
Package ‘DTwrappers’
June 21, 2021

Title Simplified Data Analysis with Wrapper Functions for the
'Data.Table' Package

Version 0.0.2

Depends R (>= 3.1.0)

Description Provides functionality for users who are learning R or the techniques of data analy-
sis. Written as a collection of wrapper functions, the 'DTwrapper' package facili-
tates many core operations of data processing. This is achieved with relatively few require-
ments about the order of the processing steps or knowledge of specialized syntax. 'DTwrap-
pers' creates coding results along with translations to data.table's code. This en-
ables users to benefit from the speed and efficiency of data.table's calculations. Further-
more, the package also provides the translated code for educational purposes so that users can re-
view working examples of coding syntax and calculations.

License GPL-3

Encoding UTF-8

RoxygenNote 7.1.1

Suggests knitr, rmarkdown, covr, testthat (>= 2.1.0)

VignetteBuilder knitr

Imports data.table

NeedsCompilation no

Author David Shilane [aut],
Mayur Bansal [ctb, cre]

Maintainer Mayur Bansal <mb4511@columbia.edu>

Repository CRAN

Date/Publication 2021-06-21 06:20:08 UTC

R topics documented:
add.backtick . 2
dt.calculate . 2
dt.choose.cols . 5
dt.choose.rows . 7

1

2 dt.calculate

dt.count.rows . 8
dt.define.variable . 10
dt.first.k.rows . 12
dt.last.k.rows . 14
dt.remove.variables . 15
dt.sort . 17
reduce.vector.expression . 18

Index 19

add.backtick Add backtick

Description

Function that add backticks to the input variables.

Usage

add.backtick(x, include.backtick = "as.needed", dat = NULL)

Arguments

x Character value specifying the name of input parameters.
include.backtick

specifies whether a backtick should be added. Parameter values should be either
’all’ or ’as.needed’

dat the dataset

Value

None

dt.calculate dt.calculate

Description

This function allows a user to apply one or more functions to all of the specified variables in a
data.frame or data.table object. It is built as a wrapper function of data.table’s method of applying
functions to variables while allowing for filtering and grouping steps. This allows a user to easily
calculate many results, e.g. the.functions = c("mean", "median", "sd") on multiple columns, e.g.
the.variables = c("Age", "Income") while also filtering and grouping the data. Options also exist
to return a data.table coding statement (result = "code") for educational purposes or both the result
and the code together (result = "all"). For examples, please see the vignette.

dt.calculate 3

Usage

dt.calculate(
dt.name,
the.functions,
the.variables = ".",
the.filter = NULL,
grouping.variables = NULL,
sortby.group = TRUE,
other.params = "",
table.format = "long",
add.function.name = TRUE,
individual.variables = TRUE,
output.as.table = TRUE,
return.as = "result",
envir = .GlobalEnv,
...

)

Arguments

dt.name a character value specifying the name of a data.frame or data.table object to
select data from. A variable called dat should be referred to with dt.name =
"dat" when using the function.

the.functions A character vector specifying the name of the functions to apply to the.variables.
Each function included in the.functions will be separately applied to each vari-
able in the.variables.

the.variables A character or numeric vector specifying the variables to perform the calcula-
tions on. For character vectors, only values that exist in the names of the data
will be used. For numeric vectors, only the values of unique(floor(sorting.variables))
that are in 1:ncol() of your data will be used. Then these indices will be used to
select column names from the data. Other values in sorting.variables that do not
correspond to a defined column will be excluded from the calculation. When
the.variables includes ".", then all values in names(dat) will be selected. Val-
ues of the.variables that also exist in grouping.variables will be excluded from
the.variables (but grouped by these values).

the.filter a character value, numeric vector, logical vector, or expression stating the logical
operations used to filter the data. The filtering step will be applied prior to
generating the counts. Defaults to NULL unless otherwise specified. Logical
vectors will be converted to a numeric filter, e.g. c(TRUE, TRUE, FALSE) will
become 1:2 to signify which rows should be selected.

grouping.variables

A character or numeric vector specifying the variables to perform the calcula-
tions on. For character vectors, the values may be either column names of the
data or calculations based upon them (see the vignette for examples). For nu-
meric vectors, only the values of unique(floor(grouping.variables)) that are in
1:ncol() of your data will be used. Then these indices will be mapped to the
corresponding column names from the data. When NULL, no grouping will be
performed.

