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Abstract

This vignette describes an updated version of the R package CountsEPPM and its
use in determining maximum likelihood estimates of the parameters of extended Poisson
process models. These provide a Poisson process based family of flexible models that can
handle both underdispersion and overdispersion in observed count data, with the negative
binomial and Poisson distributions being special cases. Within CountsEPPM models with
mean and scale-factor related to covariates are constructed to match a generalized linear
model formulation. Use of the package is illustrated by application to several published
datasets.

Keywords: Poisson distribution, underdispersion, overdispersion, negative binomial distribu-
tion, extended Poisson process models.

1. Introduction

This vignette, which relates to version 3.0 of CountsEPPM, is a revised and added-to version
of Smith and Faddy (2016a) which related to version 2.1. The important differences between
previous versions and 3.0 are a focus on mean and scale-factor models with variance models
dropped, the addition of generic (S3) methods, using only optim for optimization i.e., no use
of nlm, and offsets included in the formulae. Readers should refer to Smith and Faddy (2016a)
for details of the actual modelling which involves Markov birth processes.

The models using extended Poisson process models (EPPMs) were originally developed in
Faddy (1997), where the construction of discrete probability distributions having very general
dispersion properties was described. The Poisson and negative binomial distributions are
special cases of this modeling which includes both underdispersion and overdispersion relative
to the Poisson, with the negative binomial having the most extreme level of overdispersion
within the EPPM family. Faddy and Smith (2008) incorporated covariate dependence in
the mean via a reparameterization using an approximate form of the mean; Faddy and Smith
(2011) extended this to incorporate covariate dependence in the dispersion, this being achieved
by a reparameterization using an approximate form of the variance. The supplementary
material for Faddy and Smith (2011) contained R code illustrating fitting these models. This
R code has been extended and generalized to have inputs and outputs more akin to those
of a generalized linear model (GLM) as in the R function glm and the R function betareg

(Cribari-Neto and Zeileis 2010, Grün, Kosmidis, and Zeileis 2012). Both Hilbe (2011) and
Hilbe (2014) have commented about a software package for EPPMs being developed in the
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R system (R Core Team 2016); the package CountsEPPM Smith and Faddy (2016b) whose
use is described in this vignette is that software.

2. Description of the functions

The main function of the package, also named CountsEPPM, is focused on models with two
covariate dependences linked to the mean and scale-factor. The input into the function is
a formula involving a single response variable and one or two formulae related to the mean
and scale-factor models. Although the input formula involves a single response variable, the
actual model fitting has a list of frequency distributions list.counts in place of the response
variable, which is either input or constructed from the input data according to whether a
list or a data.frame is input. For all models the GLM link function between the response
variable (mean, scale-factor) and linear predictor of covariates is log; the log of parameter b

of Equation 2 of Smith and Faddy (2016a) is also used but the parameter c of Equation 2 of
Smith and Faddy (2016a) is untransformed. The full three parameter version of Equation 2
of Smith and Faddy (2016a) has been labeled the Faddy distribution as in Grunwald, Bruce,
Jiang, Strand, and Rabinovitch (2011). Because of possible issues with the parameter b,
variants of the models where b is fixed have been included in the lists of models. This enables
profile log-likelihoods to be produced for this parameter.

Nash (2014) is a recent reference on optimization using R functions and contains information
on, and insights into, the methods used. All models are fitted to the data using maximum
likelihood, the optimization method used being the R function optim (options used being
the simplex method of Nelder and Mead (1967) or BFGS using numerical derivatives). A
facility to change options for optim through use of the argument control is included. The
elements of this argument are the options for optim as described in R Core Team (2016).
The default values set within CountsEPPM are fnscale = -1, trace = 0, maxit = 1000 for
optim. Although for most data sets the two options of optim give similar results in terms of
log-likelihood and parameter estimates, etc., some results may be a little different depending
on particular features of the data set. The simplex method, is robust to discontinuities in
the log-likelihood surface. However, it is slow to converge. In contrast the function BFGS

makes use of derivatives, in this case numerical derivatives, resulting in faster convergence,
but there is a reliance on the log-likelihood surface being smooth i.e., no sudden changes
in derivative values. Only BFGS makes use of derivatives in the actual model fitting, but
both options calculate a hessian matrix from the derivatives to produce standard errors for
the parameter estimates. The calculation of the numerical derivatives and hessians use the
functions grad and hessian from the package numDeriv (Gilbert and Varadhan 2015). The
derivatives are more accurately calculated using numDeriv (Gilbert and Varadhan 2015)
than using alternative central difference approximations, resulting in better model fitting and
better conditioned hessians. However, as stated in Nash (2014, p. 131), a longer time is taken.
The occurrence of NA in the vector of standard errors is an indication of problems with the
model fitting, possibly caused by an inappropriate model. This is particularly so when all
estimates of parameter standard errors are NA, which results when the hessian matrix can
not be be inverted due to its determinant being zero or it being otherwise ill-conditioned.
Having derivatives available means that they can be reviewed, together with the hessian, at
the conclusion of parameter estimation to evaluate whether maximum likelihood estimates
have been attained.
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The code for the main analysis function is

CountsEPPM(formula, data, subset = NULL, na.action = NULL, weights = NULL,

model.type = "mean and scale-factor", model.name = "general", link = "log",

initial = NULL, ltvalue = NA, utvalue = NA, method = "Nelder-Mead",

control = NULL, fixed.b=NA)

with details of the arguments given in Table 1 together with defaults if any.

