Package 'DFA'

October 26, 2020
Type Package
Title Detrended Fluctuation Analysis
Version 0.9.0
Author Victor Barreto Mesquita[aut,cre],Paulo Canas Rodrigues[ctb], Floren-cio Mendes Oliveira Filho[ctb]
Maintainer Victor Barreto Mesquita victormesquita40@hotmail.com
Description Contains the Detrended Fluctuation Analysis (DFA), Detrended Cross-Correlation Analy-sis (DCCA), Detrended Cross-Correlation Coefficient (rhoDCCA), Delta Amplitude De-trended Cross-Correlation Coefficient (DeltarhoDCCA), log amplitude Detrended Fluctua-tion Analysis (DeltalogDFA), two DFA automatic methods for identifica-tion of crossover points and a Deltalog automatic method for identification of reference channels.
License GPL-3
Encoding UTF-8
LazyData true
Depends R (>= 2.10)
RoxygenNote 7.1.0
BugReports https://github.com/victormesquita40/DFA/issues
NeedsCompilation no
Repository CRAN
Date/Publication 2020-10-26 05:20:02 UTC
R topics documented:
AUC 2
DCCA 3
DeltaDFA 5
Deltarho 7
DFA 9
EEGsignal 11
euclidean 12
IXIC2008 13
lrcorrelation 14
LSE.L2008 15
NYA2008 16
rhoDCCA 17
secant 19
SSEC2008 20
Index 21

AUC
Area Under the Curve

Description

Applies the Area Under the Curve on the log-log curve.

Usage

$$
\operatorname{AUC}(x, d a t a)
$$

Arguments

$x \quad$ Vector of the decimal logarithm of the boxes sizes.
data A data frame of different decimal logarithm of the DFA calculated in each boxe.

Details

Compute the Area Under the Curve to a data frame. The method returns the curve with higher AUC.

Value

position Position of the DFA curve with higher Area Under the Curve (AUC).
Area Respective Area Under the Curve (AUC) computed by trapezoidal rule for the channel with higher AUC.

Note

All of log-log curve contained in the data frame must have the same sample size.

Author(s)

Victor Barreto Mesquita

References

https://www.khanacademy.org/math/ap-calculus-ab/ab-integration-new/ab-6-2/a/understanding-the-trap
https://en.wikipedia.org/wiki/Trapezoidal_rule

Examples

\# Example with a data frame with different DFA exponents ranging from short 0.1 to long 0.9.
\# The functions returns the channel with higher AUC and its respective area.
library(DFA)
\#library(latex2exp) \# it is necessary for legend of the plot function

```
data("lrcorrelation")
```

```
#plot(lrcorrelation$`log10(boxes)`,lrcorrelation$`log10(DFA(alpha = 0.9))'
```

