Package 'DiffNet'

February 28, 2017

•	
Type Package	
Title Detection of Statistically Significant Changes in Complex Biological Networks	
Version 1.0-0	
Date 2017-02-27	
Author Raghvendra Mall [aut, cre], Khalid B. Kunji [aut]	
Maintainer Raghvendra Mall <rmall@hbku.edu.qa></rmall@hbku.edu.qa>	
Repository CRAN	
Description Provides an implementation of statistically significant differential sub-network analysis for paired biological networks.	
License GPL (>= 3)	
URL https://www.r-project.org,	
https://www.researchgate.net/publication/305355965_Detection_of_ statistically_significant_network_changes_in_complex_biological_network	٢S
Imports Rcpp (>= 0.12.7), Matrix, qlcMatrix, data.table, Hmisc, gplots, igraph, lsa, foreach, doParallel	
LazyLoad yes	
LinkingTo Rcpp, RcppEigen	
Depends R (>= 3.3.2)	
NeedsCompilation ves	

Date/Publication 2017-02-28 11:08:32

R topics documented:

calculate_p_value	2
differential_subnetwork_analysis_closedform	2
differential_subnetwork_analysis_fastapprox	4
differential_subnetwork_analysis_original	5
diffnet	6
DiffNet_GHD_Fast	7

DiffNet_M	U_Fast						•	 •				•	•						•	8
DiffNet_ST	D_Fast	t.						 •												8
GHD_Fast								 •												9
MU_Fast								 												9
STD_Fast								 •												10
																				11

Index

calculate_p_value Calculate asymptotic p-values

Description

Calculate p-values given first order moment mu and second order moment std

Usage

calculate_p_value(mu, std, val)

Arguments

mu	First order moment: mean for the GHD statistic
std	Second order moment: std for the GHD statistic
val	Value of GHD statistic

Value

Returns the p-value for the GHD statistic (whose distribution follows normal distribution).

Author(s)

Raghvendra Mall <rmall@hbku.edu.qa>

differential_subnetwork_analysis_closedform

Closed-Form Approach for Identifying Differential Sub-networks in Paired Graphs

Description

This method identifies the differential sub-network between two graphs using the proposed Closed-Form approach of Mall et al paper.

Usage

Arguments

ghd_val	Generalized Hamming Distance value calculated using topological graphs of g_A and g_B.
mu_perm	Asymptotic value of mean permutation for graph g_A.
р	Represents the number of nodes in graph g_A which is the same as number of nodes in graph g_B .
matrixA	Topological matrix obtained from graph g_A.
matrixB	Topological matrix obtained from graph g_B.
threshold	Threshold after which the "closed-form" technique switches to use a model se- lection criterion similar to the "original" approach to identify statistically signif- icant changes between two networks. By default its value is 1e-250 and a good range for this value is between 1e-50 to 1e-250.

Value

A data frame comprising of:

actual_id	Id of a node from the set of nodes in g_A
dim_name	Name associated with a node from the set of nodes in g_A.
p_val	P-value associated with that node.
ghd_val	Generalized Hamming Distance between the topological matrices after removal of that node.
mu_perm	Asymptotic first order moment: mean value.
std_perm	Asymptotic second order moment: standard deviation value.
V7	Adjusted p-value associated with that node.

Author(s)

Raghvendra Mall <rmall@hbku.edu.qa>

References

https://www.researchgate.net/publication/305355965_Detection_of_statistically_significant_ network_changes_in_complex_biological_networks

See Also

 $differential_subnetwork_analysis_original, differential_subnetwork_analysis_fastapprox$

differential_subnetwork_analysis_fastapprox Fast-Approximation Approach for Identifying Differential Subnetworks in Paired Graphs

Description

This method identifies the differential sub-network between two graphs using the proposed Fast-Approximation approach of Mall et al paper.

Usage

Arguments

ghd_val	Generalized Hamming Distance value calculated using topological graphs of g_A and g_B.
mu_perm	Asymptotic value of mean permutation for graph g_A.
р	Represents the number of nodes in graph g_A which is the same as number of nodes in graph g_B.
matrixA	Topological matrix obtained from graph g_A.
matrixB	Topological matrix obtained from graph g_B.
threshold	Threshold after which the "fast-approx" technique switches to use a model se- lection criterion similar to the "original" approach to identify statistically signif- icant changes between two networks. By default its value is 1e-250 and a good range for this value is between 1e-50 to 1e-250.

