DImodels
The DImodels
package is designed to make fitting Diversity-Interactions models easier. Diversity-Interactions (DI) models (Kirwan et al 2009) are a set of tools for analysing and interpreting data from experiments that explore the effects of species diversity (from a pool of S species) on community-level responses. Data suitable for DI models will include (at least) for each experimental unit: a response recorded at a point in time, and a set of proportions of S species \(p_1\), \(p_2\), …, \(p_S\) from a point in time prior to the recording of the response. The proportions sum to 1 for each experimental unit.
Main changes in the package from version 1.0 to version 1.1
DI_data_prepare
is now superseded by DI_data
(see examples below)DImodels
installation and loadThe DImodels
package is installed from CRAN and loaded in the typical way.
install.packages("DImodels")
library("DImodels")
It is recommended that users unfamiliar with Diversity-Interactions (DI) models read the introduction to DImodels
, before using the package. Run the following code to access the documentation.
?DImodels
There are seven example datasets included in the DImodels
package: Bell
, sim1
, sim2
, sim3
, sim4
, sim5
, Switzerland
. Details about each of these datasets is available in their associated help files, run this code, for example:
?sim3
In this vignette, we will describe the sim3
dataset and show a worked analysis of it.
The sim3
dataset was simulated from a functional group (FG) Diversity-Interactions model. There were nine species in the pool, and it was assumed that species 1 to 5 come from functional group 1, species 6 and 7 from functional group 2 and species 8 and 9 from functional group 3, where species in the same functional group are assumed to have similar traits. The following equation was used to simulate the data.
\[ y = \sum_{i=1}^{9}\beta_ip_i + \omega_{11}\sum_{\substack{i,j = 1 \ i
Parameter | Value | Parameter | Value | |
---|---|---|---|---|
\(\beta_1\) | 10 | \(\omega_{11}\) | 2 | |
\(\beta_2\) | 9 | \(\omega_{22}\) | 3 | |
\(\beta_3\) | 8 | \(\omega_{33}\) | 1 | |
\(\beta_4\) | 7 | \(\omega_{12}\) | 4 | |
\(\beta_5\) | 11 | \(\omega_{13}\) | 9 | |
\(\beta_6\) | 6 | \(\omega_{23}\) | 3 | |
\(\beta_7\) | 5 | \(\gamma_1\) | 3 | |
\(\beta_8\) | 8 | \(\gamma_2\) | 0 | |
\(\beta_9\) | 9 | \(\sigma\) | 1.2 |
Here, the non-linear parameter \(\theta\) that can be included as a power on each \(p_ip_j\) component of each interaction variable (Connolly et al 2013) was set equal to one and thus does not appear in the equation above.
The 206 rows of proportions contained in the dataset design_a
(supplied in the package) were used to simulate the sim3
dataset. Here is the first few rows from design_a
:
community | richness | p1 | p2 | p3 | p4 | p5 | p6 | p7 | p8 | p9 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
Where community
is an identifier for unique sets of proportions and richness
is the number of species in the community.
The proportions in design_a
were replicated over two treatment levels, giving a total of 412 rows in the simulated dataset. The sim3
data can be loaded and viewed in the usual way.
data("sim3")
knitr::kable(head(sim3, 10))
community | richness | treatment | p1 | p2 | p3 | p4 | p5 | p6 | p7 | p8 | p9 | response |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 10.265 |
1 | 1 | B | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 7.740 |
1 | 1 | A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 12.173 |
1 | 1 | B | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 8.497 |
2 | 1 | A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 10.763 |
2 | 1 | B | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 8.989 |
2 | 1 | A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 10.161 |
2 | 1 | B | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 7.193 |
3 | 1 | A | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 10.171 |
3 | 1 | B | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 6.053 |
There are several graphical displays that will help to explore the data and it may also be useful to generate summary statistics.