\# , xlab=TeX("\$log_\{10\}(n)\$"),ylab=TeX("\$log_\{10\}F_\{DFA\}(n)\$"), col="black"
\# ,pch=19, ylim= c $(-0.8,1.2))$
\#lines(lrcorrelation\$`log10(boxes)',lrcorrelation\$`log10(DFA(alpha = 0.8))',type="p"
\# ,col="blue", pch=19)
\#lines(lrcorrelation\$`log10(boxes)', lrcorrelation\$' \(\log 10(D F A(a l p h a=0.7)) `\),type="p"
\# ,col="red", pch=19)
\#lines(lrcorrelation\$`log10(boxes)',lrcorrelation\$`log10(DFA(alpha = 0.6))',type="p"
\# ,col="green", pch=19)
\#lines(lrcorrelation\$`log10(boxes)',lrcorrelation\$' \(\log 10(D F A(a l p h a=0.5)) `\),type="p"
\# ,col="brown", pch=19)
\#lines(lrcorrelation\$`log10(boxes)',lrcorrelation\$`log10(DFA(alpha = 0.4))',type="p"
\# , col="yellow", pch=19)
\#lines(lrcorrelation\$`log10(boxes)', lrcorrelation\$'log10(DFA(alpha = 0.3))',type="p" \# ,col="orange", pch=19) \#lines(lrcorrelation\$`log10(boxes)',lrcorrelation\$'log10(DFA(alpha = 0.2))',type="p"
\# ,col="pink", pch=19)
\#lines(lrcorrelation\$`log10(boxes)',lrcorrelation\$'log10(DFA(alpha = 0.1))',type="p" \# ,col="magenta", pch=19) \#legend("bottom", legend=c(TeX("\$\alpha_\{DFA\} = 0.9\$"), TeX("\$\alpha_\{DFA\} = 0.8\$") \# ,TeX("\$\alpha_\{DFA\} \(=0.7 \$ "), \operatorname{TeX}\left(" \$ \backslash a l p h a _\{D F A\}=0.6 \$ "\right)\) \# ,TeX("\$\alpha_\{DFA\} \(=0.5 \$ "), \operatorname{TeX}\left(" \$ \backslash a l p h a _\{D F A\}=0.4 \$ "\right)\) \# ,TeX("\$\alpha_\{DFA\} = 0.3\$"),TeX("\$\alpha_\{DFA\} = 0.2\$") \# ,TeX("\$\alpha_\{DFA\} \(=0.1 \$ "))\) \# , col=c("black","blue","red","green","brown","yellow", "orange","pink","magenta") \# , pch=c(19,19,19,19,19,19,19,19,19) \# , cex \(=0.55\) \# , ncol = 5 \#) \(x=1 r c o r r e l a t i o n \$ ` \log 10(b o x e s)^{\prime}\)
data $=$ lrcorrelation
$\operatorname{AUC}(x$, data)

Description

Applies the Detrended Cross-Correlation Analysis (DCCA) to nonstationary time series.

Usage

$$
\text { DCCA(file,file2,scale } \left.=2^{\wedge}(1 / 8) \text {,box_size }=4, m=1\right)
$$

Arguments

file	Univariate time series (must be a vector or data frame)
file2	Univariate time series (must be a vector or data frame)
scale	Specifies the ratio between successive box sizes (by default scale $=2^{\wedge}(1 / 8)$)
box_size	Vector of box sizes (must be used in conjunction with scale $=" F^{\prime \prime}$)
m	An integer of the polynomial order for the detrending (by default $m=1$).

Details

The Detrended Cross-Correlation Analysis method (DCCA) can be computed in a geometric scale or for different choices of boxes sizes.

Value

boxe \quad Size n of the overlapping boxes.
DFA1 DFA of the first time series (file).
DFA2 DFA of the second time series (file2).
DCCA Detrended Cross-Correlation function.

Note

The time series file and file2 must have the same sample size.

Author(s)

Victor Barreto Mesquita

References

N. Xu, P. Shang, S. Kamae Modeling traffic flow correlation using DFA and DCCA Nonlinear Dynam., 61 (2010), pp. 207-216
B. Podobnik, D. Horvatic, A. Petersen, H.E. Stanley Cross-correlations between volume change and price change PNAS, 106 (52) (2009), pp. 22079-22084
R. Ursilean, A.-M. Lazar Detrended cross-correlation analysis of biometric signals used in a new authentication method Electr. Electron. Eng., 1 (2009), pp. 55-58

Examples

\#The following examples using the database of financial time series \#collected during the United States bear market of 2007-2009.
library (DFA)
data("NYA2008")
data("IXIC2008")
file $=$ NYA2008
file2= IXIC2008
DCCA(file,file2,scale $=2^{\wedge}(1 / 8)$, box_size $\left.=c(4,8,16), m=1\right)$
\# Example with different polynomial fit order.
library (DFA)
data("NYA2008")
data("LSE.L2008")
file = NYA2008
file2= LSE.L2008
DCCA(file,file2, scale $=2^{\wedge}(1 / 8)$, box_size $\left.=c(4,8,16), m=2\right)$
\# Example using different choice of overlapping boxes sizes.
library (DFA)
data("NYA2008")
data("IXIC2008")
file = NYA2008
file2= IXIC2008
DCCA(file,file2,scale $=" F "$,box_size $=c(4,8,16), m=1)$
DeltaDFA log-amplitude Detrended Fluctuation Analysis (DeltaDFA)

Description

Applies the log-amplitude Detrended Fluctuation Analysis (DFA) to nonstationary time series.