Argument Description Default

formula a single response variable & paired
formulae Zeileis and Croissant (2010)

data data.frame or list

subset subsetting commands NULL

na.action action taken for NAs in data NULL

weights vector if data is a data.frame vector of ones
a list if data is a list list of lists of ones
attributes normalization, norm.to.n both NULL

model.type "mean only" "mean and scale-factor"

"mean and scale-factor"

if model.type = "mean only" (only a in Equation 2 of Smith and Faddy (2016a) modeled)

model.name "Poisson"

"negative binomial"

"negative binomial fixed b"

"Faddy distribution" Equation 2
of Smith and Faddy (2016a)
"Faddy distribution fixed b"

if model.type = "mean and scale-factor" (both modeled)

model.name "general" as Equations 3 and 4 "general"

"general fixed b"

"limiting" as Equations 9 and 10
of Smith and Faddy (2016a)

link the glm link function for mean count "log"

only log allowed

initial vector of initial values for parameters, Poisson glm output
means first followed by the variances augmented by 0’s
and/or parameters c, log(b) for other parameters

ltvalue lower truncation value (excluded) NA

utvalue upper truncation value (excluded) NA

method "Nelder-Mead" "Nelder-Mead"

"BFGS" attribute "grad.method" attribute "simple"

which is "simple" or "Richardson"

control list of control parameters optim see text for more details

fixed.b value b is fixed at NA

Table 1: Arguments of CountsEPPM.



4 Mean and Scale-Factor Modeling of Under- and Overdispersed Count Data

As in earlier versions, data can be either a list or a data.frame. The response variable
in formula is a vector if a data.frame is input or a list if a list is input. The response
variables mean.obs and variance.obs are constructed within CountsEPPM prior to being used
to fit models. The R package Formula of Zeileis and Croissant (2010) is used to extract model
information from the formula input to CountsEPPM. To avoid repeated extractions within
subordinate functions, the extraction of model information used in the model fitting, such as
covariates.matrix.mean, is only done once within CountsEPPM. In version 3.0 a set of S3
generic extractor functions for objects of class "CountsEPPM" has been added. The set is the
same as that for BinaryEPPM (Smith and Faddy 2018) which is itself similar to that of Table
1 of betareg (Cribari-Neto and Zeileis 2010).

As iteration is involved in the model fitting, initial estimates of the parameters are needed.
These can optionally be provided in the vector initial. Within CountsEPPM, if initial is
unset, a Poisson model is fitted using glm and the estimates from that fit are used to provide
estimates for the parameters of the mean linear predictor. If the scale-factor is also being
modeled the initial estimates of the parameters of the scale-factor linear predictor are set to 1.0
recognising that for the Poisson distribution the variance equals the mean. The initial value
of log(b) of Equation 2 of Smith and Faddy (2016a) is set to zero. The matrix exponential
function used for calculating the probabilities of Equation 1 of Smith and Faddy (2016a)
is that of the package expm of Goulet, Dutang, Maechler, Firth, Shapira, and Stadelmann
(2015) which depends on the package Matrix of Bates and Maechler (2016). CountsEPPM

returns an object of class "CountsEPPM" summarizing the model fit, the components of which
are given in Table 2.

Table 3 gives details of a set of S3 generic extractor functions for objects of class
"CountsEPPM". The set is similar to that of Table 1 of Cribari-Neto and Zeileis
(2010) related to package betareg, except there are no functions estfun, bread or
linear.hypothesis. Also, gleverage and cooks.distance are variants of the functions
glm.diag and glm.diag.plots from package boot Canty and Ripley (2017) rather than
betareg. The first four blocks refer to functions specific to CountsEPPM. The last block con-
tains generic functions, the default versions of which work because of the information supplied
by the functions of the first four blocks. Package lmtest Zeileis and Hothorn (2002) needs to
be loaded to use coeftest and lrtest. Function AIC comes from stats which is a default
package loaded when R is started. In Table 2 both n and nobs are included, so that functions
from both packages lmtest and stats can use the object returned.

As the vectors of frequency distributions are only required to be of length the maximum
observed count value +1, this is how they are set up. However, the fitted models can have
probability masses at counts greater than these maximum counts. A component of the output
object from CountsEPPM i.e., $vnmax is a vector of the maximum observed counts. If proba-
bilities for counts greater than these maximums are wanted, the values in output.fn$vnmax

can be increased in value and predict with type="distribution" run to obtain these prob-
abilities.
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Component Description

data.type "data.frame" or "list"

list.data data as a "list" of frequency distributions

call the call to CountsEPPM

formula the formula input

model.type "mean only" or "mean and scale-factor"

model.name "Poisson", "negative binomial", "negative

binomial fixed b", "Faddy distribution" (Equa-
tion 2), "Faddy distribution fixed b", "general"

(Equations 3 & 4), "general fixed b", "limiting"

