
Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. http://arxiv.org/pdf/1508.01913v1.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

See Also

klalfapcr.tune, tflr, pcr, glm.pcr, alfapcr.tune

Examples

```
library(MASS)
y <- rdiri(214, runif(4, 1, 3))
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
mod <- alfa.pcr(y = y, x = x, a = 0.7, k = 1)
mod
```

```
Divergence matrix of compositional data
                                    Divergence matrix of compositional data
```


Description

Divergence matrix of compositional data.

Usage

divergence(x, type = "kullback_leibler", vector = FALSE)

Arguments

$x \quad$ A matrix with the compositional data.
type This is either "kullback_leibler" (Kullback-Leibler, which computes the symmetric Kullback-Leibler divergence) or "jensen_shannon" (Jensen-Shannon) divergence.
vector For return a vector instead a matrix.

Details

The function produces the distance matrix either using the Kullback-Leibler (distance) or the JensenShannon (metric) divergence. The Kullback-Leibler refers to the symmetric Kullback-Leibler divergence.

Value

if the vector argument is FALSE a symmetric matrix with the divergences, otherwise a vector with the divergences.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Endres, D. M. and Schindelin, J. E. (2003). A new metric for probability distributions. Information Theory, IEEE Transactions on 49, 1858-1860.
Osterreicher, F. and Vajda, I. (2003). A new class of metric divergences on probability spaces and its applicability in statistics. Annals of the Institute of Statistical Mathematics 55, 639-653.

See Also

comp.knn, js.compreg

Examples

```
x <- as.matrix(iris[1:20, 1:4])
x <- x / rowSums(x)
divergence(x)
```

Empirical likelihood for a one sample mean vector hypothesis testing
Empirical likelihood for a one sample mean vector hypothesis testing

Description

Empirical likelihood for a one sample mean vector hypothesis testing.

Usage

el.test1(x, mu, R = 1, ncores = 1, graph = FALSE)

Arguments

$x \quad$ A matrix containing Euclidean data.
mu The hypothesized mean vector.
$R \quad$ If R is 1 no bootstrap calibration is performed and the classical p-value via the χ^{2} distribution is returned. If R is greater than 1 , the bootstrap p-value is returned.
ncores The number of cores to use, set to 1 by default.
graph A boolean variable which is taken into consideration only when bootstrap calibration is performed. IF TRUE the histogram of the bootstrap test statistic values is plotted.

Details

Multivariate hypothesis test for a one sample mean vector. This is a non parametric test and it works for univariate and multivariate data.

Value

A list with the outcome of the function el.test which includes the $-2 \log$-likelihood ratio, the observed P -value by chi-square approximation, the final value of Lagrange multiplier λ, the gradient at the maximum, the Hessian matrix, the weights on the observations (probabilities multiplied by the sample size) and the number of iteration performed. In addition the runtime of the procedure is reported. In the case of bootstrap, the bootstrap p-value is also returned.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Owen, A. (1990). Empirical likelihood ratio confidence regions. Annals of Statistics, 18, 90-120.
Owen A. B. (2001). Empirical likelihood. Chapman and Hall/CRC Press.

See Also

eel.test1, hotel1T2, james, hotel2T2, maov, el.test2, comp.test

Examples

$x<-$ Rfast::rmvnorm(100, numeric(10), $\operatorname{diag}(\operatorname{rexp}(10,0.5))$)
el.test1(x, mu = numeric(10))
eel.test1(x, mu $=$ numeric(10))

Empirical likelihood hypothesis testing for two mean vectors
Empirical likelihood hypothesis testing for two mean vectors

Description

Empirical likelihood hypothesis testing for two mean vectors.

Usage

el.test2(y1, y2, R = 0, ncores $=1$, graph $=$ FALSE)

Arguments

y1 A matrix containing the Euclidean data of the first group.
y2 A matrix containing the Euclidean data of the second group.
$\mathrm{R} \quad$ If R is 0 , the classical chi-square distribution is used, if $\mathrm{R}=1$, the corrected chisquare distribution (James, 1954) is used and if $R=2$, the modified F distribution (Krishnamoorthy and Yanping, 2006) is used. If R is greater than 3 bootstrap calibration is performed.
ncores How many to cores to use.
graph A boolean variable which is taken into consideration only when bootstrap calibration is performed. IF TRUE the histogram of the bootstrap test statistic values is plotted.

Details

Empirical likelihood is a non parametric hypothesis testing procedure for one sample. The generalization to two (or more samples) is via searching for the mean vector that minimizes the sum of the two test statistics.

Value

A list including:
test The empirical likelihood test statistic value.
modif.test The modified test statistic, either via the chi-square or the F distribution.
dof Thre degrees of freedom of the chi-square or the F distribution.
pvalue \quad The asymptotic or the bootstrap p-value.
mu The estimated common mean vector.
runtime The runtime of the bootstrap calibration.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

G.S. James (1954). Tests of Linear Hypotheses in Univariate and Multivariate Analysis when the Ratios of the Population Variances are Unknown. Biometrika, 41(1/2): 19-43

Krishnamoorthy K. and Yanping Xia (2006). On Selecting Tests for Equality of Two Normal Mean Vectors. Multivariate Behavioral Research 41(4): 533-548.

Owen A. B. (2001). Empirical likelihood. Chapman and Hall/CRC Press.
Owen A.B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75(2): 237-249.

Amaral G.J.A., Dryden I.L. and Wood A.T.A. (2007). Pivotal bootstrap methods for k-sample problems in directional statistics and shape analysis. Journal of the American Statistical Association 102(478): 695-707.

Preston S.P. and Wood A.T.A. (2010). Two-Sample Bootstrap Hypothesis Tests for Three-Dimensional Labelled Landmark Data. Scandinavian Journal of Statistics 37(4): 568-587.

See Also

```
eel.test2, maovjames, maov, hotel2T2, james, comp.test
```


Examples

```
el.test2( y1 = as.matrix(iris[1:25, 1:4]), y2 = as.matrix(iris[26:50, 1:4]), R = 0 )
el.test2( y1 = as.matrix(iris[1:25, 1:4]), y2 = as.matrix(iris[26:50, 1:4]), R = 1 )
el.test2( y1 =as.matrix(iris[1:25, 1:4]), y2 = as.matrix(iris[26:50, 1:4]), R = 2 )
```

```
Energy test of equality of distributions using the alpha-transformation
                                    Energy test of equality of distributions using the \alpha-transformation
```


Description

Energy test of equality of distributions using the α-transformation.

Usage

aeqdist.etest(x, sizes, $a=1, R=999)$

Arguments

$x \quad$ A matrix with the compositional data with all groups stacked one under the other.
sizes A numeric vector matrix with the sample sizes.
a
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied. If more than one values are supplied the energy distance of equality of distributions is applied for each value of α.

R
The number of permutations to apply in order to compute the approximate pvalue.

Details

The α-transformation is applied to each composition and then the energy distance of equality of distributions is applied for each value of α or for the single value of α.

Value

A numerical value or a numerical vector, depending on the length of the values of α, with the approximate p-value(s) of the energy test.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Szekely, G. J. and Rizzo, M. L. (2004) Testing for Equal Distributions in High Dimension. InterStat, November (5).
Szekely, G. J. (2000) Technical Report 03-05: E-statistics: Energy of Statistical Samples. Department of Mathematics and Statistics, Bowling Green State University.

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

acor, acor.tune, alfa, alfa.profile

Examples

```
y <- rdiri(50, c(3, 4, 5) )
x <- rdiri(60, c(3, 4, 5) )
aeqdist.etest( rbind(x, y), c(dim(x)[1], dim(y)[1]), a = c(-1, 0, 1) )
```

```
Estimating location and scatter parameters for compositional data
    Estimating location and scatter parameters for compositional data
```


Description

Estimating location and scatter parameters for compositional data in a robust and non robust way.

Usage

comp.den(x, type = "alr", dist = "normal", tol = 1e-07)

Arguments

$x \quad$ A matrix containing compositional data. No zero values are allowed.
type A boolean variable indicating the transformation to be used. Either "alr" or "ilr" corresponding to the additive or the isometric log-ratio transformation respectively.
dist Takes values "normal", "t", "skewnorm", "rob" and "spatial". They first three options correspond to the parameters of the normal, t and skew normal distribution respectively. If it set to "rob" the MCD estimates are computed and if set to "spatial" the spatial median and spatial sign covariance matrix are computed.
tol A tolerance level to terminate the process of finding the spatial median when dist $=$ "spatial". This is set to $1 \mathrm{e}-09$ by default.

Details

This function calculates robust and non robust estimates of location and scatter.

Value

A list including: The mean vector and covariance matrix mainly. Other parameters are also returned depending on the value of the argument "dist".

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

P. J. Rousseeuw and K. van Driessen (1999) A fast algorithm for the minimum covariance determinant estimator. Technometrics 41, 212-223.
Mardia K.V., Kent J.T., and Bibby J.M. (1979). Multivariate analysis. Academic press.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
T. Karkkaminen and S. Ayramo (2005). On computation of spatial median for robust data mining. Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems EUROGEN 2005.

A Durre, D Vogel, DE Tyler (2014). The spatial sign covariance matrix with unknown location. Journal of Multivariate Analysis, 130: 107-117.
J. T. Kent, D. E. Tyler and Y. Vardi (1994) A curious likelihood identity for the multivariate tdistribution. Communications in Statistics-Simulation and Computation 23, 441-453.
Azzalini A. and Dalla Valle A. (1996). The multivariate skew-normal distribution. Biometrika 83(4): 715-726.

See Also

spatmed.reg, multivt

Examples

```
library(MASS)
x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
comp.den(x)
comp.den(x, type = "alr", dist = "t")
comp.den(x, type = "alr", dist = "spatial")
```

Estimation of the probability left outside the simplex when using the alpha-transformation Estimation of the probability left outside the simplex when using the alpha-transformation

Description

Estimation of the probability left outside the simplex when using the alpha-transformationn.

Usage

probout (mu, su, a)

Arguments

mu The mean vector.
su The covariance matrix.
a The value of α.

Details

When applying the α-transformation based on a multivariate normal there might be probability left outside the simplex as the space of this transformation is a subspace of the Euclidean space. The function estimates the missing probability via Monte Carlo simulation using 40 million generated vectors.

Value

The estimated probability left outside the simplex.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Stewart C. (2020). A folded model for compositional data analysis. Australian and New Zealand Journal of Statistics, 62(2): 249-277. https://arxiv.org/pdf/1802.07330.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

```
alfa, alpha.mle, a.est, rfolded
```


Examples

```
s <- c(0.1490676523, -0.4580818209, 0.0020395316, -0.0047446076, -0.4580818209,
1.5227259250, 0.0002596411, 0.0074836251, 0.0020395316, 0.0002596411,
0.0365384838, -0.0471448849, -0.0047446076, 0.0074836251, -0.0471448849,
0.0611442781)
s <- matrix(s, ncol = 4)
m <- c(1.715, 0.914, 0.115, 0.167)
probout(m, s, 0.5)
```

```
Estimation of the value of alpha in the folded model
    Estimation of the value of \alpha in the folded model
```


Description

Estimation of the value of α in the folded model.

Usage

a.est(x)

Arguments

$x \quad$ A matrix with the compositional data. No zero vaues are allowed.

Details

This is a function for choosing or estimating the value of α in the folded model (Tsagris and Stewart, 2020).

Value

A list including:
runtime The runtime of the algorithm.
best The estimated optimal α of the folded model.
loglik The maximimised log-likelihood of the folded model.
$\mathrm{p} \quad$ The estimated probability inside the simplex of the folded model.
mu The estimated mean vector of the folded model.
su The estimated covariance matrix of the folded model.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Stewart C. (2020). A folded model for compositional data analysis. Australian and New Zealand Journal of Statistics, 62(2): 249-277. https://arxiv.org/pdf/1802.07330.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

alfa.profile, alfa, alfainv, alpha.mle

Examples

```
x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
alfa.tune(x)
a.est(x)
```


Description

Estimation of the value of α via the alfa profile log-likelihood.

Usage

alfa.profile(x, a = seq(-1, 1, by = 0.01))

Arguments

$x \quad$ A matrix with the compositional data. Zero values are not allowed.
a A grid of values of α.

Details

For every value of α the normal likelihood (see the refernece) is computed. At the end, the plot of the values is constructed.

Value

A list including:
res The chosen value of α, the corresponding log-likelihood value and the loglikelihood when $\alpha=0$.
ci An asympotic 95% confidence interval computed from the log-likelihood ratio test.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

alfa.tune, alfa, alfainv

Examples

```
x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
alfa.tune(x)
alfa.profile(x)
```

Exponential empirical likelihood for a one sample mean vector hypothesis testing
Exponential empirical likelihood for a one sample mean vector hy- pothesis testing

Description

Exponential empirical likelihood for a one sample mean vector hypothesis testing.

Usage

eel.test1 (x, mu, tol $=1 \mathrm{e}-06, \mathrm{R}=1$)

Arguments

$x \quad$ A matrix containing Euclidean data.
mu The hypothesized mean vector.
tol The tolerance value used to stop the Newton-Raphson algorithm.
R
The number of bootstrap samples used to calculate the p -value. If $\mathrm{R}=1$ (default value), no bootstrap calibration is performed

Details

Multivariate hypothesis test for a one sample mean vector. This is a non parametric test and it works for univariate and multivariate data.

Value

A list including:
p The estimated probabilities
lambda The value of the Lagrangian parameter λ.
iter The number of iterations required by the newton-Raphson algorithm.
info The value of the log-likelihood ratio test statistic along with its corresponding p-value.
runtime The runtime of the process.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Jing Bing-Yi and Andrew TA Wood (1996). Exponential empirical likelihood is not Bartlett correctable. Annals of Statistics 24(1): 365-369.

Owen A. B. (2001). Empirical likelihood. Chapman and Hall/CRC Press.

See Also

el.test1, hotel1T2, james, hotel2T2, maov, el.test2, comp.test

Examples

```
x <- Rfast::rmvnorm(100, numeric(10), diag( rexp(10, 0.5) ) )
eel.test1(x, numeric(10) )
el.test1(x, numeric(10) )
```

Exponential empirical likelihood hypothesis testing for two mean vectors
Exponential empirical likelihood hypothesis testing for two mean vec-
tors

Description

Exponential empirical likelihood hypothesis testing for two mean vectors.

Usage

eel.test2(y1, y2, tol $=1 \mathrm{e}-07, \mathrm{R}=0$, graph $=$ FALSE)

Arguments

y1 A matrix containing the Euclidean data of the first group.
y2 A matrix containing the Euclidean data of the second group.
tol The tolerance level used to terminate the Newton-Raphson algorithm.
$R \quad$ If R is 0 , the classical chi-square distribution is used, if $R=1$, the corrected chisquare distribution (James, 1954) is used and if $\mathrm{R}=2$, the modified F distribution (Krishnamoorthy and Yanping, 2006) is used. If R is greater than 3 bootstrap calibration is performed.
graph A boolean variable which is taken into consideration only when bootstrap calibration is performed. IF TRUE the histogram of the bootstrap test statistic values is plotted.

Details

Exponential empirical likelihood is a non parametric hypothesis testing procedure for one sample. The generalization to two (or more samples) is via searching for the mean vector that minimises the sum of the two test statistics.

Value

A list including:
test The empirical likelihood test statistic value.
modif.test The modified test statistic, either via the chi-square or the F distribution.
dof The degrees of freedom of the chi-square or the F distribution.
pvalue The asymptotic or the bootstrap p-value.
mu The estimated common mean vector.
runtime The runtime of the bootstrap calibration.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Jing Bing-Yi and Andrew TA Wood (1996). Exponential empirical likelihood is not Bartlett correctable. Annals of Statistics 24(1): 365-369.
G.S. James (1954). Tests of Linear Hypothese in Univariate and Multivariate Analysis when the Ratios of the Population Variances are Unknown. Biometrika, 41(1/2): 19-43

Krishnamoorthy K. and Yanping Xia (2006). On Selecting Tests for Equality of Two Normal Mean Vectors. Multivariate Behavioral Research 41(4): 533-548.
Owen A. B. (2001). Empirical likelihood. Chapman and Hall/CRC Press.

Amaral G.J.A., Dryden I.L. and Wood A.T.A. (2007). Pivotal bootstrap methods for k-sample problems in directional statistics and shape analysis. Journal of the American Statistical Association 102(478): 695-707.
Preston S.P. and Wood A.T.A. (2010). Two-Sample Bootstrap Hypothesis Tests for Three-Dimensional Labelled Landmark Data. Scandinavian Journal of Statistics 37(4): 568-587.

Tsagris M., Preston S. and Wood A.T.A. (2017). Nonparametric hypothesis testing for equality of means on the simplex. Journal of Statistical Computation and Simulation, 87(2): 406-422.

See Also

el.test2, maovjames, maov, hotel2T2, james, comp.test

Examples

```
y1 = as.matrix(iris[1:25, 1:4])
y2 = as.matrix(iris[26:50, 1:4])
eel.test2(y1, y2)
eel.test2(y1, y2 )
eel.test2( y1, y2 )
```

```
Fast estimation of the value of alpha
```

 Fast estimation of the value of \(\alpha\)

Description

Fast estimation of the value of α.

Usage

alfa.tune(x, B = 1, ncores = 1)

Arguments

$x \quad$ A matrix with the compositional data. No zero vaues are allowed.
B If no (bootstrap based) confidence intervals should be returned this should be 1 and more than 1 otherwise.
ncores If ncores is greater than 1 parallel computing is performed. It is advisable to use it if you have many observations and or many variables, otherwise it will slow down th process.

Details

This is a faster function than alfa. profile for choosing the value of α.

Value
A vector with the best alpha, the maximised \log-likelihood and the \log-likelihood at $\alpha=0$, when $B=1$ (no bootstrap). If $B>1$ a list including:
param The best alpha and the value of the log-likelihod, along with the 95% bootstrap based confidence intervals.
message A message with some information about the histogram.
runtime The time (in seconds) of the process.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

alfa.profile, alfa, alfainv

Examples

```
library(MASS)
x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
alfa.tune(x)
alfa.profile(x)
```

Fitting a Flexible Dirichlet distribution Fitting a Flexible Dirichlet distribution

Description

Fitting a Flexible Dirichlet distribution.

Usage

fd.est(x, ini.iter = 50, final.iter = 100)

Arguments

$x \quad$ A matrix or a dataframe containing the compositional data.
ini.iter \quad Number of iterations for the initial SEM step. Default value is 50 .
final.iter \quad Number of iterations for the final EM step. Default value is 100 .

Details

For more information see the references.

Value

A list including:
alpha \quad Estimated values of the parameter vector α.
prob \quad Estimated values of the parameter vector p .
tau Estimated value of the parameter tau.
loglik The Log-likelihood value.

Author(s)

Michail Tsagris ported from the R package FlexDir. mtsagris@uoc.gr.

References

Ongaro A. and Migliorati S. (2013). A generalization of the Dirichlet distribution. Journal of Multivariate Analysis, 114, 412-426.

Migliorati S., Ongaro A. and Monti G. S. (2017). A structured Dirichlet mixture model for compositional data: inferential and applicative issues. Statistics and Computing, 27, 963-983.

See Also

$$
r f d, r f d
$$

Examples

```
x <- rfd(n = 50, a = c(12, 11, 10), p = c(0.25, 0.25, 0.5), tau = 4 )
ela <- fd.est(x, ini.iter = 10, final.iter = 20)
ela
```

Gaussian mixture models for compositional data
Gaussian mixture models for compositional data

Description

Gaussian mixture models for compositional data.

Usage

mix.compnorm(x, g, model, type = "alr", veo = FALSE)

Arguments

x
g How many clusters to create.
model The type of model to be used.

1. "EII": All groups have the same diagonal covariance matrix, with the same variance for all variables.
2. "VII": Different diagonal covariance matrices, with the same variance for all variables within each group.
3. "EEI": All groups have the same diagonal covariance matrix.
4. "VEI": Different diagonal covariance matrices. If we make all covariance matrices have determinant 1 , (divide the matrix with the $\$ \mathrm{p} \$$-th root of its determinant) then all covariance matrices will be the same.
5. "EVI": Different diagonal covariance matrices with the same determinant.
6. "VVI": Different diagonal covariance matrices, with nothing in common.
7. "EEE": All covariance matrices are the same.
8. "EEV": Different covariance matrices, but with the same determinant and in addition, if we make them have determinant 1 , they will have the same trace.
9. "VEV": Different covariance matrices but if we make the matrices have determinant 1, then they will have the same trace.
10. "VVV": Different covariance matrices with nothing in common.
11. "EVE": Different covariance matrices, but with the same determinant. In addition, calculate the eigenvectors for each covariance matrix and you will see the extra similarities.
12. "VVE": Different covariance matrices, but they have something in common with their directions. Calculate the eigenvectors of each covariance matrix and you will see the similarities.
13. "VEE": Different covariance matrices, but if we make the matrices have determinant 1, then they will have the same trace. In addition, calculate the eigenvectors for each covariance matrix and you will see the extra similarities.
14. "EVV": Different covariance matrices, but with the same determinant.
type The type of trasformation to be used, either the additive log-ratio ("alr"), the isometric log-ratio ("ilr") or the pivot coordinate ("pivot") transformation.
veo Stands for "Variables exceed observations". If TRUE then if the number variablesin the model exceeds the number of observations, but the model is still fitted.

Details

A log-ratio transformation is applied and then a Gaussian mixture model is constructed.

Value

A list including:

mu	A matrix where each row corresponds to the mean vector of each cluster.
su	An array containing the covariance matrix of each cluster.
prob	The estimated mixing probabilities.
est	The estimated cluster membership values.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas (2015). R package mixture: Mixture Models for Clustering and Classification.

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

```
bic.mixcompnorm, rmixcomp, mix.compnorm.contour, alfa.mix.norm,alfa.knn,alfa.rda,
comp.nb
```


Examples

```
x <- as.matrix(iris[, 1:4])
x <- x/ rowSums(x)
mod1 <- mix.compnorm(x, 3, model = "EII" )
mod2 <- mix.compnorm(x, 4, model = "VII")
```

```
Gaussian mixture models for compositional data using the alpha-transformation
    Gaussian mixture models for compositional data using the \alpha-
    transformation
```


Description

Gaussian mixture models for compositional data using the α-transformation.

Usage

alfa.mix.norm(x, g, a, model, veo = FALSE)

Arguments

$x \quad$ A matrix with the compositional data.
$g \quad$ How many clusters to create.
a The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.
model The type of model to be used.

1. "EII": All groups have the same diagonal covariance matrix, with the same variance for all variables.
2. "VII": Different diagonal covariance matrices, with the same variance for all variables within each group.
3. "EEI": All groups have the same diagonal covariance matrix.
4. "VEI": Different diagonal covariance matrices. If we make all covariance matrices have determinant 1 , (divide the matrix with the $\$ \mathrm{p} \$$-th root of its determinant) then all covariance matrices will be the same.
5. "EVI": Different diagonal covariance matrices with the same determinant.
6. "VVI": Different diagonal covariance matrices, with nothing in common.
7. "EEE": All covariance matrices are the same.
8. "EEV": Different covariance matrices, but with the same determinant and in addition, if we make them have determinant 1 , they will have the same trace.
9. "VEV": Different covariance matrices but if we make the matrices have determinant 1, then they will have the same trace.
10. "VVV": Different covariance matrices with nothing in common.
11. "EVE": Different covariance matrices, but with the same determinant. In addition, calculate the eigenvectors for each covariance matrix and you will see the extra similarities.
12. "VVE": Different covariance matrices, but they have something in common with their directions. Calculate the eigenvectors of each covariance matrix and you will see the similarities.
13. "VEE": Different covariance matrices, but if we make the matrices have determinant 1, then they will have the same trace. In addition, calculate the eigenvectors for each covariance matrix and you will see the extra similarities.
14. "EVV": Different covariance matrices, but with the same determinant.
veo
Stands for "Variables exceed observations". If TRUE then if the number variablesin the model exceeds the number of observations, but the model is still fitted.

Details

A log-ratio transformation is applied and then a Gaussian mixture model is constructed.

Value

A list including:

mu	A matrix where each row corresponds to the mean vector of each cluster.
su	An array containing the covariance matrix of each cluster.
prob	The estimated mixing probabilities.
est	The estimated cluster membership values.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas (2015). R package mixture: Mixture Models for Clustering and Classification.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

```
bic.alfamixnorm, bic.mixcompnorm, rmixcomp, mix.compnorm.contour, mix.compnorm,alfa,
```

alfa.knn, alfa.rda, comp.nb

Examples

```
x <- as.matrix(iris[, 1:4])
x <- x/ rowSums(x)
mod1 <- alfa.mix.norm(x, 3, 0.4, model = "EII" )
mod2 <- alfa.mix.norm(x, 4, 0.7, model = "VII")
```

```
Generate random folds for cross-validation
                        Generate random folds for cross-validation
```


Description

Random folds for use in a cross validation are generated. There is the option for stratified splitting as well.

Usage

```
    makefolds(ina, nfolds = 10, stratified = TRUE, seed = NULL)
```


Arguments

ina A variable indicating the groupings.
nfolds The number of folds to produce.
stratified A boolean variable specifying whether stratified random (TRUE) or simple random (FALSE) sampling is to be used when producing the folds.
seed You can specify your own seed number here or leave it NULL.

Details

I was inspired by the command in the package TunePareto in order to do the stratified version.

Value

A list with nfolds elements where each elements is a fold containing the indices of the data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

rda.tune

Examples

```
a <- makefolds(iris[, 5], nfolds = 5, stratified = TRUE)
table(iris[a[[1]], 5]) ## 10 values from each group
```

```
Greenacre's power transformation
```

 Greenacre's power transformation

Description

Greenacre's power transformation.

Usage

green(x, theta)

Arguments

$\begin{array}{ll}\mathrm{x} & \text { A matrix with the compositional data. } \\ \text { theta } & \text { The value of the power transformation, it has to be between }-1 \text { and } 1 \text {. If zero } \\ \text { values are present it has to be greater than } 0 \text {. If } \theta=0 \text { the log transformation is } \\ \text { applied. }\end{array}$

Details

Greenacre's transformation is applied to the compositional data.