Usage

DeltaDFA(file,file2,scale $=2^{\wedge}(1 / 8)$,box_size $\left.=4, \mathrm{~m}=1\right)$

Arguments

file Univariate time series (must be a vector or data frame)

file2	Univariate time series (must be a vector or data frame)
scale	Specifies the ratio between successive box sizes (by default scale $=2^{\wedge}(1 / 8)$)
box_size	Vector of box sizes (must be used in conjunction with scale $=" F ")$
m	An integer of the polynomial order for the detrending (by default $m=1$).

Details

The DFA log-amplitude fluctuation can be computed in a geometric scale or for different choices of boxes sizes.

Value

boxe \quad Size n of the overlapping boxes.
DeltaDFA log-amplitude Detrended Fluctuation function defined as the difference between the DFA decimal logarithmic of the first time series (file) and the DFA decimal logarithmic of the second time series (file2)

Note

The time series file and file 2 must have the same sample size.

Author(s)

Victor Barreto Mesquita

References

G. F. Zebende, F. M. Oliveira Filho, J. A. L. Cruz, Auto-correlationin the motor/imaginary human eeg signals: A vision about the fdfafluctuations, PloS one 12 (9) (2017).
F. Oliveira Filho, J. L. Cruz, G. Zebende, Analysis of the eeg bio-signalsduring the reading task by dfa method, Physica A: Statistical Mechanicsand its Applications 525 (2019) 664-671.
S. R. Hirekhan, R. R. Manthalkar, The detrended fluctuation and cross-correlation analysis of eeg signals, International Journal of IntelligentSystems Design and Computing 2 (2) (2018) .

Examples

```
#The following examples using the database of financial time series
#collected during the United States bear market of 2007-2009.
library(DFA)
data("NYA2008")
data("IXIC2008")
file = NYA2008
file2= IXIC2008
DeltaDFA(file,file2,scale = 2^(1/8),box_size = c(4,8,16),m=1)
# Example with different polynomial fit order.
```

```
    library(DFA)
    data("NYA2008")
    data("LSE.L2008")
    file = NYA2008
    file2= LSE.L2008
    DeltaDFA(file,file2,scale = 2^(1/8),box_size = c(4,8,16),m=2)
    # Example using differente choice of overlapping boxes sizes.
    library(DFA)
    data("NYA2008")
    data("IXIC2008")
    file = NYA2008
file2= IXIC2008
DeltaDFA(file,file2,scale = "F",box_size = c(4,8,16),m=1)
```

Deltarho | Delta Amplitude Detrended Cross-Correlation Coefficient |
| :--- |
| $($ DeltarhoDCCA) |

Description

Applies the Detrended Cross-Correlation Coefficient Difference (Deltarho) to nonstationary time series.

Usage

Deltarho(file,file2,file3,file4,scale = 2^(1/8),box_size = 4,m=1)

Arguments

file	Univariate time series (must be a vector or data frame)
file2	Univariate time series (must be a vector or data frame)
file3	Univariate time series (must be a vector or data frame)
file 4	Univariate time series (must be a vector or data frame)
scale	Specifies the ratio between successive box sizes (by default scale $=2^{\wedge}(1 / 8)$)
box_size	Vector of box sizes (must be used in conjunction with scale $=" F^{\prime \prime}$)
m	An integer of the polynomial order for the detrending (by default $m=1$).

Details

The Deltarho can be computed in a geometric scale or for different choices of boxes sizes.

Value

boxe	Size n of the overlapping boxes.
DFA1	DFA of the first time series (file).
DFA2	DFA of the second time series (file2).
DFA3	DFA of the third time series (file3).
DFA4	DFA of the fourth time series (file4).
DCCA	Detrended Cross-Correlation function between the first time series (file) and the second time series (file2).
DCCA2	Detrended Cross-Correlation function between the third time series (file3) and the fourth time series (file4).
rhoDCCA	Detrended Cross-Correlation Coefficient function, defined as the ratio between the DCCA and two DFA (DFA1, DFA2).
rhoDCCA2	Detrended Cross-Correlation Coefficient function, defined as the ratio between the DCCA2 and two DFA (DFA3, DFA4).