(Equations 9 & 10).
Equation numbers of Smith and Faddy (2016a)

link the glm link function for mean count

covariates.matrix.mean matrix of covariates for the mean

covariates.matrix.scalef matrix of covariates for the scale-factor

offset.mean offset vector for the mean

offset.scalef offset vector for the scale-factor

coefficients the estimated coefficients

loglik the final log-likelihood value

vcov the estimated variance/covariance matrix

n needed for lmtest the number of observations

nobs needed for stats the number of observations

df.null null model degrees of freedom

df.residual residual degrees of freedom

ltvalue lower truncation value (excluded)

utvalue upper truncation value (excluded)

fixed.b value b is fixed at

vnmax a vector of maximum counts in each of
the grouped data vectors

weights a vector or list of weights

converged whether converged

iterations number of iterations

method "Nelder-Mead" or "BFGS"

start initial estimates input

optim final estimates of coefficients

control control parameters of optim

fitted.values fitted values of mean count

y observed values of mean count

terms model terms

Table 2: Components of object returned by CountsEPPM.
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Function Description

print() a simple printed display
summary() standard regression output (coefficient estimates, standard

errors, partial Wald tests); returns an object of class
summary.BinaryEPPM containing the relevant summary
statistics (which has a print method)

coef() extract coefficients of model (full, mean, or precision
components), a single vector of all coefficients by default

vcov() associated covariance matrix (with matching names)
predict() predictions (response, linear predictor ps, linear

predictor scale-factor, ps, scale-factor, scale-factor limits, mean,
variance, distribution probabilities, distribution parameters)
for existing and new data

fitted() fitted means for observed data
residuals() extract residuals (deviance, Pearson, response, standardized

deviance, standardized Pearson residuals), defaulting to
standardized Pearson residuals

terms() extract terms of model components
model.matrix() extract model matrix of model components
model.frame() extract full original model frame
logLik() extract fitted log-likelihood

plot() diagnostic plots of residuals, predictions, leverages, etc.
hatvalues() hat values (diagonal of hat matrix)
cooks.distance() Cook’s distance
gleverage() generalized leverage
waldtest() Wald tests of model parameters

coeftest() partial Wald tests of coefficients
lrtest() likelihood ratio tests of model parameters
AIC() compute information criteria (AIC, BIC, . . . )

Table 3: Generic Functions for Use with Objects of Class CountsEPPM.

3. Examples

The examples illustrate various ways in which CountsEPPM can be used to produce infor-
matative analyses. For the first three examples data is a list where the dependent variable
of counts is a list of vectors of frequency distributions, whereas for the last two data is a
data frame. Significant time savings can be made by using the list form of input where
applicable. The fitting of models and estimation of their parameters can be sensitive to the
initial estimates and method of estimation chosen, with flatness of the log-likelihood surface
possible, particularly with respect to the parameter b. It is recommended that analyses be
run more than once using different initial estimates and optimization methods.

3.1. Number of young at varying effluent concentrations data

These Ceriodaphnia dubia data were used as an example by Faddy and Smith (2011). Ce-
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riodaphnia dubia are water fleas used to test the impact of effluents on water quality. The
data, originally from Bailer and Oris (1997), are counts of young at varying effluent concen-
trations, and are in list of frequencies and variables form. The defaults for model.type

of "mean and variance", and model of "general", are used. The code given below is
for a run using the method="simplex" option of optim followed by one using BFGS with
attribute="Richardson" with this last run giving derivatives (gradients) at the final esti-
mates. Although during these runs the estimate of log(b) changed sign, its standard error
is relatively large and the estimates of the other parameters had relatively small changes in
value.

R> data("ceriodaphnia.group")

R> output.fn <-

+ CountsEPPM(number.young ~ 1 + vdose + vdose2 | 1 + vdose + vdose2,

+ data = ceriodaphnia.group, control = list(maxit = 4000, reltol = 1.e-11))

R> names(output.fn$optim$par) <- c('mean Intercept', 'mean dose',

+ 'mean dose^2', 'scale-factor Intercept', 'scale-factor dose',

+ 'scale-factor dose^2', 'log(b)')

R> method <- "BFGS"

R> attr(method, which = "grad.method") <- "Richardson"

R> output.fn <- update(output.fn, initial = output.fn$optim$par,

+ method = method)

R> summary(output.fn)

Dependent variable is a list of frequency distributions for counts

Call:

CountsEPPM(formula = number.young ~ 1 + vdose + vdose2 | 1 + vdose +

vdose2, data = ceriodaphnia.group, initial = output.fn$optim$par,

method = method, control = list(maxit = 4000, reltol = 1e-11))

Model type : mean and scale-factor

Model name : general

Link scale-factor : log

Coefficients (model for mean with log link)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

mean Intercept 3.1406671 0.0859089 36.5581 < 2.2e-16 ***

mean dose 0.1733786 0.0302852 5.7249 9.177e-07 ***

mean dose^2 -0.0196106 0.0025092 -7.8155 8.666e-10 ***

---

Signif. codes: "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1

Coefficients (model for scale-factor with log link)