Value

A data frame comprising of:

actual_id	Id of a node from the set of nodes in g_A
dim_name	Name associated with a node from the set of nodes in g_A.
p_val	P-value associated with that node.
ghd_val	Generalized Hamming Distance between the topological matrices after removal of that node.
mu_perm	Asymptotic first order moment: mean value.
std_perm	Asymptotic second order moment: standard deviation value.
V7	Adjusted p-value associated with that node.

Author(s)

Raghvendra Mall <rmall@hbku.edu.qa>

References

```
https://www.researchgate.net/publication/305355965_Detection_of_statistically_significant_
network_changes_in_complex_biological_networks
```

See Also

differential_subnetwork_analysis_original, differential_subnetwork_analysis_closedform

differential_subnetwork_analysis_original Original dGHD Approach for Identifying Differential Sub-networks in Paired Graphs

Description

This method identifies the differential sub-network between two graphs using the original dGHD approach of Ruan et al paper.

Usage

Arguments

ghd_val	Generalized Hamming Distance value calculated using topological graphs of g_A and g_B.
mu_perm	Asymptotic value of mean permutation for graph g_A.
р	Represents the number of nodes in graph g_A which is the same as number of nodes in graph g_B.
matrixA	Topological matrix obtained from graph g_A.
matrixB	Topological matrix obtained from graph g_B.
threshold	Not used in the original approach.

Value

A data frame comprising of:

actual_id	Id of a node from the set of nodes in g_A
dim_name	Name associated with a node from the set of nodes in g_A.
p_val	P-value associated with that node.
ghd_val	Generalized Hamming Distance between the topological matrices after removal of that node.
mu_perm	Asymptotic first order moment: mean value.
std_perm	Asymptotic second order moment: standard deviation value.
V7	Adjusted p-value associated with that node.

Author(s)

Raghvendra Mall <rmall@hbku.edu.qa>

References

Ruan, D., Young, A. and Montana, G., 2015. Differential analysis of biological networks. *BMC bioinformatics*, **16**(1), 327-334.

See Also

differential_subnetwork_analysis_closedform, differential_subnetwork_analysis_fastapprox

diffnet	Detection	of	Statistically	Significant	Changes	in	Paired	Biological
	Networks							

Description

Performs differential network analysis for paired biological networks to identify statistically significant changes between two graphs. Currently, the approaches available for doing this include the "closed-form", "original" (dGHD) and the "fast-approx" techniques described in the paper of Mall et al. The methods works better for large-scale complex biological networks (in pairs).

Usage

diffnet(g_A = sample_grg(6, 0.15, torus = TRUE, coords = TRUE), g_B = permute(g_A, c(sample(5), 6)), p = 6, threshold = 1e-50, approach = "closed-form")

Arguments

g_A	An igraph object representing graph g_A
g_B	An igraph object representing the second graph B with same number of nodes.
р	Represents the number of nodes in graph g_A which is the same as number of nodes in graph g_B
threshold	Threshold after which the "closed-form" and "fast-approx" techniques switch to use a model selection criterion similar to the "original" approach to identify statistically significant changes between two networks. By default its value is 1e-250 and a good range for this value is between 1e-50 to 1e-250.
approach	Either "closed-form"/"original"/"fast-approx". By default its "closed-form"

Value

An ordered vector representing the p-value for each node. Nodes whose p-values are less than 0.01 form the differential sub-networks in paired graphs g_A and g_B.

DiffNet_GHD_Fast

Author(s)

Raghvendra Mall <rmall@hbku.edu.qa>

References

https://www.researchgate.net/publication/305355965_Detection_of_statistically_significant_ network_changes_in_complex_biological_networks

Examples

```
library("DiffNet")
# this step is optional, it helps speed up calculations, run in parallel on 2 processors
library(doParallel)
registerDoParallel(2)
# Run the differential network analysis tehcnique on sample data
p <- diffnet()</pre>
```

DiffNet_GHD_Fast Fast Implementation for Generalized Hamming Distance Statistic

Description

Provides a very fast implementation for generalized hamming distance statistic.