Note

The time series file,file2,file3 and file4 must have the same sample size.

Author(s)

Victor Barreto Mesquita

References

SILVA, Marcus Fernandes da et al. Quantifying cross-correlation between ibovespa and brazilian blue-chips: The dcca approach. Physica A: Statistical Mechanics and its Applications, v. 424,2015.

Examples

```
#The following examples using the database of financial time series
#collected during the United States bear market of 2007-2009.
library(DFA)
data("NYA2008")
data("IXIC2008")
data("LSE.L2008")
data("SSEC2008")
file = NYA2008
file2= IXIC2008
file3 = LSE.L2008
file4 = SSEC2008
Deltarho(file,file2,file3,file4,scale = 2^(1/8),box_size = c(4,8,16),m=1)
# Example with different polynomial fit order.
```

```
library(DFA)
data("NYA2008")
data("IXIC2008")
data("LSE.L2008")
data("SSEC2008")
file = NYA2008
file2 = LSE.L2008
file3= IXIC2008
file4 = SSEC2008
Deltarho(file,file2,file3,file4,scale = 2^(1/8),box_size = c(4,8,16),m=2)
# Example using different choice of overlapping boxes sizes.
library(DFA)
data("NYA2008")
data("IXIC2008")
data("LSE.L2008")
data("SSEC2008")
file = NYA2008
file2= IXIC2008
file3 = LSE.L2008
file4 = SSEC2008
Deltarho(file,file2,file3,file4,scale = "F",box_size = c(4,8,16),m=1)
```


Description

Applies the Detrended Fluctuation Analysis (DFA) to nonstationary time series.

Usage

DFA(file,scale = 2^(1/8), box_size = 4,m=1)

Arguments

file	Univariate time series (must be a vector or data frame)
scale	Specifies the ratio between successive box sizes (by default scale $=2^{\wedge}(1 / 8)$)
box_size	Vector of box sizes (must be used in conjunction with scale $=" F ")$
m	An integer of the polynomial order for the detrending (by default $m=1)$.

Details

The DFA fluctuation can be computed in a geometric scale or for different choices of boxes sizes.

Value

boxe	Size n of the overlapping boxes.
DFA	Detrended Fluctuation function

Note

The time series file and file2 must have the same sample size.

Author(s)

Victor Barreto Mesquita

References

C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger Phys. Rev. E, 49 (1994), p. 1685
H.E. Stanley, L.A.N. Amaral, A.L. Goldberger, S. Havlin, P.Ch. Ivanov, C.-K. Peng Physica A, 270 (1999), p. 309
P.C. Ivanov, A. Bunde, L.A.N. Amaral, S. Havlin, J. Fritsch-Yelle, R.M. Baevsky, H.E. Stanley,
A.L. Goldberger Europhys. Lett., 48 (1999), p. 594
P. Talkner, R.O. Weber Phys. Rev. E, 62 (2000), p. 150
M. Ausloos, K. Ivanova Physica A, 286 (2000), p. 353
H.E. Hurst, R.P. Black, Y.M. Simaika Long-Term Storage, An Experimental Study, Constable, London (1965)

Examples

```
#The following examples using the database of financial time series
#collected during the United States bear market of 2007-2009.
library(DFA)
data("NYA2008")
file = NYA2008
DFA(file,scale = 2^(1/8),box_size = c(4,8,16),m=1)
# Example with different polynomial fit order.
library(DFA)
data("LSE.L2008")
file = LSE.L2008
DFA(file,scale = 2^(1/8),box_size = c(4,8,16),m=2)
```

\# Example using different choice of overlapping boxes sizes.
library (DFA)
data("NYA2008")
file = NYA2008
DFA(file,scale $=" F "$, box_size $=c(4,8,16), m=1)$

EEGsignal A single DFA dataframe with the decimal log fluctuation curve.

Description

The data contains the log fluctuation channel curve calculated for an epileptic subject extracted in the Physionet platform.