8 Mean and Scale-Factor Modeling of Under- and Overdispersed Count Data

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

scale-factor Intercept 1.297770 0.445457 2.9133 0.005653 **

scale-factor dose -0.665782 0.219006 -3.0400 0.004017 **

scale-factor dose^2 0.047337 0.015775 3.0008 0.004469 **

log(b) -0.144932 2.625530 -0.0552 0.956234

---

Signif. codes: "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1

Type of estimator: ML (maximum likelihood)

Log-likelihood: -152.1356 on 7 Df

Number of iterations: 67 of optim method BFGS gradient method Richardson

final gradients of parameters

[1] 0.0020328358 0.0086772311 0.0392932715 0.0001186455 0.0005086497

[6] 0.0103859013 0.0019768983

return code 0 successful

The above parameter estimates agree with those in Faddy and Smith (2011) to two decimal
places, except for log(b) which is relatively poorly estimated. Further details of the model
can be printed out such as the parameters of the Faddy distribution as well as the predicted
values of the means, variances and scale-factors.

R> predict(output.fn, type = "distribution.parameters")

out.va out.vb out.vc

1 7.661167 0.8650815 0.5179911

2 18.489020 0.8650815 0.1830147

3 56.473485 0.8650815 -0.2029801

4 414.407542 0.8650815 -0.9161889

5 6.799275 0.8650815 0.2157040

R> predictions <- data.frame(

+ mean = predict(output.fn, type = "mean"),

+ variance = predict(output.fn, type = "variance"),

+ scale.factor = predict(output.fn, type = "scale.factor"))

R> print(predictions)

mean variance scale.factor

1 23.119285 84.64258 3.6611244

2 28.895726 41.96128 1.4521623

3 32.817612 23.81793 0.7257668

4 31.761146 11.51863 0.3626641

5 9.428539 13.67537 1.4504229
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To illustrate use of the newdata argument of predict a new data.frame of the second and
third rows is constructed and used with predict.

R> newdata <- data.frame(intercept = rep(1,2),

+ vdose = ceriodaphnia.group$vdose[2:3],

+ vdose2 = ceriodaphnia.group$vdose2[2:3], vnmax = c(35, 44))

R> predictions <- data.frame(

+ mean = predict(output.fn, newdata = newdata, type = "mean"),

+ variance = predict(output.fn, newdata = newdata, type = "variance"),

+ scale.factor = predict(output.fn, newdata = newdata,

+ type = "scale.factor"))

R> print(predictions)

mean variance scale.factor

1 28.89573 41.96128 1.4521623

2 32.81761 23.81793 0.7257668

3.2. Lüning et al. data

These data are from Lüning, Sheridan, Ytterborn, and Gullberg (1966) and are in the form
of a list of frequencies and variables. The number of trials are stated in Lüning et al. (1966)
to be both lower and upper truncated at 4 and 11 respectively, so the data are for counts of
5 to 10. Default initial values are used for fitting the default general model of Equations 3
and 4 of Smith and Faddy (2016a).

R> data("Luningetal.litters")

R> output.fn <- CountsEPPM(number.trials ~ 0 + fdose | 0 + fdose,

+ Luningetal.litters, ltvalue = 4, utvalue = 11,

+ control = list(maxit = 2000))

R> summary(output.fn)

Dependent variable is a list of frequency distributions for counts

distribution truncated below at 4

distribution truncated above at 11

Call:

CountsEPPM(formula = number.trials ~ 0 + fdose | 0 + fdose,

data = Luningetal.litters, ltvalue = 4, utvalue = 11,

control = list(maxit = 2000))

Model type : mean and scale-factor

Model name : general

Link scale-factor : log

Coefficients (model for mean with log link)
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t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

fdose0 1.9171890 0.0022050 869.471 < 2.2e-16 ***

fdose300 1.8321149 0.0099383 184.350 < 2.2e-16 ***

fdose600 1.7239822 0.0186856 92.262 < 2.2e-16 ***

---

Signif. codes: "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1

Coefficients (model for scale-factor with log link)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

fdose0 -1.446450 0.074170 -19.5018 < 2.2e-16 ***

fdose300 -1.365485 0.092402 -14.7777 < 2.2e-16 ***

fdose600 -1.209275 0.138516 -8.7302 < 2.2e-16 ***

log(b) 19.395048 NA NA NA

---

Signif. codes: "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1

Type of estimator: ML (maximum likelihood)

Log-likelihood: -2653.815 on 7 Df

Number of iterations: 1068 of optim method Nelder-Mead

return code 0 successful

Warning message:

In sqrt(diag(se)) : NaNs produced

The warning message In sqrt(diag(varcov)) : NaNs produced and the value of b =
exp(19.395048) being large suggests that the fitted model corresponds to a negative expeo-
nential sequence of rate parameters in the underlying birth process (Equations 9 and 10 of
Smith and Faddy (2016a)).