hist(sim3$response, xlab = "Response", main = "")
# Similar graphs can also be generated for the other species proportions.
plot(sim3$p1, sim3$response, xlab = "Proportion of species 1", ylab = "Response")
summary(sim3$response)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 4.134 9.327 10.961 10.994 12.604 17.323
autoDI
The function autoDI
in DImodels
provides a way to do an automated exploratory analysis to compare a range of DI models. It works through a set of automated steps (Steps 1 to 4) and will select the 'best' model from the range of models that have been explored and test for lack of fit in that model. The selection process is not exhaustive, but provides a useful starting point in analysis using DI models.
auto1 <- autoDI(y = "response", prop = 4:12, treat = "treatment",
FG = c("FG1","FG1","FG1","FG1","FG1","FG2","FG2","FG3","FG3"), data = sim3,
selection = "Ftest")
#> Warning in DI_data_prepare(y = y, block = block, density = density, prop = prop, : One or more rows have species proportions that sum to approximately 1, but not exactly 1. This is typically a rounding issue, and has been corrected internally prior to analysis.
#>
#> --------------------------------------------------------------------------------
#> Step 1: Investigating the diversity effect
#> Selection using F tests
#> Description
#> DI Model 1 Structural 'STR' DImodel with treatment
#> DI Model 2 Species identity 'ID' DImodel with treatment
#> DI Model 3 Average interactions 'AV' DImodel with treatment
#> DI Model 4 Functional group effects 'FG' DImodel with treatment
#> DI Model 5 Separate pairwise interactions 'FULL' DImodel with treatment
#>
#> DI_model treat estimate_theta Resid. Df Resid. SSq Resid. MSq
#> DI Model 1 STR 'treatment' FALSE 410 1496.1645 3.6492
#> DI Model 2 ID 'treatment' FALSE 402 841.2740 2.0927
#> DI Model 3 AV 'treatment' FALSE 401 694.3095 1.7314
#> DI Model 4 FG 'treatment' FALSE 396 559.7110 1.4134
#> DI Model 5 FULL 'treatment' FALSE 366 522.9727 1.4289
#> Df SSq F Pr(>F)
#> DI Model 1
#> DI Model 2 8 654.8905 57.2903 <0.0001
#> DI Model 3 1 146.9645 102.8524 <0.0001
#> DI Model 4 5 134.5985 18.8396 <0.0001
#> DI Model 5 30 36.7383 0.857 0.686
#>
#> Selected model: Functional group effects 'FG' DImodel with treatment
#> Formula:
#> response = p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + FG_bfg_FG1_FG2 + FG_bfg_FG1_FG3 + FG_bfg_FG2_FG3 + FG_wfg_FG1 + FG_wfg_FG2 + FG_wfg_FG3 + treatmentA
#>
#> --------------------------------------------------------------------------------
#> Step 2: Investigating the treatment effect
#> Selection using F tests
#> Description
#> DI Model 1 Functional group effects 'FG' DImodel
#> DI Model 2 Functional group effects 'FG' DImodel with treatment
#>
#> DI_model treat estimate_theta Resid. Df Resid. SSq Resid. MSq
#> DI Model 1 FG none FALSE 397 1550.682 3.9060
#> DI Model 2 FG 'treatment' FALSE 396 559.711 1.4134
#> Df SSq F Pr(>F)
#> DI Model 1
#> DI Model 2 1 990.9711 701.12 <0.0001
#>
#> Selected model: Functional group effects 'FG' DImodel with treatment
#> Formula:
#> response = p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + FG_bfg_FG1_FG2 + FG_bfg_FG1_FG3 + FG_bfg_FG2_FG3 + FG_wfg_FG1 + FG_wfg_FG2 + FG_wfg_FG3 + treatmentA
#>
#> --------------------------------------------------------------------------------
#> Step 3: Investigating whether theta is equal to 1 or not
#>
#> Theta estimate: 0.9681
#> Selection using F tests
#> Description
#> DI Model 1 Functional group effects 'FG' DImodel with treatment
#> DI Model 2 Functional group effects 'FG' DImodel with treatment, estimating theta
#>
#> DI_model treat estimate_theta Resid. Df Resid. SSq Resid. MSq
#> DI Model 1 FG 'treatment' FALSE 396 559.7110 1.4134
#> DI Model 2 FG 'treatment' TRUE 395 558.9274 1.4150
#> Df SSq F Pr(>F)
#> DI Model 1
#> DI Model 2 1 0.7836 0.5538 0.4572
#>
#> Selected model: Functional group effects 'FG' DImodel with treatment
#>
#> --------------------------------------------------------------------------------
#> Step 4: Comparing the final selected model with the reference (community) model
#> 'community' is a factor with 100 levels, one for each unique set of proportions.