Value

A matrix with the power transformed data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Greenacre, M. (2009). Power transformations in correspondence analysis. Computational Statistics \& Data Analysis, 53(8): 3107-3116. http://www.econ.upf.edu/~michael/work/PowerCA.pdf

See Also

alfa

Examples

```
library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
y1 <- green(x, 0.1)
y2 <- green(x, 0.2)
rbind( colMeans(y1), colMeans(y2) )
```

```
Helper Frechet mean for compositional data

\section*{Description}

Helper Frechet mean for compositional data.

\section*{Usage}
frechet2(x, di, a, k)

\section*{Arguments}
\(x \quad\) A matrix with the compositional data.
di A matrix with indices as produced by the function "dista" of the package "Rfast"" or the function "nn2" of the package "RANN". Better see the details section.
a The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\) the isometric log-ratio transformation is applied and the closed geometric mean is calculated.
\(k \quad\) The number of nearest neighbours used for the computation of the Frechet means.

\section*{Details}

The power transformation is applied to the compositional data and the mean vector is calculated. Then the inverse of it is calculated and the inverse of the power transformation applied to the last vector is the Frechet mean.

What this helper function do is to speed up the Frechet mean when used in the \(\alpha-\mathrm{k}-\mathrm{NN}\) regression. The \(\alpha\)-k-NN regression computes the Frechet mean of the k nearest neighbours for a value of \(\alpha\) and this function does exactly that. Suppose you want to predict the compositional value of some new predictors. For each predictor value you must use the Frechet mean computed at various nearest neighbours. This function performs these computations in a fast way. It is not the fastest way, yet it is a pretty fast way. This function is being called inside the function aknn.reg.

\section*{Value}

A list where eqch element contains a matrix. Each matrix contains the Frechet means computed at various nearest neighbours.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
alfa, alfainv, profile

\section*{Examples}
```

library(MASS)
library(Rfast)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
xnew <- x[1:10,]
x <- x[-c(1:10),]
k <- 2:5
di <- Rfast::dista(xnew, x, k = max(k), index = TRUE, square = TRUE)
est <- frechet2(x, di, 0.2, k)

```
```

Helper functions for the Kullback-Leibler regression
Helper functions for the Kullback-Leibler regression

```

\section*{Description}

Helper functions for the Kullback-Leibler regression.

\section*{Usage}
kl.compreg2 ( \(y, x\), con \(=\) TRUE, \(x n e w=\) NULL, tol \(=1 \mathrm{e}-07\), maxiters \(=50\) )
klcompreg.boot(y, x, der, der2, id, b1, \(n, ~ p, d, t o l=1 e-07\), maxiters = 50)

\section*{Arguments}
y A matrix with the compositional data (dependent variable). Zero values are allowed. For the klcompreg.boot the first column is removed.
x
The predictor variable(s), they can be either continuous or categorical or both. In the klcompreg.boot this is the design matrix.
con If this is TRUE (default) then the constant term is estimated, otherwise the model includes no constant term.
xnew If you have new data use it, otherwise leave it NULL.
tol The tolerance value to terminate the Newton-Raphson procedure.
\begin{tabular}{ll} 
maxiters & The maximum number of Newton-Raphson iterations. \\
der & An vector to put the first derivative there. \\
der2 & \begin{tabular}{l} 
An empty matrix to put the second derivatives there, the Hessian matrix will be \\
put here.
\end{tabular} \\
id & A help vector with indices. \\
b1 & The matrix with the initial estimated coefficients. \\
n & The sample size \\
p & \begin{tabular}{l} 
The number of columns of the design matrix. \\
d
\end{tabular} \\
\begin{tabular}{l} 
The dimensionality of the simplex, that is the number of columns of the compo- \\
sitional data minus 1.
\end{tabular}
\end{tabular}

\section*{Details}

These are help functions for the kl.compreg function. They are not to be called directly by the user.

\section*{Value}

For kl.compreg2 a list including:
iters The nubmer of iterations required by the Newton-Raphson.
loglik The loglikelihood.
be The beta coefficients.
est The fitted or the predicted values (if xnew is not NULL).
For klcompreg.boot a list including:
loglik The loglikelihood.
be The beta coefficients.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Murteira, Jose MR, and Joaquim JS Ramalho 2016. Regression analysis of multivariate fractional data. Econometric Reviews 35(4): 515-552.

\section*{See Also}
diri.reg, js.compreg, ols.compreg, comp.reg

\section*{Examples}
```

library(MASS)
x <- as.vector(fgl[, 1])
y <- as.matrix(fgl[, 2:9])
y <- y / rowSums(y)
mod1<- kl.compreg(y, x, B = 1, ncores = 1)
mod2 <- js.compreg(y, x, B = 1, ncores = 1)

```
```

Hotelling's multivariate version of the 1 sample t-test for Euclidean data
Hotelling's multivariate version of the 1 sample t-test for Euclidean
data

```

\section*{Description}

Hotelling's test for testing one Euclidean population mean vector.

\section*{Usage}
hotel1T2(x, M, a = 0.05, R = 999, graph = FALSE)

\section*{Arguments}
\(x \quad\) A matrix containing Euclidean data.
a The significance level, set to 0.05 by default.
M The hypothesized mean vector.
\(R \quad\) If \(R\) is 1 no bootstrap calibration is performed and the classical \(p\)-value via the \(F\) distribution is returned. If R is greater than 1 , the bootstrap p -value is returned.
graph A boolean variable which is taken into consideration only when bootstrap calibration is performed. IF TRUE the histogram of the bootstrap test statistic values is plotted.

\section*{Details}

Multivariate hypothesis test for a one sample mean vector. This is the multivariate analogue of the one sample t-test. The p-value can be calculated either asymptotically or via bootstrap.

\section*{Value}

A list including:
\begin{tabular}{ll}
\(m\) & The sample mean vector. \\
info & \begin{tabular}{l} 
The test statistic, the p-value, the critical value and the degrees of freedom of \\
the F distribution (numerator and denominator). This is given if no bootstrap \\
calibration is employed.
\end{tabular} \\
pvalue & \begin{tabular}{l} 
The bootstrap p-value is bootstrap is employed.
\end{tabular} \\
runtime & The runtime of the bootstrap calibration.
\end{tabular}

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}
K.V. Mardia, J.T. Kent and J.M. Bibby (1979). Multivariate analysis.

\section*{See Also}
```

eel.test1, el.test1, james, hotel2T2, maov, el.test2, comp.test

```

\section*{Examples}
```

x <- Rfast::rmvnorm(100, numeric(10), diag(rexp(10,0.5)))
hotel1T2(x, numeric(10), R = 1)
hotel1T2(x, numeric(10), R = 999, graph = TRUE)

```
```

Hotelling's multivariate version of the 2 sample t-test for Euclidean data
Hotelling's multivariate version of the 2 sample t-test for Euclidean
data

```

\section*{Description}

Hotelling's test for testing the equality of two Euclidean population mean vectors.

\section*{Usage}
hotel2T2(x1, x2, a \(=0.05, \mathrm{R}=999\), graph \(=\) FALSE)

\section*{Arguments}
\(x 1 \quad\) A matrix containing the Euclidean data of the first group.
\(x 2 \quad\) A matrix containing the Euclidean data of the second group.
a
The significance level, set to 0.05 by default.
\(R \quad\) If \(R\) is 1 no bootstrap calibration is performed and the classical \(p\)-value via the \(F\) distribution is returned. If R is greater than 1 , the bootstrap p -value is returned.
graph A boolean variable which is taken into consideration only when bootstrap calibration is performed. IF TRUE the histogram of the bootstrap test statistic values is plotted.

\section*{Details}

Multivariate analysis of variance assuming equality of the covariance matrices. The p-value can be calculated either asymptotically or via bootstrap.

\section*{Value}

A list including:
mesoi The two mean vectors.
info The test statistic, the p-value, the critical value and the degrees of freedom of the F distribution (numerator and denominator). This is given if no bootstrap calibration is employed.
pvalue The bootstrap p-value is bootstrap is employed.
note A message informing the user that bootstrap calibration has been employed.
runtime The runtime of the bootstrap calibration.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Everitt B. (2005). An R and S-Plus Companion to Multivariate Analysis p. 139-140. Springer.

\section*{See Also}
james, maov, el.test2, eel.test2, comp.test

\section*{Examples}
```

hotel2T2(as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]))
hotel2T2(as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]), R = 1)
james(as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]))
james(as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]), R = 1)

```
Hypothesis testing for two or more compositional mean vectors
                                    Hypothesis testing for two or more compositional mean vectors

\section*{Description}

Hypothesis testing for two or more compositional mean vectors.

\section*{Usage}
comp.test(x, ina, test = "james", R = 0, ncores = 1, graph = FALSE)

\section*{Arguments}
\(x \quad\) A matrix containing compositional data.
ina A numerical or factor variable indicating the groups of the data.
test This can take the values of "james" for James' test, "hotel" for Hotelling's test, "maov" for multivariate analysis of variance assuming equality of the covariance matrices, "maovjames" for multivariate analysis of variance without assuming equality of the covariance matrices. "el" for empirical likelihood or "eel" for exponential empirical likelihood.
R
This depends upon the value of the argument "test". If the test is "maov" or "maovjames", R is not taken into consideration. If test is "hotel", then R denotes the number of bootstrap resamples. If test is "james", then R can be 1 (chi-square distribution), 2 ( F distribution), or more for bootstrap calibration. If test is "el", then R can be 0 (chi-square), 1 (corrected chi-sqaure), 2 ( F distribution) or more for bootstrap calibration. See the help page of each test for more information.
ncores How many to cores to use. This is taken into consideration only if test is "el" and R is more than 2.
graph A boolean variable which is taken into consideration only when bootstrap calibration is performed. IF TRUE the histogram of the bootstrap test statistic values is plotted. This is taken into account only when R is greater than 2 .

\section*{Details}

The idea is to apply the \(\alpha\)-transformation, with \(\alpha=1\), to the compositional data and then use a test to compare their mean vectors. See the help page of each test for more information. The function is visible so you can see exactly what is going on.

\section*{Value}

A list including:
result The outcome of each test.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Tsagris M., Preston S. and Wood A.T.A. (2017). Nonparametric hypothesis testing for equality of means on the simplex. Journal of Statistical Computation and Simulation, 87(2): 406-422.
G.S. James (1954). Tests of Linear Hypothese in Univariate and Multivariate Analysis when the Ratios of the Population Variances are Unknown. Biometrika, 41(1/2): 19-43
Krishnamoorthy K. and Yanping Xia (2006). On Selecting Tests for Equality of Two Normal Mean Vectors. Multivariate Behavioral Research 41(4): 533-548.

Owen A. B. (2001). Empirical likelihood. Chapman and Hall/CRC Press.
Owen A.B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75(2): 237-249.

Amaral G.J.A., Dryden I.L. and Wood A.T.A. (2007). Pivotal bootstrap methods for k-sample problems in directional statistics and shape analysis. Journal of the American Statistical Association 102(478): 695-707.
Preston S.P. and Wood A.T.A. (2010). Two-Sample Bootstrap Hypothesis Tests for Three-Dimensional Labelled Landmark Data. Scandinavian Journal of Statistics 37(4): 568-587.

Jing Bing-Yi and Andrew TA Wood (1996). Exponential empirical likelihood is not Bartlett correctable. Annals of Statistics 24(1): 365-369.

\section*{See Also}
hd.meantest2, maovjames, maov, hotel2T2, el.test2, eel.test2

\section*{Examples}
```

ina <- rep(1:2, each = 50)
x <- as.matrix(iris[1:100, 1:4])
x <- x/ rowSums(x)
comp.test(x, ina, test = "james")
comp.test(x, ina, test = "hotel")
comp.test(x, ina, test = "el")
comp.test(x, ina, test = "eel")

```
```

ICE plot for projection pursuit regression with compositional predictor variables
ICE plot for projection pursuit regression with compositional predic-
tor variables

```

\section*{Description}

ICE plot for projection pursuit regression with compositional predictor variables.

\section*{Usage}
ice.pprcomp(model, x, k = 1, frac = 0.1, type = "log")

\section*{Arguments}
model The ppr model, the outcome of the pprcomp function.
\(x \quad\) A matrix with the compositional data. No zero values are allowed.
\(\mathrm{k} \quad\) Which variable to select?.
frac Fraction of observations to use. The default value is 0.1.
type Either "alr" or "log" corresponding to the additive log-ratio transformation or the simple logarithm applied to the compositional data.

\section*{Details}

This function implements the Individual Conditional Expecation plots of Goldstein et al. (2015). See the references for more details.

\section*{Value}

A graph with several curves. The horizontal axis contains the selected variable, whereas the vertical axis contains the centered predicted values. The black curves are the effects for each observation and the blue line is their average effect.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}
https://christophm.github.io/interpretable-ml-book/ice.html
Goldstein, A., Kapelner, A., Bleich, J. and Pitkin, E. (2015). Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation. Journal of Computational and Graphical Statistics 24(1): 44-65.

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. Journal of the American Statistical Association, 76, 817-823. doi: 10.2307/2287576.

\section*{See Also}
pprcomp, pprcomp.tune, ice.kernreg, alfa.pcr, lc.reg, comp.ppr

\section*{Examples}
```

x <- as.matrix(iris[, 2:4])
x <- x/ rowSums(x)
y <- iris[, 1]
model <- pprcomp(y, x)
ice <- ice.pprcomp(model, x, k = 1)

```
```

ICE plot for univariate kernel regression

```
    ICE plot for univariate kernel regression

\section*{Description}

ICE plot for univariate kernel regression.

\section*{Usage}
ice.kernreg(y, x, h, type = "gauss", k = 1, frac = 0.1)

\section*{Arguments}
\(y \quad\) A numerical vector with the response values.
\(x \quad\) A numerical matrix with the predictor variables.
h The bandwidth value to consider.
type \(\quad\) The type of kernel to use, "gauss" or "laplace".
\(\mathrm{k} \quad\) Which variable to select?.
frac \(\quad\) Fraction of observations to use. The default value is 0.1.

\section*{Details}

This function implements the Individual Conditional Expecation plots of Goldstein et al. (2015). See the references for more details.

\section*{Value}

A graph with several curves. The horizontal axis contains the selected variable, whereas the vertical axis contains the centered predicted values. The black curves are the effects for each observation and the blue line is their average effect.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}
https://christophm.github.io/interpretable-ml-book/ice.html
Goldstein, A., Kapelner, A., Bleich, J. and Pitkin, E. (2015). Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation. Journal of Computational and Graphical Statistics 24(1): 44-65.

\section*{See Also}
```

ice.pprcomp, kernreg.tune, alfa.pcr, lc.reg

```

\section*{Examples}
```

x <- as.matrix(iris[, 2:4])
y <- iris[, 1]
ice <- ice.kernreg(y, x, h = 0.1, k = 1)

```

Inverse of the alpha-transformation

\section*{Description}

The inverse of the \(\alpha\)-transformation.

\section*{Usage}
alfainv(x, a, h = TRUE)

\section*{Arguments}
x
a
h
h If \(\mathrm{h}=\) TRUE this means that the multiplication with the Helmer sub-matrix will take place. It is set to TRUe by default.

\section*{Details}

The inverse of the \(\alpha\)-transformation is applied to the data. If the data lie outside the \(\alpha\)-space, NAs will be returned for some values.

\section*{Value}

A matrix with the pairwise distances.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Tsagris M.T., Preston S. and Wood A.T.A. (2016). Improved classification for compositional data using the \(\alpha\)-transformation. Journal of Classification (to appear). https://arxiv.org/pdf/1506.04976v2.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
alfa, alfadist

\section*{Examples}
```

library(MASS)
x <- as.matrix(fgl[1:10, 2:9])
x <- x / rowSums(x)
y <- alfa(x, 0.5)\$aff
alfainv(y, 0.5)

```
James multivariate version of the \(t\)-test
    James multivariate version of the \(t\)-test

\section*{Description}

James test for testing the equality of two population mean vectors without assuming equality of the covariance matrices.

\section*{Usage}
james(y1, y2, a = 0.05, R = 999, graph = FALSE)

\section*{Arguments}
y1 A matrix containing the Euclidean data of the first group.
y2 A matrix containing the Euclidean data of the second group.
a The significance level, set to 0.05 by default.
\(R \quad\) If \(R\) is 1 no bootstrap calibration is performed and the classical \(p\)-value via the \(F\) distribution is returned. If \(R\) is greater than 1 , the bootstrap \(p\)-value is returned.
graph A boolean variable which is taken into consideration only when bootstrap calibration is performed. If TRUE the histogram of the bootstrap test statistic values is plotted.

\section*{Details}

Multivariate analysis of variance without assuming equality of the covariance matrices. The p-value can be calculated either asymptotically or via bootstrap. The James test (1954) or a modification proposed by Krishnamoorthy and Yanping (2006) is implemented. The James test uses a corrected chi-square distribution, whereas the modified version uses an F distribution.

Value
A list including:
\begin{tabular}{ll} 
note & A message informing the user about the test used. \\
mesoi & The two mean vectors. \\
info & \begin{tabular}{l} 
The test statistic, the p-value, the correction factor and the corrected critical \\
value of the chi-square distribution if the James test has been used or, the test \\
statistic, the p-value, the critical value and the degrees of freedom (numerator \\
and denominator) of the F distribution if the modified James test has been used.
\end{tabular} \\
pvalue & \begin{tabular}{l} 
The bootstrap p-value if bootstrap is employed.
\end{tabular} \\
runtime & The runtime of the bootstrap calibration.
\end{tabular}

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}
G.S. James (1954). Tests of Linear Hypothese in Univariate and Multivariate Analysis when the Ratios of the Population Variances are Unknown. Biometrika, 41(1/2): 19-43.
Krishnamoorthy K. and Yanping Xia. On Selecting Tests for Equality of Two Normal Mean Vectors (2006). Multivariate Behavioral Research 41(4): 533-548.

\section*{See Also}
hotel2T2, maovjames, el.test2, eel.test2, comp.test

\section*{Examples}
```

james(as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]), R = 1)
james(as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]), R = 2)
james(as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]))
hotel2T2(as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]))

```
```

Kernel regression with a numerical response vector or matrix
Kernel regression with a numerical response vector or matrix

```

\section*{Description}

Kernel regression (Nadaraya-Watson estimator) with a numerical response vector or matrix.

\section*{Usage}
kern.reg(xnew, y, \(x\), h = seq(0.1, 1, length = 10), type = "gauss" )

\section*{Arguments}
\begin{tabular}{ll} 
xnew & \begin{tabular}{l} 
A matrix with the new predictor variables whose compositions are to be pre- \\
dicted.
\end{tabular} \\
\(y\) & A numerical vector or a matrix with the response value. \\
x & A matrix with the available predictor variables. \\
h & The bandwidth value(s) to consider. \\
type & The type of kernel to use, "gauss" or "laplace".
\end{tabular}

\section*{Details}

The Nadaraya-Watson estimator regression is applied.

\section*{Value}

The fitted values. If a single bandwidth is considered then this is a vector or a matrix, depeding on the nature of the response. If multiple bandwidth values are considered then this is a matrix, if the response is a vector, or a list, if the response is a matrix.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Wand M. P. and Jones M. C. (1994). Kernel smoothing. CRC press.

\section*{See Also}
kernreg.tune, ice.kernreg, akern.reg, aknn.reg

\section*{Examples}
```

y <- iris[, 1]
x <- iris[, 2:4]
est <- kern.reg(x, y, x, h = c(0.1, 0.2))

```
```

Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions
Kullback-Leibler divergence and Bhattacharyya distance between two
Dirichlet distributions

```

\section*{Description}

Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions.

\section*{Usage}
kl.diri(a, b, type = "KL")

\section*{Arguments}
a
b
type

A vector with the parameters of the first Dirichlet distribution.
A vector with the parameters of the second Dirichlet distribution.
A variable indicating whether the Kullback-Leibler divergence ("KL") or the Bhattacharyya distance ("bhatt") is to be computed.

\section*{Details}

Note that the order is important in the Kullback-Leibler divergence, since this is asymmetric, but not in the Bhattacharyya distance, since it is a metric.

\section*{Value}

The value of the Kullback-Leibler divergence or the Bhattacharyya distance.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.

\section*{See Also}
diri.est, diri.nr

\section*{Examples}
```

library(MASS)
a <- runif(10, 0, 20)
b <- runif(10, 1, 10)
kl.diri(a, b)
kl.diri(b, a)
kl.diri(a, b, type = "bhatt")
kl.diri(b, a, type = "bhatt")

```
```

LASSO Kullback-Leibler divergence based regression
LASSO Kullback-Leibler divergence based regression

```

\section*{Description}

LASSO Kullback-Leibler divergence based regression.

\section*{Usage}
lasso.klcompreg(y, x, alpha = 1, lambda = NULL, nlambda = 100, type = "grouped", xnew = NULL)

\section*{Arguments}
y A numerical matrix with compositional data. Zero values are allowed.
\(x \quad\) A numerical matrix containing the predictor variables.
alpha The elastic net mixing parameter, with \(0 \leq \alpha \leq 1\). The penalty is defined as a weighted combination of the ridge and of the Lasso regression. When \(\alpha=1\) LASSO is applied, while \(\alpha=0\) yields the ridge regression.
lambda This information is copied from the package glmnet. A user supplied lambda sequence. Typical usage is to have the program compute its own lambda sequence based on nlambda and lambda.min.ratio. Supplying a value of lambda overrides this. WARNING: use with care. Avoid supplying a single value for lambda (for predictions after CV use predict() instead). Supply instead a decreasing sequence of lambda values. glmnet relies on its warms starts for speed, and its often faster to fit a whole path than compute a single fit.
nlambda This information is copied from the package glmnet. The number of lambda values, default is 100 .
type This information is copied from the package glmnet.. If "grouped" then a grouped lasso penalty is used on the multinomial coefficients for a variable. This ensures they are all in our out together. The default in our case is "grouped".
xnew If you have new data use it, otherwise leave it NULL.

\section*{Details}

The function uses the glmnet package to perform LASSO penalised regression. For more details see the function in that package.

\section*{Value}

A list including:
\(\bmod \quad\) We decided to keep the same list that is returned by glmnet. So, see the function in that package for more information.
est If you supply a matrix in the "xnew" argument this will return an array of many matrices with the fitted values, where each matrix corresponds to each value of \(\lambda\).

\section*{Author(s)}

Michail Tsagris and Abdulaziz Alenazi.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Abdulaziz Alenazi <a.alenazi@nbu.edu.sa>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, Vol. 33(1), 1-22.

\section*{See Also}
lassocoef.plot, cv.lasso.klcompreg, kl.compreg, lasso.compreg, ols.compreg, alfa.pcr, alfa.knn.reg

\section*{Examples}
```

y <- as.matrix(iris[, 1:4])
y <- y / rowSums(y)
x <- matrix(rnorm(150 * 30), ncol = 30)
a <- lasso.klcompreg(y, x)

```
```

LASSO log-ratio regression with compositional response
LASSO log-ratio regression with compositional response

```

\section*{Description}

LASSO log-ratio regression with compositional response.

\section*{Usage}
lasso.compreg(y, x, alpha = 1, lambda = NULL,
nlambda \(=100\), xnew \(=\) NULL)

\section*{Arguments}
y A numerical matrix with compositional data. Zero values are not allowed as the additive log-ratio transformation (alr) is applied to the compositional response prior to implementing the LASSO algortihm.
\(x \quad\) A numerical matrix containing the predictor variables.
alpha The elastic net mixing parameter, with \(0 \leq \alpha \leq 1\). The penalty is defined as a weighted combination of the ridge and of the Lasso regression. When \(\alpha=1\) LASSO is applied, while \(\alpha=0\) yields the ridge regression.
lambda This information is copied from the package glmnet. A user supplied lambda sequence. Typical usage is to have the program compute its own lambda sequence based on nlambda and lambda.min.ratio. Supplying a value of lambda overrides this. WARNING: use with care. Avoid supplying a single value for lambda (for predictions after CV use predict() instead). Supply instead a decreasing sequence of lambda values. glmnet relies on its warms starts for speed, and its often faster to fit a whole path than compute a single fit.
nlambda This information is copied from the package glmnet. The number of lambda values, default is 100 .
xnew If you have new data use it, otherwise leave it NULL.

\section*{Details}

The function uses the glmnet package to perform LASSO penalised regression. For more details see the function in that package.

\section*{Value}

A list including:
mod We decided to keep the same list that is returned by glmnet. So, see the function in that package for more information.
est If you supply a matrix in the "xnew" argument this will return an array of many matrices with the fitted values, where each matrix corresponds to each value of \(\lambda\).

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, Vol. 33(1), 1-22.

\section*{See Also}
cv.lasso.compreg, lassocoef.plot, lasso.klcompreg, cv.lasso.klcompreg, comp.reg

\section*{Examples}
```

y <- as.matrix(iris[, 1:4])
y <- y / rowSums(y)
x <- matrix(rnorm(150 * 30), ncol = 30)
a <- lasso.compreg(y, x)

```
```

Log-contrast logistic or Poisson regression with compositional predictor variables
Log-contrast logistic or Poisson regression with compositional predic-
tor variables

```

\section*{Description}

Log-contrast logistic or Poisson regression with compositional predictor variables.

\section*{Usage}
lc.glm(y, x, z = NULL, model = "logistic", xnew = NULL, znew = NULL)

\section*{Arguments}
y
A numerical vector containing the response variable values. This must be a continuous variable.
x

Z
model This can be either "logistic" or "poisson".
xnew A matrix containing the new compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.
znew A matrix, data.frame, factor or a vector with the values of some other covariate(s). If you have no new data, leave this NULL as is by default.

\section*{Details}

The function performs the log-contrast logistic or Poisson regression model. The logarithm of the compositional predictor variables is used (hence no zero values are allowed). The response variable is linked to the log-transformed data with the constraint that the sum of the regression coefficients equals 0 . If you want the regression without the zum-to-zero contraints see ulc.glm. Extra predictors variables are allowed as well, for instance categorical or continuous.

\section*{Value}

A list including:
runtime \(\quad\) The duration of the algorithm required to minimize the deviance.
devi The residual deviance of the logistic or Poisson regression model.
be The constrained regression coefficients. Their sum equals 0 .
est If the arguments "xnew" and znew were given these are the predicted or estimated values, otherwise it is NULL.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Lu J., Shi P., and Li H. (2019). Generalized linear models with linear constraints for microbiome compositional data. Biometrics, 75(1): 235-244.

\section*{See Also}
ulc.glm, lc.reg, lc.reg2, alfa.pcr, glm.pcr

\section*{Examples}
```

y <- rbinom(150, 1, 0.5)
x <- rdiri(150, runif(3, 1, 4))
x <- x / rowSums(x)
mod1 <- lc.glm(y, x)

```
```

Log-contrast regression with compositional predictor variables
Log-contrast regression with compositional predictor variables

```

\section*{Description}

Log-contrast regression with compositional predictor variables.

\section*{Usage}
lc.reg(y, x, z = NULL, xnew = NULL, znew = NULL)

\section*{Arguments}

A numerical vector containing the response variable values. This must be a continuous variable.
y

X
z
xnew
znew

A matrix with the predictor variables, the compositional data. No zero values are allowed.

A matrix, data.frame, factor or a vector with some other covariate(s).
A matrix containing the new compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.
A matrix, data.frame, factor or a vector with the values of some other covariate(s). If you have no new data, leave this NULL as is by default.

\section*{Details}

The function performs the log-contrast regression model as described in Aitchison (2003), pg. 8485. The logarithm of the compositional predictor variables is used (hence no zero values are allowed). The response variable is linked to the log-transformed data with the constraint that the sum of the regression coefficients equals 0 . Hence, we apply constrained least squares, which has a closed form solution. The constrained least squares is described in Chapter 8.2 of Hansen (2019). The idea is to minimise the sum of squares of the residuals under the constraint \(R^{T} \beta=c\), where \(c=0\) in our case. If you want the regression without the zum-to-zero contraints see ulc.reg. Extra predictors variables are allowed as well, for instance categorical or continuous.

\section*{Value}

A list including:
be The constrained regression coefficients. Their sum equals 0 .
covbe If covariance matrix of the constrained regression coefficients.
va The estimated regression variance.
residuals The vector of residuals.
est If the arguments "xnew" and znew were given these are the predicted or estimated values, otherwise it is NULL.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Hansen, B. E. (2019). Econometrics. https://www.ssc.wisc.edu/~bhansen/econometrics/ Econometrics.pdf

See Also
ulc.reg, lcreg.aov, lc.reg2, alfa.pcr, alfa.knn.reg

\section*{Examples}
```

y <- iris[, 1]
x <- as.matrix(iris[, 2:4])
x <- x / rowSums(x)
mod1 <- lc.reg(y, x)
mod2 <- lc.reg(y, x, z = iris[, 5])

```

Log-contrast regression with multiple compositional predictors Log-contrast regression with multiple compositional predictors

\section*{Description}

Log-contrast regression with multiple compositional predictors.

\section*{Usage}
lc.reg2(y, x, z = NULL, xnew = NULL, znew = NULL)

\section*{Arguments}
y A numerical vector containing the response variable values. This must be a continuous variable.
x
A list with multiple matrices with the predictor variables, the compositional data. No zero values are allowed.
z A matrix, data.frame, factor or a vector with some other covariate(s).
xnew A matrix containing a list with multiple matrices with compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.
znew A matrix, data.frame, factor or a vector with the values of some other covariate(s). If you have no new data, leave this NULL as is by default.

\section*{Details}

The function performs the log-contrast regression model as described in Aitchison (2003), pg. 8485. The logarithm of the compositional predictor variables is used (hence no zero values are allowed). The response variable is linked to the log-transformed data with the constraint that the sum of the regression coefficients equals 0 . Hence, we apply constrained least squares, which has a closed form solution. The constrained least squares is described in Chapter 8.2 of Hansen (2019). The idea is to minimise the sum of squares of the residuals under the constraint \(R^{T} \beta=c\), where \(c=0\) in our case. If you want the regression without the zum-to-zero contraints see ulc.reg2. Extra predictors variables are allowed as well, for instance categorical or continuous. The difference with lc.reg is that instead of one, there are multiple compositions treated as predictor variables.

\section*{Value}

A list including:
be The constrained regression coefficients. Their sum equals 0 .
covbe If covariance matrix of the constrained regression coefficients.
va The estimated regression variance.
residuals The vector of residuals.
est If the arguments "xnew" and "znew" were given these are the predicted or estimated values, otherwise it is NULL.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Hansen B. E. (2019). Econometrics. https://www.ssc.wisc.edu/~bhansen/econometrics/ Econometrics.pdf.

Xiaokang Liu, Xiaomei Cong, Gen Li, Kendra Maas and Kun Chen (2020). Multivariate LogContrast Regression with Sub-Compositional Predictors: Testing the Association Between Preterm Infants' Gut Microbiome and Neurobehavioral Outcome. https://arxiv.org/pdf/2006.00487. pdf.

\section*{See Also}
ulc.reg2, lc.reg, ulc.reg, lcreg.aov, alfa.pcr, alfa.knn.reg

\section*{Examples}
```

y <- iris[, 1]
x <- list()
x1 <- as.matrix(iris[, 2:4])
x1 <- x1 / rowSums(x1)
x[[[1]] <- x1
x[[2]] <- rdiri(150, runif(4))
x[[3]] <- rdiri(150, runif(5))
mod <- lc.reg2(y, x)

```

Log-likelihood ratio test for a Dirichlet mean vector

\title{
Log-likelihood ratio test for a Dirichlet mean vector
}

\section*{Description}

Log-likelihood ratio test for a Dirichlet mean vector.

\section*{Usage}
dirimean.test(x, a)

\section*{Arguments}
\(x \quad\) A matrix with the compositional data. No zero values are allowed.
a A compositional mean vector. The concentration parameter is estimated at first. If the elements do not sum to 1 , it is assumed that the Dirichlet parameters are supplied.

\section*{Details}

Log-likelihood ratio test is performed for the hypothesis the given vector of parameters "a" describes the compositional data well.

\section*{Value}

If there are no zeros in the data, a list including:
param A matrix with the estimated parameters under the null and the alternative hypothesis.
loglik The log-likelihood under the alternative and the null hypothesis.
info The value of the test statistic and its relevant p -value.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.

See Also
sym.test, diri.nr, diri.est, rdiri, ddiri

\section*{Examples}
\(x<-\operatorname{rdiri}(100, c(1,2,3))\)
dirimean.test \((x, c(1,2,3))\)
dirimean.test \((x, c(1,2,3) / 6)\)

Log-likelihood ratio test for a symmetric Dirichlet distribution
Log-likelihood ratio test for a symmetric Dirichlet distribution

\section*{Description}

Log-likelihood ratio test for a symmetric Dirichlet distribution.

\section*{Usage}
sym.test(x)

\section*{Arguments}
\(x \quad\) A matrix with the compositional data. No zero values are allowed.

\section*{Details}

Log-likelihood ratio test is performed for the hypothesis that all Dirichelt parameters are equal.

\section*{Value}

A list including:
est.par The estimated parameters under the alternative hypothesis.
one.par The value of the estimated parameter under the null hypothesis.
res The loglikelihood under the alternative and the null hypothesis, the value of the test statistic, its relevant p -value and the associated degrees of freedom, which are actually the dimensionality of the simplex, \(D-1\), where \(D\) is the number of components.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.

\section*{See Also}
diri.nr, diri.est, rdiri, dirimean.test

\section*{Examples}
```