Usage

data("EEGsignal")

Format

A data frame with 91 observations on the following 2 variables.
' $\log 10$ (boxes)' a numeric vector referring to the decimal logarithm of the boxes sizes.
' $\log 10(D F A)$ ' a numeric vector referring to the decimal logarithm of the Detrended Fluctuation Analysis (DFA) calculated in each boxe.

References

https://physionet.org/content/chbmit/1.0.0/chb01/\#files-panel

Examples

```
data(EEGsignal)
data("EEGsignal")
x<-EEGsignal$`log10(boxes)`
y<-EEGsignal$`log10(DFA)`
plot(x,y)
```

```
euclidean euclidean method for detection of crossover points
```


Description

Applies the euclidean method for detection of crossover points on the log-log curve.

Usage

euclidean(x, y, npoint)

Arguments

$x \quad$ Vector of the decimal logarithm of the boxes sizes.
$y \quad$ Vector of the decimal logarithm of the DFA calculated in each boxe.
npoint Number of crossover points calculated on the log-log curve.

Value

position Position of the crossover point identified by the euclidean method.
sugestion_before
Sugestion for the position of the second crossover point identified by the euclidean method and calculated in the area before the first crossover point.
sugestion_after
Sugestion for the position of the second crossover point identified by the euclidean method and calculated in the area after the first crossover point.

Author(s)

Victor Barreto Mesquita

References

https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line

Examples

\# Example with crossover point fixed in position=20.
library(DFA)
data(lrcorrelation)
$\mathrm{x}<-1$ rcorrelation\$’log10(boxes)'
$\mathrm{y}<-\mathrm{c}(\mathrm{lrcorrelation} \mathrm{\$ `} \log 10($ DFA(alpha $=0.1)) `[1: 20], 1 r c o r r e l a t i o n \$ ` \log 10(D F A(a l p h a=0.3)) `[21: 40])$
plot(x,y,xlab="log10(boxes)",ylab="log10(DFA)", pch=19)
fit<- $\operatorname{lm}(y[1: 20] ~ \sim ~ x[1: 20])$
fit2<-lm(y[21:40] ~ x[21:40])
abline(fit,col="blue")
abline(fit2,col="red")

```
euclidean(x,y,npoint=1)
# Example with crossover point fixed in position=13 and 26.
library(DFA)
data(lrcorrelation)
x<-lrcorrelation$`log10(boxes)`
y<-c(lrcorrelation$`log10(DFA(alpha = 0.2))`[1:13],lrcorrelation$`log10(DFA(alpha = 0.6))`[14:26]
    ,lrcorrelation$`log10(DFA(alpha = 0.9))`[27:40])
plot(x,y,xlab="log10(boxes)",ylab="log10(DFA)",pch=19)
fit<- lm(y[1:13] ~ x[1:13])
fit2<-lm(y[14:26] ~ x[14:26])
fit3<-lm(y[27:40] ~ x[27:40])
abline(fit,col="blue")
abline(fit2,col="red")
abline(fit3,col="brown")
euclidean(x,y,npoint=2)
```

IXIC2008

Time series referring to the adjusted closing price of the NASDAQ Composite (${ }^{\wedge}$ IXIC) during the United States bear market of 2007-2009

Description

Univariate vector of time series referring to the adjusted closing price of the NASDAQ Composite (^IXIC) during the United States bear market of 2007-2009, considered the worst bear market this side of the Great Depression. The crash, which unfolded from Oct. 9, 2007 to March 9, 2009, obliterated more than half of the total value of the U.S. stock market. During this period, the S\&P 500 lost approximately a half of its value and threatened the very existence of iconic companies from General Motors to Merrill Lynch.

Usage

data("IXIC2008")

Format

The format is: num [1:332] 28112772280527802763 ...

Source

Yahoo Finance

References

https://money.com/bear-market-anniversary/

Examples

```
library(DFA)
data("IXIC2008")
```

lrcorrelation data frame with log fluctuation channel curve simulated following an ARFIMA process

Description

The data contains the data frame with log fluctuation channel curve simulated following an ARFIMA process with different DFA exponents ranging from short 0.1 to long 0.9 .