#>
#> model Resid. Df Resid. SSq Resid. MSq Df SSq F Pr(>F)
#> DI Model 1 Selected 396 559.7110 1.4134
#> DI Model 2 Reference 311 445.9889 1.4340 85 113.7222 0.933 0.6423
#>
#> --------------------------------------------------------------------------------
#> autoDI is limited in terms of model selection. Exercise caution when choosing your final model.
#> --------------------------------------------------------------------------------
The output of autoDI
, works through the following process:
Further details on each of these steps are available in the autoDI
help file. Run the following code to access the documentation.
?autoDI
All parameter estimates from the selected model can be viewed using summary
.
summary(auto1)
#>
#> Call:
#> glm(formula = new_fmla, family = family, data = new_data)
#>
#> Deviance Residuals:
#> Min 1Q Median 3Q Max
#> -3.8425 -0.8141 0.0509 0.8048 3.5657
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> p1 9.7497 0.3666 26.595 < 2e-16 ***
#> p2 8.5380 0.3672 23.253 < 2e-16 ***
#> p3 8.2329 0.3666 22.459 < 2e-16 ***
#> p4 6.3644 0.3665 17.368 < 2e-16 ***
#> p5 10.8468 0.3669 29.561 < 2e-16 ***
#> p6 5.9621 0.4515 13.205 < 2e-16 ***
#> p7 5.4252 0.4516 12.015 < 2e-16 ***
#> p8 7.3204 0.4515 16.213 < 2e-16 ***
#> p9 8.2154 0.4515 18.196 < 2e-16 ***
#> FG_bfg_FG1_FG2 3.4395 0.8635 3.983 8.09e-05 ***
#> FG_bfg_FG1_FG3 11.5915 0.8654 13.395 < 2e-16 ***
#> FG_bfg_FG2_FG3 2.8711 1.2627 2.274 0.02351 *
#> FG_wfg_FG1 2.8486 0.9131 3.120 0.00194 **
#> FG_wfg_FG2 0.6793 2.3553 0.288 0.77319
#> FG_wfg_FG3 2.4168 2.3286 1.038 0.29997
#> treatmentA 3.1018 0.1171 26.479 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for gaussian family taken to be 1.413412)
#>
#> Null deviance: 52280.33 on 412 degrees of freedom
#> Residual deviance: 559.71 on 396 degrees of freedom
#> AIC: 1329.4
#>
#> Number of Fisher Scoring iterations: 2
If the final model selected by autoDI includes a value of theta other than 1, then a 95% confidence interval for \(\theta\) can be generated using the theta_CI
function:
theta_CI(auto1$selected_model_obj, conf = .95)
Here, this code would not run, since the final model selected by autoDI
does not include theta estimated.