x <- rdiri(100, c(5, 7, 1, 3, 10, 2, 4))
sym.test(x)
x <- rdiri(100, c(5, 5, 5, 5, 5))
sym.test(x)

```
Minimized Kullback-Leibler divergence between Dirichlet and logistic normal
    Minimized Kullback-Leibler divergence between Dirichlet and logistic
    normal

\section*{Description}

Minimized Kullback-Leibler divergence between Dirichlet and logistic normal distributions.

\section*{Usage}
kl.diri.normal(a)

\section*{Arguments}
a
A vector with the parameters of the Dirichlet parameters.

\section*{Details}

The function computes the minimized Kullback-Leibler divergence from the Dirichlet distribution to the logistic normal distribution.

\section*{Value}

The minimized Kullback-Leibler divergence from the Dirichlet distribution to the logistic normal distribution.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data, p. 127. Chapman \& Hall.
See Also
```

diri.nr, diri.contour, rdiri, ddiri, dda, diri.reg

```

\section*{Examples}
a <- runif(5, 1, 5)
kl.diri.normal(a)

Mixture model selection via BIC
Mixture model selection via BIC

\section*{Description}

Mixture model selection via BIC.

\section*{Usage}
bic.mixcompnorm(x, G, type = "alr", veo = FALSE, graph = TRUE)

\section*{Arguments}
\(x \quad\) A matrix with compositional data.
G A numeric vector with the number of components, clusters, to be considered, e.g. 1:3.
type The type of trasformation to be used, either the additive log-ratio ("alr"), the isometric log-ratio ("ilr") or the pivot coordinate ("pivot") transformation.
veo Stands for "Variables exceed observations". If TRUE then if the number variablesin the model exceeds the number of observations, but the model is still fitted.
graph A boolean variable, TRUE or FALSE specifying whether a graph should be drawn or not.

\section*{Details}

The alr or the ilr-transformation is applied to the compositional data first and then mixtures of multivariate Gaussian distributions are fitted. BIC is used to decide on the optimal model and number of components.

\section*{Value}

A plot with the BIC of the best model for each number of components versus the number of components. A list including:
mod A message informing the user about the best model.
BIC The BIC values for every possible model and number of components.
optG The number of components with the highest BIC.
optmodel The type of model corresponding to the highest BIC.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris<mtsagris@uoc.gr>.

\section*{References}

Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas (2018). mixture: Mixture Models for Clustering and Classification. R package version 1.5.
Ryan P. Browne and Paul D. McNicholas (2014). Estimating Common Principal Components in High Dimensions. Advances in Data Analysis and Classification, 8(2), 217-226.

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

\section*{See Also}
mix.compnorm, mix.compnorm.contour, rmixcomp, bic.alfamixnorm

\section*{Examples}
```

x <- as.matrix(iris[, 1:4])
x <- x/ rowSums(x)
bic.mixcompnorm(x, 1:3, type = "alr", graph = FALSE)
bic.mixcompnorm(x, 1:3, type = "ilr", graph = FALSE)

```

Mixture model selection with the alpha-transformation using BIC Mixture model selection with the \(\alpha\)-transformation using BIC

\section*{Description}

Mixture model selection with the \(\alpha\)-transformation using BIC.

\section*{Usage}
bic.alfamixnorm(x, G, a \(=\operatorname{seq}(-1,1\), by \(=0.1)\), veo \(=\) FALSE, graph \(=\) TRUE \()\)

\section*{Arguments}
\(x \quad\) A matrix with compositional data.
G A numeric vector with the number of components, clusters, to be considered, e.g. 1:3.
a
A vector with a grid of values of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0 . If \(\alpha=0\) the isometric log-ratio transformation is applied.
\begin{tabular}{ll} 
veo & \begin{tabular}{l} 
Stands for "Variables exceed observations". If TRUE then if the number vari- \\
ablesin the model exceeds the number of observations, but the model is still \\
fitted.
\end{tabular} \\
graph & A boolean variable, TRUE or FALSE specifying whether a graph should be \\
drawn or not.
\end{tabular}

\section*{Details}

The \(\alpha\)-transformation is applied to the compositional data first and then mixtures of multivariate Gaussian distributions are fitted. BIC is used to decide on the optimal model and number of components.

\section*{Value}

A list including:
abic A list that contains the matrices of all BIC values for all values of \(\alpha\).
optalpha The value of \(\alpha\) that leads to the highest BIC.
optG The number of components with the highest BIC.
optmodel The type of model corresponding to the highest BIC.
If graph is set equal to TRUE a plot with the BIC of the best model for each number of components versus the number of components and a list with the results of the Gaussian mixture model for each value of \(\alpha\).

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas (2018). mixture: Mixture Models for Clustering and Classification. R package version 1.5.
Ryan P. Browne and Paul D. McNicholas (2014). Estimating Common Principal Components in High Dimensions. Advances in Data Analysis and Classification, 8(2), 217-226.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
```

alfa.mix.norm, mix.compnorm, mix.compnorm.contour, rmixcomp, alfa, alfa.knn,alfa.rda,
comp.nb

```

\section*{Examples}
```

x <- as.matrix(iris[, 1:4])
x <- x/ rowSums(x)
bic.alfamixnorm(x, 1:3, a = c(0.4, 0.5, 0.6), graph = FALSE)

```
MLE for the multivariate \(t\) distribution
    MLE for the multivariate \(t\) distribution

\section*{Description}

MLE of the parameters of a multivariate \(t\) distribution.

\section*{Usage}
multivt(y, plot = FALSE)

\section*{Arguments}
\(y \quad\) A matrix with continuous data.
plot If plot is TRUE the value of the maximum log-likelihood as a function of the degres of freedom is presented.

\section*{Details}

The parameters of a multivariate \(t\) distribution are estimated. This is used by the functions comp. den and bivt.contour.

\section*{Value}

A list including:
center The location estimate.
scatter The scatter matrix estimate.
df The estimated degrees of freedom.
loglik The log-likelihood value.
mesos The classical mean vector.
covariance The classical covariance matrix.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Nadarajah, S. and Kotz, S. (2008). Estimation methods for the multivariate t distribution. Acta Applicandae Mathematicae, 102(1):99-118.

\section*{See Also}
bivt.contour, comp.den, rmvt

\section*{Examples}
```

x <- as.matrix(iris[, 1:4])
multivt(x)

```
MLE of distributions defined in the ( 0,1 ) interval
    MLE of distributions defined in the ( 0,1 ) interval

\section*{Description}

MLE of distributions defined in the \((0,1)\) interval.

\section*{Usage}
```

beta.est(x, tol = 1e-07)
logitnorm.est(x)
hsecant01.est(x, tol = 1e-07)
simplex.est(x, tol = 1e-07)
kumar.est(x, tol = 1e-07)
unitweibull.est(x, tol = 1e-07, maxiters = 100)
ibeta.est(x, tol = 1e-07)
zilogitnorm.est(x)

```

\section*{Arguments}
x
tol The tolerance level up to which the maximisation stops.
maxiters The maximum number of iterations the Newton-Raphson algorithm will perform.

\section*{Details}

Maximum likelihood estimation of the parameters of some distributions are performed, some of which use the Newton-Raphson. Some distributions and hence the functions do not accept zeros. "logitnorm.mle" fits the logistic normal, hence no Newton-Raphson is required and the "hypersecant01.mle" and "simplex.est" use the golden ratio search as is it faster than the Newton-Raphson (less computations). The "zilogitnorm.est" stands for the zero inflated logistic normal distribution. The "ibeta.est" fits the zero or the one inflated beta distribution.

\section*{Value}

A list including:
iters The number of iterations required by the Newton-Raphson.
loglik The value of the log-likelihood.
param The estimated parameters. In the case of "hypersecant01.est" this is called "theta" as there is only one parameter.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology. 46(1-2): 79-88.
Jones, M.C. (2009). Kumaraswamy's distribution: A beta-type distribution with some tractability advantages. Statistical Methodology. 6(1): 70-81.

Zhang, W. \& Wei, H. (2008). Maximum likelihood estimation for simplex distribution nonlinear mixed models via the stochastic approximation algorithm. The Rocky Mountain Journal of Mathematics, 38(5): 1863-1875.

You can also check the relevant wikipedia pages.

\section*{See Also}
diri.nr2,

\section*{Examples}
```

x <- rbeta(1000, 1, 4)
beta.est(x)
ibeta.est(x)
x <- runif(1000)
hsecant01.est(x)
logitnorm.est(x)
ibeta.est(x)
x <- rbeta(1000, 2, 5)
x[sample(1:1000, 50)] <- 0
ibeta.est(x)

```

\section*{Description}

MLE of the parameters of a Dirichlet distribution.

\section*{Usage}
diri.est(x, type = "mle")

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & A matrix containing compositional data. \\
type & \begin{tabular}{l} 
If you want to estimate the parameters use type="mle". If you want to estimate \\
the mean vector along with the precision parameter, the second parametrisation \\
of the Dirichlet, use type="prec".
\end{tabular}
\end{tabular}

\section*{Details}

Maximum likelihood estimation of the parameters of a Dirichlet distribution is performed.

\section*{Value}

A list including:
loglik The value of the log-likelihood.
param The estimated parameters.
phi The estimated precision parameter, if type = "prec".
mu The estimated mean vector, if type = "prec".
runtime The run time of the maximisation procedure.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

\section*{See Also}
diri.nr, diri.contour, rdiri, ddiri, dda, diri.reg

\section*{Examples}
```

x <- rdiri(100, c(5, 7, 1, 3, 10, 2, 4))
diri.est(x)
diri.est(x, type = "prec")

```
```

MLE of the Dirichlet distribution via Newton-Rapshon
MLE of the Dirichlet distribution via Newton-Rapshon

```

\section*{Description}

MLE of the Dirichlet distribution via Newton-Rapshon.

\section*{Usage}
diri. \(\mathrm{nr}(\mathrm{x}\), type \(=1\), tol \(=1 \mathrm{e}-07)\)

\section*{Arguments}
x
type Type can either be 1, so that the Newton-Rapshon is used for the maximisation of the log-likelihood, as Minka (2012) suggested or it can be 1. In the latter case the Newton-Raphson algorithm is implemented involving matrix inversions. In addition an even faster implementation has been implemented (in \(\mathrm{C}++\) ) in the package Rfast and is used here.
tol The tolerance level indicating no further increase in the log-likelihood.

\section*{Details}

Maximum likelihood estimation of the parameters of a Dirichlet distribution is performed via Newton-Raphson. Initial values suggested by Minka (2003) are used. The estimation is super faster than "diri.est" and the difference becomes really apparent when the sample size and or the dimensions increase. In fact this will work with millions of observations. So in general, I trust this one more than "diri.est".

The only problem I have seen with this method is that if the data are concentrated around a point, say the center of the simplex, it will be hard for this and the previous methods to give estimates of the parameters. In this extremely difficult scenario I would suggest the use of the previous function with the precision parametrization "diri.est \((\mathrm{x}\), type = "prec")". It will be extremely fast and accurate.

\section*{Value}

A list including:
\begin{tabular}{ll} 
iter & \begin{tabular}{l} 
The number of iterations required. If the argument "type" is set to 2 this is not \\
returned.
\end{tabular} \\
loglik & The value of the log-likelihood. \\
param & The estimated parameters. \\
runtime & The run time of the procedure.
\end{tabular}

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Thomas P. Minka (2003). Estimating a Dirichlet distribution. http://research.microsoft.com/en-us/um/people/minka/papers/dirichlet/minka-dirichlet.pdf

\section*{See Also}
```

diri.est, diri.contour rdiri, ddiri, dda

```

\section*{Examples}
```

x <- rdiri(100, c(5, 7, 5, 8, 10, 6, 4))
diri.nr(x)
diri.nr(x, type = 2)
diri.est(x)

```
MLE of the folded model for a given value of alpha
    MLE of the folded model for a given value of \(\alpha\)

\section*{Description}

MLE of the folded model for a given value of \(\alpha\).

\section*{Usage}
alpha.mle(x, a)
a.mle(a, x)

\section*{Arguments}
x
a

A matrix with the compositional data. No zero vaues are allowed.
A value of \(\alpha\).

\section*{Details}

This is a function for choosing or estimating the value of \(\alpha\) in the folded model (Tsagris and Stewart, 2020). It is called by a. est.

\section*{Value}

If "alpha.mle" is called, a list including:
iters The nubmer of iterations the EM algorithm required.
loglik The maximimized log-likelihood of the folded model.
p The estimated probability inside the simplex of the folded model.
mu The estimated mean vector of the folded model.
su The estimated covariance matrix of the folded model.
If "a.mle" is called, the log-likelihood is returned only.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Tsagris M. and Stewart C. (2020). A folded model for compositional data analysis. Australian and New Zealand Journal of Statistics, 62(2): 249-277. https://arxiv.org/pdf/1802.07330.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
alfa.profile, alfa, alfainv, a.est

\section*{Examples}
```

x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
mod <- alfa.tune(x)
mod
alpha.mle(x, mod[1])

```
```

MLE of the zero adjusted Dirichlet distribution
MLE of the zero adjusted Dirichlet distribution

```

\section*{Description}

MLE of the zero adjusted Dirichlet distribution.

\section*{Usage}
zad.est(y)

\section*{Arguments}
y A matrix with the compositional data (dependent variable). The number of observations (vectors) with no zero values should be more than the columns of the predictor variables. Otherwise, the initial values will not be calculated.

\section*{Details}

A zero adjusted Dirichlet distribution is being fittd and its parameters are estimated.

\section*{Value}

A list including:
loglik The value of the log-likelihood.
phi The precision parameter. If covariates are linked with it (function "diri.reg2"), this will be a vector.
\(\mathrm{mu} \quad\) The mean vector of the distribution.
runtime The time required by the regression.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Tsagris M. and Stewart C. (2018). A Dirichlet regression model for compositional data with zeros. Lobachevskii Journal of Mathematics,39(3): 398-412.

Preprint available from https://arxiv.org/pdf/1410.5011.pdf

\section*{See Also}
```

zadr, diri.nr, zilogitnorm.est, zeroreplace

```

\section*{Examples}
y <- as.matrix(iris[, 1:3])
y <- y / rowSums(y)
mod1 <- diri.nr(y)
\(y[s a m p l e(1: 450,15)]<-0\)
mod2 <- zad.est(y)
```

Multivariate analysis of variance
Multivariate analysis of variance

```

\section*{Description}

Multivariate analysis of variance with assuming equality of the covariance matrices.

\section*{Usage}
maov(x, ina)

\section*{Arguments}
\[
\begin{array}{ll}
x & \text { A matrix containing Euclidean data. } \\
\text { ina } & \text { A numerical or factor variable indicating the groups of the data. }
\end{array}
\]

\section*{Details}

Multivariate analysis of variance assuming equality of the covariance matrices.

\section*{Value}

A list including:
note A message stating whether the F or the chi-square approximation has been used.
result The test statistic and the p-value.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Johnson and Wichern (2007, 6th Edition). Applied Multivariate Statistical Analysis p. 302-303.
Todorov V. and Filzmoser P. (2010). Robust Statistic for the One-way MANOVA. Computational Statistics \& Data Analysis 54(1):37-48.

\section*{See Also}
```

maovjames, hotel2T2, james, comp.test

```

\section*{Examples}
```

maov(as.matrix(iris[,1:4]), iris[,5])
maovjames(as.matrix(iris[,1:4]), iris[,5])

```
Multivariate analysis of variance (James test)
    Multivariate analysis of variance (James test)

\section*{Description}

Multivariate analysis of variance without assuming equality of the covariance matrices.

\section*{Usage}
maovjames(x, ina, \(a=0.05)\)

\section*{Arguments}
\(x \quad\) A matrix containing Euclidean data.
ina A numerical or factor variable indicating the groups of the data.
a
The significance level, set to 0.005 by default.

\section*{Details}

Multivariate analysis of variance without assuming equality of the covariance matrices.

\section*{Value}

A vector with the next 4 elements:
test The test statistic.
correction The value of the correction factor.
corr.critical The corrected critical value of the chi-square distribution.
p -value \(\quad\) The p -value of the corrected test statistic.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}
G.S.James (1954). Tests of Linear Hypotheses in Univariate and Multivariate Analysis when the Ratios of the Population Variances are Unknown. Biometrika, 41(1/2): 19-43.

\section*{See Also}
maov, hotel2T2, james, comp.test

\section*{Examples}
```

maov(as.matrix(iris[,1:4]), iris[,5])
maovjames(as.matrix(iris[,1:4]), iris[,5])

```

Multivariate kernel density estimation
Multivariate kernel density estimation

\section*{Description}

Multivariate kernel density estimation.

\section*{Usage}
mkde(x, h = NULL, thumb = "silverman")

\section*{Arguments}
\(x \quad\) A matrix with Euclidean (continuous) data.
\(h \quad\) The bandwidh value. It can be a single value, which is turned into a vector and then into a diagonal matrix, or a vector which is turned into a diagonal matrix. If you put this NULL then you need to specify the "thumb" argument below.
thumb Do you want to use a rule of thumb for the bandwidth parameter? If no, set \(h\) equal to NULL and put "estim" for maximum likelihood cross-validation, "scott" or "silverman" for Scott's and Silverman's rules of thumb respectively.

\section*{Details}

The multivariate kernel density estimate is calculated with a (not necssarily given) bandwidth value.

\section*{Value}

A vector with the density estimates calculated for every vector.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Arsalane Chouaib Guidoum (2015). Kernel Estimator and Bandwidth Selection for Density and its Derivatives. The kedd R package.
M.P. Wand and M.C. Jones (1995). Kernel smoothing, pages 91-92.
B.W. Silverman (1986). Density estimation for statistics and data analysis, pages 76-78.

\section*{See Also}
mkde.tune, comp.kerncontour

\section*{Examples}
```

mkde(as.matrix(iris[, 1:4]), thumb = "scott")
mkde(as.matrix(iris[, 1:4]), thumb = "silverman")

```
```

Multivariate kernel density estimation for compositional data
Multivariate kernel density estimation for compositional data

```

\section*{Description}

Multivariate kernel density estimation for compositional data.

\section*{Usage}
comp.kern(x, type= "alr", h = NULL, thumb = "silverman")

\section*{Arguments}
x
type The type of trasformation used, either the additive log-ratio ("alr"), the isometric log-ratio ("ilr") or the pivot coordinate ("pivot") transformation.
\(h \quad\) The bandwidh value. It can be a single value, which is turned into a vector and then into a diagonal matrix, or a vector which is turned into a diagonal matrix. If it is NULL, then you need to specify the "thumb" argument below.
thumb Do you want to use a rule of thumb for the bandwidth parameter? If no, leave the " \(h\) " NULL and put "estim" for maximum likelihood cross-validation, "scott" or "silverman" for Scott's and Silverman's rules of thumb respectively.

\section*{Details}

The multivariate kernel density estimate is calculated with a (not necssarily given) bandwidth value.

\section*{Value}

A vector with the density estimates calculated for every vector.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Arsalane Chouaib Guidoum (2015). Kernel Estimator and Bandwidth Selection for Density and its Derivatives.

The kedd R package.
M.P. Wand and M.C. Jones (1995). Kernel smoothing, pages 91-92.
B.W. Silverman (1986). Density estimation for statistics and data analysis, pages 76-78.

\section*{See Also}
comp.kerncontour, mkde

\section*{Examples}
```

x <- as.matrix(iris[, 1:3])
x <- x / rowSums(x)
f<- comp.kern(x)

```
Multivariate linear regression
                        Multivariate linear regression

\section*{Description}

Multivariate linear regression.

\section*{Usage}
multivreg(y, x, plot = TRUE, xnew = NULL)

\section*{Arguments}
y A matrix with the Eucldidean (continuous) data.
\(x \quad\) A matrix with the predictor variable(s), they have to be continuous.
plot Should a plot appear or not?
xnew If you have new data use it, otherwise leave it NULL.

\section*{Details}

The classical multivariate linear regression model is obtained.

\section*{Value}

A list including:
suma A summary as produced by lm, which includes the coefficients, their standard error, t -values, p -values.
\(r\).squared \(\quad\) The value of the \(R^{2}\) for each univariate regression.
resid.out A vector with number indicating which vectors are potential residual outliers.
\(x\).leverage A vector with number indicating which vectors are potential outliers in the predictor variables space.
out A vector with number indicating which vectors are potential outliers in the residuals and in the predictor variables space.
est The predicted values if xnew is not NULL.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}
K.V. Mardia, J.T. Kent and J.M. Bibby (1979). Multivariate Analysis. Academic Press.

\section*{See Also}
diri.reg, js.compreg, kl.compreg, ols.compreg, comp.reg

\section*{Examples}
```

library(MASS)
x <- as.matrix(iris[, 1:2])
y <- as.matrix(iris[, 3:4])
multivreg(y, x, plot = TRUE)

```

Multivariate normal random values simulation on the simplex Multivariate normal random values simulation on the simplex

\section*{Description}

Multivariate normal random values simulation on the simplex.

\section*{Usage}
rcompnorm(n, m, s, type = "alr")

\section*{Arguments}
n
m
s
type

The sample size, a numerical value.
The mean vector in \(R^{d}\).
The covariance matrix in \(R^{d}\).
The alr (type = "alr") or the ilr (type = "ilr") is to be used for closing the Euclidean data onto the simplex.

\section*{Details}

The algorithm is straightforward, generate random values from a multivariate normal distribution in \(R^{d}\) and brings the values to the simplex \(S^{d}\) using the inverse of a log-ratio transformation.

\section*{Value}

A matrix with the simulated data.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

\section*{See Also}
comp.den, rdiri, rcompt, rcompsn

\section*{Examples}
```

x <- as.matrix(iris[, 1:2])
m <- colMeans(x)
s <- var(x)
y <- rcompnorm(100, m, s)
comp.den(y)
ternary(y)

```

134Multivariate or univariate regression with compositional data in the covariates side using the alpha-transformation

Multivariate or univariate regression with compositional data in the covariates side using the alpha-
Multivariate or univariate regression with compositional data in the covariates side using the \(\alpha\)-transformation

\section*{Description}

Multivariate or univariate regression with compositional data in the covariates side using the \(\alpha\) transformation.

\section*{Usage}
alfa.pcr(y, x, a, k, model = "gaussian", xnew = NULL)

\section*{Arguments}
y A numerical vector containing the response variable values. They can be continuous, binary, discrete (counts). This can also be a vector with discrete values or a factor for the multinomial regression (model = "multinomial").
\(x \quad\) A matrix with the predictor variables, the compositional data.
a
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\) the isometric log-ratio transformation is applied.
k
A number at least equal to 1 . How many principal components to use.
model The type of regression model to fit. The possible values are "gaussian", "multinomial", "binomial" and "poisson".
xnew A matrix containing the new compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.

\section*{Details}

The \(\alpha\)-transformation is applied to the compositional data first ,the first k principal component scores are calcualted and used as predictor variables for a regression model. The family of distributions can be either, "normal" for continuous response and hence normal distribution, "binomial" corresponding to binary response and hence logistic regression or "poisson" for count response and poisson regression.

\section*{Value}

A list tincluding:
\begin{tabular}{ll} 
be & If linear regression was fitted, the regression coefficients of the k principal com- \\
ponent scores on the response variable y . \\
mod & If another regression model was fitted its outcome as produced in the package \\
Rfast.
\end{tabular} Rfast.
per The percentage of variance explained by the first k principal components.
vec The first k principal components, loadings or eigenvectors. These are useful for future prediction in the sense that one needs not fit the whole model again.
est If the argument "xnew" was given these are the predicted or estimated values, otherwise it is NULL.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
pcr, glm.pcr, alfapcr.tune

\section*{Examples}
```

library(MASS)
y <- as.vector(fgl[, 1])
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
mod <- alfa.pcr(y = y, x = x, 0.7, 1)
mod

```
```

Multivariate regression with compositional data
Multivariate regression with compositional data

```

\section*{Description}

Multivariate regression with compositional data.

\section*{Usage}
```

 comp.reg(y, x, type = "classical", xnew = NULL, yb = NULL)
    ```

\section*{Arguments}
y A matrix with compsitional data. Zero values are not allowed.
\(x \quad\) The predictor variable(s), they have to be continuous.
type \(\quad\) The type of regression to be used, "classical" for standard multivariate regression, or "spatial" for the robust spatial median regression. Alternatively you can type "lmfit" for the fast classical multivariate regression that does not return standard errors whatsoever.
xnew This is by default set to NULL. If you have new data whose compositional data values you want to predict, put them here.
yb If you have already transformed the data using the additive log-ratio transformation, plut it here. Othewrise leave it NULL. This is intended to be used in the function alfareg. tune in order to speed up the process.

\section*{Details}

The additive log-ratio transformation is applied and then the chosen multivariate regression is implemented. The alr is easier to explain than the ilr and that is why the latter is avoided here.

\section*{Value}

A list including:
runtime The time required by the regression.
be The beta coefficients.
seb The standard error of the beta coefficients.
est The fitted values of xnew if xnew is not NULL.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Mardia K.V., Kent J.T., and Bibby J.M. (1979). Multivariate analysis. Academic press.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

\section*{See Also}
multivreg, spatmed.reg, js.compreg, diri.reg

\section*{Examples}
library (MASS)
y <- as.matrix(iris[, 1:3])
\(\mathrm{y}<-\mathrm{y} / \operatorname{rowSums}(\mathrm{y})\)
\(x<-\) as. vector (iris[, 4])
\(\bmod 1<-\operatorname{comp} . \operatorname{reg}(y, x)\)
\(\bmod 2<-\operatorname{comp} . \operatorname{reg}(y, x\), type = "spatial")

Multivariate skew normal random values simulation on the simplex
Multivariate skew normal random values simulation on the simplex

\section*{Description}

Multivariate skew normal random values simulation on the simplex.

\section*{Usage}
rcompsn(n, xi, Omega, alpha, dp = NULL, type = "alr")

\section*{Arguments}
n
xi A numeric vector of length \(d\) representing the location parameter of the distribution.

Omega A \(d \times d\) symmetric positive-definite matrix of dimension.
alpha A numeric vector which regulates the slant of the density.
dp A list with three elements, corresponding to xi, Omega and alpha described above. The default value is FALSE. If dp is assigned, individual parameters must not be specified.
type \(\quad\) The alr (type \(=\) "alr") or the ilr (type \(=\) "ilr") is to be used for closing the Euclidean data onto the simplex.

\section*{Details}

The algorithm is straightforward, generate random values from a multivariate t distribution in \(R^{d}\) and brings the values to the simplex \(S^{d}\) using the inverse of a log-ratio transformation.

\section*{Value}

A matrix with the simulated data.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika, 83(4): 715-726.
Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew normal distribution. Journal of the Royal Statistical Society Series B, 61(3):579-602. Full-length version available from http://arXiv.org/abs/0911.2093
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

\section*{See Also}
comp. den, rdiri, rcompnorm, rmvt

\section*{Examples}
```

x <- as.matrix(iris[, 1:2])
par <- sn::msn.mle(y = x)\$dp
y <- rcompsn(100, dp = par)
comp.den(y, dist = "skewnorm")
ternary(y)

```
Multivariate t random values simulation on the simplex
    Multivariate trandom values simulation on the simplex

\section*{Description}

Multivariate \(t\) random values simulation on the simplex.

\section*{Usage}
\(\operatorname{rcompt}(\mathrm{n}, \mathrm{m}, \mathrm{s}\), dof, type \(=\) "alr")

\section*{Arguments}
n
m
\(\mathrm{s} \quad\) The covariance matrix in \(R^{d}\).
dof
type
The sample size, a numerical value.
The mean vector in \(R^{d}\).

The degrees of freedom.

The alr (type = "alr") or the ilr (type = "ilr") is to be used for closing the Euclidean data onto the simplex.

\section*{Details}

The algorithm is straightforward, generate random values from a multivariate t distribution in \(R^{d}\) and brings the values to the simplex \(S^{d}\) using the inverse of a log-ratio transformation.

\section*{Value}

A matrix with the simulated data.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

\section*{See Also}
```

comp.den, rdiri, rcompnorm, rmvt

```

\section*{Examples}
```

x <- as.matrix(iris[, 1:2])
m <- Rfast::colmeans(x)
s <- var(x)
y <- rcompt(100, m, s, 10)
comp.den(y, dist = "t")
ternary(y)

```
Naive Bayes classifiers for compositional data
    Naive Bayes classifiers for compositional data

\section*{Description}

Naive Bayes classifiers for compositional data.

\section*{Usage}
comp.nb(xnew \(=\) NULL, \(x\), ina, type = "beta")

\section*{Arguments}
xnew A matrix with the new compositional predictor data whose class you want to predict. Zeros are not allowed
\(x \quad\) A matrix with the available compositional predictor data. Zeros are not allowed
ina A vector of data. The response variable, which is categorical (factor is acceptable).
type The type of naive Bayes, "beta", "logitnorm", "cauchy", "laplace", "gamma", "normlog" or "weibull". For the last 4 distributions, the negative of the logarithm of the compositional data is applied first.