4 dt.calculate

sortby.group A logical value specifying whether the grouping should be sorted (TRUE, the
default value) or as is (FALSE).

other.params A character value specifying any additional parameters needed to call the.functions.
For instance, if the.functions = "mean", and you would like to remove missing
values, then specifying other.params = "na.rm = TRUE" as a character would
suffice. Multiple parameters can be specified with comma separation, e.g. other.params
= "trim = 1, na.rm = TRUE". Note that all of the parameters supplied must apply
to all of the.functions

table.format specify the format of the table depending on the desired output i.e. "long" or
"wide"

add.function.name

A logical value specifying whether the name of the function applied should be
appended to the column names in the resulting table. Only applies if the.functions
is of length 1.

individual.variables

a logical variable specifying if variables are grouped or individual
output.as.table

a logical variable to specify if output should be a table or not

return.as a character value specifying what output should be returned. return.as = "result"
provides the table of counts. return.as = "code" provides a data.table coding
statement that can generate the table of counts. return.as = "all" provides a list
containing both the resulting table and the code.

envir the environment in which the code would be evaluated; .GlobalEnv by default.

... additional arguments to be passed

Value

Depending on the value of return.as, the output will be a) a character value (return.as = ’code’), b)
a coding output, typically a data.table (return.as = ’result’), or c) a list containing both the code and
output (return.as = ’all’)

Source

DTwrappers::create.dt.statement

DTwrappers::eval.dt.statement

DTwrappers::add.backtick

Examples

n <- nrow(iris)
dat <- data.table::as.data.table(x = iris[sample(x = 1:n, size = n, replace = FALSE),])
dt.calculate(dt.name = "dat", the.variables = c("Sepal.Length"),
the.functions = c("mean", "sd"), return.as = "all")

dt.choose.cols 5

dt.choose.cols dt.choose.cols

Description

This function selects columns from a data.frame or data.table. It is built as a wrapper function of
data.table’s selection step (using .SD in the j step while specifying the .SDcols argument). Selec-
tions may also be supplied to limit the rows to consider, with options for the first or last k rows or
a subset based upon a vector like c(3:5, 9:10). Filtering of the rows (e.g. Age < 50) may also be
applied using the.filter. Grouped operations may be used to make these selections of columns and
rows in each category. Options also exist to return a data.table coding statement (result = "code")
for educational purposes or both the result and the code together (result = "all"). For examples,
please see the vignette.

Usage

dt.choose.cols(
dt.name,
the.variables = ".",
the.filter = NULL,
grouping.variables = NULL,
sortby.group = TRUE,
first.k = NULL,
last.k = NULL,
row.indices = NULL,
return.as = "result",
envir = .GlobalEnv

)

Arguments

dt.name a character value specifying the name of a data.frame or data.table object to
select data from. A variable called dat should be referred to with dt.name =
"dat" when using the function.

the.variables A character or numeric vector specifying the variables that we want to select.
For character vectors, only values that exist in the names of the data will be
used. For numeric vectors, only the values of unique(floor(sorting.variables))
that are in 1:ncol() of your data will be used. Then these indices will be used
to select column names from the data. Only values that exist in the names of
the data will be used; other values in the.variables will be excluded from the
calculation. When the.variables includes ".", then all of the variables will be
selected. Values of the.variables that also exist in grouping.variables will be
excluded from the.variables (but grouped by these values).

the.filter a character value, numeric vector, logical vector, or expression stating the logical
operations used to filter the data. The filtering step will be applied prior to
generating the counts. Defaults to NULL unless otherwise specified. Character

6 dt.choose.cols

values such as ’Age < 50’ or ’c(1:3, 7:10)’ may be used. Numeric vectors such
as c(1:3, 7:10) that specify the row indices may be used. Logical vectors will
be converted to a numeric filter, e.g. c(TRUE, TRUE, FALSE) will become 1:2
to signify which rows should be selected. Expressions may be used to specify
a logical operation such as expression(Age < 50) as well. Defaults to NULL to
indicate that no filtering of the data should be applied.

grouping.variables

A character or numeric vector specifying the variables to perform the calcula-
tions on. For character vectors, the values may be either column names of the
data or calculations based upon them (see the vignette for examples). For nu-
meric vectors, only the values of unique(floor(grouping.variables)) that are in
1:ncol() of your data will be used. Then these indices will be mapped to the
corresponding column names from the data. When NULL, no grouping will be
performed.