DI
functionFor some users, the selection process in autoDI
will be sufficient, however, most users will fit additional models using DI
. For example, while the treatment is included in autoDI
as an additive factor, interactions between treatment and other model terms are not considered. Here, we will first fit the model selected by autoDI
using DI
and then illustrate the capabilities of DI
to fit specialised models.
autoDI
using DI
##
m1 <- DI(y = "response", prop = 4:12,
FG = c("FG1","FG1","FG1","FG1","FG1","FG2","FG2","FG3","FG3"), treat = "treatment",
DImodel = "FG", data = sim3)
#> Warning in DI_data_prepare(y = y, block = block, density = density, prop = prop, : One or more rows have species proportions that sum to approximately 1, but not exactly 1. This is typically a rounding issue, and has been corrected internally prior to analysis.
#> Fitted model: Functional group effects 'FG' DImodel
summary(m1)
#>
#> Call:
#> glm(formula = new_fmla, family = family, data = new_data)
#>
#> Deviance Residuals:
#> Min 1Q Median 3Q Max
#> -3.8425 -0.8141 0.0509 0.8048 3.5657
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> p1 9.7497 0.3666 26.595 < 2e-16 ***
#> p2 8.5380 0.3672 23.253 < 2e-16 ***
#> p3 8.2329 0.3666 22.459 < 2e-16 ***
#> p4 6.3644 0.3665 17.368 < 2e-16 ***
#> p5 10.8468 0.3669 29.561 < 2e-16 ***
#> p6 5.9621 0.4515 13.205 < 2e-16 ***
#> p7 5.4252 0.4516 12.015 < 2e-16 ***
#> p8 7.3204 0.4515 16.213 < 2e-16 ***
#> p9 8.2154 0.4515 18.196 < 2e-16 ***
#> FG_bfg_FG1_FG2 3.4395 0.8635 3.983 8.09e-05 ***
#> FG_bfg_FG1_FG3 11.5915 0.8654 13.395 < 2e-16 ***
#> FG_bfg_FG2_FG3 2.8711 1.2627 2.274 0.02351 *
#> FG_wfg_FG1 2.8486 0.9131 3.120 0.00194 **
#> FG_wfg_FG2 0.6793 2.3553 0.288 0.77319
#> FG_wfg_FG3 2.4168 2.3286 1.038 0.29997
#> treatmentA 3.1018 0.1171 26.479 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for gaussian family taken to be 1.413412)
#>
#> Null deviance: 52280.33 on 412 degrees of freedom
#> Residual deviance: 559.71 on 396 degrees of freedom
#> AIC: 1329.4
#>
#> Number of Fisher Scoring iterations: 2
DI
functionThere are two ways to fit customised models using DI
; the first is by using the option DImodel =
in the DI
function and adding the argument extra_formula =
to it, and the second is to use the custom_formula
argument in the DI
function. If species interaction variables (e.g., the FG interactions or the average pairwise interaction) are included in either extra_formula
or custom_formula
, they must first be created and included in the dataset. The function DI_data
can be used to compute several types of species interaction variables.
extra_formula
m2 <- DI(y = "response", prop = 4:12,
FG = c("FG1","FG1","FG1","FG1","FG1","FG2","FG2","FG3","FG3"), treat = "treatment",
DImodel = "FG", extra_formula = ~ (p1 + p2 + p3 + p4):treatment,
data = sim3)
#> Warning in DI_data_prepare(y = y, block = block, density = density, prop = prop, : One or more rows have species proportions that sum to approximately 1, but not exactly 1. This is typically a rounding issue, and has been corrected internally prior to analysis.