Value
Depending on the classifier a list including (the ni and est are common for all classifiers):
shape A matrix with the shape parameters.
scale A matrix with the scale parameters.
expmu A matrix with the mean parameters.
sigma A matrix with the (MLE, hence biased) variance parameters.
location A matrix with the location parameters (medians).
scale A matrix with the scale parameters.
mean A matrix with the scale parameters.
var A matrix with the variance parameters.
a A matrix with the "alpha" parameters.
b A matrix with the "beta" parameters.
ni The sample size of each group in the dataset.
est The estimated group of the xnew observations. It returns a numerical value back regardless of the target variable being numerical as well or factor. Hence, it is suggested that you do \(\backslash "\) as.numeric(ina) \(\backslash "\) in order to see what is the predicted class of the new data.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Friedman J., Hastie T. and Tibshirani R. (2017). The elements of statistical learning. New York: Springer.

\section*{See Also}
cv.compnb, alfa.rda, alfa.knn, comp.knn, mix.compnorm, dda

\section*{Examples}
```

x <- Compositional::rdiri(100, runif(5))
ina <- rbinom(100, 1, 0.5) + 1
a <- comp.nb(x, x, ina, type = "beta")

```
```

Naive Bayes classifiers for compositional data using the alpha-transformation
Naive Bayes classifiers for compositional data using the \alpha-
transformation

```

\section*{Description}

Naive Bayes classifiers for compositional data using the \(\alpha\)-transformation.

\section*{Usage}
alfa.nb(xnew, x, ina, a, type = "gaussian")

\section*{Arguments}
xnew A matrix with the new compositional predictor data whose class you want to predict. Zeros are allowed.
\(\mathrm{x} \quad\) A matrix with the available compositional predictor data. Zeros are allowed.
ina A vector of data. The response variable, which is categorical (factor is acceptable).
a This can be a vector of values or a single number.
type The type of naive Bayes, "gaussian", "cauchy" or "laplace".

\section*{Details}

The \(\alpha\)-transformation is applied to the compositional and a naive Bayes classifier is employed.

\section*{Value}

A matrix with the estimated groups. One column for each value of \(\alpha\).

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf
Friedman J., Hastie T. and Tibshirani R. (2017). The elements of statistical learning. New York: Springer.

\section*{See Also}
comp.nb, alfa.rda, alfa.knn, comp.knn, mix.compnorm

\section*{Examples}
x <- Compositional::rdiri(100, runif(5) )
ina <- rbinom(100, 1, 0.5) + 1
\(\bmod <-\mathrm{alfa.nb}(x, x, a=c(0,0.1,0.2)\), ina )

Non linear least squares regression for compositional data
Non linear least squares regression for compositional data

\section*{Description}

Non linear least squares regression for compositional data.

\section*{Usage}
ols.compreg(y, \(x\), con = TRUE, \(B=1\), ncores \(=1\), xnew \(=\) NULL)

\section*{Arguments}
y A matrix with the compositional data (dependent variable). Zero values are allowed.

X A matrix or a data frame with the predictor variable(s).
con If this is TRUE (default) then the constant term is estimated, otherwise the model includes no constant term.
B
If \(B\) is greater than 1 bootstrap estimates of the standard error are returned. If \(B=1\), no standard errors are returned.
ncores If ncores is 2 or more parallel computing is performed. This is to be used for the case of bootstrap. If \(\mathrm{B}=1\), this is not taken into consideration.
xnew If you have new data use it, otherwise leave it NULL.

\section*{Details}

The ordinary least squares between the observed and the fitted compositional data is adopted as the objective function. This involves numerical optimization since the relationship is non linear. There is no log-likelihood.

\section*{Value}

A list including:
\begin{tabular}{ll} 
runtime & The time required by the regression. \\
beta & The beta coefficients. \\
covbe & The covariance matrix of the beta coefficients, if bootstrap is chosen, i.e. if B > \\
est & 1. \\
& The fitted of xnew if xnew is not NULL.
\end{tabular}

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Murteira, Jose MR, and Joaquim JS Ramalho 2016. Regression analysis of multivariate fractional data. Econometric Reviews 35(4): 515-552.

\section*{See Also}
diri.reg, js.compreg, kl.compreg, comp.reg, comp.reg, alfa.reg

\section*{Examples}
```

library(MASS)
x <- as.vector(fgl[, 1])
y <- as.matrix(fgl[, 2:9])
y <- y / rowSums(y)
mod1 <- ols.compreg(y, x, B = 1, ncores = 1)
mod2 <- js.compreg(y, x, B = 1, ncores = 1)

```
Non parametric zero replacement strategies
                                    Non parametric zero replacement strategies

\section*{Description}

Non parametric zero replacement strategies.

\section*{Usage}
zeroreplace(x, a = 0.65, delta = NULL, type = "multiplicative")

\section*{Arguments}
\(x \quad\) A matrix with the compositional data.
a The replacement value \((\delta)\) will be "a" times the minimum value observed in the compositional data.
delta Unless you specify the replacement value \(\delta\) here.
type \(\quad\) This can be any of "multiplicative", "additive" or "simple". See the references for more details.

\section*{Details}

The "additive" is the zero replacement strategy suggested in Aitchison (1986, pg. 269). All of the three strategies can be found in Martin-Fernandez et al. (2003).

\section*{Value}

A matrix with the zero replaced compositional data.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Martin-Fernandez J. A., Barcelo-Vidal C. \& Pawlowsky-Glahn, V. (2003). Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Mathematical Geology, 35(3): 253-278.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

\section*{See Also}
perturbation, alfa

\section*{Examples}
```

x <- as.matrix(iris[1:20, 1:4])
x <- x/ rowSums(x)
x[sample(1:20, 4), sample(1:4, 1)] <- 0
x <- x / rowSums(x)
zeroreplace(x)

```
Perturbation operation
Perturbation operation

\section*{Description}

Perturbation operation.

\section*{Usage}
perturbation(x, y, oper = "+")

\section*{Arguments}
\(x \quad\) A matrix with the compositional data.
y Either a matrix with compositional data or a vector with compositional data. In either case, the data may not be compositional data, as long as they non negative.
oper For the summation this must be "*" and for the negation it must be "/". According to Aitchison (1986), multiplication is equal to summation in the log-space, and division is equal to negation.

\section*{Details}

This is the perturbation operation defined by Aitchison (1986).

\section*{Value}

A matrix with the perturbed compositional data.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

\section*{See Also}
power

\section*{Examples}
```

x <- as.matrix(iris[1:15, 1:4])
y <- as.matrix(iris[21:35, 1:4])
perturbation(x, y)
perturbation(x, y[1,])

```

Plot of the LASSO coefficients Plot of the LASSO coefficients

\section*{Description}

Plot of the LASSO coefficients.

\section*{Usage}
lassocoef.plot(lasso, lambda = TRUE)

\section*{Arguments}
lasso An object where you have saved the result of the LASSO regression. See the examples for more details.
lambda If you want the x -axis to contain the logarithm of the penalty parameter \(\log (\lambda)\) set this to TRUE. Otherwise the x-axis will contain the \(L_{1}\)-norm of the coefficients.

\section*{Details}

This function plots the \(L_{2}\)-norm of the coefficients of each predictor variable versus the \(\log (\lambda)\) or the \(L_{1}\)-norm of the coefficients. This is the same plot as the one produced by the glmnet package with type.coef = "2norm".

\section*{Value}

A plot of the \(L_{2}\)-norm of the coefficients of each predictor variable (y-axis) versus the \(L_{1}\)-norm of all the coefficients ( x -axis).

\section*{Author(s)}

Michail Tsagris and Abdulaziz Alenazi.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Abdulaziz Alenazi <a.alenazi@nbu.edu.sa>. <a.alenazi@nbu.edu.sa>.

\section*{References}

Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, Vol. 33(1), 1-22.

\section*{See Also}
lasso.klcompreg, cv.lasso.klcompreg, lasso.compreg, cv.lasso.compreg, kl.compreg, comp.reg

\section*{Examples}
```

y <- as.matrix(iris[, 1:4])
y <- y / rowSums(y)
x <- matrix(rnorm(150 * 30), ncol = 30)
a <- lasso.klcompreg(y, x)
lassocoef.plot(a)
b <- lasso.compreg(y, x)
lassocoef.plot(b)

```
Power operation Power operation

\section*{Description}

Power operation.

\section*{Usage}
\(\operatorname{pow}(x, a)\)

\section*{Arguments}
\(x \quad\) A matrix with the compositional data.
a Either a vector with numbers of a single number.

\section*{Details}

This is the power operation defined by Aitchison (1986). It is also the starting point of the \(\alpha\) transformation.

\section*{Value}

A matrix with the power transformed compositional data.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
perturbation, alfa

\section*{Examples}
```

x <- as.matrix(iris[1:15, 1:4])
a <- runif(1)
pow(x, a)

```
Principal component analysis

\section*{Description}

Principal component analysis.

\section*{Usage}
logpca(x, center \(=\) TRUE, scale \(=\) TRUE, \(k=\) NULL, vectors \(=\) FALSE)

\section*{Arguments}
x
center Do you want your data centered? TRUE or FALSE.
scale Do you want each of your variables scaled, i.e. to have unit variance? TRUE or FALSE.
k
k If you want a specific number of eigenvalues and eigenvectors set it here, otherwise all eigenvalues (and eigenvectors if requested) will be returned.
vectors
A matrix with the compositional data. Zero values are not allowed.
\[
5
\] Do you want the eigenvectors be returned? By dafault this is FALSE.

\section*{Details}

The logarithm is applied to the compositional data and PCA is performed.

\section*{Value}

A list including:
values The eigenvalues.
vectors The eigenvectors.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

\section*{See Also}
```

alfa.pca, alfa.pcr, kl.alfapcr

```

\section*{Examples}
```

x <- as.matrix(iris[, 1:4])
x <- x/ rowSums(x)
a <- logpca(x)

```

\section*{Description}

Principal component analysis using the \(\alpha\)-transformation.

\section*{Usage}
alfa.pca(x, a, center \(=\) TRUE, scale \(=\) TRUE, \(k=\) NULL, vectors = FALSE)

\section*{Arguments}
x
a
center
scale Do you want each of your variables scaled, i.e. to have unit variance? TRUE or FALSE.
\(k \quad\) If you want a specific number of eigenvalues and eigenvectors set it here, otherwise all eigenvalues (and eigenvectors if requested) will be returned.
vectors Do you want the eigenvectors be returned? By dafault this is FALSE.

\section*{Details}

The \(\alpha\)-transformation is applied to the compositional data and then PCA is performed. Note however, that the right multiplication by the Helmert sub-matrix is not applied in order to be in accordance with Aitchison (1983). When \(\alpha=0\), this results to the PCA proposed by Aitchison (1983).

\section*{Value}

A list including:
values The eigenvalues.
vectors The eigenvectors.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Aitchison, J. (1983). Principal component analysis of compositional data. Biometrika, 70(1), 57-65.
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

\author{
See Also \\ logpca, alfa.pcr, kl.alfapcr
}

\section*{Examples}
```

x <- as.matrix(iris[, 1:4])
x <- x/ rowSums(x)
a <- alfa.pca(x, 0.5)

```
Principal component generalised linear models

\section*{Description}

Principal component generalised linear models.

\section*{Usage}
\(\operatorname{pcr}(\mathrm{y}, \mathrm{x}, \mathrm{k}=1\), xnew \(=\mathrm{NULL})\)
glm.pcr(y, \(x, k=1\), xnew = NULL)

\section*{Arguments}
y A numerical vector, a real values vector or a numeric vector with 0 and 1 (binary) or a vector with discrete (count) data.
\(x \quad\) A matrix with the predictor variable(s), they have to be continuous.
\(\mathrm{k} \quad\) A number greater than or equal to 1 . How many principal components to use. In the case of "pcr" this can be a single number or a vector. In the second case you get results for the sequence of principal components.
xnew If you have new data use it, otherwise leave it NULL.

\section*{Details}

Principal component regression is performed with linear, binary logistic or Poisson regression, depending on the nature of the response variable. The principal components of the cross product of the independent variables are obtained and classical regression is performed. This is used in the function alfa.pcr.

\section*{Value}

A list including:
be The beta coefficients of the predictor variables computed via the principcal components if "pcr" is used.
model The summary of the logistic or Poisson regression model.
per The percentage of variance of the predictor variables retained by the k principal components.
vec The principal components, the loadings.
est The fitted or the predicted values (if xnew is not NULL).

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aguilera A.M., Escabias M. and Valderrama M.J. (2006). Using principal components for estimating logistic regression with high-dimensional multicollinear data. Computational Statistics \& Data Analysis 50(8): 1905-1924.

Jolliffe I.T. (2002). Principal Component Analysis.

\section*{See Also}
```

alfa.pcr, alfapcr.tune

```

\section*{Examples}
```

library(MASS)
x <- as.matrix(fgl[, 2:9])
y <- as.vector(fgl[, 1])
mod1 <- pcr(y, x, 1)
mod2 <- pcr(y, x, 2)
mod <- pcr(y, x, k = 1:4) \#\# many results at once
x <- as.matrix(iris[, 1:4])
y<- rbinom(150, 1, 0.6)
mod<- glm.pcr(y, x, k = 1)

```
```

Principal coordinate analysis using the alpha-distance
Principal coordinate analysis using the \alpha-distance

```

\section*{Description}

Principal coordinate analysis using the \(\alpha\)-distance.

\section*{Usage}
alfa.mds(x, a, k = 2, eig = TRUE)

\section*{Arguments}
\(x \quad\) A matrix with the compositional data. Zero values are allowed.
a The value of a . In case of zero values in the data it has to be greater than 1.
\(\mathrm{k} \quad\) The maximum dimension of the space which the data are to be represented in. This can be a number between 1 and \(D-1\), where \(D\) denotes the number of dimensions.
eig Should eigenvalues be returned? The default value is TRUE.

\section*{Details}

The function computes the \(\alpha\)-distance matrix and then plugs it into the classical multidimensional scaling function in the "cmdscale" function.

\section*{Value}

A list with the results of "cmdscale" function.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Cox, T. F. and Cox, M. A. A. (2001). Multidimensional Scaling. Second edition. Chapman and Hall.
Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Chapter 14 of Multivariate Analysis, London: Academic Press.

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
esov.mds, alfa.pca,

\section*{Examples}
```

 x <- as.matrix(iris[, 1:4])
 x <- x/ rowSums(x)
 a <- esov.mds(x)
    ```

Principal coordinate analysis using the Jensen-Shannon divergence Principal coordinate analysis using the Jensen-Shannon divergence

\section*{Description}

Principal coordinate analysis using the Jensen-Shannon divergence.

\section*{Usage}
esov.mds(x, k = 2, eig = TRUE)

\section*{Arguments}
\(x \quad\) A matrix with the compositional data. Zero values are allowed.
k The maximum dimension of the space which the data are to be represented in. This can be a number between 1 and \(D-1\), where \(D\) denotes the number of dimensions.
eig \(\quad\) Should eigenvalues be returned? The default value is TRUE.

\section*{Details}

The function computes the Jensen-Shannon divergence matrix and then plugs it into the classical multidimensional scaling function in the "cmdscale" function.

\section*{Value}

A list with the results of "cmdscale" function.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Cox, T. F. and Cox, M. A. A. (2001). Multidimensional Scaling. Second edition. Chapman and Hall.
Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Chapter 14 of Multivariate Analysis, London: Academic Press.
Tsagris, Michail (2015). A novel, divergence based, regression for compositional data. Proceedings of the 28th Panhellenic Statistics Conference, 15-18/4/2015, Athens, Greece. https://arxiv.org/pdf/1511.07600.pdf

\section*{See Also}
alfa.mds, alfa.pca,

\section*{Examples}
```

x <- as.matrix(iris[, 1:4])
x <- x/ rowSums(x)
a <- esov.mds(x)

```

\section*{Description}

Projection pursuit regression for compositional data.

\section*{Usage}
comp.ppr (y, x, nterms = 3, type = "alr", xnew = NULL, yb = NULL )

\section*{Arguments}
\begin{tabular}{ll}
y & A matrix with the compositional data. \\
x & \begin{tabular}{l} 
A matrix with the continuous predictor variables or a data frame including cate- \\
gorical predictor variables.
\end{tabular} \\
nterms & \begin{tabular}{l} 
The number of terms to include in the final model. \\
type
\end{tabular} \\
\begin{tabular}{l} 
Either "alr" or "ilr" corresponding to the additive or the isometric log-ratio trans- \\
formation respectively.
\end{tabular} \\
xnew & \begin{tabular}{l} 
If you have new data use it, otherwise leave it NULL. \\
yb
\end{tabular} \\
\begin{tabular}{l} 
If you have already transformed the data using a log-ratio transformation put it \\
here. Othewrise leave it NULL.
\end{tabular}
\end{tabular}

\section*{Details}

This is the standard projection pursuit. See the built-in function "ppr" for more details.

\section*{Value}

A list includign:
\begin{tabular}{ll} 
runtime & The runtime of the regression. \\
mod & The produced model as returned by the function "ppr". \\
est & The fitted values of xnew if xnew is not NULL.
\end{tabular}

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. Journal of the American Statistical Association, 76, 817-823. doi: 10.2307/2287576.

\section*{See Also}
```

compppr.tune, aknn.reg, akern.reg, comp.reg, kl.compreg, alfa.reg

```

\section*{Examples}
```

y <- as.matrix(iris[, 1:3])
y <- y/ rowSums(y)
x <- iris[, 4]
mod <- comp.ppr(y, x)

```
Projection pursuit regression with compositional predictor variables
    Projection pursuit regression with compositional predictor variables

\section*{Description}

Projection pursuit regression with compositional predictor variables.

\section*{Usage}
pprcomp(y, x, nterms = 3, type = "log", xnew = NULL)

\section*{Arguments}
\(y \quad\) A numerical vector with the continuous variable.
\(x \quad\) A matrix with the compositional data. No zero values are allowed.
nterms The number of terms to include in the final model.
type Either "alr" or "log" corresponding to the additive log-ratio transformation or the simple logarithm applied to the compositional data.
xnew If you have new data use it, otherwise leave it NULL.

\section*{Details}

This is the standard projection pursuit. See the built-in function "ppr" for more details. When the data are transformed with the additive log-ratio transformation this is close in spirit to the logcontrast regression.

\section*{Value}

A list includign:
\begin{tabular}{ll} 
runtime & The runtime of the regression. \\
mod & The produced model as returned by the function "ppr". \\
est & The fitted values of xnew if xnew is not NULL.
\end{tabular}

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. Journal of the American Statistical Association, 76, 817-823. doi: 10.2307/2287576.

\section*{See Also}
pprcomp.tune, ice.pprcomp, alfa.pcr, lc.reg, comp.ppr

\section*{Examples}
```

x <- as.matrix(iris[, 2:4])
x <- x/ rowSums(x)
y <- iris[, 1]
pprcomp(y, x)

```
```

Proportionality correlation coefficient matrix
Proportionality correlation coefficient matrix

```

\section*{Description}

Proportionality correlation coefficient matrix.

\section*{Usage}
\(\operatorname{pcc}(x)\)

\section*{Arguments}
x
A numerical matrix with the compositional data. Zeros are not allowed as the logarithm is applied.

\section*{Details}

The function returns the proportionality correlation coefficient matrix. See Lovell et al. (2015) for more information.

\section*{Value}

A matrix with the alr transformed data (if alr is used) or with the compositional data (if the alrinv is used).

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Zheng, B. (2000). Summarizing the goodness of fit of generalized linear models for longitudinal data. Statistics in medicine, 19(10), 1265-1275.

Lovell D., Pawlowsky-Glahn V., Egozcue J. J., Marguerat S. and Bahler, J. (2015). Proportionality: a valid alternative to correlation for relative data. PLoS Computational Biology, 11(3), e1004075.

\section*{See Also}
acor, alr

\section*{Examples}
```

x <- Compositional::rdiri(100, runif(4))
a <- Compositional::pcc(x)

```
Quasi binomial regression for proportions
    Quasi binomial regression for proportions

\section*{Description}

Quasi binomial regression for proportions.

\section*{Usage}
propreg(y, x, varb = "quasi", tol = 1e-07, maxiters = 100)
propregs (y, x, varb = "quasi", tol = 1e-07, logged = FALSE, maxiters = 100)

\section*{Arguments}
\(y\)
x
tol The tolerance value to terminate the Newton-Raphson algorithm. This is set to \(10^{-9}\) by default.
varb The type of estimate to be used in order to estimate the covariance matrix of the regression coefficients. There are two options, either "quasi" (default value) or "glm". See the references for more information.
logged \(\quad\) Should the p-values be returned (FALSE) or their logarithm (TRUE)?
maxiters The maximum number of iterations before the Newton-Raphson is terminated automatically.

\section*{Details}

We are using the Newton-Raphson, but unlike R's built-in function "glm" we do no checks and no extra calculations, or whatever. Simply the model. The "propregs" is to be used for very many univariate regressions. The " \(x\) " is a matrix in this case and the significance of each variable (column of the matrix) is tested. The function accepts binary responses as well ( 0 or 1 ).

\section*{Value}

For the "propreg" function a list including:
iters The number of iterations required by the Newton-Raphson.
varb The covariance matrix of the regression coefficients.
phi The phi parameter is returned if the input argument "varb" was set to "glm", othwerise this is NULL.
info A table similar to the one produced by "glm" with the estimated regression coefficients, their standard error, Wald test statistic and p-values.

For the "propregs" a two-column matrix with the test statistics (Wald statistic) and the associated p-values (or their loggarithm).

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Papke L. E. \& Wooldridge J. (1996). Econometric methods for fractional response variables with an application to 401(K) plan participation rates. Journal of Applied Econometrics, 11(6): 619-632.
McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

\section*{See Also}
```

anova_propreg univglms, score.glms, logistic_only

```

\section*{Examples}
```

y <- rbeta(100, 1, 4)
x <- matrix(rnorm(100 * 3), ncol = 3)
a <- propreg(y, x)
y <- rbeta(100, 1, 4)
x <- matrix(rnorm(400 * 100), ncol = 400)
b <- propregs(y, x)
mean(b[, 2] < 0.05)

```
Random values generation from some univariate distributions defined on the ( 0,1 ) interval
Random values generation from some univariate distributions defined
on the \((0,1)\) interval

\section*{Description}

Random values generation from some univariate distributions defined on the \((0,1)\) interval.

\section*{Usage}
rbeta1 ( \(\mathrm{n}, \mathrm{a}\) )
runitweibull( \(n, a, b)\)
rlogitnorm(n, m, s, fast = FALSE)

\section*{Arguments}
\(\mathrm{n} \quad\) The sample size, a numerical value.
a The shape parameter of the beta distribution. In the case of the unit Weibull, this is the shape parameter.
b This is the scale parameter for the unit Weibull distribution.
\(\mathrm{m} \quad\) The mean of the univariate normal in \(R\).
\(\mathrm{s} \quad\) The standard deviation of the univariate normal in \(R\).
fast If you want a faster generation set this equal to TRUE. This will use the Rnorm() function from the Rfast package. However, the speed is only observable if you want to simulate at least 500 (this number may vary among computers) observations. The larger the sample size the higher the speed-up.

\section*{Details}

The function genrates random values from the \(\operatorname{Be}(a, 1)\), the unit Weibull or the univariate logistic normal distribution.

Value
A vector with the simulated data.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{See Also}
beta.est, colbeta.est, rdiri

\section*{Examples}
```

x <- rbeta1(100, 3)

```

Regression with compositional data using the alpha-transformation
Regression with compositional data using the \(\alpha\)-transformation

\section*{Description}

Regression with compositional data using the \(\alpha\)-transformation.

\section*{Usage}
alfa.reg(y, x, a, xnew = NULL, yb = NULL, seb = FALSE)

\section*{Arguments}
y
x
a

\author{
yb
}
seb Do you want the standard error of the coefficients to be returned? In the alfareg. tune function this extra computation that is avoided can save some time.

\section*{Details}

The \(\alpha\)-transformation is applied to the compositional data first and then multivariate regression is applied. This involves numerical optimisation.

\section*{Value}

A list including:
runtime The time required by the regression.
be The beta coefficients.
seb The standard error of the beta coefficients.
est The fitted values for xnew if xnew is not NULL.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf
Mardia K.V., Kent J.T., and Bibby J.M. (1979). Multivariate analysis. Academic press.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

\section*{See Also}
alfareg.tune, diri.reg, js.compreg, kl.compreg, ols.compreg, comp.reg

\section*{Examples}
```

library(MASS)
x <- as.vector(fgl[1:40, 1])
y <- as.matrix(fgl[1:40, 2:9])
y <- y / rowSums(y)
mod <- alfa.reg(y, x, 0.2)

```
```

Regularised and flexible discriminant analysis for compositional data using the alpha-transformation
Regularised and flexible discriminant analysis for compositional data
using the \alpha-transformation

```

\section*{Description}

Regularised and flexible discriminant analysis for compositional data using the \(\alpha\)-transformation.

\section*{Usage}
alfa.rda(xnew, \(x\), ina, a, gam \(=1\), del = 0)
alfa.fda(xnew, x, ina, a)

\section*{Arguments}
xnew A matrix with the new compositional data whose group is to be predicted. Zeros are allowed, but you must be carefull to choose strictly positive vcalues of \(\alpha\).
\(x \quad\) A matrix with the available compositional data. Zeros are allowed, but you must be carefull to choose strictly positive vcalues of \(\alpha\).
ina A group indicator variable for the avaiable data.
a The value of \(\alpha\) for the \(\alpha\)-transformation.
gam This is a number between 0 and 1. It is the weight of the pooled covariance and the diagonal matrix.
del This is a number between 0 and 1. It is the weight of the LDA and QDA.

\section*{Details}

For the alfa.rda, the covariance matrix of each group is calcualted and then the pooled covariance matrix. The spherical covariance matrix consists of the average of the pooled variances in its diagonal and zeros in the off-diagonal elements. gam is the weight of the pooled covariance matrix and 1 -gam is the weight of the spherical covariance matrix, \(\mathrm{Sa}=\mathrm{gam} * \mathrm{Sp}+(1\)-gam \() * \mathrm{sp}\). Then it is a compromise between LDA and QDA. del is the weight of Sa and 1-del the weight of each group covariance group. This function is a wrapper for alfa.rda.
For the alfa.fda a flexible discriminant analysis is performed. See the R package fda for more details.

\section*{Value}

For the alfa.rda a list including:
prob The estimated probabilities of the new data of belonging to each group.
scores The estimated socres of the new data of each group.
est The estimated group membership of the new data.
For the alfa.fda a list including:
mod A fda object as returned by the command fda of the R package mda.
est The estimated group membership of the new data.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Friedman Jerome, Trevor Hastie and Robert Tibshirani (2009). The elements of statistical learning, 2nd edition. Springer, Berlin.
Tsagris Michail, Simon Preston and Andrew T.A. Wood (2016). Improved classification for compositional data using the \(\alpha\)-transformation. Journal of classification, 33(2): 243-261. https://arxiv.org/pdf/1106.1451.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf
Hastie, Tibshirani and Buja (1994). Flexible Disriminant Analysis by Optimal Scoring. Journal of the American Statistical Association, 89(428):1255-1270.

\section*{See Also}
```

rda, alfa, alfarda.tune, alfa.knn, alfa.nb, comp.nb, mix.compnorm

```

\section*{Examples}
```

x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
ina <- iris[, 5]
mod <- alfa.rda(x, x, ina, 0)
table(ina, mod$est)
mod2 <- alfa.fda(x, x, ina, 0)
table(ina, mod2$est)

```
Regularised discriminant analysis for Euclidean data
    Regularised discriminant analysis for Euclidean data

\section*{Description}

Regularised discriminant analysis for Euclidean data.

\section*{Usage}
rda(xnew, \(x\), ina, gam \(=1\), del \(=0\) )

\section*{Arguments}
xnew A matrix with the new data whose group is to be predicted. They have to be continuous.
\(x \quad\) A matrix with the available data. They have to be continuous.
ina A group indicator variable for the avaiable data.
gam This is a number between 0 and 1. It is the weight of the pooled covariance and the diagonal matrix.
del This is a number between 0 and 1. It is the weight of the LDA and QDA.

\section*{Details}

The covariance matrix of each group is calculated and then the pooled covariance matrix. The spherical covariance matrix consists of the average of the pooled variances in its diagonal and zeros in the off-diagonal elements. gam is the weight of the pooled covariance matrix and 1-gam is the weight of the spherical covariance matrix, \(\mathrm{Sa}=\mathrm{gam} * \mathrm{Sp}+(1-\mathrm{gam}) * \mathrm{sp}\). Then it is a compromise between LDA and QDA. del is the weight of Sa and 1-del the weight of each group covariance group. This function is a wrapper for alfa.rda.

\section*{Value}

A list including:
\begin{tabular}{ll} 
prob & The estimated probabilities of the new data of belonging to each group. \\
scores & The estimated socres of the new data of each group. \\
est & The estimated group membership of the new data.
\end{tabular}

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Friedman Jerome, Trevor Hastie and Robert Tibshirani (2009). The elements of statistical learning, 2nd edition. Springer, Berlin

Tsagris M., Preston S. and Wood A.T.A. (2016). Improved classification for compositional data using the \(\alpha\)-transformation. Journal of classification, 33(2): 243-261. http://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
rda.tune, alfa

\section*{Examples}
x <- as.matrix(iris[, 1:4])
ina <- iris[, 5]
\(\bmod <-r d a(x, x, i n a)\)
table(ina, mod\$est)

Ridge regression Ridge regression

\section*{Description}

Ridge regression.

\section*{Usage}
ridge. \(\mathrm{reg}(\mathrm{y}, \mathrm{x}, \mathrm{lambda}, \mathrm{B}=1\), xnew \(=\mathrm{NULL})\)

\section*{Arguments}
y A real valued vector. If it contains percentages, the logit transformation is applied.
\(x \quad\) A matrix with the predictor variable(s), they have to be continuous.
lambda \(\quad\) The value of the regularisation parameter \(\lambda\).
B If \(B=1\) (default value) no bootstrpa is performed. Otherwise bootstrap standard errors are returned.
xnew If you have new data whose response value you want to predict put it here, otherwise leave it as is.

\section*{Details}

This is used in the function alfa. ridge. There is also a built-in function available from the MASS library, called lm. ridge.

\section*{Value}

A list including:
beta The beta coefficients.
seb The standard eror of the coefficiens. If B > 1 the bootstrap standard errors will be returned.
est The fitted or the predicted values (if xnew is not NULL).

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Hoerl A.E. and R.W. Kennard (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1): 55-67.
Brown P. J. (1994). Measurement, Regression and Calibration. Oxford Science Publications.

\section*{See Also}
ridge.tune, alfa.ridge, ridge.plot

\section*{Examples}
```