Usage
 data("lrcorrelation")

Format

A data frame with 40 observations on the following 10 variables.
' $\log 10$ (boxes)' a numeric vector referring to the decimal logarithm of the boxes sizes.
${ }^{\prime} \log 10($ DFA $(a l p h a=0.1))$ ' a numeric vector referring to the decimal logarithm of the Detrended Fluctuation Analysis (DFA) with DFA exponent equal 0.1 and calculated in each boxe.
${ }^{\prime} \log 10($ DFA $(a l p h a=0.2))$ ' a numeric vector referring to the decimal logarithm of the Detrended Fluctuation Analysis (DFA) with DFA exponent equal 0.2 and calculated in each boxe.
${ }^{\prime} \log 10($ DFA $(a l p h a=0.3))$ ' a numeric vector referring to the decimal logarithm of the Detrended Fluctuation Analysis (DFA) with DFA exponent equal 0.3 and calculated in each boxe.
' $\log 10($ DFA $($ alpha $=0.4))$ ' a numeric vector referring to the decimal logarithm of the Detrended Fluctuation Analysis (DFA) with DFA exponent equal 0.4 and calculated in each boxe.
${ }^{\prime} \log 10($ DFA $($ alpha $=0.5))$ ' a numeric vector referring to the decimal logarithm of the Detrended Fluctuation Analysis (DFA) with DFA exponent equal 0.5 and calculated in each boxe.
${ }^{\prime} \log 10($ DFA $($ alpha $=0.6))$ ' a numeric vector referring to the decimal logarithm of the Detrended Fluctuation Analysis (DFA) with DFA exponent equal 0.6 and calculated in each boxe.
${ }^{\prime} \log 10($ DFA $($ alpha $=0.7))$ ' a numeric vector referring to the decimal logarithm of the Detrended Fluctuation Analysis (DFA) with DFA exponent equal 0.7 and calculated in each boxe.
${ }^{\prime} \log 10($ DFA $($ alpha $=0.8))$ ' a numeric vector referring to the decimal logarithm of the Detrended Fluctuation Analysis (DFA) with DFA exponent equal 0.8 and calculated in each boxe.
${ }^{\prime} \log 10($ DFA $(a l p h a=0.9))$ ' a numeric vector referring to the decimal logarithm of the Detrended Fluctuation Analysis (DFA) with DFA exponent equal 0.9 and calculated in each boxe.

Examples

```
library(DFA)
#library(latex2exp) # it is necessary for legend of the plot function
data(lrcorrelation)
plot(lrcorrelation$`log10(boxes)`,lrcorrelation$`log10(DFA(alpha = 0.9))`
    ,xlab="log10(n)",ylab="log10FDFA(n)",col="black"
    ,pch=19, ylim= c(-0.8,1.2))
lines(lrcorrelation$`log10(boxes)`,lrcorrelation$`log10(DFA(alpha = 0.8))`,type="p"
        ,col="blue", pch=19)
lines(lrcorrelation$`log10(boxes)`,lrcorrelation$`log10(DFA(alpha = 0.7))`,type="p"
        ,col="red", pch=19)
lines(lrcorrelation$`log10(boxes)`,lrcorrelation$`log10(DFA(alpha = 0.6))`,type="p"
        ,col="green", pch=19)
lines(lrcorrelation$`log10(boxes)`,lrcorrelation$`log10(DFA(alpha = 0.5))`,type="p"
        ,col="brown", pch=19)
lines(lrcorrelation$`log10(boxes)`,lrcorrelation$`log10(DFA(alpha = 0.4))`,type="p"
        ,col="yellow", pch=19)
lines(lrcorrelation$`log10(boxes)`,lrcorrelation$`log10(DFA(alpha = 0.3))`,type="p"
        ,col="orange", pch=19)
lines(lrcorrelation$`log10(boxes)`,lrcorrelation$`log10(DFA(alpha = 0.2))`,type="p"
        ,col="pink", pch=19)
lines(lrcorrelation$`log10(boxes)`,lrcorrelation$`log10(DFA(alpha = 0.1))`,type="p"
        ,col="magenta", pch=19)
#legend("bottom", legend=c(TeX("$\alpha_{DFA} = 0.9$"),TeX("$\alpha_{DFA} = 0.8$")
# ,TeX("$\alpha_{DFA} = 0.7$"),TeX("$\alpha_{DFA} = 0.6$")
# ,TeX("$\alpha_{DFA} = 0.5$"),TeX("$\alpha_{DFA} = 0.4$")
# ,TeX("$\alpha_{DFA} = 0.3$"),TeX("$\alpha_{DFA} = 0.2$")
# ,TeX("$\alpha_{DFA} = 0.1$"))
# , col=c("black","blue","red","green","brown","yellow","orange","pink","magenta")
# , pch=c(19,19,19,19,19,19,19,19,19)
# , cex = 0.55
# , ncol = 5
#)
```