R> output.fn <- update(output.fn, model.name = 'limiting')

R> summary(output.fn)

Dependent variable is a list of frequency distributions for counts

distribution truncated below at 4

distribution truncated above at 11

Call:

CountsEPPM(formula = number.trials ~ 0 + fdose | 0 + fdose,

data = Luningetal.litters, model.name = "limiting",

ltvalue = 4, utvalue = 11, control = list(maxit = 2000))
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Model type : mean and scale-factor

Model name : limiting

Link scale-factor : log

Coefficients (model for mean with log link)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

fdose0 1.9169670 0.0077381 247.730 < 2.2e-16 ***

fdose300 1.8320442 0.0099421 184.271 < 2.2e-16 ***

fdose600 1.7242914 0.0186506 92.453 < 2.2e-16 ***

---

Signif. codes: "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1

Coefficients (model for scale-factor with log link)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

fdose0 -1.444080 0.074503 -19.3828 < 2.2e-16 ***

fdose300 -1.366303 0.092760 -14.7294 < 2.2e-16 ***

fdose600 -1.210711 0.138765 -8.7249 < 2.2e-16 ***

---

Signif. codes: "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1

Type of estimator: ML (maximum likelihood)

Log-likelihood: -2653.816 on 6 Df

Number of iterations: 533 of optim method Nelder-Mead

return code 0 successful

The parameters of the limiting model can be printed out

R> predict(output.fn, type = "distribution.parameters")

out.valpha out.vbeta

1 22.99626 -0.3067979

2 18.91508 -0.3070639

3 13.95311 -0.2872457

showing much the same results as the previous fit of the general model. To further explore
the appropriateness of the limiting model a profile likelihood was constructed for a range of
values of parameter b from the version of the general fixed b model of Equations 3 and 4
of Smith and Faddy (2016a) with a plot of the resulting log(likelihoods) against log(b) being
produced. In Figure 1 there is a clear trending of the log-likelihood values toward the value
of the limiting model. The code used to produce Figure 1 follows.
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Figure 1: log-likelihood for fixed values of parameter log(b).

R> vfixed.b <- c(0:19)

R> vloglikelihood <- rep(0, 20)

R> vloglikelihood <- sapply(1:20, function(i) {

R> if (i == 1) {

R> output.fn <- CountsEPPM(number.trials ~ 0 + fdose | 0 + fdose,

+ Luningetal.litters, model.name = 'general fixed b',

+ ltvalue = 4, utvalue = 11, fixed.b = exp(vfixed.b[i]))

R> } else {

R> output.fn <- CountsEPPM(number.trials ~ 0 + fdose | 0 + fdose,

+ Luningetal.litters, model.name = 'general fixed b',

+ ltvalue = 4, utvalue = 11, initial = output.fn$optim$par,

+ fixed.b = exp(vfixed.b[i]))

R> } # end of if (i==1)

R> vloglikelihood[i] <- output.fn$loglik } )

R> plot(vfixed.b, vloglikelihood, xlim = c(0, 25), ylim =c (-2658, -2653),

+ main = "Profile likelihood for log(b) Luning litters data",

+ xlab = "log(b)", ylab = "log(likelihood)")

R> points(20, lm.loglik, pch = 16)

R> text(20.1, lm.loglik, "limiting model", pos = 4, offset = 0.5, cex = 0.7)

3.3. Number of attempts at feeding of herons

These data are originally from Zhu, Eickhoff, and Kaiser (2003) and are in the form of a
list of frequencies and variables. Faddy and Smith (2005) described an alternative modeling
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approach to that of Zhu et al. (2003) constructing a bivariate EPPM for both count (number
of attempts) and grouped (number of successful attempts) data. Here a univariate EPPM
for the numbers of trials (attempts at foraging) of 20 adult and 20 immature green-backed
herons is considered. The first model fitted was a negative binomial using the default initial
values.

R> data("herons.group")

R> output.fn.one <- CountsEPPM(number.attempts ~ 0 + group, herons.group,

+ model.type = 'mean only', model.name = 'negative binomial')

R> names(output.fn.one$optim$par) <- c('Adult mean',

+ 'Immature mean', 'log(b)')

R> print(summary(output.fn.one))

Dependent variable is a list of frequency distributions for counts

Call:

CountsEPPM(formula = number.attempts ~ 0 + group, data = herons.group,

model.type = "mean only", model.name = "negative binomial")

Model type : mean only

Model name : negative binomial

Coefficients (model for mean with log link)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

group Adult 0.56230 0.15500 3.6279 0.0008573 ***

group Immature 0.47586 0.16439 2.8947 0.0063315 **

---

Signif. codes: "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1

Coefficients (model for scale-factor with log link)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

log(b) 0.50825 0.26793 1.897 0.06566 .

---

Signif. codes: "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1

Type of estimator: ML (maximum likelihood)

Log-likelihood: -120.2042 on 3 Df

Number of iterations: 108 of optim method Nelder-Mead

return code 0 successful
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The second model fitted was a more general Faddy distribution again using the default initial
values.

R> output.fn.two <- update(output.fn.one, model.name = 'Faddy distribution')

R> names(output.fn.two$optim$par) <- c('Adult mean', 'Immature mean',

+ 'c', 'log(b)')

R> print(summary(output.fn.two))

Dependent variable is a list of frequency distributions for counts

Call:

CountsEPPM(formula = number.attempts ~ 0 + group, data = herons.group,

model.type = "mean only", model.name = "Faddy distribution")

Model type : mean only

Model name : Faddy distribution

Coefficients (model for mean with log link)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

group Adult 0.56282 0.15496 3.6320 0.0008688 ***

group Immature 0.47652 0.16436 2.8993 0.0063351 **

---

Signif. codes: "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1

Coefficients (model for scale-factor with log link)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

c 1.0000e+00 1.5724e-05 63596.0001 <2e-16 ***

log(b) 5.0703e-01 2.6792e-01 1.8924 0.0665 .