y <- as.vector(iris[, 1])
x <- as.matrix(iris[, 2:4])
mod1 <- ridge.reg(y, x, lambda = 0.1)
mod2 <- ridge.reg(y, x, lambda = 0)

```

Ridge regression plot Ridge regression plot

\section*{Description}

A plot of the regularised regression coefficients is shown.

\section*{Usage}
ridge.plot(y, x, lambda \(=\operatorname{seq}(0,5\), by \(=0.1)\) )

\section*{Arguments}
y
A numeric vector containing the values of the target variable. If the values are proportions or percentages, i.e. strictly within 0 and 1 they are mapped into \(R\) using the logit transformation. In any case, they must be continuous only.
x
A numeric matrix containing the continuous variables. Rows are samples and columns are features.
lambda A grid of values of the regularisation parameter \(\lambda\).

\section*{Details}

For every value of \(\lambda\) the coefficients are obtained. They are plotted versus the \(\lambda\) values.

\section*{Value}

A plot with the values of the coefficients as a function of \(\lambda\).

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Giorgos Athineou <gioathineou@gmail.com> and Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Hoerl A.E. and R.W. Kennard (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1): 55-67.
Brown P. J. (1994). Measurement, Regression and Calibration. Oxford Science Publications.

\section*{See Also}
ridge.reg, ridge.tune, alfa.ridge, alfaridge.plot

\section*{Examples}
```

y <- as.vector(iris[, 1])
x <- as.matrix(iris[, 2:4])
ridge.plot(y, x, lambda = seq(0, 2, by = 0.1))

```
Ridge regression with compositional data in the covariates side using the alpha-transformation
    Ridge regression with compositional data in the covariates side using
    the \(\alpha\)-transformation

\section*{Description}

Ridge regression with compositional data in the covariates side using the \(\alpha\)-transformation.

\section*{Usage}
alfa.ridge(y, x, a, lambda, \(B=1\), xnew \(=\) NULL)

\section*{Arguments}
y A numerical vector containing the response variable values. If they are percentages, they are mapped onto \(R\) using the logit transformation.
\(x \quad\) A matrix with the predictor variables, the compositional data. Zero values are allowed, but you must be carefull to choose strictly positive vcalues of \(\alpha\).
a The value of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0 . If \(\alpha=0\) the isometric log-ratio transformation is applied.
lambda The value of the regularisation parameter, \(\lambda\).
B If B \(>1\) bootstrap estimation of the standard errors is implemented.
xnew A matrix containing the new compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.

\section*{Details}

The \(\alpha\)-transformation is applied to the compositional data first and then ridge components regression is performed.

\section*{Value}

The output of the ridge.reg.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
ridge.reg, alfaridge.tune, alfaridge.plot

\section*{Examples}
```

library(MASS)
y <- as.vector(fgl[, 1])
x <- as.matrix(fgl[, 2:9])
x <- x/ rowSums(x)
mod1 <- alfa.ridge(y, x, a = 0.5, lambda = 0.1, B = 1, xnew = NULL)
mod2 <- alfa.ridge(y, x, a = 0.5, lambda = 1, B = 1, xnew = NULL)

```
Ridge regression with the alpha-transformation plot
    Ridge regression plot

\section*{Description}

A plot of the regularised regression coefficients is shown.

\section*{Usage}
alfaridge.plot(y, x, a, lambda \(=\operatorname{seq}(0,5, b y=0.1)\) )

\section*{Arguments}
\(y \quad\) A numeric vector containing the values of the target variable. If the values are proportions or percentages, i.e. strictly within 0 and 1 they are mapped into \(R\) using the logit transformation. In any case, they must be continuous only.
x
A numeric matrix containing the continuous variables.
a
The value of the \(\alpha\)-transformation. It has to be between -1 and 1 . If there are zero values in the data, you must use a strictly positive value.
lambda A grid of values of the regularisation parameter \(\lambda\).

\section*{Details}

For every value of \(\lambda\) the coefficients are obtained. They are plotted versus the \(\lambda\) values.

\section*{Value}

A plot with the values of the coefficients as a function of \(\lambda\).

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Giorgos Athineou <gioathineou@gmail.com> and Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Hoerl A.E. and R.W. Kennard (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1): 55-67.
Brown P. J. (1994). Measurement, Regression and Calibration. Oxford Science Publications.
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
```

ridge.plot, alfa.ridge

```

\section*{Examples}
```

library(MASS)
y <- as.vector(fgl[, 1])
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
alfaridge.plot(y, x, a = 0.5, lambda = seq(0, 5, by = 0.1))

```

Simulation of compositional data from Gaussian mixture models
Simulation of compositional data from Gaussian mixture models

\section*{Description}

Simulation of compositional data from Gaussian mixture models.

\section*{Usage}
rmixcomp(n, prob, mu, sigma, type = "alr")

\section*{Arguments}
n
The sample size.
prob A vector with mixing probabilities. Its length is equal to the number of clusters.
mu A matrix where each row corresponds to the mean vector of each cluster.
sigma An array consisting of the covariance matrix of each cluster.
type \(\quad\) Should the additive ("type=alr") or the isometric (type="ilr") log-ration be used? The default value is for the additive log-ratio transformation.

\section*{Details}

A sample from a multivariate Gaussian mixture model is generated.

\section*{Value}

A list including:
id A numeric variable indicating the cluster of simulated vector.
\(x \quad\) A matrix containing the simulated compositional data. The number of dimensions will be +1 .

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas (2015). R package mixture: Mixture Models for Clustering and Classification.

\section*{See Also}
mix.compnorm, bic.mixcompnorm

\section*{Examples}
```

p <- c(1/3, 1/3, 1/3)
mu <- matrix(nrow = 3, ncol = 4)
s <- array(dim = c(4, 4, 3))
x <- as.matrix(iris[, 1:4])
ina <- as.numeric(iris[, 5])
mu <- rowsum(x, ina) / 50
s[, , 1] <- cov(x[ina == 1,])
s[, , 2] <- cov(x[ina == 2,])
s[, , 3] <- cov(x[ina == 3,])
y <- rmixcomp(100, p, mu, s, type = "alr")

```

Simulation of compositional data from mixtures of Dirichlet distributions Simulation of compositional data from mixtures of Dirichlet distributions

\section*{Description}

Simulation of compositional data from mixtures of Dirichlet distributions.

\section*{Usage}
rmixdiri(n, a, prob)

\section*{Arguments}
\(\mathrm{n} \quad\) The sample size.
a A matrix where each row contains the parameters of each Dirichlet component.
prob A vector with the mixing probabilities.

\section*{Details}

A sample from a Dirichlet mixture model is generated.

\section*{Value}

A list including:
\[
\begin{array}{ll}
\text { id } & \text { A numeric variable indicating the cluster of simulated vector. } \\
x & \text { A matrix containing the simulated compositional data. }
\end{array}
\]

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Ye X., Yu Y. K. and Altschul S. F. (2011). On the inference of Dirichlet mixture priors for protein sequence comparison. Journal of Computational Biology, 18(8), 941-954.

\section*{See Also}
rmixcomp, mixdiri.contour,

\section*{Examples}
```

a <- matrix(c(12, 30, 45, 32, 50, 16), byrow = TRUE,ncol = 3)
prob <- c(0.5, 0.5)
x <- rmixdiri(100, a, prob)

```

Simulation of compositional data from the Flexible Dirichlet distribution
Simulation of compositional data from the Flexible Dirichlet distribution

\section*{Description}

Simulation of compositional data from the Flexible Dirichlet distribution.

\section*{Usage}
\(r f d(n\), alpha, prob, tau)

\section*{Arguments}
n
alpha
prob
tau The positive scalar tau parameter.

\section*{Details}

For more information see the references.

\section*{Value}

A matrix with compositional data.

\section*{Author(s)}

Michail Tsagris ported from the R package FlexDir. <mtsagris@uoc.gr>.

\section*{References}

Ongaro A. and Migliorati S. (2013). A generalization of the Dirichlet distribution. Journal of Multivariate Analysis, 114, 412-426.

Migliorati S., Ongaro A. and Monti G. S. (2017). A structured Dirichlet mixture model for compositional data: inferential and applicative issues. Statistics and Computing, 27, 963-983.

\section*{See Also}

> fd.est, dfd

\section*{Examples}
```

alpha <- c(12, 11, 10)
prob <- c(0.25, 0.25, 0.5)
x <- rfd(100, alpha, prob, 7)

```
Simulation of compositional data from the folded normal distribution
    Simulation of compositional data from the folded model normal distri-
    bution

\section*{Description}

Simulation of compositional data from the folded model normal distribution.

\section*{Usage}
rfolded(n, mu, su, a)

\section*{Arguments}
\begin{tabular}{ll}
n & The sample size. \\
mu & The mean vector. \\
su & The covariance matrix. \\
a & The value of \(\alpha\).
\end{tabular}

\section*{Details}

A sample from the folded model is generated.

\section*{Value}

A matrix with compositional data.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Tsagris M. and Stewart C. (2020). A folded model for compositional data analysis. Australian and New Zealand Journal of Statistics, 62(2): 249-277. https://arxiv.org/pdf/1802.07330.pdf

\section*{See Also}
alfa, alpha.mle, a.est

\section*{Examples}
```

s <- c(0.1490676523, -0.4580818209, 0.0020395316, -0.0047446076, -0.4580818209,
$1.5227259250,0.0002596411,0.0074836251,0.0020395316,0.0002596411$,
$0.0365384838,-0.0471448849,-0.0047446076,0.0074836251,-0.0471448849$,
0.0611442781)
s <- matrix(s, ncol = 4)
$m<-c(1.715,0.914,0.115,0.167)$
$x<-r f o l d e d(100, m, s, 0.5)$
a.est(x)

```
Spatial median regression
Spatial median regression

\section*{Description}

Spatial median regression with Euclidean data.

\section*{Usage}
spatmed.reg(y, \(x\), xnew \(=\) NULL, tol \(=1 \mathrm{e}-07\), ses \(=\) FALSE \()\)

\section*{Arguments}
y A matrix with the compositional data. Zero values are not allowed.
x
The predictor variable(s), they have to be continuous.
xnew If you have new data use it, otherwise leave it NULL.
tol The threshold upon which to stop the iterations of the Newton-Rapshon algorithm.
ses
If you want to extract the standard errors of the parameters, set this to TRUE. Be careful though as this can slow down the algorithm dramatically. In a run example with 10,000 observations and 10 variables for \(y\) and 30 for \(x\), when ses \(=\) FALSE the algorithm can take 0.20 seconds, but when ses \(=\) TRUE it can go up to 140 seconds.

\section*{Details}

The objective function is the minimization of the sum of the absolute residuals. It is the multivariate generalization of the median regression. This function is used by comp. reg.

\section*{Value}

\section*{A list including:}
iter The number of iterations that were required.
runtime The time required by the regression.
be The beta coefficients.
seb The standard error of the beta coefficients is returned if ses=TRUE and NULL otherwise.
est The fitted of xnew if xnew is not NULL.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Biman Chakraborty (2003). On multivariate quantile regression. Journal of Statistical Planning and Inference, 110(1-2), 109-132. http://www.stat.nus.edu.sg/export/sites/dsap/research/documents/tr01_2000.pdf

\section*{See Also}
multivreg, comp.reg, alfa.reg, js.compreg, diri.reg

\section*{Examples}
library (MASS)
\(x\) <- as.matrix(iris[, 3:4])
\(\mathrm{y}<-\operatorname{as} . \operatorname{matrix}(\operatorname{iris}[, 1: 2])\)
mod1 <- spatmed.reg(y, x)
\(\bmod 2<-\operatorname{multivreg}(y, x, p l o t=F A L S E)\)
Ternary diagram Ternary diagram

\section*{Description}

Ternary diagram.

\section*{Usage}
ternary ( \(\mathrm{x}, \mathrm{dg}=\mathrm{FALSE}, \mathrm{hg}=\mathrm{FALSE}\), means \(=\) TRUE, \(\mathrm{pca}=\) FALSE, colour \(=\) NULL)

\section*{Arguments}
x
dg
hg
means
pca Should the first PCA calculated Aitchison (1983) described appear? If yes, then this should be TRUE, or FALSE otherwise.
colour If you want the points to appear in different colour put a vector with the colour numbers or colours.

\section*{Details}

There are two ways to create a ternary graph. We used here that one where each edge is equal to 1 and it is what Aitchison (1986) uses. For every given point, the sum of the distances from the edges is equal to 1 . Horizontal and or diagonal grid lines can appear, so as the closed geometric and the simple arithmetic mean. The first PCA is calculated using the centred log-ratio transformation as Aitchison \((1983,1986)\) suggested. If the data contain zero values, the first PCA will not be plotted. Zeros in the data appear with green circles in the triangle and you will also see NaN in the closed geometric mean.

\section*{Value}

The ternary plot and a 2-row matrix with the means. The closed geometric and the simple arithmetic mean vector and or the first principal component will appear as well if the user has asked for them. Additionally, horizontal or diagonal grid lines can appear as well.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Aitchison, J. (1983). Principal component analysis of compositional data. Biometrika 70(1):57-65.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

\section*{See Also}
comp.den, alfa, diri.contour, comp.kerncontour

\section*{Examples}
```

x <- as.matrix(iris[, 1:3])
x <- x / rowSums(x)
ternary(x, means = TRUE, pca = TRUE)

```
```

 Ternary diagram of regression models
    ```
        Ternary diagram of regression models

\section*{Description}

Ternary diagram of regression models.

\section*{Usage}
ternary.reg(y, est, id, labs)

\section*{Arguments}
\(y \quad\) A matrix with the compositional data.
est A matrix with all fitted compositional data for all regression models, one under the other.
id A vector indicating the regression model of each fitted compositional data set.
labs The names of the regression models to appea in the legend.

\section*{Details}

The points first appear on the ternary plot. Then, the fitted compositional data appear with different lines for each regression model.

\section*{Value}

The ternary plot and lines for the fitted values of each regression model.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

\section*{See Also}
```

 ternary, diri.contour, comp.kerncontour
    ```

\section*{Examples}
```

x <- cbind(1, rnorm(50))
a <- exp(x %*% matrix(rnorm(6,0, 0.4), ncol = 3))
y <- matrix(NA, 50, 3)
for (i in 1:50) y[i,] <- rdiri(1, a[i,])
est <- comp.reg(y, x[, -1], xnew = x[, -1])\$est
ternary.reg(y, est, id = rep(1, 50), labs = "ALR regression")

```

The additive log-ratio transformation and its inverse The additive log-ratio transformation and its inverse

\section*{Description}

The additive log-ratio transformation and its inverse.

\section*{Usage}
\(\operatorname{alr}(x)\)
alrinv( \(y\) )

\section*{Arguments}
\(x \quad\) A numerical matrix with the compositional data.
y A numerical matrix with data to be closed into the simplex.

\section*{Details}

The additive log-ratio transformation with the first component being the common divisor is applied. The inverse of this transformation is also available. This means that no zeros are allowed.

\section*{Value}

A matrix with the alr transformed data (if alr is used) or with the compositional data (if the alrinv is used).

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

\section*{See Also}
```

bc, pivot, fp, green, alfa, alfainv alfa.profile, alfa.tune

```

\section*{Examples}
library (MASS)
\(x<-\) as.matrix(fgl[, 2:9])
\(x<-x / \operatorname{rowSums}(x)\)
\(y<-\operatorname{alr}(x)\)
\(x 1<-\operatorname{alrinv}(y)\)

The alpha-distance The \(\alpha\)-distance

\section*{Description}

This is the Euclidean (or Manhattan) distance after the \(\alpha\)-transformation has been applied.

\section*{Usage}
alfadist(x, a, type = "euclidean", square = FALSE)
alfadista(xnew, \(x\), a, type \(=\) "euclidean", square = FALSE)

\section*{Arguments}
xnew A matrix or a vector with new compositional data.
\(x \quad\) A matrix with the compositional data.
a The value of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0 . If \(\alpha=0\), the isometric log-ratio transformation is applied.
type \(\quad\) Which type distance do you want to calculate after the \(\alpha\)-transformation, "euclidean", or "manhattan".
square In the case of the Euclidean distance, you can choose to return the squared distance by setting this TRUE.

\section*{Details}

The \(\alpha\)-transformation is applied to the compositional data first and then the Euclidean or the Manhattan distance is calculated.

\section*{Value}

For "alfadist" a matrix including the pairwise distances of all observations or the distances between xnew and \(x\). For "alfadista" a matrix including the pairwise distances of all observations or the distances between xnew and \(x\).

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Tsagris M.T., Preston S. and Wood A.T.A. (2016). Improved classification for compositional data using the \(\alpha\)-transformation. Journal of Classification. 33(2):243-261. https://arxiv.org/pdf/1506.04976v2.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
alfa, alfainv, alfa.reg, esov

\section*{Examples}
```

library(MASS)
x <- as.matrix(fgl[1:20, 2:9])
x <- x / rowSums(x)
alfadist(x, 0.1)
alfadist(x, 1)

```
The alpha-IT transformation
    The \(\alpha\)-IT transformation

\section*{Description}

The \(\alpha\)-IT transformation.

\section*{Usage}
ait(x, a, h = TRUE)

\section*{Arguments}
\(x \quad\) A matrix with the compositional data.
a The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\) the isometric log-ratio transformation is applied.
h
A boolean variable. If is TRUE (default value) the multiplication with the Helmert sub-matrix will take place. When \(\alpha=0\) and \(\mathrm{h}=\) FALSE, the result is the centred log-ratio transformation (Aitchison, 1986). In general, when \(\mathrm{h}=\) FALSE the resulting transformation maps the data onto a singualr space. The sum of the vectors is equal to 0 . Hence, from the simplex constraint the data go to another constraint.

\section*{Details}

The \(\alpha\)-IT transformation is applied to the compositional data.

\section*{Value}

A matrix with the \(\alpha\)-IT transformed data.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Clarotto L., Allard D. and Menafoglio A. (2022). A new class of \(\alpha\)-transformations for the spatial analysis of Compositional Data. Spatial Statistics, 47.

\section*{See Also}
aitdist, ait.knn, alfa, green, alr

\section*{Examples}
```

library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
y1 <- ait(x, 0.2)
y2 <- ait(x, 1)
rbind(colMeans(y1), colMeans(y2))

```

The alpha-IT-distance The \(\alpha\)-IT-distance

\section*{Description}

This is the Euclidean (or Manhattan) distance after the \(\alpha\)-IT-transformation has been applied.

\section*{Usage}
aitdist(x, a, type = "euclidean", square = FALSE)
aitdista(xnew, x, a, type = "euclidean", square = FALSE)

\section*{Arguments}
xnew A matrix or a vector with new compositional data.
x
A matrix with the compositional data.
a
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\), the isometric log-ratio transformation is applied.
type \(\quad\) Which type distance do you want to calculate after the \(\alpha\)-transformation, "euclidean", or "manhattan".
square In the case of the Euclidean distance, you can choose to return the squared distance by setting this TRUE.

\section*{Details}

The \(\alpha\)-IT-transformation is applied to the compositional data first and then the Euclidean or the Manhattan distance is calculated.

\section*{Value}

For "alfadist" a matrix including the pairwise distances of all observations or the distances between xnew and x . For "alfadista" a matrix including the pairwise distances of all observations or the distances between xnew and x .

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Clarotto L., Allard D. and Menafoglio A. (2021). A new class of \(\alpha\)-transformations for the spatial analysis of Compositional Data. https://arxiv.org/abs/2110.07967

\section*{See Also}
```

ait, alfadist, alfa

```

\section*{Examples}
```

library(MASS)
x <- as.matrix(fgl[1:20, 2:9])
x <- x / rowSums(x)
aitdist(x, 0.1)
aitdist(x, 1)

```
The alpha- \(\mathrm{k}-\mathrm{NN}\) regression for compositional response data
    The \(\alpha-k\)-NN regression for compositional response data

\section*{Description}

The \(\alpha\)-k-NN regression for compositional response data.

\section*{Usage}
```

aknn.reg(xnew, y, x, a = seq(0.1, 1, by = 0.1), k = 2:10,
apostasi = "euclidean", rann = FALSE)

```

\section*{Arguments}
xnew A matrix with the new predictor variables whose compositions are to be predicted.
y A matrix with the compositional response data. Zeros are allowed.
\(x \quad\) A matrix with the available predictor variables.
a The value(s) of \(\alpha\). Either a single value or a vector of values. As zero values in the compositional data are allowed, you must be careful to choose strictly positive vcalues of \(\alpha\). However, if negative values are passed, the positive ones are used only.
\(\mathrm{k} \quad\) The number of nearest neighbours to consider. It can be a single number or a vector.
apostasi The type of distance to use, either "euclidean" or "manhattan".
rann If you have large scale datasets and want a faster \(k-N N\) search, you can use kdtrees implemented in the R package "RANN". In this case you must set this argument equal to TRUE. Note however, that in this case, the only available distance is by default "euclidean".

\section*{Details}

The \(\alpha-\mathrm{k}-\mathrm{NN}\) regression for compositional response variables is applied.

\section*{Value}

A list with the estimated compositional response data for each value of \(\alpha\) and k .

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Michail Tsagris, Abdulaziz Alenazi and Connie Stewart (2021). Non-parametric regression models for compositional data. https://arxiv.org/pdf/2002.05137.pdf

\section*{See Also}
aknnreg.tune, akern.reg, alfa.reg, comp.ppr, comp.reg, kl.compreg

\section*{Examples}
```

y <- as.matrix(iris[, 1:3])
y <- y / rowSums(y)
x <- iris[, 4]
mod <- aknn.reg(x, y, x, a = c(0.4, 0.5), k = 2:3, apostasi = "euclidean")

```
The alpha-k-NN regression with compositional predictor variables
    The \(\alpha-k-N N\) regression with compositional predictor variables

\section*{Description}

The \(\alpha\)-k-NN regression with compositional predictor variables.

\section*{Usage}
alfa.knn.reg(xnew, y, x, a = 1, k = 2:10, apostasi = "euclidean", method = "average")

\section*{Arguments}
xnew A matrix with the new compositional predictor variables whose response is to be predicted. Zeros are allowed.
y The response variable, a numerical vector.
\(x \quad\) A matrix with the available compositional predictor variables. Zeros are allowed.
a
A single value of \(\alpha\). As zero values in the compositional data are allowed, you must be careful to choose strictly positive vcalues of \(\alpha\). If negative values are passed, the positive ones are used only. If the data are already alphatransformed, you can make this NULL.
\(\mathrm{k} \quad\) The number of nearest neighbours to consider. It can be a single number or a vector.
apostasi The type of distance to use, either "euclidean" or "manhattan".
method If you want to take the average of the reponses of the k closest observations, type "average". For the median, type "median" and for the harmonic mean, type "harmonic".

\section*{Details}

The \(\alpha\)-k-NN regression with compositional predictor variables is applied.

\section*{Value}

A matrix with the estimated response data for each value of \(k\).

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Michail Tsagris, Abdulaziz Alenazi and Connie Stewart (2020). Non-parametric regression models for compositional data. https://arxiv.org/pdf/2002.05137.pdf

\section*{See Also}
aknn.reg, alfa.knn, alfa.pcr, alfa.ridge

\section*{Examples}
```

library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
y <- fgl[, 1]
mod <- alfa.knn.reg(x, y, x, a = 0.5, k = 2:4)

```

The alpha-kernel regression with compositional response data
The \(\alpha\)-kernel regression with compositional response data

\section*{Description}

The \(\alpha\)-kernel regression with compositional response data.

\section*{Usage}
akern.reg( xnew, y, x, a = seq(0.1, 1, by = 0.1), h \(=\operatorname{seq}(0.1,1\), length = 10), type = "gauss" )

\section*{Arguments}
xnew A matrix with the new predictor variables whose compositions are to be predicted.
y A matrix with the compositional response data. Zeros are allowed.
\(x \quad\) A matrix with the available predictor variables.
a
The value(s) of \(\alpha\). Either a single value or a vector of values. As zero values in the compositional data are allowed, you must be careful to choose strictly positive vcalues of \(\alpha\). However, if negative values are passed, the positive ones are used only.
h
The bandwidth value(s) to consider.
type
The type of kernel to use, "gauss" or "laplace".

\section*{Details}

The \(\alpha\)-kernel regression for compositional response variables is applied.

\section*{Value}

A list with the estimated compositional response data for each value of \(\alpha\) and h .

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Tsagris M., Alenazi A. and Stewart C. (2021). Non-parametric regression models for compositional data. https://arxiv.org/pdf/2002.05137.pdf

\section*{See Also}
akernreg.tune, aknn.reg, aknnreg.tune, alfa.reg, comp.ppr, comp.reg, kl.compreg

\section*{Examples}
```

y <- as.matrix(iris[, 1:3])
y <- y / rowSums(y)
x <- iris[, 4]
mod <- akern.reg(x, y, x, a = c(0.4, 0.5), h = c(0.1, 0.2))

```

The alpha-transformation
The \(\alpha\)-transformation

\section*{Description}

The \(\alpha\)-transformation.

\section*{Usage}
\(\operatorname{alfa}(x, a, h=T R U E)\)
alef(x, a)

\section*{Arguments}
\(x \quad\) A matrix with the compositional data.
a The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\) the isometric log-ratio transformation is applied.
h
A boolean variable. If is TRUE (default value) the multiplication with the Helmert sub-matrix will take place. When \(\alpha=0\) and \(\mathrm{h}=\) FALSE, the result is the centred log-ratio transformation (Aitchison, 1986). In general, when \(\mathrm{h}=\) FALSE the resulting transformation maps the data onto a singualr space. The sum of the vectors is equal to 0 . Hence, from the simplex constraint the data go to another constraint.

\section*{Details}

The \(\alpha\)-transformation is applied to the compositional data. The command "alef" is the same as "alfa(x, a, h = FALSE)", but reurns a different element as well and is necessary for the functions a.est, a.mle and alpha.mle.

\section*{Value}

A list including:
sa The logarithm of the Jacobian determinant of the \(\alpha\)-transformation. This is used in the "profile" function to speed up the computations.
sk If the "alef" was called, this will return the sum of the \(\alpha\)-power transformed data, prior to being normalised to sum to 1 . If \(\alpha=0\), this will not be returned.
aff The \(\alpha\)-transformed data.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Tsagris Michail and Stewart Connie (2020). A folded model for compositional data analysis. Australian and New Zealand Journal of Statistics, 62(2): 249-277. https://arxiv.org/pdf/1802.07330.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

\section*{See Also}
```

alfainv, pivot, alfa.profile, alfa.tune a.est, alpha.mle, alr, bc, fp, green

```

\section*{Examples}
```

library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
y1 <- alfa(x, 0.2)$aff
y2 <- alfa(x, 1)$aff
rbind(colMeans(y1), colMeans(y2))
y3 <- alfa(x, 0.2)\$aff
dim(y1) ; dim(y3)
rowSums(y1)
rowSums(y3)

```

The Box-Cox transformation applied to ratios of components The Box-Cox transformation applied to ratios of components

\section*{Description}

The Box-Cox transformation applied to ratios of components.

\section*{Usage}
bc (x, lambda)

\section*{Arguments}
x
A matrix with the compositional data. The first component must be zero values free.
lambda The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\lambda=0\) the additive log-ratio transformation (alr) is applied.

\section*{Details}

The Box-Cox transformation applied to ratios of components, as described in Aitchison (1986) is applied.

\section*{Value}

A matrix with the transformed data.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris<mtsagris@uoc.gr>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

\section*{See Also}
alr, fp, green, alfa

\section*{Examples}
```