sortby.group A character value specifying whether the grouping should be sorted (keyby) or
as is (by). Defaults to keyby unless "by" is specified.

first.k An integer indicating how many rows to select starting from the first row. Note
that grouping statements will select up to this number of rows in each group.
Additionally, if first.k is larger than the number of records in a group, then
the maximum number of records will be selected. When non-integer or non-
positive values of first.k are selected, the algorithm will select first.k = max(c(1,
round(first.k))). If first.k is not a numeric or integer value, then by default first.k
is set to select all of the rows. Specifying row.indices takes precedence to spec-
ifying the parameter first.k; if row.indices is not NULL, then row.indices will
be used, and first.k will not. Meanwhile, first.k takes precedence to last.k when
both are specified. See below.

last.k An integer indicating how many rows to select starting from the last row. Note
that grouping statements will select up to this number of rows in each group.
Additionally, if last.k is larger than the number of records in a group, then
the maximum number of records will be selected. When non-integer or non-
positive values of last.k are selected, the algorithm will select last.k = max(c(1,
round(last.k))). If last.k is not a numeric or integer value, then by default last.k
is set to select all of the rows. Specifying row.indices takes precedence to spec-
ifying the parameter last.k (see below); if row.indices is not NULL, then it will
be used, and last.k will not. Meanwhile, first.k takes precedence to last.k when
both are specified.

row.indices An integer vector specifying the row indices to return. When grouping.variables
is specified, these indices will be applied to each group. Note that specifications
outside of the range from 1 to the number of rows will be limited to existing rows
from the data and group. Specifying row.indices takes precedence to specifying
the parameters first.k and last.k. If row.indices is not NULL, it will be used.

return.as a character value specifying what output should be returned. return.as = "result"
provides the table of counts. return.as = "code" provides a data.table coding
statement that can generate the table of counts. return.as = "all" provides a list
containing both the resulting table and the code.

envir the environment in which the code would be evaluated; .GlobalEnv by default.

dt.choose.rows 7

Value

Depending on the value of return.as, the output will be a) a character value (return.as = ’code’), b)
a coding output, typically a data.table (return.as = ’result’), or c) a list containing both the code and
output (return.as = ’all’)

Source

DTwrappers::create.dt.statement

DTwrappers::eval.dt.statement

dt.choose.rows dt.choose.rows

Description

This function filters the rows of a data.table or data.frame object. It is built as a wrapper function
of data.table’s filtering method (the i step). A series of logical tests on variables within the data
may be specified. Options also exist to return a data.table coding statement (result = "code") for
educational purposes or both the result and the code together (result = "all"). For examples, please
see the vignette.

Usage

dt.choose.rows(
dt.name,
the.filter = NULL,
return.as = "result",
envir = .GlobalEnv

)

Arguments

dt.name a character value specifying the name of a data.frame or data.table object to
select data from. A variable called dat should be referred to with dt.name =
"dat" when using the function.

the.filter a character value, numeric vector, logical vector, or expression stating the logical
operations used to filter the data. The filtering step will be applied prior to
generating the counts. Defaults to NULL unless otherwise specified. Character
values such as ’Age < 50’ or ’c(1:3, 7:10)’ may be used. Numeric vectors such
as c(1:3, 7:10) that specify the row indices may be used. Logical vectors will
be converted to a numeric filter, e.g. c(TRUE, TRUE, FALSE) will become 1:2
to signify which rows should be selected. Expressions may be used to specify
a logical operation such as expression(Age < 50) as well. Defaults to NULL to
indicate that no filtering of the data should be applied.

8 dt.count.rows

return.as a character value specifying what output should be returned. return.as = "result"
provides the table of counts. return.as = "code" provides a data.table coding
statement that can generate the table of counts. return.as = "all" provides both
the resulting table and the code. If the coding statement was specified using
calls to get() or eval(), then both an original.statement and the resulting code (a
translated statement from the getDTeval package) will be provided.

envir the environment in which the code would be evaluated; .GlobalEnv by default.

Value

Depending on the value of return.as, the output will be a) a character value (return.as = ’code’), b)
a coding output, typically a data.table (return.as = ’result’), or c) a list containing both the code and
output (return.as = ’all’)

Note

the data.frame dat will be converted to a data.table object to facilitate efficient counting of the rows.