---

Signif. codes: "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1

Type of estimator: ML (maximum likelihood)

Log-likelihood: -120.2042 on 4 Df

Number of iterations: 331 of optim method Nelder-Mead

return code 0 successful

The estimate of the parameter c here is essentially one, the upper limit of permitted values of
this parameter corresponding to a negative binomial model, and its standard error is largely
noise; Wald and (log-)likelihood tests on this parameter are therefore invalid. Print outs of
the parameters of the Faddy distribution and the associated distribution for the first group
can be produced.
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R> predict(output.fn.two, type = "distribution.parameters")

R> predict(output.fn.two, type = "distribution")[1]

out.va out.vb out.vc

1 1.755613 1.66035 0.9999997

2 1.610463 1.66035 0.9999997

[[1]]

[1] 0.054207702 0.074451022 0.081919897 0.082680037 0.079683626 0.074619482

[7] 0.068518504 0.062025215 0.055542261 0.049315532 0.043487554 0.038132360

[13] 0.033278821 0.028926520 0.025056608 0.021639253 0.018638723 0.016016821

[19] 0.013735148 0.011756573 0.010046116 0.008571446 0.007303109 0.006214567

[25] 0.005282124

By increasing the maximum values for the grouped counts using the following code, the
probabilities for the next ten counts in the sequence for the first group can be obtained.

R> wks <- output.fn.two$vnmax [1] + 2

R> wke <- output.fn.two$vnmax[1] + 11

R> output.fn.two$vnmax[1] <- output.fn.two$vnmax[1] + 10

R> predict(output.fn.two, type = "distribution")[[1]][wks:wke]

[[1]]

[1] 0.0044847776 0.0038040231 0.0032236418 0.0027294804 0.0023092342

[6] 0.0019522416 0.0016492910 0.0013924445 0.0011748767 0.0009907317

A weighted analysis using the reciprocal of the predicted variances can be performed.

R> herons.group$weights <- herons.group$number.attempts

R> weights <- 1 / predict(output.fn.one, type = "variance")

R> herons.group$weights <- lapply(1:length(herons.group$weights), function(i) {

+ herons.group$weights[[i]] <- rep(weights[i],

+ length(herons.group$weights[[i]])) } ) # end of lapply

R> attr(herons.group$weights, which = "normalize") <- TRUE

R> output.fn <- CountsEPPM(number.attempts ~ 0 + group, herons.group,

+ model.type = 'mean only', model.name = 'Poisson',

+ weights = herons.group$weights)

R> names(output.fn$optim$par) <- c('Adult mean', 'Immature mean')

R> summary(output.fn)

Dependent variable is a list of frequency distributions for counts

Call:

CountsEPPM(formula = number.attempts ~ 0 + group, data = herons.group,

weights = herons.group$weights, model.type = "mean only",

model.name = "Poisson")
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Model type : mean only

Model name : Poisson

Coefficients (model for mean with log link)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

group Adult 2.073172 0.086557 23.951 < 2.2e-16 ***

group Immature 1.894617 0.080490 23.538 < 2.2e-16 ***

---

Signif. codes: "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1

Maximum weighted likelihood regression.

List of weights used.

Type of estimator: ML (maximum likelihood)

Log-likelihood: -168.3474 on 2 Df

Number of iterations: 45 of optim method Nelder-Mead

return code 0 successful

The same data as herons.group, but in data.frame form, has been included in the package
as herons.case. Running the same code with herons.group replaced by herons.case will
produce essentially the same outputs.

3.4. Titanic survivors

To illustrate the inclusion of offsets, data of passenger survival from the 1912 sinking of the
Titanic are used. The data are in data frame form as given in Table 9.37 of Hilbe (2011) i.e.,
the numbers surviving out of the number of cases (passengers) within different age, sex, and
class categories. The individual data for all 1316 passengers is available from package msme

Hilbe and Robinson (2014). Hilbe (2011, p. 265–268) analyzes the numbers surviving as count
data with an offset of the log of the number of cases for the mean, and fits a negative binomial
with variance function v = m + αm2 which equates to the variance function of Equation 4
of Smith and Faddy (2016a) with α = 1

b
. Both mean and scale-factor need to be offset by

the log of the number of cases. A series of models was fitted: a negative binomial with the
parameter b fixed at the value from Hilbe (2011) of b = 9.615385; a negative binomial with b

unspecified; a more general Faddy distribution; and a general mean and constant scale-factor
model. The last of these models was found to have the largest log-likelihood. Details of it
and its fitting follow.