#> Fitted model: Functional group effects 'FG' DImodel
summary(m2)
#>
#> Call:
#> glm(formula = new_fmla, family = family, data = new_data)
#>
#> Deviance Residuals:
#> Min 1Q Median 3Q Max
#> -3.6892 -0.7859 0.0436 0.7781 3.6227
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> p1 9.391824 0.540485 17.377 < 2e-16 ***
#> p2 8.492825 0.540879 15.702 < 2e-16 ***
#> p3 8.406038 0.540471 15.553 < 2e-16 ***
#> p4 6.015296 0.540391 11.131 < 2e-16 ***
#> p5 10.802270 0.378776 28.519 < 2e-16 ***
#> p6 5.917565 0.461482 12.823 < 2e-16 ***
#> p7 5.380703 0.461535 11.658 < 2e-16 ***
#> p8 7.275881 0.461506 15.766 < 2e-16 ***
#> p9 8.170907 0.461471 17.706 < 2e-16 ***
#> FG_bfg_FG1_FG2 3.439508 0.865279 3.975 8.38e-05 ***
#> FG_bfg_FG1_FG3 11.591458 0.867140 13.367 < 2e-16 ***
#> FG_bfg_FG2_FG3 2.871063 1.265295 2.269 0.02381 *
#> FG_wfg_FG1 2.848612 0.915008 3.113 0.00199 **
#> FG_wfg_FG2 0.679285 2.360195 0.288 0.77365
#> FG_wfg_FG3 2.416774 2.333420 1.036 0.30097
#> treatmentA 3.190868 0.216493 14.739 < 2e-16 ***
#> `p1:treatmentB` 0.626667 0.668369 0.938 0.34902
#> `p2:treatmentB` 0.001213 0.668369 0.002 0.99855
#> `p3:treatmentB` -0.435322 0.668369 -0.651 0.51522
#> `p4:treatmentB` 0.609180 0.668369 0.911 0.36262
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for gaussian family taken to be 1.419257)
#>
#> Null deviance: 52280.33 on 412 degrees of freedom
#> Residual deviance: 556.35 on 392 degrees of freedom
#> AIC: 1335
#>
#> Number of Fisher Scoring iterations: 2
extra_formula
First, we create the FG pairwise interactions, using the DI_data
function with the what
argument set to "FG"
.
FG_matrix <- DI_data(prop = 4:12, FG = c("FG1","FG1","FG1","FG1","FG1","FG2","FG2","FG3","FG3"),
data = sim3, what = "FG")
sim3a <- data.frame(sim3, FG_matrix)
Then we fit the model using extra_formula
.
m3 <- DI(y = "response", prop = 4:12,
FG = c("FG1","FG1","FG1","FG1","FG1","FG2","FG2","FG3","FG3"),
treat = "treatment", DImodel = "FG",
extra_formula = ~ (bfg_FG1_FG2 + bfg_FG1_FG3 + bfg_FG2_FG3 + wfg_FG1 + wfg_FG2
+ wfg_FG3):treatment, data = sim3a)
#> Warning in DI_data_prepare(y = y, block = block, density = density, prop = prop, : One or more rows have species proportions that sum to approximately 1, but not exactly 1. This is typically a rounding issue, and has been corrected internally prior to analysis.
#> Fitted model: Functional group effects 'FG' DImodel
summary(m3)
#>
#> Call:
#> glm(formula = new_fmla, family = family, data = new_data)
#>
#> Deviance Residuals:
#> Min 1Q Median 3Q Max
#> -3.8251 -0.8208 0.0554 0.7982 3.4218
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> p1 9.68668 0.40000 24.217 < 2e-16 ***
#> p2 8.47495 0.40053 21.159 < 2e-16 ***
#> p3 8.16990 0.39998 20.426 < 2e-16 ***
#> p4 6.30140 0.39987 15.759 < 2e-16 ***
#> p5 10.78379 0.40031 26.938 < 2e-16 ***
#> p6 5.89908 0.47958 12.301 < 2e-16 ***
#> p7 5.36222 0.47963 11.180 < 2e-16 ***
#> p8 7.25740 0.47960 15.132 < 2e-16 ***
#> p9 8.15243 0.47957 17.000 < 2e-16 ***