Source

DTwrappers::create.dt.statement

DTwrappers::eval.dt.statement

Examples

n <- nrow(iris)
dat <- data.table::as.data.table(x = iris[sample(x = 1:n, size = n, replace = FALSE),])
dt.count.rows(dt.name = "dat", count.name = "Total Rows", return.as = "all")

dt.count.rows dt.count.rows

Description

This function counts the number of qualifying rows in a data.table or data.frame object. It is built
as a wrapper function of data.table’s filter (the i step). These counts may be comprehensive for the
entire table or conducted in groups. The full data can also be filtered for qualifying cases prior to
conducting the counts. This function returns a data.table object that shows the counts in one column
along with additional columns for any specified grouping variables. Options also exist to return a
data.table coding statement (result = "code") for educational purposes or both the result and the
code together (result = "all"). For examples, please see the vignette.

dt.count.rows 9

Usage

dt.count.rows(
dt.name,
the.filter = NULL,
grouping.variables = NULL,
sortby.group = TRUE,
count.name = "N",
return.as = "result",
envir = .GlobalEnv

)

Arguments

dt.name a character value specifying the name of a data.frame or data.table object to
select data from. A variable called dat should be referred to with dt.name =
"dat" when using the function.

the.filter a character value, numeric vector, logical vector, or expression stating the logical
operations used to filter the data. The filtering step will be applied prior to
generating the counts. Defaults to NULL unless otherwise specified. Character
values such as ’Age < 50’ or ’c(1:3, 7:10)’ may be used. Numeric vectors such
as c(1:3, 7:10) that specify the row indices may be used. Logical vectors will
be converted to a numeric filter, e.g. c(TRUE, TRUE, FALSE) will become 1:2
to signify which rows should be selected. Expressions may be used to specify
a logical operation such as expression(Age < 50) as well. Defaults to NULL to
indicate that no filtering of the data should be applied.

grouping.variables

A character or numeric vector specifying the variables to perform the calcula-
tions on. For character vectors, the values may be either column names of the
data or calculations based upon them (see the vignette for examples). For nu-
meric vectors, only the values of unique(floor(grouping.variables)) that are in
1:ncol() of your data will be used. Then these indices will be mapped to the
corresponding column names from the data. When NULL, no grouping will be
performed.

sortby.group a character value specifying whether the table of counts should be sorted by
group ("sorted") or as is (any other selected value). Defaults to "sorted".

count.name a character value specifying the name of the column of counts in the resulting
table. This value defaults to "N" unless otherwise specified.

return.as a character value specifying what output should be returned. return.as = "result"
provides the table of counts. return.as = "code" provides a data.table coding
statement that can generate the table of counts. return.as = "all" provides both
the resulting table and the code. If the coding statement was specified using
calls to get() or eval(), then both an original.statement and the resulting code (a
translated statement from the getDTeval package) will be provided.

envir the environment in which the code would be evaluated; .GlobalEnv by default.

10 dt.define.variable

Value

Depending on the value of return.as, the output will be a) a character value (return.as = ’code’), b)
a coding output, typically a data.table (return.as = ’result’), or c) a list containing both the code and
output (return.as = ’all’)

Note

the data.frame dat will be converted to a data.table object to facilitate efficient selection.

Source

DTwrappers::create.dt.statement

DTwrappers::eval.dt.statement

Examples

n <- nrow(iris)
dat <- data.table::as.data.table(x = iris[sample(x = 1:n, size = n, replace = FALSE),])
dt.count.rows(dt.name = "dat", return.as = "all")

dt.define.variable dt.define.variable

Description

This method allows a user to add a new variable to an existing data.frame or data.table. It can also be
used to update previously defined variables. It is built as a wrapper function of data.table’s method
of defining new variables by reference. The new values can be stated either through a statement of
the calculation or by directly providing a vector of values. These updates can also be performed
on a subset of the data by incorporating a filter. Options also exist to return a data.table coding
statement (result = "code") for educational purposes or both the result and the code together (result
= "all"). For examples, please see the vignette.

Usage

dt.define.variable(
dt.name,
variable.name,
the.values,
specification = "by.expression",
the.filter = NULL,
grouping.variables = NULL,
sortby.group = TRUE,
return.as = "result",
envir = .GlobalEnv,
...