R> data("Titanic.survivors.case")

R> lncases <- log(Titanic.survivors.case$cases)

R> output.fn <- CountsEPPM(survive ~ age + sex + class + offset(lncases) |

+ 1 + offset(lncases), Titanic.survivors.case, control = list(maxit = 2000))

R> names(output.fn$optim$par) <- c('Intercept mean', 'age adult', 'sex male',
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+ 'class 2nd class', 'class 3rd class', 'Intercept scale', 'log(b)')

R> output.fn <- update(output.fn, initial = output.fn$optim$par,

+ method = 'BFGS')

R> summary(output.fn)

Dependent variable a vector of counts.

Call:

CountsEPPM(formula = survive ~ age + sex + class + offset(lncases) |

1 + offset(lncases), data = Titanic.survivors.case,

initial = output.fn$optim$par, method = "BFGS",

control = list(maxit = 2000))

Model type : mean and scale-factor

Model name : general

Link scale-factor : log

non zero offsets in linear predictors

Coefficients (model for mean with log link)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

Intercept mean 0.047471 0.083542 0.5682 0.594447

age adult -0.043300 0.133024 -0.3255 0.757981

sex male -0.177376 0.129474 -1.3700 0.229012

class 2nd class -0.031658 0.113242 -0.2796 0.791010

class 3rd class -0.900905 0.144787 -6.2223 0.001568 **

---

Signif. codes: "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1

Coefficients (model for scale-factor with log link)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

Intercept scale -4.04624 0.54017 -7.4907 0.0006701 ***

log(b) -7.32930 3.64626 -2.0101 0.1006346

---

Signif. codes: "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1

Type of estimator: ML (maximum likelihood)

Log-likelihood: -39.39972 on 7 Df

Number of iterations: 60 of optim method BFGS gradient method simple

final gradients of parameters

[1] -0.0203696866 -0.0008164389 0.0041572081 0.0023752619 0.0068211516
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[6] 0.0018952763 0.0007120647

return code 0 successful

The parameters of the Faddy distribution can now be printed out.

R> predict(outpu.fn, type = "distribution.parameters")

out.va out.vb out.vc

1 0.1393159 0.0006560301 -28.10881810

2 45.9529402 0.0006560301 0.30300954

3 1594.9387938 0.0006560301 -5.21904057

4 40.8724192 0.0006560301 0.33977379

5 392.9331778 0.0006560301 -1.69941164

6 47.0261619 0.0006560301 0.19278209

7 330.3710419 0.0006560301 -2.09935775

8 39.9238096 0.0006560301 0.33263580

9 27.6100183 0.0006560301 -0.42233391

10 25.0226409 0.0006560301 0.33016005

11 20.5073026 0.0006560301 -0.09566396

12 28.2101400 0.0006560301 0.46262359

The fit of the general mean and scale-factor model is better than that of Hilbe (2011)(page
268), the log-likelihood values being −39.400 and −43.719 respectively; although the former
has one extra parameter it would be preferred according to AIC.

3.5. Take over bids

These data, originally from Cameron and Johansson (1997), are used as example data in
Cameron and Trivedi (2013) as well as in Sáez-Castillo and Conde-Sánchez (2013). The
takeover.bids.case came from the website associated with Cameron and Trivedi (2013).
The dependent variable NUMBIDS is the number of bids received by the firm targeted for
takeover after the initial bid. As both variables CASE, CONSTANT are equal to 1 throughout
they have not been included in package data set. In Smith and Faddy (2016a), related to
version 2.1 of CountsEPPM, the continuous variables were scaled to have zero mean and
unit standard deviation prior to analysis, as it was found that the scaling of the continuous
variables improved the model fitting. The changes and additions made to version 3.0 make
this unnecessary.

method <- "BFGS"

attr(method,which = "grad.method") <- "Richardson"

output.fn <- CountsEPPM(NUMBIDS ~ LEGLREST + REALREST + FINREST +

WHTKNGHT + BIDPREM + INSTHOLD + SIZE + SIZESQ + REGULATN | LEGLREST +

REALREST + FINREST + WHTKNGHT + BIDPREM + INSTHOLD + SIZE + SIZESQ +

REGULATN, data = takeover.bids.case, method = method)

summary(output.fn)
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Dependent variable a vector of counts.

Call:

CountsEPPM(formula = NUMBIDS ~ LEGLREST + REALREST + FINREST + WHTKNGHT +

BIDPREM + INSTHOLD + SIZE + SIZESQ + REGULATN | LEGLREST + REALREST +

FINREST + WHTKNGHT + BIDPREM + INSTHOLD + SIZE + SIZESQ + REGULATN,

data = takeover.bids.case, method = method)

Model type : mean and scale-factor

Model name : general

Link scale-factor : log

Coefficients (model for mean with log link)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.66980728 0.69448315 2.4044 0.0179509 *

LEGLREST 0.26775754 0.18027398 1.4853 0.1404656

REALREST -0.16655260 0.29485396 -0.5649 0.5733706

FINREST 0.67982048 0.34621124 1.9636 0.0522207 .