#> FG_bfg_FG1_FG2 4.00191 1.12383 3.561 0.000415 ***
#> FG_bfg_FG1_FG3 11.77389 1.12973 10.422 < 2e-16 ***
#> FG_bfg_FG2_FG3 3.83681 1.64287 2.335 0.020027 *
#> FG_wfg_FG1 2.81860 1.16226 2.425 0.015757 *
#> FG_wfg_FG2 -1.58378 3.11717 -0.508 0.611682
#> FG_wfg_FG3 1.32358 3.07561 0.430 0.667181
#> treatmentA 3.22783 0.33480 9.641 < 2e-16 ***
#> `treatmentA:bfg_FG1_FG2` -1.12480 1.43053 -0.786 0.432178
#> `treatmentA:bfg_FG1_FG3` -0.36487 1.44450 -0.253 0.800717
#> `treatmentA:bfg_FG2_FG3` -1.93150 2.09024 -0.924 0.356029
#> `treatmentA:wfg_FG1` 0.06003 1.42911 0.042 0.966517
#> `treatmentA:wfg_FG2` 4.52613 4.06260 1.114 0.265924
#> `treatmentA:wfg_FG3` 2.18638 3.99748 0.547 0.584733
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for gaussian family taken to be 1.42436)
#>
#> Null deviance: 52280.3 on 412 degrees of freedom
#> Residual deviance: 555.5 on 390 degrees of freedom
#> AIC: 1338.3
#>
#> Number of Fisher Scoring iterations: 2
custom_formula
First, we create a dummy variable for level A of the treatment (this is required for the glm
engine that is used within DI
and because there is no intercept in the model).
sim3a$treatmentA <- as.numeric(sim3a$treatment=="A")
Then we fit the model using custom_formula
.
m3 <- DI(y = "response", custom_formula = response ~ 0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9
+ treatmentA + bfg_FG1_FG2 + bfg_FG1_FG3 + bfg_FG2_FG3, data = sim3a)
#> Fitted model: Custom DI model
summary(m3)
#>
#> Call:
#> glm(formula = custom_formula, family = family, data = data)
#>
#> Deviance Residuals:
#> Min 1Q Median 3Q Max
#> -4.0272 -0.7831 0.0404 0.7570 3.7016
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> p1 10.3417 0.3138 32.957 < 2e-16 ***
#> p2 9.1766 0.3103 29.573 < 2e-16 ***
#> p3 8.8268 0.3134 28.164 < 2e-16 ***
#> p4 6.9742 0.3122 22.341 < 2e-16 ***
#> p5 11.4422 0.3141 36.426 < 2e-16 ***
#> p6 5.9177 0.3994 14.815 < 2e-16 ***
#> p7 5.3967 0.3999 13.496 < 2e-16 ***
#> p8 7.4468 0.3983 18.695 < 2e-16 ***
#> p9 8.3449 0.3984 20.945 < 2e-16 ***
#> treatmentA 3.1018 0.1184 26.198 < 2e-16 ***
#> bfg_FG1_FG2 2.9359 0.8042 3.651 0.000296 ***
#> bfg_FG1_FG3 10.8896 0.8343 13.053 < 2e-16 ***
#> bfg_FG2_FG3 2.9410 1.2233 2.404 0.016667 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for gaussian family taken to be 1.443887)
#>
#> Null deviance: 52280.33 on 412 degrees of freedom
#> Residual deviance: 576.11 on 399 degrees of freedom
#> AIC: 1335.3
#>
#> Number of Fisher Scoring iterations: 2
Connolly J, T Bell, T Bolger, C Brophy, T Carnus, JA Finn, L Kirwan, F Isbell, J Levine, A Lüscher, V Picasso, C Roscher, MT Sebastia, M Suter and A Weigelt (2013) An improved model to predict the effects of changing biodiversity levels on ecosystem function. Journal of Ecology, 101, 344-355.
Kirwan L, J Connolly, JA Finn, C Brophy, A Lüscher, D Nyfeler and MT Sebastia (2009) Diversity-interaction modelling - estimating contributions of species identities and interactions to ecosystem function. Ecology, 90, 2032-2038.