LSE.L2008
Time series referring to the adjusted closing price of the London Stock Exchange Group plc (LSE.L) during the period which the United States faced the bear market of 2007-2009.

Description

Univariate vector of time series referring to the adjusted closing price of the London Stock Exchange Group plc (LSE.L) during the period which the United States faced the bear market of 2007-2009, considered the worst bear market this side of the Great Depression. The crash, which unfolded from Oct. 9, 2007 to March 9, 2009, obliterated more than half of the total value of the U.S. stock market. During this period, the S\&P 500 lost approximately a half of its value and threatened the very existence of iconic companies from General Motors to Merrill Lynch.

Usage

```
data("LSE.L2008")
```


Format

The format is: num [1:332] $11721176116511631163 \ldots$

Source

Yahoo Finance

References

https://money.com/bear-market-anniversary/

Examples

```
library(DFA)
data("LSE.L2008")
```

NYA2008 Time series referring to the adjusted closing price of the NYSE COMPOSITE (^NYA) during the United States bear market of 2007-2009

Description

Univariate vector of time series referring to the adjusted closing price of the NYSE COMPOSITE (^NYA) during the United States bear market of 2007-2009, considered the worst bear market this side of the Great Depression. The crash, which unfolded from Oct. 9, 2007 to March 9, 2009, obliterated more than half of the total value of the U.S. stock market. During this period, the S\&P 500 lost approximately a half of its value and threatened the very existence of iconic companies from General Motors to Merrill Lynch.

Usage

data("NYA2008")

Format

The format is: num [1:332] 1026410245103011021610125 ...

Source

Yahoo Finance

References

https://money.com/bear-market-anniversary/

Examples

> library (DFA)
data("NYA2008")
rhoDCCA Detrended Cross-Correlation Coefficient (rhoDCCA)

Description

Applies the Detrended Cross-Correlation Coefficient (rhoDCCA) to nonstationary time series.

Usage

rhoDCCA(file,file2,scale $=2^{\wedge}(1 / 8)$, box_size $\left.=4, m=1\right)$

Arguments

file	Univariate time series (must be a vector or data frame)
file2	Univariate time series (must be a vector or data frame)
scale	Specifies the ratio between successive box sizes (by default scale $=2^{\wedge}(1 / 8)$)
box_size	Vector of box sizes (must be used in conjunction with scale $\left.=" F^{\prime \prime}\right)$
m	An integer of the polynomial order for the detrending (by default $\mathrm{m}=1)$.

Details

The Detrended Cross-Correlation Coefficient (rhoDCCA) can be computed in a geometric scale or for different choices of boxes sizes.

Value

boxe \quad Size n of the overlapping boxes.
DFA1 DFA of the first time series (file).
DFA2 DFA of the second time series (file2).
DCCA Detrended Cross-Correlation function.
rhoDCCA Detrended Cross-Correlation Coefficient function, defined as the ratio between the DCCA and two DFA (DFA1, DFA2).

Note

The time series file and file2 must have the same sample size.