WHTKNGHT 0.81090836 0.23384727 3.4677 0.0007622 ***

BIDPREM -1.66354592 0.54936971 -3.0281 0.0030970 **

INSTHOLD -0.81832858 0.53231273 -1.5373 0.1272260

SIZE 0.30109055 0.01639493 18.3649 < 2.2e-16 ***

SIZESQ -0.01432358 0.00076058 -18.8325 < 2.2e-16 ***

REGULATN 0.24525971 0.22094221 1.1101 0.2695077

---

Signif. codes: "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1

Coefficients (model for scale-factor with log link)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.443199 0.719919 0.6156 0.5395

LEGLREST -0.104376 0.186026 -0.5611 0.5759

REALREST 0.214242 0.212209 1.0096 0.3150

FINREST 0.533311 0.513642 1.0383 0.3015

WHTKNGHT 0.267462 0.328230 0.8149 0.4170

BIDPREM -0.840780 0.919408 -0.9145 0.3626

INSTHOLD -0.027377 0.366394 -0.0747 0.9406

SIZE 0.145692 0.130238 1.1187 0.2658

SIZESQ -0.015642 0.013306 -1.1756 0.2424

REGULATN 0.263825 0.366727 0.7194 0.4735

log(b) -5.339202 6.111304 -0.8737 0.3843
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Type of estimator: ML (maximum likelihood)

Log-likelihood: -156.0563 on 21 Df

Number of iterations: 244 of optim method BFGS gradient method Richardson

final gradients of parameters

[1] 0.0011504814 0.0007030922 0.0013814654 0.0003727108 -0.0005461059

[6] 0.0009490258 0.0012592771 0.0046084397 0.0020728355 0.0022824005

[11] -0.0007277559 0.0017569373 -0.0024497681 0.0009933780 -0.0001212738

[16] -0.0022219230 -0.0028663406 -0.0052951310 0.0457381566 -0.0008509123

[21] -0.0001037344

return code 0 successful

The Bayesian Information Criterion (BIC) can also be calculated using BIC(output.fn)

resulting in a value of 413.6745. Convergence to the maximum likelihood estimates was slow
due to the large number (21) of parameters being estimated, the flatness of the log-likelihood
surface and a small estimate of the (nuisance) parameter b (negative value of log(b)). The
estimate of b being close to 0 and the underdispersion (scale-factor < 1) corresponding to
c < 0 in Equation 2 of Smith and Faddy (2016a) means that the zero-probability can be
very small (Equation 1 of Smith and Faddy (2016a)). This model with a log-likelihood value
of −156.06 and 21 parameters fits better than that from Sáez-Castillo and Conde-Sánchez
(2013) with −157.86 and 15 parameters. But the six extra parameters associated with a
relatively small increase in log-likelihood means that the BIC value of 413.67 is larger than
those of the models in Sáez-Castillo and Conde-Sánchez (2013): 398.1, 393.5 and 388.3. Sáez-
Castillo and Conde-Sánchez (2013) did not report details of fitting a model with the full set
of 10 variables in both linear predictors, suggesting that they could not achieve convergence
of their fitting algorithm for this model. The variables Sáez-Castillo and Conde-Sánchez
(2013) do not include in their dispersion model as they were claimed to be not significant
are LEGLREST, WHTKNGHT, INSTHOLD, SIZE, SIZESQ. There is reasonable agreement between
the results reported above and those of Sáez-Castillo and Conde-Sánchez (2013) about the
significant variables in the mean model; in both, SIZE and SIZESQ have very large t statistics.
However, in the dispersion model the results reported above show that SIZE and SIZESQ also
have very large t statistics, whereas in the Sáez-Castillo and Conde-Sánchez (2013) models
they were not included. Residual plots as in Cribari-Neto and Zeileis (2010) can be produced.

layout(matrix(c(1:6), byrow=TRUE, ncol=2))

plot(output.fn, which = 1, type = "response")

plot(output.fn, which = 2, type = "pearson")

plot(output.fn, which = 3, type = "spearson")

plot(output.fn, which = 4, type = "likelihood")

plot(output.fn, which = 5, type = "deviance")

plot(output.fn, which = 6, type = "sdeviance")

Examination of the estimated λi sequences of (birth) rate parameters (Equation 2 of Smith
and Faddy (2016a)) shows that the λ0 values are generally very different from the λi values for
i ≥ 1, as a consequence of the small estimate of the parameter b. A more appropriate model
for these data might be one that treats the zero counts differently from the non-zero counts;
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Figure 2: Residual plots.

this makes some sense as a zero count would correspond to the initial bid being accepted by
the targeted firm, and different circumstances (in the form of different covariate dependence)
might be operating. Such a model is not readily constructed from those considered here, and
is therefore beyond the scope of the functions developed. Such modeling will be the subject
of future work.

4. Concluding remarks

This vignette has described the use of version 3.0 of the R package CountsEPPM to fit EPPMs
to count data that exhibit under- or over-dispersion relative to the Poisson distribution. A
variety of covariate dependencies and data structures are covered in examples that illustrate
the variety of ways in which the package can be used in the analysis of count data.

As described in Faddy and Smith (2005) and Faddy and Smith (2012), the mean and scale-
factor of binary data can be modeled using EPPMs in a similar way to that described here
for count data. A package BinaryEPPM is available in CRAN, and an article describing its
use will shortly be appearing in the Journal of Statistical Software. Dependent on how the
further work goes, similar functions, etc., may be developed for the model (zero and non-zero
counts treated differently) mentioned in the last paragraph of the previous section.
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