library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
y1 <- bc(x, 0.2)
y2 <- bc(x, 0)
rbind(colMeans(y1), colMeans(y2))
rowSums(y1)
rowSums(y2)

```

The ESOV-distance The ESOV-distance

\section*{Description}

The ESOV-distance.

\section*{Usage}
esov( \(x\) )
esova(xnew, \(x\) )
es(x1, x2)

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & A matrix with compositional data. \\
xnew & A matrix or a vector with new compositional data. \\
x1 & A vector with compositional data. \\
x2 & A vector with compositional data.
\end{tabular}

\section*{Details}

The ESOV distance is calculated.

\section*{Value}

For "esov" a matrix including the pairwise distances of all observations or the distances between xnew and \(x\). For "esova" a matrix including the pairwise distances of all observations or the distances between xnew and x. For "es" a number, the ESOV distance between x1 and x2.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Tsagris, Michail (2014). The k-NN algorithm for compositional data: a revised approach with and without zero values present. Journal of Data Science, 12(3): 519-534.
Endres, D. M. and Schindelin, J. E. (2003). A new metric for probability distributions. Information Theory, IEEE Transactions on 49, 1858-1860.
Osterreicher, F. and Vajda, I. (2003). A new class of metric divergences on probability spaces and its applicability in statistics. Annals of the Institute of Statistical Mathematics 55, 639-653.

\section*{See Also}
alfadist, comp.knn, js.compreg

\section*{Examples}
library (MASS)
\(x<-\) as.matrix(fgl[1:20, 2:9])
\(x<-x / \operatorname{rowSums}(x)\)
\(\operatorname{esov}(x)\)

The folded power transformation The folded power transformation

\section*{Description}

The folded power transformation.

\section*{Usage}
\(f p(x\), lambda)

\section*{Arguments}
\(x \quad\) A matrix with the compositional data. Zero values are allowed.
lambda
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\lambda=0\) the additive log-ratio transformation (alr) is applied. If zero values are present \(\lambda\) must be strictly positive.

\section*{Details}

The folded power transformation is applied to the compositional data.

\section*{Value}

A matrix with the transformed data.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Atkinson, A. C. (1985). Plots, transformations and regression; an introduction to graphical methods of diagnostic regression analysis Oxford University Press.

\section*{See Also}
```

alr, bc, green, alfa

```

\section*{Examples}
```

library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
y1 <- fp(x, 0.2)
y2 <- fp(x, 0)
rbind(colMeans(y1), colMeans(y2))
rowSums(y1)
rowSums(y2)

```

The Frechet mean for compositional data
The Frechet mean for compositional data

\section*{Description}

Mean vector or matrix with mean vectors of compositional data using the \(\alpha\)-transformation.

\section*{Usage}
frechet ( \(x, a\) )

\section*{Arguments}
x
a

A matrix with the compositional data.
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\) the isometric log-ratio transformation is applied and the closed geometric mean is calculated. You can also provide a sequence of values of alpha and in this case a matrix of Frechet means will be returned.

\section*{Details}

The power transformation is applied to the compositional data and the mean vector is calculated. Then the inverse of it is calculated and the inverse of the power transformation applied to the last vector is the Frechet mean.

\section*{Value}

If \(\alpha\) is a single value, the function will return a vector with the Frechet mean for the given value of \(\alpha\). Otherwise the function will return a matrix with the Frechet means for each value of \(\alpha\).

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
alfa, alfainv, profile

\section*{Examples}
```

library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
frechet(x, 0.2)
frechet(x, 1)

```
The Helmert sub-matrix
The Helmert sub-matrix

\section*{Description}

The Helmert sub-matrix.

\section*{Usage}
helm(n)

\section*{Arguments}
\(n\) A number grater than or equal to 2 .

\section*{Details}

The Helmert sub-matrix is returned. It is an orthogonal matrix without the first row.

\section*{Value}

A \((n-1) \times n\) matrix.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf
John Aitchison (2003). The Statistical Analysis of Compositional Data, p. 99. Blackburn Press.
Lancaster H. O. (1965). The Helmert matrices. The American Mathematical Monthly 72(1): 4-12.

\section*{See Also}
alfa, alfainv

\section*{Examples}
helm(3)
helm(5)

The k-nearest neighbours using the alpha-distance
The \(k\)-nearest neighbours using the \(\alpha\)-distance

\section*{Description}

The k-nearest neighbours using the \(\alpha\)-distance.

\section*{Usage}
alfann(xnew, x, a, k=10, rann = FALSE)

\section*{Arguments}
xnew A matrix or a vector with new compositional data.
\(x \quad\) A matrix with the compositional data.
a
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\), the isometric log-ratio transformation is applied.
\(k \quad\) The number of nearest neighbours to search for.
rann If you have large scale datasets and want a faster k-NN search, you can use kdtrees implemented in the R package "RANN". In this case you must set this argument equal to TRUE. Note however, that in this case, the only available distance is by default "euclidean".

\section*{Details}

The \(\alpha\)-transformation is applied to the compositional data first and the indices of the k -nearest neighbours using the Euclidean distance are returned.

\section*{Value}

A matrix including the indices of the nearest neighbours of each xnew from x .

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Michail Tsagris, Abdulaziz Alenazi and Connie Stewart (2021). Non-parametric regression models for compositional data. https://arxiv.org/pdf/2002.05137.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
alfa.knn, comp.nb, alfa.rda, alfa.nb,link\{aknn.reg\}, alfa, alfainv

\section*{Examples}
```

library(MASS)
xnew <- as.matrix(fgl[1:20, 2:9])
xnew <- xnew / rowSums(xnew)
x <- as.matrix(fgl[-c(1:20), 2:9])
x <- x / rowSums(x)
b <- alfann(xnew, x, a = 0.1, k = 10)

```

The k-NN algorithm for compositional data
The \(k\)-NN algorithm for compositional data

\section*{Description}

The k-NN algorithm for compositional data with and without using the power transformation.

\section*{Usage}
comp.knn(xnew, x, ina, \(a=1, k=5\), apostasi = "ESOV", mesos = TRUE)
alfa.knn(xnew, \(x\), ina, \(a=1, k=5\), mesos \(=\) TRUE, apostasi \(=\) "euclidean", rann = FALSE)
ait.knn(xnew, \(x\), ina, \(a=1, k=5\), mesos \(=\) TRUE, apostasi \(=\) "euclidean", rann = FALSE)

\section*{Arguments}
xnew A matrix with the new compositional data whose group is to be predicted. Zeros are allowed, but you must be carefull to choose strictly positive values of \(\alpha\) or not to set apostasi= "Ait".
x
A matrix with the available compositional data. Zeros are allowed, but you must be carefull to choose strictly positive values of \(\alpha\) or not to set apostasi= "Ait".
ina A group indicator variable for the available data.
a
The value of \(\alpha\). As zero values in the compositional data are allowed, you must be careful to choose strictly positive vcalues of \(\alpha\). You have the option to put \(\mathrm{a}=\) NULL. In this case, the xnew and x are assumed to be the already \(\alpha\)-transformed data.
k
The number of nearest neighbours to consider. It can be a single number or a vector.
apostasi The type of distance to use. For the compk.knn this can be one of the following: "ESOV", "taxicab", "Ait", "Hellinger", "angular" or "CS". See the references for them. For the alfa.knn this can be either "euclidean" or "manhattan".
mesos This is used in the non standard algorithm. If TRUE, the arithmetic mean of the distances is calulated, otherwise the harmonic mean is used (see details).
rann If you have large scale datasets and want a faster k-NN search, you can use kdtrees implemented in the R package "RANN". In this case you must set this argument equal to TRUE. Note however, that in this case, the only available distance is by default "euclidean".

\section*{Details}

The k-NN algorithm is applied for the compositional data. There are many metrics and possibilities to choose from. The algorithm finds the k nearest observations to a new observation and allocates it to the class which appears most times in the neighbours. It then computes the arithmetic or the harmonic mean of the distances. The new point is allocated to the class with the minimum distance.

\section*{Value}

A vector with the estimated groups.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Tsagris, Michail (2014). The k-NN algorithm for compositional data: a revised approach with and without zero values present. Journal of Data Science, 12(3): 519-534.
Friedman Jerome, Trevor Hastie and Robert Tibshirani (2009). The elements of statistical learning, 2nd edition. Springer, Berlin
Tsagris Michail, Simon Preston and Andrew T.A. Wood (2016). Improved classification for compositional data using the \(\alpha\)-transformation. Journal of classification 33(2): 243-261.
Connie Stewart (2017). An approach to measure distance between compositional diet estimates containing essential zeros. Journal of Applied Statistics 44(7): 1137-1152.

Clarotto L., Allard D. and Menafoglio A. (2022). A new class of \(\alpha\)-transformations for the spatial analysis of Compositional Data. Spatial Statistics, 47.
Endres, D. M. and Schindelin, J. E. (2003). A new metric for probability distributions. Information Theory, IEEE Transactions on 49, 1858-1860.
Osterreicher, F. and Vajda, I. (2003). A new class of metric divergences on probability spaces and its applicability in statistics. Annals of the Institute of Statistical Mathematics 55, 639-653.

\section*{See Also}
compknn.tune, alfa.rda, comp.nb, alfa.nb, alfa, esov, mix.compnorm

\section*{Examples}
```

x <- as.matrix(iris[, 1:4])
x <- x/ rowSums(x)
ina <- iris[, 5]
mod <- comp.knn(x, x, ina, a = 1, k = 5)
table(ina, mod)
mod2 <- alfa.knn(x, x, ina, a = 1, k = 5)
table(ina, mod2)

```

The pivot coordinate transformation and its inverse
The pivot coordinate transformation and its inverse

\section*{Description}

The pivot coordinate transformation and its inverse.

\section*{Usage}
pivot(x)
pivotinv(y)

\section*{Arguments}
\(x \quad\) A numerical matrix with the compositional data.
y A numerical matrix with data to be closed into the simplex.

\section*{Details}

The pivot coordinate transformation and its inverse are computed. This means that no zeros are allowed.

\section*{Value}

A matrix with the alr transformed data (if pivot is used) or with the compositional data (if the pivotinv is used).

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Peter Filzmoser, Karel Hron and Matthias Templ (2018). Applied Compositional Data Analysis With Worked Examples in R (pages 49 and 51). Springer.

\section*{See Also}
alfa, alfainv, alr, green

\section*{Examples}
```

library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
y <- pivot(x)
x1 <- alrinv(y)

```

\section*{Description}

Total variability.

\section*{Usage}
\(\operatorname{totvar}(x, a=0)\)

\section*{Arguments}
\(x \quad\) A numerical matrix with the compositional data.
a The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\) the centred log-ratio transformation is used.

\section*{Details}

The \(\alpha\)-transformation is applied and the sum of the variances of the transformed variables is calculated. This is the total variability. Aitchison (1986) used the centred log-ratio transformation, but we have extended it to cover more geometries, via the \(\alpha\)-transformation.

\section*{Value}

The total variability of the data in a given geometry as dictated by the value of \(\alpha\).

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

\section*{See Also}
alfa, \link\{alfainv,\} alfa.profile, alfa.tune

\section*{Examples}
```

x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
totvar(x)

```

Transformation-free linear regression for compositional responses and predictors Transformation-free linear regression for compositional responses and predictors

\section*{Description}

Transformation-free linear regression for compositional responses and predictors.

\section*{Usage}
tflr \((y, x, x n e w=N U L L)\)

\section*{Arguments}
y A matrix with the compositional response. Zero values are allowed.
\(x \quad\) A matrix with the compositional predictors. Zero values are allowed.
xnew If you have new data use it, otherwise leave it NULL.

\section*{Details}

The transformation-free linear regression for compositional responses and predictors is implemented. The function to be minized is \(-\sum_{i=1}^{n} y_{i} \log y_{i} /\left(X_{i} B\right)\).

\section*{Value}

A list including:
runtime The time required by the regression.
loglik The log-likelihood.
be The beta coefficients.
est The fitted values of xnew if xnew is not NULL.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Jacob Fiksel, Scott Zeger and Abhirup Datta (2020). A transformation-free linear regression for compositional outcomes and predictors. https://arxiv.org/pdf/2004.07881.pdf

\section*{See Also}
cv.tflr, ols.compcomp kl.alfaper

\section*{Examples}
```

library(MASS)
y <- rdiri(214, runif(3, 1, 3))
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
mod <- tflr(y, x, x)
mod

```

Tuning of the alpha generalised correlations between two compositional datasets Tuning of the alpha generalised correlations between two compositional datasets

\section*{Description}

Tuning of the alpha generalised correlations between two compositional datasets.

\section*{Usage}
acor.tune(y, x, a, type = "dcor")

\section*{Arguments}
\(y \quad\) A matrix with the compositional data.
\(x \quad\) A matrix with the compositional data.
a The range of values of the power transformation to search for the optimal one. If zero values are present it has to be greater than 0 .
type the type of correlation to compute, the distance correlation ("edist"), the canonical correlation type 1 ("cancor1") or the canonical correlation type 2 ("cancor2"). See details for more information.

\section*{Details}

The \(\alpha\)-transformation is applied to each composition and then the distance correlation or the canonical correlation is computed. If type \(=\) "cancor 1 " the function returns the value of \(\alpha\) that maximizes the product of the eigenvalues. If type \(=\) "cancor 2 " the function returns the value of \(\alpha\) that maximizes the the largest eigenvalue.

\section*{Value}

A list including:
\begin{tabular}{ll} 
alfa & The optimal value of \(\alpha\). \\
acor & The maximum value of the acor. \\
runtime & The runtime of the optimization
\end{tabular}

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{See Also}
acor, alfa.profile, alfa, alfainv

\section*{Examples}
```

y <- rdiri(30, runif(3))
x <- rdiri(30, runif(4))
acor(y, x, a = 0.4)

```

Tuning of the bandwidth \(h\) of the kernel using the maximum likelihood cross validation Tuning of the bandwidth \(h\) of the kernel using the maximum likelihood cross validation

\section*{Description}

Tuning of the bandwidth h of the kernel using the maximum likelihood cross validation.

\section*{Usage}
mkde.tune ( \(x\), low \(=0.1\), up \(=3, s=\operatorname{cov}(x)\) )

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & A matrix with Euclidean (continuous) data. \\
low & The minimum value to search for the optimal bandwidth value. \\
up & The maximum value to search for the optimal bandwidth value. \\
s & \begin{tabular}{l} 
A covariance matrix. By default it is equal to the covariance matrix of the data, \\
but can change to a robust covariance matrix, MCD for example.
\end{tabular}
\end{tabular}

\section*{Details}

Maximum likelihood cross validation is applied in order to choose the optimal value of the bandwidth parameter. No plot is produced.

\section*{Value}

A list including:
\(\begin{array}{ll}\text { hopt } & \text { The optimal bandwidth value. } \\ \text { maximum } & \text { The value of the pseudo-log-likelihood at that given bandwidth value. }\end{array}\)

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Arsalane Chouaib Guidoum (2015). Kernel Estimator and Bandwidth Selection for Density and its Derivatives. The kedd R package. http://cran.r-project.org/web/packages/kedd/vignettes/kedd.pdf M.P. Wand and M.C. Jones (1995). Kernel smoothing, pages 91-92.

\section*{See Also}
mkde, comp.kerncontour

\section*{Examples}
library (MASS)
mkde.tune(as.matrix(iris[, 1:4]), c(0.1, 3) )

Tuning of the divergence based regression for compositional data with compositional data in the covar
Tuning of the divergence based regression for compositional data with compositional data in the covariates side using the \(\alpha\)-transformation

\section*{Description}

Tuning of the divergence based regression for compositional data with compositional data in the covariates side using the \(\alpha\)-transformation.

\section*{Usage}
klalfapcr.tune ( \(y, x\), covar \(=\) NULL, nfolds \(=10\), maxk \(=50\), \(a=\operatorname{seq}(-1,1\), by \(=0.1\) ), folds \(=\) NULL, graph \(=\) FALSE, tol \(=1 \mathrm{e}-07\), maxiters \(=50\), seed \(=\) NULL)

\section*{Arguments}
\(y \quad\) A numerical matrix with compositional data with or without zeros.
\(x \quad\) A matrix with the predictor variables, the compositional data. Zero values are allowed.
covar If you have other continuous covariates put themn here.
nfolds The number of folds for the K-fold cross validation, set to 10 by default.
maxk The maximum number of principal components to check.
a
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\) the isometric log-ratio transformation is applied.

Tuning of the divergence based regression for compositional data with compositional data in the covariates side using the alpha-tra
\begin{tabular}{ll} 
folds & \begin{tabular}{l} 
If you have the list with the folds supply it here. You can also leave it NULL \\
and it will create folds.
\end{tabular} \\
graph & If graph is TRUE (default value) a plot will appear. \\
tol & The tolerance value to terminate the Newton-Raphson procedure. \\
maxiters & The maximum number of Newton-Raphson iterations. \\
seed & You can specify your own seed number here or leave it NULL.
\end{tabular}

\section*{Details}

The M -fold cross validation is performed in order to select the optimal values for \(\alpha\) and k , the number of principal components. The \(\alpha\)-transformation is applied to the compositional data first, the first k principal component scores are calcualted and used as predictor variables for the KullbackLeibler divergence based regression model. This procedure is performed M times during the M -fold cross validation.

\section*{Value}

A list including:
\begin{tabular}{ll} 
mspe & A list with the KL divergence for each value of \(\alpha\) and k in every fold. \\
performance & \begin{tabular}{l} 
A matrix with the KL divergence for each value of \(\alpha\) averaged over all folds. If \\
graph is set to TRUE this matrix is plotted.
\end{tabular} \\
best.perf & \begin{tabular}{l} 
The minimum KL divergence.
\end{tabular} \\
params & The values of \(\alpha\) and k corresponding to the minimum KL divergence.
\end{tabular}

\section*{Author(s)}

Initial code by Abdulaziz Alenazi. Modifications by Michail Tsagris.
R implementation and documentation: Abdulaziz Alenazi <a. alenazi@nbu. edu.sa> and Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Alenazi A. (2019). Regression for compositional data with compositioanl data as predictor variables with or without zero values. Journal of Data Science, 17(1): 219-238. http://www.jdsonline.com/file_download/688/01+No.10+315+REGRESSION+FOR+COMPOSITIONAL+DATA+WITH+COMPOSITIO
Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. http://arxiv.org/pdf/1508.01913v1.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
```

kl.alfapcr, cv.tflr, pcr, glm.pcr, alfapcr.tune

```

\section*{Examples}
```

library(MASS)
y <- rdiri(214, runif(4, 1, 3))
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
mod <- klalfapcr.tune(y = y, x = x, a = c(0.7, 0.8))
mod

```

Tuning of the \(\mathrm{k}-\mathrm{NN}\) algorithm for compositional data
Tuning of the \(k\)-NN algorithm for compositional data

\section*{Description}

Tuning of the k-NN algorithm for compositional data with and without using the power or the \(\alpha\)-transformation. In addition, estimation of the rate of correct classification via K-fold crossvalidation.

\section*{Usage}
compknn.tune(x, ina, nfolds = 10, k = 2:5, mesos = TRUE, a \(=\operatorname{seq}(-1,1\), by \(=0.1)\), apostasi = "ESOV", folds = NULL, stratified = TRUE, seed = NULL, graph = FALSE)
alfaknn.tune(x, ina, nfolds \(=10, k=2: 5\), mesos \(=\) TRUE, a \(=\) seq( \(-1,1\), by = 0.1), apostasi = "euclidean", rann = FALSE, folds \(=\) NULL, stratified \(=\) TRUE, seed \(=\) NULL, graph = FALSE)
aitknn.tune(x, ina, nfolds \(=10, k=2: 5\), mesos \(=\) TRUE, a \(=\operatorname{seq}(-1,1\), by \(=0.1)\), apostasi = "euclidean", rann = FALSE, folds = NULL, stratified = TRUE, seed = NULL, graph = FALSE)

\section*{Arguments}
x
ina A group indicator variable for the available data.
nfolds The number of folds to be used. This is taken into consideration only if the folds argument is not supplied.
\(\mathrm{k} \quad\) A vector with the nearest neighbours to consider.
mesos This is used in the non standard algorithm. If TRUE, the arithmetic mean of the distances is calculated, otherwise the harmonic mean is used (see details).
a
apostasi
A matrix with the available compositional data. Zeros are allowed, but you must be careful to choose strictly positive values of \(\alpha\) or not to set apostasi= "Ait".
apostas

A grid of values of \(\alpha\) to be used only if the distance chosen allows for it.
The type of distance to use. For the compk.knn this can be one of the following: "ESOV", "taxicab", "Ait", "Hellinger", "angular" or "CS". See the references for them. For the alfa.knn this can be either "euclidean" or "manhattan".
\begin{tabular}{ll} 
rann & \begin{tabular}{l} 
If you have large scale datasets and want a faster k-NN search, you can use kd- \\
trees implemented in the R package "RANN". In this case you must set this \\
argument equal to TRUE. Note however, that in this case, the only available \\
distance is by default "euclidean".
\end{tabular} \\
folds & \begin{tabular}{l} 
If you have the list with the folds supply it here. You can also leave it NULL \\
and it will create folds.
\end{tabular} \\
stratified & \begin{tabular}{l} 
Do you want the folds to be created in a stratified way? TRUE or FALSE. \\
seed
\end{tabular} \\
You can specify your own seed number here or leave it NULL. \\
graph & If set to TRUE a graph with the results will appear.
\end{tabular}

\section*{Details}

The k-NN algorithm is applied for the compositional data. There are many metrics and possibilities to choose from. The algorithm finds the k nearest observations to a new observation and allocates it to the class which appears most times in the neighbours.

\section*{Value}

A list including:
per A matrix or a vector (depending on the distance chosen) with the averaged over all folds rates of correct classification for all hyper-parameters ( \(\alpha\) and k ).
performance The estimated rate of correct classification.
best_a The best value of \(\alpha\). This is returned for "ESOV" and "taxicab" only.
best_k The best number of nearest neighbours.
runtime The run time of the cross-validation procedure.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Tsagris, Michail (2014). The k-NN algorithm for compositional data: a revised approach with and without zero values present. Journal of Data Science, 12(3): 519-534. https://arxiv.org/pdf/1506.05216.pdf
Friedman Jerome, Trevor Hastie and Robert Tibshirani (2009). The elements of statistical learning, 2nd edition. Springer, Berlin

Tsagris M., Preston S. and Wood A.T.A. (2016). Improved classification for compositional data using the \(\alpha\)-transformation. Journal of classification, 33(2):243-261. http://arxiv.org/pdf/1106.1451.pdf
Connie Stewart (2017). An approach to measure distance between compositional diet estimates containing essential zeros. Journal of Applied Statistics 44(7): 1137-1152.

Clarotto L., Allard D. and Menafoglio A. (2022). A new class of \(\alpha\)-transformations for the spatial analysis of Compositional Data. Spatial Statistics, 47.

Endres, D. M. and Schindelin, J. E. (2003). A new metric for probability distributions. Information Theory, IEEE Transactions on 49, 1858-1860.
Osterreicher, F. and Vajda, I. (2003). A new class of metric divergences on probability spaces and its applicability in statistics. Annals of the Institute of Statistical Mathematics 55, 639-653.

\section*{See Also}
```

comp.knn, alfarda.tune, cv.dda, cv.compnb

```

\section*{Examples}
```

x <- as.matrix(iris[, 1:4])
x <- x/ rowSums(x)
ina <- iris[, 5]
mod1 <- compknn.tune(x, ina, a = seq(1, 1, by = 0.1))
mod2 <- alfaknn.tune(x, ina, a = seq(-1, 1, by = 0.1))

```

Tuning of the projection pursuit regression for compositional data
Tuning of the projection pursuit regression for compositional data

\section*{Description}

Tuning of the projection pursuit regression for compositional data.

\section*{Usage}
compppr.tune (y, x, nfolds \(=10\), folds \(=\) NULL, seed \(=\) NULL, nterms = 1:10, type = "alr", yb = NULL )

\section*{Arguments}
y A matrix with the available compositional data, but zeros are not allowed.
\(x \quad\) A matrix with the continuous predictor variables.
nfolds The number of folds to use.
folds If you have the list with the folds supply it here.
seed You can specify your own seed number here or leave it NULL.
nterms The number of terms to try in the projection pursuit regression.
type Either "alr" or "ilr" corresponding to the additive or the isometric log-ratio transformation respectively.
yb If you have already transformed the data using a log-ratio transformation put it here. Othewrise leave it NULL.

\section*{Details}

The function performs tuning of the projection pursuit regression algorithm.

\section*{Value}

A list including:
\begin{tabular}{ll} 
kl & The average Kullback-Leibler divergence. \\
perf & The average Kullback-Leibler divergence. \\
runtime & The run time of the cross-validation procedure.
\end{tabular}

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. Journal of the American Statistical Association, 76, 817-823. doi: 10.2307/2287576.

\section*{See Also}
```

comp.ppr, aknnreg.tune, akernreg.tune

```

\section*{Examples}
```

y <- as.matrix(iris[, 1:3])
y <- y/ rowSums(y)
x <- iris[, 4]
mod <- compppr.tune(y, x)

```

Tuning of the projection pursuit regression with compositional predictor variables Tuning of the projection pursuit regression with compositional predictor variables

\section*{Description}

Tuning of the projection pursuit regression with compositional predictor variables.

\section*{Usage}
pprcomp.tune (y, x, nfolds = 10, folds \(=\) NULL, seed \(=\) NULL,
nterms = 1:10, type = "log", graph = FALSE)

\section*{Arguments}
\(y \quad\) A numerical vector with the continuous variable.
\(x \quad\) A matrix with the available compositional data, but zeros are not allowed.
nfolds The number of folds to use.
folds If you have the list with the folds supply it here.
seed You can specify your own seed number here or leave it NULL.
nterms The number of terms to try in the projection pursuit regression.
type Either "alr" or "log" corresponding to the additive log-ratio transformation or the logarithm applied to the compositional predictor variables.
graph If graph is TRUE (default value) a filled contour plot will appear.

\section*{Details}

The function performs tuning of the projection pursuit regression algorithm with compositional predictor variables.

\section*{Value}

A list including:
runtime The run time of the cross-validation procedure.
mse The mean squared error of prediction for each number of terms.
opt.nterms The number of terms with the minimum mean squared error of prediction.
performance The minimum mean squared error of prediction.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. Journal of the American Statistical Association, 76, 817-823. doi: 10.2307/2287576.

\section*{See Also}
```

pprcomp, ice.pprcomp, alfapcr.tune, compppr.tune

```

\section*{Examples}
```

x <- as.matrix(iris[, 2:4])
x <- x/ rowSums(x)
y <- iris[, 1]
mod <- pprcomp.tune(y, x)

```

Tuning the number of PCs in the PCR with compositional data using the alpha-transformation Tuning the number of PCs in the PCR with compositional data using the \(\alpha\)-transformation

\section*{Description}

This is a cross-validation procedure to decide on the number of principal components when using regression with compositional data (as predictor variables) using the \(\alpha\)-transformation.

\section*{Usage}
alfapcr.tune ( \(\mathrm{y}, \mathrm{x}\), model \(=\) "gaussian", nfolds \(=10\), maxk \(=50\), \(a=\operatorname{seq}(-1,1\), by \(=0.1\) ), folds \(=\) NULL, ncores \(=1\), graph = TRUE, col.nu \(=15\), seed \(=\) NULL)

\section*{Arguments}
\(y \quad\) A vector with either continuous, binary or count data.
\(x \quad\) A matrix with the predictor variables, the compositional data. Zero values are allowed.
model The type of regression model to fit. The possible values are "gaussian", "binomial" and "poisson".
nfolds The number of folds for the K-fold cross validation, set to 10 by default.
maxk The maximum number of principal components to check.
a A vector with a grid of values of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0 . If \(\alpha=0\) the isometric log-ratio transformation is applied.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
ncores How many cores to use. If you have heavy computations or do not want to wait for long time more than 1 core (if available) is suggested. It is advisable to use it if you have many observations and or many variables, otherwise it will slow down th process.
graph If graph is TRUE (default value) a filled contour plot will appear.
col.nu A number parameter for the filled contour plot, taken into account only if graph is TRUE.
seed You can specify your own seed number here or leave it NULL.

\section*{Details}

The \(\alpha\)-transformation is applied to the compositional data first and the function "pcr.tune" or "glmpcr.tune" is called.

\section*{Value}

If graph is TRUE a filled contour will appear. A list including:
mspe \(\quad\) The MSPE where rows correspond to the \(\alpha\) values and the columns to the number of principal components.
best.par The best pair of \(\alpha\) and number of principal components.
performance The minimum mean squared error of prediction.
runtime The time required by the cross-validation procedure.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf
Jolliffe I.T. (2002). Principal Component Analysis.

\section*{See Also}
alfa, profile, alfa.pcr, pcr.tune, glmpcr.tune, glm

\section*{Examples}
```