Format

The format is: List of 4 \$ name : chr "DiffNet_GHD_Fast" \$ address :Class 'RegisteredNativeSymbol' <externalptr> \$ dll :List of 5 ...\$ name : chr "DiffNet" ...\$ path : chr "/home/rmall/R/x86_64-pc-linux-gnu-library/3.3/DiffNet/libs/DiffNet.so" ...\$ dynamicLookup: logi FALSE ...\$ handle :Class 'DLLHandle' <externalptr> ...\$ info :Class 'DLLInfoReference' <externalptr> ..- attr(*, "class")= chr "DLLInfo" \$ numParameters: int 2 - attr(*, "class")= chr [1:2] "CallRoutine" "NativeSymbol-Info"

Author(s)

Raghvendra Mall <rmall@hbku.edu.qa>

See Also

DiffNet_MU_Fast, DiffNet_STD_Fast

DiffNet_MU_Fast

Description

Provides a very fast implementation for obtaining the asymptotic mean for GHD statistic

Format

The format is: List of 4 \$ name : chr "DiffNet_MU_Fast" \$ address :Class 'RegisteredNativeSymbol' <externalptr> \$ dll :List of 5 ...\$ name : chr "DiffNet" ...\$ path : chr "/home/rmall/R/x86_64-pc-linux-gnu-library/3.3/DiffNet/libs/DiffNet.so" ...\$ dynamicLookup: logi FALSE ...\$ handle :Class 'DLLHandle' <externalptr> ...\$ info :Class 'DLLInfoReference' <externalptr> ... attr(*, "class")= chr "DLLInfo" \$ numParameters: int 2 - attr(*, "class")= chr [1:2] "CallRoutine" "NativeSymbol-Info"

Author(s)

Raghvendra Mall <rmall@hbku.edu.qa>

See Also

GHD_Fast, STD_Fast

DiffNet_STD_Fast	Fast Implementation of Second Order Moment of Generalized Ham-
	ming Distance Statistic

Description

Provides a very fast implementation for obtaining the asymptotic standard deviation for GHD statistic

Format

The format is: List of 4 \$ name : chr "DiffNet_STD_Fast" \$ address :Class 'RegisteredNativeSymbol' <externalptr> \$ dll :List of 5 ...\$ name : chr "DiffNet" ...\$ path : chr "/home/rmall/R/x86_64-pc-linux-gnu-library/3.3/DiffNet/libs/DiffNet.so" ...\$ dynamicLookup: logi FALSE ...\$ handle :Class 'DLLHandle' <externalptr> ...\$ info :Class 'DLLInfoReference' <externalptr> ..- attr(*, "class")= chr "DLLInfo" \$ numParameters: int 2 - attr(*, "class")= chr [1:2] "CallRoutine" "NativeSymbol-Info"

Author(s)

Raghvendra Mall <rmall@hbku.edu.qa>

GHD_Fast

See Also

GHD_Fast, MU_Fast

GHD_Fast

Fast Implementation for Generalized Hamming Distance Statistic

Description

Provides a very fast implementation for generalized hamming distance statistic.

Usage

GHD_Fast(A, B)

Arguments

A	Topological matrix obtained from graph g_A.
В	Topological matrix obtained from graph g_B.

Value

Returns the Generalized Hamming Distance between topological matrices of graphs g_A and g_B.

Author(s)

Raghvendra Mall <rmall@hbku.edu.qa>

See Also

MU_Fast, STD_Fast

MU_Fast	Fast Implementation of First Order Moment of Generalized Hamming
	Distance Statistic

Description

Provides a very fast implementation for obtaining the asymptotic mean for GHD statistic

Usage

MU_Fast(A, B)

Arguments

A	Topological matrix obtained from	n graph g_A.
В	Topological matrix obtained from	n graph g_B.

Value

Returns the asymptotic mean value for GHD statistic between permutations of topological matrices of graphs g_A and graph g_B.

Author(s)

Raghvendra Mall <rmall@hbku.edu.qa>

See Also

GHD_Fast, STD_Fast

STD_Fast	Fast Implementation of Second Order Moment of Generalized Ham-
	ming Distance Statistic

Description

Provides a very fast implementation for obtaining the asymptotic standard deviation for GHD statistic

Usage

STD_Fast(A, B)

Arguments

A	Topological matrix obtained from g	graph g_A.
В	Topological matrix obtained from g	graph g_B.

Value

Returns the asymptotic standard deviation value for GHD statistic between permutations of topological matrices of graphs g_A and graph g_B.

Author(s)

Raghvendra Mall <rmall@hbku.edu.qa>

See Also

GHD_Fast, MU_Fast

Index

MU_Fast, 9, 9, 10

STD_Fast, 8-10, 10