Package 'DIconvex'

September 20, 2018
Type Package
Title Finding Patterns of Monotonicity and Convexity in Data
Version 1.0.0
Author Paul Schneider [aut, ths], Liudmila Karagyaur [aut]
Maintainer Liudmila Karagyaur liudmila.karagyaur@usi.ch
Description Given an initial set of points, this package minimizes the number of elements to discard from this set such that there exists at least one monotonic and convex mapping within prespecified upper and lower bounds.

Depends lpSolveAPI
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2018-09-20 18:00:15 UTC

R topics documented:

$$
\text { DIconvex . } 1
$$

Index 4

DIconvex | Finding patterns of monotonicity and convexity in two-dimensional |
| :--- |
| data |

Description

This package takes as input x values x_{1}, \ldots, x_{n}, as well as lower L_{1}, \ldots, L_{n}, and upper bounds U_{1}, \ldots, U_{n}. It maximizes $\sum_{i=1}^{n} f_{i}, f_{i} \in\{0,1\}$ such that there exists at least one convex increasing (decreasing) set of values $L_{j} \leq y_{j} \leq U_{j}, j \in C$, where C is the set of indices $i=1, \ldots, n$ for which $f_{i}=1$.

Usage

DIconvex(x, lower, upper, increasing = FALSE, epsim = 0, epsic = 0,visual=TRUE)

Arguments

x
lower a numeric vector of the same length as x containing the lower limit points. The elements of the vector lower have to be non-negative and finite.
upper a numeric vector of the same length as x containing the upper limit points. The elements of the vector upper have to be non-negative and finite. Furthermore, $L_{i} \leq U_{i}, i=1, \ldots, n$.
increasing a boolean value determining whether to look for an increasing or decreasing pattern. The default value is FALSE.
epsim a non-negative value controlling the monotonicity conditions, $y_{i+1}-y_{i} \leq(\geq$)epsim, $i=1, \ldots, n-1$. The default value is 0 .
epsic a positive value controlling the convexity condition. For $\alpha_{i}:=\left(x_{i}-x_{i+1}\right) /\left(x_{i-1}-\right.$ $\left.x_{i+1}\right)$ the condition imposed is $y_{i}-\alpha_{i} y_{i+1}-\left(1-\alpha_{i}\right) y_{i-1} \leq e p s i c, i=$ $2, \ldots, n-1$. The default value is 0 .
visual a boolean value indicating whether a visual representation of the solution is desired. Here a solution is depicted for all values of x , with linearly interpolated y if $i \notin C$. The default value is TRUE.

Details

The package DIconvex is solved as a linear program facilitating lpSolveAPI. It lends itself to applications with financial options data. Given a dataset of call or put options, the function maximizes the number of data points such that there exists at least one set of arbitrage-free fundamental option prices within bid and ask spreads.
For this particular application, x is the vector of strike prices, lower represents the vector of bid prices and upper represents the vector of ask prices.

Value

a list containing:
a vector containing f_{1}, \ldots, f_{n}.
a vector containing $y_{j}, j \in C$.
a single integer value containing the status code of the underlying linear program. For the interpretation of status codes please see 1 pSolveAPI R documentation. The value 0 signifies success.

Author(s)

Liudmila Karagyaur liudmila.karagyaur@usi.ch
Paul Schneider paul.schneider@usi.ch

Examples

```
x = c(315, 320, 325, 330, 335, 340, 345, 350)
upper =c(0.5029714, 0.5633280, 0.6840411, 0.8751702, 3.0000000, 1.5692708, 2.3237279, 3.5207998)
lower = c(0.2514857, 0.4325554, 0.4325554, 0.6236845, 2.5000000, 1.1870125, 1.9414696, 3.1385415)
DIconvex(x, lower, upper, increasing = TRUE)
x = c(340, 345, 350, 355, 360, 365)
lower = c(2.7661994, 1.3177168, 1.5029454, 0.1207069, 0.1207069, 0.1207069)
upper = c(3.1383790, 1.5088361, 1.6236522, 0.3721796, 0.1810603, 0.2514727)
DIconvex(x, lower, upper, increasing = FALSE)
```


Index

DIconvex, 1
lpSolveAPI, 2