)

dt.define.variable 11

Arguments

dt.name a character value specifying the name of a data.frame or data.table object to
select data from. A variable called dat should be referred to with dt.name =
"dat" when using the function.

variable.name a character value specifying the name of the new column.

the.values a vector or character value. When specified as a vector, this should contain
the values of the new column. When specified as a character value, it should
include a functional form that specifies how to calculate the new values. See the
specification parameter for more details.

specification A character value. When specification = "by.value", the new variable will be
defined in terms of the vector the.values. Otherwise the new variable is specified
in a functional form, e.g. the.values = "rnorm(n = 3)".

the.filter a character value, logical vector, or expression stating the logical operations used
to filter the data. See create.filter.expression for details. The filtering step will
be applied prior to generating the counts. Defaults to NULL unless otherwise
specified.

grouping.variables

A character or numeric vector specifying the variables to perform the calcula-
tions on. For character vectors, the values may be either column names of the
data or calculations based upon them (see the vignette for examples). For nu-
meric vectors, only the values of unique(floor(grouping.variables)) that are in
1:ncol() of your data will be used. Then these indices will be mapped to the
corresponding column names from the data. When NULL, no grouping will be
performed.

sortby.group A logical value specifying whether the grouping should be sorted (TRUE, the
default value) or as is (FALSE).

return.as a character value specifying what output should be returned. return.as = "result"
provides the table of counts. return.as = "code" provides a data.table coding
statement that can generate the table of counts. return.as = "all" provides both
the resulting table and the code.

envir the environment in which the code would be evaluated; .GlobalEnv by default.

... other additional arguments if needed

Value

Depending on the value of return.as, the output will be a) a character value (return.as = ’code’), b)
a coding output, typically a data.table (return.as = ’result’), or c) a list containing both the code and
output (return.as = ’all’)

Note

the data.frame dat will be converted to a data.table object to facilitate adding the new column by
reference (e.g. efficiently with regard to the usage of memory)

12 dt.first.k.rows

Source

DTwrappers::create.dt.statement

DTwrappers::eval.dt.statement

dt.first.k.rows dt.first.k.rows

Description

This function returns the first k rows from the given data. It is built as a wrapper function of
data.table’s filter (the i step). This calculation can be specified either overall or in groups. A filter
can also be applied so that only qualifying values would be considered. A subset of the variables
may also be selected. Options also exist to return a data.table coding statement (result = "code") for
educational purposes or both the result and the code together (result = "all"). For examples, please
see the vignette.

#’ @param dt.name a character value specifying the name of a data.frame or data.table object to
select data from.

Usage

dt.first.k.rows(
dt.name,
k = NULL,
the.variables = ".",
the.filter = NULL,
grouping.variables = NULL,
sortby.group = TRUE,
return.as = "result",
envir = .GlobalEnv,
...

)

Arguments

dt.name a character value specifying the name of a data.frame or data.table object to
select data from. A variable called dat should be referred to with dt.name =
"dat" when using the function.

k A numeric variable specifying the number of rows to select
the.variables A character or numeric vector specifying the variables to perform the calcula-

tions on. For character vectors, only values that exist in the names of the data
will be used. For numeric vectors, only the values of unique(floor(sorting.variables))
that are in 1:ncol() of your data will be used. Then these indices will be used to
select column names from the data. Other values in sorting.variables that do not
correspond to a defined column will be excluded from the calculation. When
the.variables includes ".", then all values in names(dat) will be selected. Val-
ues of the.variables that also exist in grouping.variables will be excluded from
the.variables (but grouped by these values).

dt.first.k.rows 13

the.filter a character value, logical vector, or expression stating the logical operations used
to filter the data. See create.filter.expression for details. The filtering step will
be applied prior to generating the counts. Defaults to NULL unless otherwise
specified.

grouping.variables

a character vector specifying the variables to group by in the calculation. Only
variables in the data will be used. When NULL, no grouping will be performed.

sortby.group A logical value specifying whether the grouping should be sorted (TRUE, the
default value) or as is (FALSE).

return.as a character value specifying what output should be returned. return.as = "result"
provides the resulting table. return.as = "code" provides a data.table coding
statement that can generate the resulting table. return.as = "all" provides both
the resulting table and the code. If the coding statement was specified using
calls to get() or eval(), then both an original.statement and the resulting code (a
translated statement from the getDTeval package) will be provided.

envir the environment in which the code would be evaluated; .GlobalEnv by default.