library(MASS)
y <- as.vector(fgl[, 1])
x <- as.matrix(fgl[, 2:9])
x<- x/ rowSums(x)
mod <- alfapcr.tune(y, x, nfolds = 10, maxk = 50, a = seq(-1, 1, by = 0.1))

```

Tuning the parameters of the regularised discriminant analysis
Tuning the parameters of the regularised discriminant analysis

\section*{Description}

Tuning the parameters of the regularised discriminant analysis for Eucldiean data.

\section*{Usage}
rda.tune(x, ina, nfolds \(=10\), gam \(=\operatorname{seq}(0,1\), by \(=0.1)\), del \(=\operatorname{seq}(0,1\), by \(=0.1)\), ncores \(=1\), folds \(=\) NULL, stratified \(=\) TRUE, seed \(=\) NULL)

\section*{Arguments}
\begin{tabular}{ll}
x & A matrix with the data. \\
ina & A group indicator variable for the avaiable data. \\
nfolds & The number of folds in the cross validation. \\
gam & \begin{tabular}{l} 
A grid of values for the \(\gamma\) parameter as defined in Tsagris et al. (2016). \\
del \\
ncores
\end{tabular} \\
\begin{tabular}{l} 
A grid of values for the \(\delta\) parameter as defined in Tsagris et al. (2016). \\
The number of cores to use. If more than 1, parallel computing will take place. \\
It is advisable to use it if you have many observations and or many variables, \\
otherwise it will slow down th process.
\end{tabular} \\
folds & \begin{tabular}{l} 
If you have the list with the folds supply it here. You can also leave it NULL \\
and it will create folds.
\end{tabular} \\
stratified & \begin{tabular}{l} 
Do you want the folds to be created in a stratified way? TRUE or FALSE. \\
seed
\end{tabular}
\end{tabular}

\section*{Details}

Cross validation is performed to select the optimal parameters for the regularisded discriminant analysis and also estimate the rate of accuracy.
The covariance matrix of each group is calcualted and then the pooled covariance matrix. The spherical covariance matrix consists of the average of the pooled variances in its diagonal and zeros in the off-diagonal elements. gam is the weight of the pooled covariance matrix and 1-gam is the weight of the spherical covariance matrix, \(\mathrm{Sa}=\) gam \(* \mathrm{Sp}+(1\)-gam \() * \mathrm{sp}\). Then it is a compromise between LDA and QDA. del is the weight of Sa and 1-del the weight of each group covariance group. This function is a wrapper for alfa.rda.

\section*{Value}

A list including: If graph is TRUE a plot of a heatmap of the performance \(s\) will appear.
\begin{tabular}{ll} 
per & \begin{tabular}{l} 
An array with the estimate rate of correct classification for every fold. For each \\
of the \(M\) matrices, the row values correspond to gam and the columns to the del \\
parameter.
\end{tabular} \\
percent & \begin{tabular}{l} 
A matrix with the mean estimated rates of correct classification. The row values \\
correspond to gam and the columns to the del parameter.
\end{tabular} \\
se & \begin{tabular}{l} 
A matrix with the standard error of the mean estimated rates of correct classifi- \\
cation. The row values correspond to gam and the columns to the del parameter.
\end{tabular} \\
result & \begin{tabular}{l} 
The estimated rate of correct classification along with the best gam and del pa- \\
rameters.
\end{tabular} \\
runtime & The time required by the cross-validation procedure.
\end{tabular}

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Friedman Jerome, Trevor Hastie and Robert Tibshirani (2009). The elements of statistical learning, 2nd edition. Springer, Berlin
Tsagris M., Preston S. and Wood A.T.A. (2016). Improved classification for compositional data using the \(\alpha\)-transformation. Journal of classification, 33(2):243-261. http://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}
rda, alfa

\section*{Examples}
```

mod <- rda.tune(as.matrix(iris[, 1:4]), iris[, 5], gam = seq(0, 1, by = 0.2),
del = seq(0, 1, by = 0.2))
mod

```
Tuning the principal components with GLMs
    Tuning the principal components with GLMs

\section*{Description}

Tuning the number of principal components in the generalised linear models.

\section*{Usage}
pcr.tune (y, \(x\), nfolds \(=10\), maxk \(=50\), folds \(=\) NULL, ncores \(=1\), seed \(=\) NULL, graph \(=\) TRUE)
glmpcr.tune (y, \(x\), nfolds \(=10\), maxk \(=10\), folds = NULL, ncores = 1, seed \(=\) NULL, graph = TRUE)
multinompcr.tune(y, \(x\), nfolds \(=10\), maxk \(=10\), folds \(=\) NULL, ncores \(=1\), seed \(=\) NULL, graph \(=\) TRUE)

\section*{Arguments}
y
x
nfolds
maxk

A real valued vector for "pcr.tune". A real valued vector for the "glmpcr.tune" with either two numbers, 0 and 1 for example, for the binomial regression or with positive discrete numbers for the poisson. For the "multinompcr.tune" a vector or a factor with more than just two values. This is a multinomial regression.
A matrix with the predictor variables, they have to be continuous.
The number of folds in the cross validation.
The maximum number of principal components to check.
\begin{tabular}{ll} 
folds & \begin{tabular}{l} 
If you have the list with the folds supply it here. You can also leave it NULL \\
and it will create folds.
\end{tabular} \\
ncores & \begin{tabular}{l} 
The number of cores to use. If more than 1, parallel computing will take place. \\
It is advisable to use it if you have many observations and or many variables, \\
otherwise it will slow down th process.
\end{tabular} \\
seed & \begin{tabular}{l} 
You can specify your own seed number here or leave it NULL.
\end{tabular} \\
graph & \begin{tabular}{l} 
If graph is TRUE a plot of the performance for each fold along the values of \(\alpha\) \\
will appear.
\end{tabular}
\end{tabular}

\section*{Details}

Cross validation is performed to select the optimal number of principal components in the GLMs or the multinomial regression. This is used by alfapcr. tune.

\section*{Value}

If graph is TRUE a plot of the performance versus the number of principal components will appear. A list including:
msp A matrix with the mean deviance of prediction or mean accuracy for every fold.
mpd A vector with the mean deviance of prediction or mean accuracy, each value corresponds to a number of principal components.
\(\mathrm{k} \quad\) The number of principal components which minimizes the deviance or maximises the accuracy.
performance The optimal performance, MSE for the linea regression, minimum deviance for the GLMs and maximum accuracy for the multinomial regression.
runtime The time required by the cross-validation procedure.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aguilera A.M., Escabias M. and Valderrama M.J. (2006). Using principal components for estimating logistic regression with high-dimensional multicollinear data. Computational Statistics \& Data Analysis 50(8): 1905-1924.

Jolliffe I.T. (2002). Principal Component Analysis.

\section*{See Also}
pcr.tune, glm.pcr, alfa.pcr, alfapcr.tune

\section*{Examples}
library (MASS)
x <- as.matrix(fgl[, 2:9])
\(y<-\operatorname{rpois}(214,10)\)
glmpcr.tune (y, \(x\), nfolds \(=10, \operatorname{maxk}=20\), folds \(=\) NULL, ncores \(=1\) )

Tuning the value of alpha in the alpha-regression
Tuning the value of \(\alpha\) in the \(\alpha\)-regression

\section*{Description}

Tuning the value of \(\alpha\) in the \(\alpha\)-regression.

\section*{Usage}
alfareg.tune \((y, x, a=\operatorname{seq}(0.1,1, b y=0.1), ~ n f o l d s=10\),
folds \(=\) NULL, \(n c=1\), seed \(=\) NULL, graph \(=\) FALSE)

\section*{Arguments}
y A matrix with compositional data. zero values are allowed.
\(x \quad\) A matrix with the continuous predictor variables or a data frame including categorical predictor variables.
a The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If \(\alpha=0\) the isometric log-ratio transformation is applied.
nfolds The number of folds to split the data.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
nc The number of cores to use. IF you have a multicore computer it is advisable to use more than 1. It makes the procedure faster. It is advisable to use it if you have many observations and or many variables, otherwise it will slow down th process.
seed You can specify your own seed number here or leave it NULL.
graph If graph is TRUE a plot of the performance for each fold along the values of \(\alpha\) will appear.

\section*{Details}

The \(\alpha\)-transformation is applied to the compositional data and the numerical optimisation is performed for the regression, unless \(\alpha=0\), where the coefficients are available in closed form.

\section*{Value}

A plot of the estimated Kullback-Leibler divergences (multiplied by 2) along the values of \(\alpha\) (if graph is set to TRUE). A list including:
runtime The runtime required by the cross-validation.
kula A matrix with twice the Kullback-Leibler divergence of the observed from the fitted values. Each row corresponds to a fold and each column to a value of \(\alpha\). The average over the columns equal the next argument, "kl".
kl A vector with twice the Kullback-Leibler divergence of the observed from the fitted values. Every value corresponds to a value of \(\alpha\).
opt The optimal value of \(\alpha\).
value \(\quad\) The minimum value of twice the Kullback-Leibler.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou <gioathineou@gmail.com>.

\section*{References}

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

\section*{See Also}

> alfa.reg, alfa

\section*{Examples}
```

library(MASS)
y <- as.matrix(fgl[1:40, 2:4])
y <- y /rowSums(y)
x <- as.vector(fgl[1:40, 1])
mod <- alfareg.tune(y, x, a = seq(0, 1, by = 0.1), nfolds = 5)

```
```

Two-sample test of high-dimensional means for compositional data
Two-sample test of high-dimensional means for compositional data

```

\section*{Description}

Two-sample test of high-dimensional means for compositional data.

\section*{Usage}
hd.meantest2(y1, y2, R = 1)

\section*{Arguments}
y1 A matrix containing the compositional data of the first group.
y2 A matrix containing the compositional data of the second group.
\(\mathrm{R} \quad\) If R is 1 no bootstrap calibration is performed and the asymptotic p -value is returned. If R is greater than 1 , the bootstrap p -value is returned.

\section*{Details}

A two sample for high dimensional mean vectors of compositional data is implemented. See references for more details.

\section*{Value}

A vector with the test statistic value and its associated (bootstrap) p-value.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Cao Y., Lin W. and Li H. (2018). Two-sample tests of high-dimensional means for compositional data. Biometrika, 105(1): 115-132.

\section*{See Also}
```

comp.test, maovjames, maov, hotel2T2, el.test2, eel.test2

```

\section*{Examples}
```

m <- runif(200, 10, 15)
x1 <- rdiri(100, m)
x2 <- rdiri(100, m)
hd.meantest2(x1, x2)

```
```

Unconstrained log-contrast logistic or Poisson regression with compositional predictor variables
Unconstrained log-contrast logistic or Poisson regression with com-
positional predictor variables

```

\section*{Description}

Unconstrained log-contrast logistic or Poisson regression with compositional predictor variables.

\section*{Usage}
ulc.glm(y, x, z = NULL, model = "logistic", xnew = NULL, znew = NULL)

\section*{Arguments}
y A numerical vector containing the response variable values. This must be a continuous variable.
\(x \quad\) A matrix with the predictor variables, the compositional data. No zero values are allowed.
z A matrix, data.frame, factor or a vector with some other covariate(s).
model This can be either "logistic" or "poisson".
xnew A matrix containing the new compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.
znew A matrix, data.frame, factor or a vector with the values of some other covariate(s). If you have no new data, leave this NULL as is by default.

\section*{Details}

The function performs the unconstrained log-contrast logistic or Poisson regression model. The logarithm of the compositional predictor variables is used (hence no zero values are allowed). The response variable is linked to the log-transformed data without the constraint that the sum of the regression coefficients equals 0 . If you want the regression without the zum-to-zero contraints see lc.glm. Extra predictors variables are allowed as well, for instance categorical or continuous.

\section*{Value}

A list including:
devi The residual deviance of the logistic or Poisson regression model.
be The constrained regression coefficients. Their sum equals 0 .
est If the arguments "xnew" and znew were given these are the predicted or estimated values, otherwise it is NULL.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Lu J., Shi P., and Li H. (2019). Generalized linear models with linear constraints for microbiome compositional data. Biometrics, 75(1): 235-244.

\section*{See Also}
lc.glm, lc.reg, lc.reg2, alfa.pcr, glm.pcr

\section*{Examples}
```

y <- rbinom(150, 1, 0.5)
x <- rdiri(150, runif(3, 1,3))
mod <- ulc.glm(y, x)

```

Unconstrained log-contrast regression with compositional predictor variables Unconstrained log-contrast regression with compositional predictor variables

\section*{Description}

Unconstrained log-contrast regression with compositional predictor variables.

\section*{Usage}
ulc.reg(y, x, z = NULL, xnew = NULL, znew = NULL)

\section*{Arguments}
y
\(x \quad\) A matrix with the predictor variables, the compositional data. No zero values are allowed.
z
xnew A matrix containing the new compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.
znew A matrix, data.frame, factor or a vector with the values of some other covariate(s). If you have no new data, leave this NULL as is by default.

\section*{Details}

The function performs the unconstrained log-contrast regression model as opposed to the logcontrast regression described in Aitchison (2003), pg. 84-85. The logarithm of the compositional predictor variables is used (hence no zero values are allowed). The response variable is linked to the log-transformed data without the constraint that the sum of the regression coefficients equals 0 . If you want the regression model with the zum-to-zero contraints see lc.reg. Extra predictors variables are allowed as well, for instance categorical or continuous.

\section*{Value}

A list including:
be The constrained regression coefficients. Their sum equals 0 .
covbe If covariance matrix of the constrained regression coefficients.
va The estimated regression variance.
residuals The vector of residuals.
est If the arguments "xnew" and "znew" were given these are the predicted or estimated values, otherwise it is NULL.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

\section*{See Also}
lc.reg, lcreg.aov, lc.reg2, ulc.reg2, alfa.pcr, alfa.knn.reg

\section*{Examples}
```

y <- iris[, 1]
x <- as.matrix(iris[, 2:4])
x <- x / rowSums(x)
mod1 <- ulc.reg(y, x)
mod2 <- ulc.reg(y, x, z = iris[, 5])

```

Unconstrained log-contrast regression with multiple compositional predictors Unconstrained log-contrast regression with multiple compositional predictors

\section*{Description}

Unconstrained log-contrast regression with multiple compositional predictors.

\section*{Usage}
ulc.reg2(y, x, z = NULL, xnew = NULL, znew = NULL)

\section*{Arguments}
\(y \quad\) A numerical vector containing the response variable values. This must be a continuous variable.
\(\mathrm{x} \quad\) A list with multiple matrices with the predictor variables, the compositional data. No zero values are allowed.

Z
A matrix, data.frame, factor or a vector with some other covariate(s).
znew A matrix, data.frame, factor or a vector with the values of some other covariate(s). If you have no new data, leave this NULL as is by default.

\section*{Details}

The function performs the unconstrained log-contrast regression model as opposed to the logcontrast regression described in Aitchison (2003), pg. 84-85. The logarithm of the compositional predictor variables is used (hence no zero values are allowed). The response variable is linked to the log-transformed data without the constraint that the sum of the regression coefficients equals 0 . If you want the regression model with the zum-to-zero contraints see lc.reg2. Extra predictors variables are allowed as well, for instance categorical or continuous. Similarly to lc. reg2 there are multiple compositions treated as predictor variables.

\section*{Value}

A list including:
\begin{tabular}{ll} 
be & The constrained regression coefficients. Their sum equals 0. \\
covbe & If covariance matrix of the constrained regression coefficients. \\
va & The estimated regression variance. \\
residuals & \begin{tabular}{l} 
The vector of residuals.
\end{tabular} \\
est & \begin{tabular}{l} 
If the arguments "xnew" and "znew" were given these are the predicted or esti- \\
mated values, otherwise it is NULL.
\end{tabular}
\end{tabular}

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Xiaokang Liu, Xiaomei Cong, Gen Li, Kendra Maas and Kun Chen (2020). Multivariate LogContrast Regression with Sub-Compositional Predictors: Testing the Association Between Preterm Infants' Gut Microbiome and Neurobehavioral Outcome. https://arxiv.org/pdf/2006.00487. pdf.

\section*{See Also}
lc.reg2, ulc.reg, lc.reg, alfa.pcr, alfa.knn.reg

\section*{Examples}
y <- iris[, 1]
x <- list()
x1 <- as.matrix(iris[, 2:4])
x1 <- x1 / rowSums(x1)
\(x\left[\begin{array}{lll}1 & 1\end{array}\right]<-x 1\)
x[[ 2 ] ] <- rdiri(150, runif(4) )
x[[ 3 ] ] <- rdiri(150, runif(5) )
\(\bmod <-1 c . \operatorname{reg} 2(y, x)\)

Unit-Weibull regression models for proportions Unit-Weibull regression models for proportions

\section*{Description}

Unit-Weibull regression models for proportions.

\section*{Usage}
unitweib.reg(y, \(x, \operatorname{tau}=0.5)\)

\section*{Arguments}
y A numerical vector proportions. 0s and 1s are allowed.
\(x \quad\) A matrix or a data frame with the predictor variables.
tau The quantile to be used for estimation. The default value is 0.5 yielding the median.

\section*{Details}

See the reference paper.

\section*{Value}

A list including:
loglik The loglikelihood of the regression model.
info A matrix with all estimated parameters, their standard error, their Wald-statistic and its associated p-value.

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Mazucheli J., Menezes A. F. B., Fernandes L. B., de Oliveira R. P. and Ghitany M. E. (2020). The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates. Journal of Applied Statistics, 47(6): 954-974.

\section*{See Also}
```

propreg, beta.reg

```

\section*{Examples}
```

y <- exp(- rweibull(100, 1, 1))
x <- matrix(rnorm(100 * 2), ncol = 2)
a <- unitweib.reg(y, x)

```

Zero adjusted Dirichlet regression Zero adjusted Dirichlet regression

\section*{Description}

Zero adjusted Dirichlet regression.

\section*{Usage}
zadr (y, x, con = TRUE, B = 1, ncores = 2, xnew = NULL)
mixreg(param, z)

\section*{Arguments}
y
x
con If this is TRUE (default) then the constant term is estimated, otherwise the model includes no constant term.

B
If \(B\) is greater than 1 bootstrap estimates of the standard error are returned. If you set this greater than 1 , then you must define the number of clusters in order to run in parallel.
\begin{tabular}{ll} 
ncores & \begin{tabular}{l} 
The number of cores to use when \(B>1\). This is to be used for the case of boot- \\
strap. If \(B=1\), this is not taken into consideration. If this does not work then \\
you might need to load the doParallel yourselves.
\end{tabular} \\
xnew & \begin{tabular}{l} 
If you have new data use it, otherwise leave it NULL. \\
param
\end{tabular} \\
z Some arguments passed on to the mixreg helper function.
\end{tabular}

\section*{Details}

A zero adjusted Dirichlet regression is being fittd. The likelihood conists of two components. The contributions of the non zero compositional values and the contributions of the compositional vectors with at least one zero value. The second component may have many different sub-categories, one for each pattern of zeros. The function "mixreg" is a helper function and is not intended to be called directly by the user.

\section*{Value}

A list including:
\begin{tabular}{ll} 
runtime & The time required by the regression. \\
loglik & The value of the log-likelihood. \\
phi & \begin{tabular}{l} 
The precision parameter. If covariates are linked with it (function "diri.reg2"), \\
this will be a vector.
\end{tabular} \\
be & \begin{tabular}{l} 
The beta coefficients. \\
seb
\end{tabular} \\
The standard error of the beta coefficients. \\
sigma & \begin{tabular}{l} 
Th covariance matrix of the regression parameters (for the mean vector and the \\
phi parameter) in the function "diri.reg2".
\end{tabular} \\
est & \begin{tabular}{l} 
The fitted or the predicted values (if xnew is not NULL).
\end{tabular}
\end{tabular}

\section*{Author(s)}

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

\section*{References}

Tsagris M. and Stewart C. (2018). A Dirichlet regression model for compositional data with zeros. Lobachevskii Journal of Mathematics,39(3): 398-412.

Preprint available from https://arxiv.org/pdf/1410.5011.pdf

\section*{See Also}
```

zad.est, diri.reg, kl.compreg, ols.compreg, alfa.reg

```

\section*{Examples}
\[
\begin{aligned}
& x<- \text { as.vector(iris[, 4]) } \\
& y<-\operatorname{as.matrix(iris[,~1:3])~} \\
& y<-y / \operatorname{rowSums}(y) \\
& \bmod 1<-\operatorname{diri} . \operatorname{reg}(y, x) \\
& y[\operatorname{sample}(1: 450,15)]<-0 \\
& \bmod 2<-\operatorname{zadr}(y, x)
\end{aligned}
\]

\section*{Index}
* Additive log-ratio-transformation

The additive log-ratio transformation and its inverse, 178

\section*{* Bhattacharyya distance}

Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions, 104

\section*{* Compositional data}

Compositional-package, 6
* Contour plots

Compositional-package, 6
* Dirichelt mean vector

Log-likelihood ratio test for a Dirichlet mean vector, 113
* Dirichlet distribution

Contour plot of the Dirichlet distribution in \(\mathrm{S}^{\wedge} 2,22\)

Contour plot of the Flexible Dirichlet distribution in \(\mathrm{S}^{\wedge} 2\), 23
Density values of a Dirichlet distribution, 56
Dirichlet random values simulation, 59
Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions, 104
Minimized Kullback-Leibler divergence between Dirichlet and logistic normal, 115
MLE of the Dirichlet distribution, 122

MLE of the Dirichlet distribution via Newton-Rapshon, 123
* Dirichlet regression

Dirichlet regression, 60

\section*{* Discriminant analysis}

Compositional-package, 6
* Equality of the covariance matrices

Hotelling's multivariate version of the 2 sample t-test for Euclidean data, 94
Multivariate analysis of variance, 127
* Euclidean distance

The alpha-distance, 179
The alpha-IT-distance, 181
The k-nearest neighbours using the alpha-distance, 193
* Frechet mean

Helper Frechet mean for compositional data, 90
The Frechet mean for compositional data, 191

\section*{* GLMs}

Quasi binomial regression for proportions, 157

\section*{* GLM}

Tuning the principal components with GLMs, 212
* Gaussian mixture models

Density of compositional data from Gaussian mixture models, 53
Density of the folded normal distribution, 55
Simulation of compositional data from Gaussian mixture models, 170
Simulation of compositional data from the folded normal distribution, 173
* Gaussianmixture model

Contour plot of the Gaussian mixture model in S^2, 24
* Hypothesis test

Empirical likelihood for a one sample mean vector hypothesis testing, 69
Exponential empirical likelihood for a one sample mean vector hypothesis testing, 78
Hotelling's multivariate version of the 1 sample t-test for Euclidean data, 93
* Kullback-Lebler divergence

Helper functions for the Kullback-Leibler regression, 91
* Kullback-Leibler divergence

Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions, 104
* Log-likelihood ratio test

Log-likelihood ratio test for a Dirichlet mean vector, 113
Log-likelihood ratio test for a symmetric Dirichlet distribution, 114
* MLE

Compositional-package, 6
* Manhattan distance

The alpha-distance, 179
The alpha-IT-distance, 181
The k-nearest neighbours using the alpha-distance, 193
* Multivariate analysis of variance

Hotelling's multivariate version of the 2 sample t-test for Euclidean data, 94
James multivariate version of the t-test, 101
Multivariate analysis of variance, 127
Multivariate analysis of variance (James test), 128
Two-sample test of high-dimensional means for compositional data, 216
* Multivariate hypothesis testing

Empirical likelihood hypothesis testing for two mean vectors, 70

Exponential empirical likelihood hypothesis testing for two mean vectors, 79
Hypothesis testing for two or more compositional mean vectors, 95

\section*{* Newton-Raphson}

MLE of the Dirichlet distribution via Newton-Rapshon, 123
* No equality of the covariance matrices

Multivariate analysis of variance (James test), 128
* Non parametric test

Empirical likelihood hypothesis testing for two mean vectors, 70
* Quasi regression

Quasi binomial regression for proportions, 157
* Regression

Compositional-package, 6
* Regularised discriminant analysis

Cross validation for the regularised and flexible discriminant analysis with compositional data using the alpha-transformation, 38
Regularised and flexible discriminant analysis for compositional data using the alpha-transformation, 162
Regularised discriminant analysis for Euclidean data, 163
Tuning of the k-NN algorithm for compositional data, 204
Tuning the parameters of the regularised discriminant analysis, 210
* Ridge regression

Cross validation for the ridge regression, 40
* Tuning of the hyper-parameters

Tuning the parameters of the regularised discriminant analysis, 210
* Unequality of the covariance matrices

James multivariate version of the t-test, 101
Two-sample test of
```