Author(s)

Victor Barreto Mesquita

References

Zebende G.F. DCCA cross-correlation coefficient: Quantifying level of cross-correlation Physica A, 390 (4) (2011), pp. 614-618

Vassoler R.T., Zebende G.F. DCCA cross-correlation coefficient apply in time series of air temperature and air relative humidity Physica A, 391 (7) (2012), pp. 2438-2443

Guedes E.F., Zebende G.F., da Cunha Lima I.C. Quantificacao dos Efeitos do Cambio na Producao da Industria de Transformacao Baiana: uma abordagem via coeficiente de correlacao cruzada rho dcca Conjuntura \& Planejamento, 1 (192) (2017), pp. 75-89

Examples

\#The following examples using the database of financial time series \#collected during the United States bear market of 2007-2009.
library (DFA)
data("NYA2008")
data("IXIC2008")
file = NYA2008
file2= IXIC2008
rhoDCCA(file,file2,scale $=2^{\wedge}(1 / 8)$, box_size $\left.=c(4,8,16), m=1\right)$
\# Example with different polynomial fit order.
library (DFA)
data("NYA2008")
data("LSE.L2008")
file = NYA2008
file2= LSE.L2008
rhoDCCA(file,file2, scale $=2^{\wedge}(1 / 8)$, box_size $\left.=c(4,8,16), m=2\right)$
\# Example using different choice of overlapping boxes sizes.
library (DFA)
data("NYA2008")
data("IXIC2008")
file = NYA2008
file2= IXIC2008
rhoDCCA(file,file2,scale $=" F "$, box_size $=c(4,8,16), m=1)$
secant secant method for detection of crossover points

Description

Applies the secant method for detection of crossover points on the log-log curve.

Usage

secant(x, y, npoint, size_fit)

Arguments

x	Vector of the decimal logarithm of the boxes sizes.
y	Vector of the decimal logarithm of the DFA calculated in each boxe.
npoint	Number of crossover points calculated on the log-log curve.
size_fit	Number of points of the two semi-curved fitted in the extremes of the log-log curve.

Value

position Position of the crossover point identified by the secant method.

Author(s)

Victor Barreto Mesquita

Examples

\# Example with the data referring to the log fluctuation
\#channel curve data calculated for an epileptic subject \#extracted in the Physionet platform.
library (DFA)
data("EEGsignal")
x<-EEGsignal\$`log10(boxes)'
$y<-E E G s i g n a l \${ }^{\prime} \log 10(D F A)^{\prime}$
plot(x,y,xlab="log10(boxes)", ylab="log10(DFA)")
secant(x, y, npoint=2, size_fit=8)
\# Example with crossover point fixed in position=20.
library(DFA)
part1 <- seq $(1,20)$
part2 <- seq $(20,1)$
$y=c(p a r t 1, p a r t 2)$
$x<-\operatorname{seq}(1,40)$

```
plot(x,y)
secant(x,y,npoint=1,size_fit=8)
```

 SSEC2008
 Time series referring to the adjusted closing price of the SSE Composite Index $(\wedge S S E C)$ during the period which the United States faced the bear market of 2007-2009.

Description

Univariate vector of time series referring to the adjusted closing price of the SSE Composite Index (\wedge SSEC) during the period which the United States faced the bear market of 2007-2009, considered the worst bear market this side of the Great Depression. The crash, which unfolded from Oct. 9, 2007 to March 9, 2009, obliterated more than half of the total value of the U.S. stock market. During this period, the S\&P 500 lost approximately a half of its value and threatened the very existence of iconic companies from General Motors to Merrill Lynch.

Usage

data("SSEC2008")

Format

The format is: num [1:332] 57715913590360306092 ...

Source

Yahoo Finance

References

https://money.com/bear-market-anniversary/

Examples

```
library(DFA)
data("SSEC2008")
```


Index

```
* datasets
    EEGsignal, 11
    IXIC2008,13
    lrcorrelation,14
    LSE.L2008, 15
    NYA2008, 16
    SSEC2008,20
AUC, 2
DCCA, 3
DeltaDFA,5
Deltarho, }
DFA, }
EEGsignal, 11
euclidean, 12
IXIC2008, 13
lrcorrelation,14
LSE.L2008, 15
NYA2008, 16
rhoDCCA, 17
secant,19
SSEC2008, 20
```