... additional arguments to be passed

Value

Depending on the value of return.as, the output will be a) a character value (return.as = ’code’), b)
a coding output, typically a data.table (return.as = ’result’), or c) a list containing both the code and
output (return.as = ’all’)

Note

Calls dt.choose.cols.R with first.k = k.

Source

DTwrappers::dt.choose.cols

Examples

n <- nrow(iris)
dat <- data.table::as.data.table(x = iris[sample(x = 1:n, size = n, replace = FALSE),])
dt.first.k.rows(dt.name = "dat", k = 2, the.variables = c("Sepal.Length", "Sepal.Width"),
grouping.variables = "Species", return.as = "all")

14 dt.last.k.rows

dt.last.k.rows dt.last.k.rows

Description

This function returns the last k rows from the given data. It is built as a wrapper function of
data.table’s filter (the i step). This calculation can be specified either overall or in groups. A filter
can also be applied so that only qualifying values would be considered. A subset of the variables
may also be selected. Options also exist to return a data.table coding statement (result = "code") for
educational purposes or both the result and the code together (result = "all"). For examples, please
see the vignette.

Usage

dt.last.k.rows(
dt.name,
k = NULL,
the.variables = ".",
the.filter = NULL,
grouping.variables = NULL,
sortby.group = TRUE,
return.as = "result",
envir = .GlobalEnv,
...

)

Arguments

dt.name a character value specifying the name of a data.frame or data.table object to
select data from.

k A numeric variable specifying the number of rows to select
the.variables A character or numeric vector specifying the variables to perform the calcula-

tions on. For character vectors, only values that exist in the names of the data
will be used. For numeric vectors, only the values of unique(floor(sorting.variables))
that are in 1:ncol() of your data will be used. Then these indices will be used to
select column names from the data. Other values in sorting.variables that do not
correspond to a defined column will be excluded from the calculation. When
the.variables includes ".", then all values in names(dat) will be selected. Val-
ues of the.variables that also exist in grouping.variables will be excluded from
the.variables (but grouped by these values).

the.filter a character value, logical vector, or expression stating the logical operations used
to filter the data. See create.filter.expression for details. The filtering step will
be applied prior to generating the counts. Defaults to NULL unless otherwise
specified.

grouping.variables

a character vector specifying the variables to group by in the calculation. Only
variables in the data will be used. When NULL, no grouping will be performed.

dt.remove.variables 15

sortby.group A logical value specifying whether the grouping should be sorted (TRUE, the
default value) or as is (FALSE).

return.as a character value specifying what output should be returned. return.as = "result"
provides the resulting table. return.as = "code" provides a data.table coding
statement that can generate the resulting table. return.as = "all" provides both
the resulting table and the code. If the coding statement was specified using
calls to get() or eval(), then both an original.statement and the resulting code (a
translated statement from the getDTeval package) will be provided.

envir the environment in which the code would be evaluated; .GlobalEnv by default.

... additional arguments to be passed

Value

Depending on the value of return.as, the output will be a) a character value (return.as = ’code’), b)
a coding output, typically a data.table (return.as = ’result’), or c) a list containing both the code and
output (return.as = ’all’)

Note

Calls dt.choose.cols.R with last.k = k.

Source

DTwrappers::dt.choose.cols

Examples

n <- nrow(iris)
dat <- data.table::as.data.table(x = iris[sample(x = 1:n, size = n, replace = FALSE),])

dt.last.k.rows(dt.name = "dat", k = 2, the.variables = c("Sepal.Width"),
grouping.variables = "Species", return.as = "all")

dt.remove.variables dt.remove.variables

Description

A function to remove selected columns from a data.frame or data.table object.

16 dt.remove.variables

Usage

dt.remove.variables(
dt.name,
the.variables,
return.as = "result",
envir = .GlobalEnv,
...