 high-dimensional means for
 compositional data,216
 * bandwidth tuning
Tuning of the bandwidth h of the
kernel using the maximum
likelihood cross validation,
201
* bivariate normal distribution
Contour plot of the alpha
multivariate normal in S^2, 20
Contour plot of the alpha-folded
model in S^2,21
Contour plot of the normal
distribution in S^2,28
* bivariate skew skewnormal distribution
Contour plot of the skew
skew-normal distribution in
S^2,29
* bivariate t distribution
Contour plot of the t distribution
in S^2,30
* compositional data
Hypothesis testing for two or more
compositional mean vectors, }9
* contour plot
Contour plot of the alpha
multivariate normal in S^2,20
Contour plot of the alpha-folded
model in S^2,21
Contour plot of the Dirichlet
distribution in S^2, 22
Contour plot of the Flexible
Dirichlet distribution in S^2,
23
Contour plot of the Gaussian
mixture model in S^2, 24
Contour plot of the kernel density
estimate in S^2,27
Contour plot of the normal
distribution in S^2,28
Contour plot of the skew
skew-normal distribution in
S^2,29
Contour plot of the t distribution
in S^2,30
* cross-validation
Cross validation for the
regularised and flexible

```
discriminant analysis with compositional data using the alpha-transformation, 38
* density values

Density values of a Dirichlet distribution, 56
* fractional response

Quasi binomial regression for proportions, 157
* inverse transformation

Inverse of the alpha-transformation, 100
* kernel density estimate

Multivariate kernel density estimation, 129
* kernel density

Contour plot of the kernel density estimate in \(\mathrm{S}^{\wedge} 2,27\)
Tuning of the bandwidth \(h\) of the kernel using the maximum likelihood cross validation, 201
* location and scatter

Estimating location and scatter parameters for compositional data, 73
* maximum likelihood cross validation

Tuning of the bandwidth \(h\) of the kernel using the maximum likelihood cross validation, 201
* maximum likelihood estimation

Estimation of the value of alpha in the folded model, 76
Minimized Kullback-Leibler divergence between Dirichlet and logistic normal, 115
MLE of the Dirichlet distribution, 122
MLE of the Dirichlet distribution via Newton-Rapshon, 123
MLE of the folded model for a given value of alpha, 124
* maximum log-likelihood estimation

Fast estimation of the value of alpha, 81
* mean vector

Empirical likelihood for a one
sample mean vector hypothesis testing, 69
Exponential empirical likelihood for a one sample mean vector hypothesis testing, 78
Hotelling's multivariate version of the 1 sample t-test for Euclidean data, 93
* mixtures of normal distributions

Mixture model selection via BIC, 116
* model selection

Mixture model selection via BIC, 116
* multivariate kernel

Multivariate kernel density estimation, 129
* multivariate linear regression

Multivariate linear regression, 131
* multivariate normal distribution

Multivariate normal random values simulation on the simplex, 132
* multivariate regression

Dirichlet regression, 60
Helper functions for the Kullback-Leibler regression, 91
Non linear least squares regression for compositional data, 142
Regression with compositional data using the alpha-transformation, 160
Spatial median regression, 174
* multivariate rgression

Multivariate regression with compositional data, 135
* multivariate skew normal distribution

Multivariate skew normal random values simulation on the simplex, 137
* multivariate \(\mathbf{t}\) distribution

MLE for the multivariate t distribution, 119
Multivariate t random values simulation on the simplex, 138
* non parametric test

Exponential empirical likelihood
hypothesis testing for two mean vectors, 79
Hypothesis testing for two or more compositional mean vectors, 95
* ordinary least squares

Non linear least squares regression for compositional data, 142
* orthogonal matrix

The Helmert sub-matrix, 192
* parameters tuning

Cross validation for the ridge regression with compositional data as predictor using the alpha-transformation, 42
* plot

Ridge regression plot, 166
Ridge regression with the alpha-transformation plot, 168
* principal components regression

Multivariate or univariate regression with compositional data in the covariates side using the alpha-transformation, 134
Tuning the number of PCs in the PCR with compositional data using the alpha-transformation, 209
* principal components

Tuning the principal components with GLMs, 212
* profile log-likelihood

Estimation of the value of alpha via the profile log-likelihood, 77
* random values simulation

Dirichlet random values simulation, 59
Multivariate normal random values simulation on the simplex, 132
Multivariate skew normal random values simulation on the simplex, 137
Multivariate t random values simulation on the simplex, 138
* random vectors simulation

Density of compositional data from
Gaussian mixture models, 53
Density of the folded normal distribution, 55
Simulation of compositional data from Gaussian mixture models, 170
Simulation of compositional data
from the folded normal distribution, 173
* regularisation
Ridge regression, 165
* ridge regression
Cross validation for the ridge regression with compositional data as predictor using the alpha-transformation, 42
Ridge regression, 165
Ridge regression plot, 166
Ridge regression with compositional data in the covariates side using the alpha-transformation, 167
Ridge regression with the alpha-transformation plot, 168

\section*{* robust estimation}
Estimating location and scatter parameters for compositional data, 73
* spatial median regression
Multivariate regression with compositional data, 135
Spatial median regression, 174
* symmetric Dirichlet distribution
Log-likelihood ratio test for a symmetric Dirichlet distribution, 114
* ternary plot
Ternary diagram, 175
Ternary diagram of regression models, 177
\(*\) tuning
Tuning the number of PCs in the PCR with compositional data using the alpha-transformation, 209
* visualisation
Ternary diagram, 175
Ternary diagram of regression
models, 177
a.est, \(56,75,125,174,187\)
a.est (Estimation of the value of alpha in the folded model), 76
a.mle, 187
a.mle (MLE of the folded model for a given value of alpha), 124
acor, 13, 73, 157, 201
acor (Alpha generalised correlations between two compositional datasets), 9
acor.tune, 10, 73
acor.tune (Tuning of the alpha generalised correlations between two compositional datasets), 200
aeqdist.etest, 10
aeqdist.etest (Energy test of equality of distributions using the alpha-transformation), 72
ait, 182
ait (The alpha-IT transformation), 180
ait.knn, 181
ait. knn (The k-NN algorithm for compositional data), 195
ait.test (Aitchison's test for two mean vectors and/or covariance matrices), 7
Aitchison's test for two mean vectors and/or covariance matrices, 7
aitdist, 181
aitdist (The alpha-IT-distance), 181
aitdista (The alpha-IT-distance), 181
aitknn.tune (Tuning of the \(k-N N\) algorithm for compositional data), 204
akern.reg, 35, 37, 103, 155, 183
akern.reg (The alpha-kernel regression with compositional response data), 185
akernreg.tune, 35, 186, 207
akernreg. tune (Cross validation for the alpha-kernel regression with compositional response data), 36
aknn.reg, 35, 37, 38, 90, 103, 155, 185, 186
aknn.reg (The alpha-k-NN regression for compositional response
data), 182
aknnreg.tune, 32, 37, 38, 183, 186, 207
aknnreg.tune (Cross validation for the alpha-k-NN regression with compositional response data), 34
alef (The alpha-transformation), 186 alfa, \(9,10,13,73,75,77,78,82,87,89,91\), \(101,118,125,144,147,163,164\), \(174,176,178,180-182,189\), 191-194, 196-198, 201, 210, 212, 215
alfa (The alpha-transformation), 186
alfa.contour, 22
alfa.contour (Contour plot of the alpha multivariate normal in \(\mathrm{S}^{\wedge} 2\) ), 20
alfa.fda, 34, 35, 37
alfa.fda (Regularised and flexible discriminant analysis for compositional data using the alpha-transformation), 162
alfa.knn, 59, 85, 87, 118, 140, 141, 163, 185, 194
alfa.knn (The k-NN algorithm for compositional data), 195
alfa.knn.reg, \(11,106,110,112,219,221\)
alfa.knn.reg (The alpha-k-NN
regression with compositional predictor variables), 184
alfa.mds, 154
alfa.mds (Principal coordinate analysis using the alpha-distance), 152
alfa.mix.norm, 85, 118
alfa.mix.norm (Gaussian mixture models for compositional data using the alpha-transformation), 86
alfa.nb, 52, 163, 194, 196
alfa.nb (Naive Bayes classifiers for compositional data using the alpha-transformation), 141
alfa.pca, 148, 153, 154
alfa.pca (Principal component analysis using the alpha-transformation), 149
alfa.pcr, 11, 15, 98, 99, 106, 109, 110, 112, 148, 150, 151, 156, 185, 210, 213, 218, 219, 221
alfa.pcr (Multivariate or univariate regression with compositional data in the covariates side using the alpha-transformation), 134
alfa.profile, \(10,73,77,81,82,125,178\), 187, 198, 201
alfa.profile (Estimation of the value of alpha via the profile log-likelihood), 77
alfa.rda, \(34,35,37,40,59,85,87,118,140\), \(141,162,164,194,196,211\)
alfa.rda (Regularised and flexible discriminant analysis for compositional data using the alpha-transformation), 162
alfa.reg, \(62,143,155,175,180,183,186\), 215, 223
alfa.reg (Regression with compositional data using the alpha-transformation), 160
alfa.ridge, 43, 165-167, 169, 185
alfa.ridge (Ridge regression with compositional data in the covariates side using the alpha-transformation), 167
alfa.tune, \(78,178,187,198\)
alfa.tune (Fast estimation of the value of alpha), 81
alfadist, 101, 182, 190
alfadist (The alpha-distance), 179
alfadista (The alpha-distance), 179
alfafda.tune (Cross validation for the regularised and flexible discriminant analysis with compositional data using the alpha-transformation), 38
alfainv, 77, 78, 82, 91, 125, 178, 180, 187, 192-194, 197, 201
alfainv (Inverse of the alpha-transformation), 100
alfaknn.tune (Tuning of the k-NN algorithm for compositional data), 204
alfaknnreg.tune (Cross validation for the alpha-k-NN regression with compositional predictor variables), 33
alfanb.tune, 40, 47
alfanb.tune (Cross-validation for the naive Bayes classifiers for compositional data using the alpha-transformation), 51
alfann (The k-nearest neighbours using the alpha-distance), 193
alfapcr.tune, \(15,67,135,151,203,208,213\)
alfaper.tune (Tuning the number of PCs in the PCR with compositional data using the alpha-transformation), 209
alfarda.tune, 47, 52, 163, 206
alfarda.tune (Cross validation for the regularised and flexible discriminant analysis with compositional data using the alpha-transformation), 38
alfareg.tune, 136, 160, 161
alfareg. tune (Tuning the value of alpha in the alpha-regression), 214
alfaridge.plot, 167, 168
alfaridge.plot (Ridge regression with the alpha-transformation plot), 168
alfaridge. tune, 41, 168
alfaridge.tune (Cross validation for the ridge regression with compositional data as predictor using the alpha-transformation), 42
All pairwise additive log-ratio transformations, 8
Alpha generalised correlations between two compositional datasets, 9
alpha.mle, 75, 77, 174, 187
alpha.mle (MLE of the folded model for a given value of alpha), 124
alr, 9, 13, 49, 107, 157, 181, 187-191, 197
alr (The additive log-ratio transformation and its inverse), 178
alr.all (All pairwise additive log-ratio transformations), 8
alrinv (The additive log-ratio transformation and its inverse), 178
ANOVA for the log-contrast regression
versus the uncostrained log-contrast regression, 10
anova_propreg, 159

Bayesian network learning with compositional data, 11
bc, 178, 187, 191
bc (The Box-Cox transformation applied to ratios of components), 188
Beta regression, 13
beta.est, 14, 160
beta.est (MLE of distributions defined in the ( 0,1 ) interval), 120
beta.reg, 63, 222
beta.reg (Beta regression), 13
bic.alfamixnorm, 87,117
bic.alfamixnorm (Mixture model selection with the alpha-transformation using BIC), 117
bic.mixcompnorm, 25, 53, 85, 87, 170
bic.mixcompnorm (Mixture model selection via BIC), 116
bivt. contour, 19, 21-24, 26, 28-30, 119, 120
bivt. contour (Contour plot of the \(t\) distribution in \(\mathrm{S}^{\wedge} 2\) ), 30
censpois.mle, 17
Choose the number of principal components via reconstruction error, 15
choose.pc (Choose the number of principal components via reconstruction error), 15
colbeta.est, 160
colbeta.est (Column-wise MLE of some univariate distributions), 16
collogitnorm.est (Column-wise MLE of some univariate distributions), 16
colsimplex.est (Column-wise MLE of some univariate distributions), 16
Column-wise MLE of some univariate distributions, 16
colunitweibull.est (Column-wise MLE of some univariate distributions), 16
comp. den, 119, 120, 133, 138, 139, 176
comp.den (Estimating location and scatter parameters for compositional data), 73
comp.kern (Multivariate kernel density estimation for compositional data), 130
comp.kerncontour, 19, 23, 24, 26, 130, 131, 176, 177, 202
comp.kerncontour (Contour plot of the kernel density estimate in S^2), 27
comp.knn, 59, 68, 140, 141, 190, 206
comp.knn (The k-NN algorithm for compositional data), 195
comp.nb, 51, 59, 85, 87, 118, 141, 163, 194, 196
comp.nb (Naive Bayes classifiers for compositional data), 139
comp.ppr, 98, 156, 183, 186, 207
comp.ppr (Projection pursuit regression for compositional data), 154
comp.reg, 32, 50, 62, 65, 92, 107, 132, 143, \(146,155,161,175,183,186\)
comp.reg (Multivariate regression with compositional data), 135
comp.test, \(8,70,71,79,81,94,95,102,128\), 129, 216
comp.test (Hypothesis testing for two or more compositional mean vectors), 95
compbn (Bayesian network learning with compositional data), 11
compknn. tune, 40, 47, 52, 196
compknn.tune (Tuning of the k-NN algorithm for compositional data), 204
compnorm. contour, 19, 21-24, 26, 28, 30, 31
compnorm. contour (Contour plot of the normal distribution in \(\mathrm{S}^{\wedge} 2\) ), 28
Compositional-package, 6
compppr.tune, 32, 155, 208
compppr.tune (Tuning of the projection pursuit regression for compositional data), 206
Constrained linear least squares for compositional responses and predictors, 17

Contour plot of mixtures of Dirichlet distributions in \(\mathrm{S}^{\wedge} 2,18\)
Contour plot of the alpha multivariate normal in \(\mathrm{S}^{\wedge} 2,20\)
Contour plot of the alpha-folded model in \(\mathrm{S}^{\wedge} 2,21\)
Contour plot of the Dirichlet distribution in \(\mathrm{S}^{\wedge} 2,22\)
Contour plot of the Flexible Dirichlet distribution in \(\mathrm{S}^{\wedge} 2,23\)
Contour plot of the Gaussian mixture model in \(\mathrm{S}^{\wedge} 2,24\)
Contour plot of the Kent distribution in \(S^{\wedge} 2,26\)
Contour plot of the kernel density estimate in \(\mathrm{S}^{\wedge} 2,27\)
Contour plot of the normal distribution in \(\mathrm{S}^{\wedge} 2,28\)
Contour plot of the skew skew-normal distribution in \(\mathrm{S}^{\wedge} 2,29\)
Contour plot of the \(t\) distribution in S^2, 30
Cross validation for some compositional regression models, 31
Cross validation for the alpha-k-NN regression with compositional predictor variables, 33
Cross validation for the alpha-k-NN regression with compositional response data, 34
Cross validation for the alpha-kernel regression with compositional response data, 36
Cross validation for the kernel regression with Euclidean response data, 37
Cross validation for the regularised and flexible discriminant analysis with compositional data using the alpha-transformation, 38
Cross validation for the ridge regression, 40
Cross validation for the ridge regression with compositional data as predictor using the alpha-transformation, 42

Cross validation for the transformation-free linear regression for compositional responses and predictors, 43
Cross-validation for the constrained linear least squares for compositional responses and predictors, 45
Cross-validation for the Dirichlet discriminant analysis, 46
Cross-validation for the LASSO Kullback-Leibler divergence based regression, 47
Cross-validation for the LASSO log-ratio regression with compositional response, 49
Cross-validation for the naive Bayes classifiers for compositional data, 50
Cross-validation for the naive Bayes classifiers for compositional data using the alpha-transformation, 51
cv.comp.reg (Cross validation for some compositional regression models), 31
cv. compnb, 40, 47, 52, 140, 206
cv. compnb (Cross-validation for the naive Bayes classifiers for compositional data), 50
cv.dda, 40, 52, 59, 206
cv.dda (Cross-validation for the Dirichlet discriminant analysis), 46
cv.lasso. compreg, 48, 107, 146
cv.lasso. compreg (Cross-validation for the LASSO log-ratio regression with compositional response), 49
cv.lasso.klcompreg, 50, 106, 107, 146
cv.lasso.klcompreg (Cross-validation for the LASSO Kullback-Leibler divergence based regression), 47
cv.olscompcomp, 18, 44
cv.olscompcomp (Cross-validation for the constrained linear least squares for compositional
responses and predictors), 45
cv.tflr, 46, 199, 203
cv.tflr (Cross validation for the transformation-free linear regression for compositional responses and predictors), 43
dda, \(19,47,57,62,115,123,124,140\)
dda (Dirichlet discriminant analysis), 58
ddiri, 113, 115, 123, 124
ddiri (Density values of a Dirichlet distribution), 56
Density of compositional data from Gaussian mixture models, 53
Density of the Flexible Dirichlet distribution, 54
Density of the folded normal distribution, 55
Density values of a Dirichlet distribution, 56
Density values of a mixture of Dirichlet distributions, 57
dfd, 173
dfd (Density of the Flexible Dirichlet distribution), 54
dfolded (Density of the folded normal distribution), 55
diri.contour, 19, 21, 22, 25, 28-31, 57, 60, \(115,123,124,176,177\)
diri.contour (Contour plot of the Dirichlet distribution in S^2), 22
diri.est, 57, 60, 104, 113, 115, 124
diri.est (MLE of the Dirichlet distribution), 122
diri.nr, 19, 57, 60, 62, 104, 113, 115, 123, 126
diri.nr (MLE of the Dirichlet distribution via Newton-Rapshon), 123
diri.nr2, 121
diri.reg, \(14,59,65,92,115,123,132,136\), 143, 161, 175, 223
diri.reg (Dirichlet regression), 60
diri.reg2 (Dirichlet regression), 60
Dirichlet discriminant analysis, 58
Dirichlet random values simulation, 59
Dirichlet regression, 60
dirimean.test, 115
dirimean.test (Log-likelihood ratio test for a Dirichlet mean vector), 113
Distance based regression models for proportions, 62
divergence (Divergence matrix of compositional data), 68
Divergence based regression for compositional data, 64
Divergence based regression for compositional data with compositional data in the covariates side using the alpha-transformation, 66
Divergence matrix of compositional data, 68
dmix. compnorm (Density of compositional data from Gaussian mixture models), 53
dmixdiri (Density values of a mixture of Dirichlet distributions), 57
eel.test1, 70, 94
eel.test1 (Exponential empirical likelihood for a one sample mean vector hypothesis testing), 78
eel.test2, \(8,71,95,97,102,216\)
eel.test2 (Exponential empirical likelihood hypothesis testing for two mean vectors), 79
el.test, 69
el.test1, 79, 94
el.test1 (Empirical likelihood for a one sample mean vector hypothesis testing), 69
el.test2, 8, 70, 79, 81, 94, 95, 97, 102, 216
el.test2 (Empirical likelihood hypothesis testing for two mean vectors), 70
Empirical likelihood for a one sample mean vector hypothesis testing, 69
Empirical likelihood hypothesis testing for two mean vectors, 70
Energy test of equality of distributions using the
alpha-transformation, 72
es (The ESOV-distance), 189
esov, 180, 196
esov (The ESOV-distance), 189
esov.mds, 153
esov.mds (Principal coordinate
analysis using the Jensen-Shannon divergence), 153
esova (The ESOV-distance), 189
Estimating location and scatter parameters for compositional data, 73
Estimation of the probability left outside the simplex when using the alpha-transformation, 74
Estimation of the value of alpha in the folded model, 76
Estimation of the value of alpha via the profile log-likelihood, 77
Exponential empirical likelihood for a one sample mean vector hypothesis testing, 78
Exponential empirical likelihood hypothesis testing for two mean vectors, 79

Fast estimation of the value of alpha, 81
fd.contour (Contour plot of the Flexible Dirichlet
distribution in \(\mathrm{S}^{\wedge} 2\) ), 23
fd.est, 24, 55, 173
fd.est (Fitting a Flexible Dirichlet distribution), 82
Fitting a Flexible Dirichlet distribution, 82
folded.contour, 21, 24, 56
folded. contour (Contour plot of the alpha-folded model in \(\left.\mathrm{S}^{\wedge} 2\right), 21\)
fp, 178, 187, 189
fp (The folded power transformation), 190
frechet (The Frechet mean for compositional data), 191
frechet2 (Helper Frechet mean for compositional data), 90
gammapois.mle, 17

Gaussian mixture models for compositional data, 84
Gaussian mixture models for compositional data using the alpha-transformation, 86
Generate random folds for cross-validation, 88
glm, 210
glm. pcr, 67, 109, 135, 203, 213, 218
glm.pcr (Principal component generalised linear models), 150
glmpcr.tune, 210
glmpcr.tune (Tuning the principal components with GLMs), 212
green, 178, 181, 187, 189, 191, 197
green (Greenacre's power transformation), 89
Greenacre's power transformation, 89
hd.meantest2, 97
hd.meantest2 (Two-sample test of high-dimensional means for compositional data), 216
helling.prop. reg (Distance based regression models for proportions), 62
helm (The Helmert sub-matrix), 192
Helper Frechet mean for compositional data, 90
Helper functions for the Kullback-Leibler regression, 91
hotel1T2, 70, 79
hotel1T2 (Hotelling's multivariate version of the 1 sample t-test for Euclidean data), 93
hotel2T2, 70, 71, 79, 81, 94, 97, 102, 128, 129, 216
hotel2T2 (Hotelling's multivariate version of the 2 sample t-test for Euclidean data), 94
Hotelling's multivariate version of the 1 sample t-test for Euclidean data, 93
Hotelling's multivariate version of the 2 sample t-test for Euclidean data, 94
hsecant01.est (MLE of distributions defined in the ( 0,1 )
interval), 120
Hypothesis testing for two or more compositional mean vectors, 95
ibeta.est (MLE of distributions defined in the ( 0,1 ) interval), 120
ICE plot for projection pursuit regression with compositional predictor variables, 97
ICE plot for univariate kernel regression, 98
ice.kernreg, 98, 103
ice.kernreg (ICE plot for univariate kernel regression), 98
ice.pprcomp, 99, 156, 208
ice.pprcomp (ICE plot for projection pursuit regression with compositional predictor variables), 97
Inverse of the alpha-transformation, 100
james, 70, 71, 79, 81, 94, 95, 128, 129
james (James multivariate version of the t-test), 101
James multivariate version of the t-test, 101
js.compreg, 62, 68, 92, 132, 136, 143, 161, 175, 190
js.compreg (Divergence based regression for compositional data), 64
kent. contour (Contour plot of the Kent distribution in \(\mathrm{S}^{\wedge} 2\) ), 26
kern.reg, 38
kern.reg (Kernel regression with a numerical response vector or matrix), 102
Kernel regression with a numerical response vector or matrix, 102
kernreg.tune, 99, 103
kernreg.tune (Cross validation for the kernel regression with Euclidean response data), 37
kl.alfapcr, 18, 148, 150, 199, 203
kl.alfapcr (Divergence based regression for compositional data with compositional data
in the covariates side using the alpha-transformation), 66 kl. compreg, 32, 48, 62, 92, 106, 132, 143, 146, 155, 161, 183, 186, 223
kl.compreg (Divergence based regression for compositional data), 64
kl. compreg2 (Helper functions for the Kullback-Leibler regression), 91
kl.diri (Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions), 104
kl.diri.normal (Minimized
Kullback-Leibler divergence between Dirichlet and logistic normal), 115
klalfapcr.tune, 44, 46, 67
klalfapcr.tune (Tuning of the divergence based regression for compositional data with compositional data in the covariates side using the alpha-transformation), 202
klcompreg.boot (Helper functions for the Kullback-Leibler regression), 91
Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions, 104
kumar.est (MLE of distributions defined in the ( 0,1 ) interval), 120

LASSO Kullback-Leibler divergence based regression, 105
LASSO log-ratio regression with compositional response, 106
lasso. compreg, 48, 50, 106, 146
lasso.compreg (LASSO log-ratio regression with compositional response), 106
lasso.klcompreg, 48, 50, 107, 146
lasso.klcompreg (LASSO Kullback-Leibler divergence based regression), 105
lassocoef.plot, 48, 50, 106, 107
lassocoef.plot (Plot of the LASSO coefficients), 145
lc.glm, 217, 218
lc.glm(Log-contrast logistic or Poisson regression with compositional predictor variables), 108
lc.reg, 11, 98, 99, 109, 111, 112, 156, 218, 219, 221
lc.reg (Log-contrast regression with compositional predictor variables), 109
lc.reg2, 109, 110, 218-221
lc.reg2 (Log-contrast regression with multiple compositional predictors), 111
lcreg.aov, 110, 112, 219
lcreg.aov (ANOVA for the log-contrast regression versus the uncostrained log-contrast regression), 10
lm, 132
lm. ridge, 165
Log-contrast logistic or Poisson regression with compositional predictor variables, 108
Log-contrast regression with compositional predictor variables, 109
Log-contrast regression with multiple compositional predictors, 111
Log-likelihood ratio test for a Dirichlet mean vector, 113
Log-likelihood ratio test for a symmetric Dirichlet distribution, 114
logistic_only, 159
logitnorm.est (MLE of distributions defined in the ( 0,1 ) interval), 120
logpca, 150
logpca (Principal component analysis), 147
makefolds (Generate random folds for cross-validation), 88
maov, 70, 71, 79, 81, 94, 95, 97, 129, 216
maov (Multivariate analysis of variance), 127
maovjames, 8, 71, 81, 97, 102, 128, 216
maovjames (Multivariate analysis of variance (James test)), 128
Minimized Kullback-Leibler divergence between Dirichlet and logistic normal, 115
mix.compnorm, \(25,53,59,87,117,118,140\), 141, 163, 170, 196
mix.compnorm (Gaussian mixture models for compositional data), 84
mix. compnorm. contour, 19, 21-24, 26, 28-31, 85, 87, 117, 118
mix. compnorm. contour (Contour plot of the Gaussian mixture model in S^2), 24
mixdiri.contour, 23, 58, 172
mixdiri.contour (Contour plot of mixtures of Dirichlet distributions in S^2), 18
mixreg (Zero adjusted Dirichlet regression), 222
Mixture model selection via BIC, 116
Mixture model selection with the alpha-transformation using BIC, 117
mkde, 131, 202
mkde (Multivariate kernel density estimation), 129
mkde.tune, 130
mkde. tune (Tuning of the bandwidth \(h\) of the kernel using the maximum likelihood cross validation), 201
MLE for the multivariate \(t\) distribution, 119
MLE of distributions defined in the (0, 1) interval, 120
MLE of the Dirichlet distribution, 122
MLE of the Dirichlet distribution via Newton-Rapshon, 123
MLE of the folded model for a given value of alpha, 124
MLE of the zero adjusted Dirichlet distribution, 126
mmhc.skel, 12
multinompcr.tune (Tuning the principal components with GLMs), 212
Multivariate analysis of variance, 127

Multivariate analysis of variance (James test), 128
Multivariate kernel density estimation, 129
Multivariate kernel density estimation for compositional data, 130
Multivariate linear regression, 131
Multivariate normal random values simulation on the simplex, 132
Multivariate or univariate regression with compositional data in the covariates side using the alpha-transformation, 134
Multivariate regression with compositional data, 135
Multivariate skew normal random values simulation on the simplex, 137
Multivariate t random values simulation on the simplex, 138
multivreg, 136, 175
multivreg (Multivariate linear regression), 131
multivt, 74
multivt (MLE for the multivariate t distribution), 119

Naive Bayes classifiers for compositional data, 139
Naive Bayes classifiers for compositional data using the alpha-transformation, 141
Non linear least squares regression for compositional data, 142
Non parametric zero replacement strategies, 143
ols. compcomp, 46, 199
ols. compcomp (Constrained linear least squares for compositional responses and predictors), 17
ols. compreg, 62, 65, 92, 106, 132, 161, 223
ols.compreg (Non linear least squares regression for compositional data), 142
ols.prop.reg (Distance based regression models for proportions), 62
pcc (Proportionality correlation coefficient matrix), 156
pcr, 15, 67, 135, 203
pcr (Principal component generalised
linear models), 150
pcr.tune, 210, 213
pcr.tune (Tuning the principal
components with GLMs), 212
perturbation, 144, 147
perturbation (Perturbation operation), 144
Perturbation operation, 144
pivot, 178,187
pivot (The pivot coordinate transformation and its inverse), 197
pivotinv (The pivot coordinate transformation and its inverse), 197
Plot of the LASSO coefficients, 145
pow (Power operation), 146
power, 145
Power operation, 146
pprcomp, 97, 98, 208
pprcomp (Projection pursuit regression with compositional predictor variables), 155
pprcomp.tune, 98, 156
pprcomp.tune (Tuning of the projection pursuit regression with compositional predictor variables), 207
Principal component analysis, 147
Principal component analysis using the alpha-transformation, 149
Principal component generalised linear models, 150
Principal coordinate analysis using the alpha-distance, 152
Principal coordinate analysis using the Jensen-Shannon divergence, 153
probout (Estimation of the probability left outside the simplex when using the alpha-transformation), 74
profile, 91, 192, 210
Projection pursuit regression for compositional data, 154
Projection pursuit regression with
compositional predictor variables, 155
prop.reg, 14
Proportionality correlation coefficient matrix, 156
propreg, 63, 222
propreg (Quasi binomial regression for proportions), 157
propregs (Quasi binomial regression for proportions), 157

Quasi binomial regression for proportions, 157

Random values generation from some univariate distributions defined on the ( 0,1 ) interval, 159
rbeta1 (Random values generation from some univariate distributions defined on the ( 0,1 ) interval), 159
rcompnorm, 138, 139
rcompnorm(Multivariate normal random values simulation on the simplex), 132
rcompsn, 133
rcompsn (Multivariate skew normal random values simulation on the simplex), 137
rcompt, 133
rcompt (Multivariate t random values simulation on the simplex), 138
rda, 163, 212
rda (Regularised discriminant analysis for Euclidean data), 163
rda.tune, \(34,35,37,40,88,164\)
rda.tune (Tuning the parameters of the regularised discriminant analysis), 210
rdiri, 57, 113, 115, 123, 124, 133, 138, 139, 160
rdiri (Dirichlet random values simulation), 59
Regression with compositional data using the alpha-transformation, 160
Regularised and flexible discriminant analysis for compositional
data using the alpha-transformation, 162
Regularised discriminant analysis for Euclidean data, 163
rfd, 55, 83
rfd (Simulation of compositional data
from the Flexible Dirichlet
distribution), 172
rfolded, 56, 75
rfolded (Simulation of compositional
data from the folded normal distribution), 173
Ridge regression, 165
Ridge regression plot, 166
Ridge regression with compositional data in the covariates side
using the alpha-transformation, 167
Ridge regression with the alpha-transformation plot, 168
ridge.plot, 166, 169
ridge.plot (Ridge regression plot), 166
ridge. reg, 41, 167, 168
ridge.reg (Ridge regression), 165
ridge.tune, 43, 166, 167
ridge.tune (Cross validation for the ridge regression), 40
rlogitnorm (Random values generation
from some univariate
distributions defined on the ( 0,1 ) interval), 159
rmixcomp, 85, 87, 117, 118, 172
rmixcomp (Simulation of compositional
data from Gaussian mixture
models), 170
rmixdiri, 58
rmixdiri (Simulation of compositional
data from mixtures of
Dirichlet distributions), 171
rmvt, 120, 138, 139
runitweibull (Random values generation
from some univariate
distributions defined on the \((0,1)\) interval), 159
score.glms, 159
simplex.est (MLE of distributions
defined in the ( 0,1 )
interval), 120

Simulation of compositional data from Gaussian mixture models, 170
Simulation of compositional data from mixtures of Dirichlet distributions, 171
Simulation of compositional data from the Flexible Dirichlet distribution, 172
Simulation of compositional data from the folded normal distribution, 173
skewnorm. contour, 21, 22, 29, 31
skewnorm. contour (Contour plot of the skew skew-normal distribution in \(\mathrm{S}^{\wedge} 2\) ), 29
Spatial median regression, 174
spatmed.reg, 74, 136
spatmed.reg (Spatial median regression), 174
sym.test, 113
sym.test (Log-likelihood ratio test for a symmetric Dirichlet distribution), 114
symkl.compreg (Divergence based regression for compositional data), 64
ternary, 177
ternary (Ternary diagram), 175
Ternary diagram, 175
Ternary diagram of regression models, 177
ternary.reg (Ternary diagram of regression models), 177
tflr, 18, 44, 67
tflr (Transformation-free linear regression for compositional responses and predictors), 199
The additive log-ratio transformation and its inverse, 178
The alpha-distance, 179
The alpha-IT transformation, 180
The alpha-IT-distance, 181
The alpha-k-NN regression for compositional response data, 182
The alpha-k-NN regression with compositional predictor variables, 184

The alpha-kernel regression with compositional response data, 185
The alpha-transformation, 186
The Box-Cox transformation applied to ratios of components, 188
The ESOV-distance, 189
The folded power transformation, 190
The Frechet mean for compositional data, 191
The Helmert sub-matrix, 192
The k-nearest neighbours using the alpha-distance, 193
The k-NN algorithm for compositional data, 195
The pivot coordinate transformation and its inverse, 197
Total variability, 198
totvar (Total variability), 198
Transformation-free linear regression for compositional responses and predictors, 199
Tuning of the alpha generalised correlations between two compositional datasets, 200
Tuning of the bandwidth \(h\) of the kernel using the maximum likelihood cross validation, 201
Tuning of the divergence based regression for compositional data with compositional data in the covariates side using the alpha-transformation, 202
Tuning of the \(\mathrm{k}-\mathrm{NN}\) algorithm for compositional data, 204
Tuning of the projection pursuit regression for compositional data, 206
Tuning of the projection pursuit regression with compositional predictor variables, 207
Tuning the number of PCs in the PCR with compositional data using the alpha-transformation, 209
Tuning the parameters of the regularised discriminant analysis, 210

Tuning the principal components with GLMs, 212
Tuning the value of alpha in the alpha-regression, 214
tv.compreg (Divergence based regression for compositional data), 64
Two-sample test of high-dimensional means for compositional data, 216
ulc.glm, 108, 109
ulc.glm(Unconstrained log-contrast logistic or Poisson regression with compositional predictor variables), 217
ulc.reg, 11, 110, 112, 221
ulc.reg (Unconstrained log-contrast regression with compositional predictor variables), 218
ulc.reg2, 111, 112, 219
ulc.reg2 (Unconstrained log-contrast regression with multiple compositional predictors), 219
Unconstrained log-contrast logistic or Poisson regression with compositional predictor variables, 217
Unconstrained log-contrast regression with compositional predictor variables, 218
Unconstrained log-contrast regression with multiple compositional predictors, 219
Unit-Weibull regression models for proportions, 221
unitweib.reg (Unit-Weibull regression models for proportions), 221
unitweibull.est (MLE of distributions defined in the ( 0,1 ) interval), 120
univglms, 159
zad.est, 223
zad.est (MLE of the zero adjusted Dirichlet distribution), 126
zadr, 59, 126
zadr (Zero adjusted Dirichlet
regression), 222

Zero adjusted Dirichlet regression, 222
zeroreplace, 126
zeroreplace (Non parametric zero
replacement strategies), 143
zilogitnorm.est, 126
zilogitnorm.est (MLE of distributions
defined in the ( 0,1 )
interval), 120```