)

Arguments

dt.name a character value specifying the name of a data.frame or data.table object to
select data from. A variable called dat should be referred to with dt.name =
"dat" when using the function.

the.variables A character or numeric vector specifying the variables that we want to remove.
For character vectors, only values that exist in the names of the data will be used.
For numeric vectors, only the values of unique(floor(sorting.variables)) that are
in 1:ncol() of your data will be used. Then these indices will be used to select
column names from the data.

return.as a character value specifying what output should be returned. return.as = "result"
provides the updated data. return.as = "code" provides a data.table coding state-
ment. return.as = "all" provides a list object including both the resulting output
and the code.

envir a specification of the environment in which the data (referenced by dt.name)
exists, with the global environment as the default value.#’

... additional arguments if required

Value

a ‘data.table‘ object.

Source

DTwrappers::create.dt.statement

DTwrappers::eval.dt.statement

Examples

n <- nrow(iris)
dat <- data.table::as.data.table(x = iris[sample(x = 1:n, size = n, replace = FALSE),])
dt.remove.variables(dt.name = "dat", the.variables = c("Category", "setosa_sl_below_5"),
return.as = "all")

dt.sort 17

dt.sort dt.sort

Description

This function sorts the rows of a data.frame or data.table based on selected columns. It is built as a
light wrapper function of data.table’s setorderv() function. Options also exist to return a data.table
coding statement (result = "code") for educational purposes or both the result and the code together
(result = "all"). For examples, please see the vignette.

Usage

dt.sort(
dt.name,
sorting.variables,
sort.increasing = TRUE,
missing.variables = c("first", "last"),
return.as = "result",
envir = .GlobalEnv,
...

)

Arguments

dt.name a character value specifying the name of a data.frame or data.table object to
select data from. A variable called dat should be referred to with dt.name =
"dat" when using the function.

sorting.variables

A vector specifying the variables that we want to sort by. For character vectors,
only values that exist in the names of the data will be used. For numeric vectors,
only the values of unique(floor(sorting.variables)) that are in 1:ncol() of your
data will be used. Then these indices will be used to select column names from
the data. Other values in sorting.variables that do not correspond to a defined
column will be excluded from the calculation. The sorting proceeds in the order
that sorting.variables is specified.

sort.increasing

A logical vector or numeric vector specifying whether the sorting should be in-
creasing (TRUE or 1) or decreasing (FALSE or not 1) for each variable in sort-
ing.variables. A vector such as c(TRUE, FALSE) would sort the first variable
in increasing order and the second in decreasing order. If only a single value is
provided (either TRUE or FALSE), then all of the.variables will be sorted in the
specified ordering.

missing.variables

a character value of either "first" or "last" specifying where rows with missing
values in the.variables should be included. Using "first" will place those rows at
the beginning of the table, while "last" would place them in the end of the table.

18 reduce.vector.expression

return.as a character value specifying what output should be returned. return.as = "result"
provides the updated data. return.as = "code" provides a data.table coding state-
ment. return.as = "all" provides a list object including both the resulting output
and the code.

envir a specification of the environment in which the data (referenced by dt.name)
exists, with the global environment as the default value.

... additional arguments if required

Value

Depending on the value of return.as, the output will be a) a character value (return.as = ’code’), b)
a coding output, typically a data.table (return.as = ’result’), or c) a list containing both the code and
output (return.as = ’all’)

Examples

n <- nrow(iris)
dat <- data.table::as.data.table(x = iris[sample(x = 1:n, size = n, replace = FALSE),])
dt.sort(dt.name = "dat", sorting.variables = c("Species", "Sepal.Length"),
sort.increasing = TRUE, return.as = "all")

reduce.vector.expression

Takes a numeric vector and produces a statement with a more compact
representation. For instance, c(1,2,3,4) would become ’1:4’ and c(1:3,
4:6) could become ’1:6’.

Description

Takes a numeric vector and produces a statement with a more compact representation. For instance,
c(1,2,3,4) would become ’1:4’ and c(1:3, 4:6) could become ’1:6’.

Usage

reduce.vector.expression(x)

Arguments

x a numeric vector

Value

None

Index

add.backtick, 2

dt.calculate, 2
dt.choose.cols, 5
dt.choose.rows, 7
dt.count.rows, 8
dt.define.variable, 10
dt.first.k.rows, 12
dt.last.k.rows, 14
dt.remove.variables, 15
dt.sort, 17

reduce.vector.expression, 18

19

	add.backtick
	dt.calculate
	dt.choose.cols
	dt.choose.rows
	dt.count.rows
	dt.define.variable
	dt.first.k.rows
	dt.last.k.rows
	dt.remove.variables
	dt.sort
	reduce.vector.expression
	Index

