Package 'DiffNet'

February 28, 2017

Type Package

Title Detection of Statistically Significant Changes in Complex Biological Networks

Version 1.0-0
Date 2017-02-27
Author Raghvendra Mall [aut, cre], Khalid B. Kunji [aut]
Maintainer Raghvendra Mall <rmall@hbku.edu. qa>
Repository CRAN
Description Provides an implementation of statistically significant differential sub-network analysis for paired biological networks.

License GPL (>= 3)
URL https://www.r-project.org,
https://www.researchgate.net/publication/305355965_Detection_of_ statistically_significant_network_changes_in_complex_biological_networks
Imports Rcpp (>=0.12.7), Matrix, qlcMatrix, data.table, Hmisc, gplots, igraph, lsa, foreach, doParallel

LazyLoad yes
LinkingTo Rcpp, RcppEigen
Depends R (>= 3.3.2)
NeedsCompilation yes
Date/Publication 2017-02-28 11:08:32

R topics documented:

```
calculate_p_value2
```

differential_subnetwork_analysis_closedform 2
differential_subnetwork_analysis_fastapprox 4
differential_subnetwork_analysis_original 5
diffnet 6
DiffNet_GHD_Fast 7
DiffNet_MU_Fast 8
DiffNet_STD_Fast 8
GHD_Fast 9
MU_Fast 9
STD_Fast 10
Index 11

```
calculate_p_value Calculate asymptotic p-values
```


Description

Calculate p-values given first order moment mu and second order moment std

Usage

calculate_p_value(mu, std, val)

Arguments

mu First order moment: mean for the GHD statistic
std Second order moment: std for the GHD statistic
val Value of GHD statistic

Value

Returns the p-value for the GHD statistic (whose distribution follows normal distribution).

Author(s)

Raghvendra Mall rmall@hbku.edu.qa

```
differential_subnetwork_analysis_closedform
    Closed-Form Approach for Identifying Differential Sub-networks in
    Paired Graphs
```


Description

This method identifies the differential sub-network between two graphs using the proposed ClosedForm approach of Mall et al paper.

Usage

differential_subnetwork_analysis_closedform(ghd_val, mu_perm, p, matrixA, matrixB, threshold)

Arguments

ghd_val	Generalized Hamming Distance value calculated using topological graphs of $g_{-} A$ and $g_{-} B$.
mu_perm	Asymptotic value of mean permutation for graph $g_{-} A$.
p	Represents the number of nodes in graph $g_{-} A$ which is the same as number of nodes in graph $g_{-} B$.
matrixA	Topological matrix obtained from graph $g_{-} A$.

Value

A data frame comprising of:
actual_id Id of a node from the set of nodes in $g_{-} A$
dim_name Name associated with a node from the set of nodes in g_A.
p_val P-value associated with that node.
ghd_val Generalized Hamming Distance between the topological matrices after removal of that node.
mu_perm Asymptotic first order moment: mean value.
std_perm Asymptotic second order moment: standard deviation value.
V7 Adjusted p-value associated with that node.

Author(s)

Raghvendra Mall rmall@hbku.edu.qa

References

https://www.researchgate.net/publication/305355965_Detection_of_statistically_significant_ network_changes_in_complex_biological_networks

See Also

differential_subnetwork_analysis_original, differential_subnetwork_analysis_fastapprox

```
differential_subnetwork_analysis_fastapprox
    Fast-Approximation Approach for Identifying Differential Sub-
    networks in Paired Graphs
```


Description

This method identifies the differential sub-network between two graphs using the proposed FastApproximation approach of Mall et al paper.

Usage

differential_subnetwork_analysis_fastapprox(ghd_val, mu_perm, p, matrixA, matrixB, threshold)

Arguments

ghd_val Generalized Hamming Distance value calculated using topological graphs of g_A and g_B.
mu_perm Asymptotic value of mean permutation for graph g_A.
$\mathrm{p} \quad$ Represents the number of nodes in graph $\mathrm{g}_{-} A$ which is the same as number of nodes in graph $g_{-} B$.
matrixA Topological matrix obtained from graph g_A.
matrixB Topological matrix obtained from graph g_B.
threshold Threshold after which the "fast-approx" technique switches to use a model selection criterion similar to the "original" approach to identify statistically significant changes between two networks. By default its value is $1 \mathrm{e}-250$ and a good range for this value is between 1e-50 to 1e-250.

Value

A data frame comprising of:
actual_id Id of a node from the set of nodes in $g_{-} A$
dim_name Name associated with a node from the set of nodes in g_A.
p_val P-value associated with that node.
ghd_val Generalized Hamming Distance between the topological matrices after removal of that node.
mu_perm Asymptotic first order moment: mean value.
std_perm Asymptotic second order moment: standard deviation value.
V7

> Adjusted p-value associated with that node.

Author(s)

Raghvendra Mall rmall@hbku.edu.qa

References

https://www.researchgate.net/publication/305355965_Detection_of_statistically_significant_ network_changes_in_complex_biological_networks

See Also

differential_subnetwork_analysis_original, differential_subnetwork_analysis_closedform
differential_subnetwork_analysis_original
Original dGHD Approach for Identifying Differential Sub-networks in Paired Graphs

Description

This method identifies the differential sub-network between two graphs using the original dGHD approach of Ruan et al paper.

Usage

differential_subnetwork_analysis_original(ghd_val, mu_perm, p, matrixA, matrixB, threshold)

Arguments

ghd_val	Generalized Hamming Distance value calculated using topological graphs of $g_{-} A$ and $g_{-} B$.
mu_perm	Asymptotic value of mean permutation for graph $g_{-} A$. p
Represents the number of nodes in graph $g_{-} A$ nodes in graph $g_{-} B$	
matrixA is the same as number of	
matrixB	Topological matrix obtained from graph $g_{-} A$. threshold

Value

A data frame comprising of:
actual_id Id of a node from the set of nodes in g_A
dim_name Name associated with a node from the set of nodes in g_A.
p_val P-value associated with that node.
ghd_val Generalized Hamming Distance between the topological matrices after removal of that node.
mu_perm Asymptotic first order moment: mean value.
std_perm Asymptotic second order moment: standard deviation value.
V7 Adjusted p-value associated with that node.

Author(s)

Raghvendra Mall rmall@hbku.edu.qa

References

Ruan, D., Young, A. and Montana, G., 2015. Differential analysis of biological networks. BMC bioinformatics, 16(1), 327-334.

See Also

differential_subnetwork_analysis_closedform, differential_subnetwork_analysis_fastapprox

$$
\begin{array}{ll}
\text { diffnet } & \begin{array}{l}
\text { Detection of Statistically Significant Changes in Paired Biological } \\
\text { Networks }
\end{array}
\end{array}
$$

Description

Performs differential network analysis for paired biological networks to identify statistically significant changes between two graphs. Currently, the approaches available for doing this include the "closed-form", "original" (dGHD) and the "fast-approx" techniques described in the paper of Mall et al. The methods works better for large-scale complex biological networks (in pairs).

Usage

diffnet (g_A = sample_grg(6, 0.15, torus = TRUE, coords = TRUE), g_B = permute(g_A, c(sample(5), 6)), p = 6, threshold $=1 \mathrm{e}-50$, approach $=$ "closed-form")

Arguments

$$
\begin{array}{ll}
g_{-} A & \text { An igraph object representing graph } g_{-} A \\
g_{-} B & \begin{array}{l}
\text { An igraph object representing the second graph B with same number of nodes. } \\
p
\end{array} \\
\begin{array}{l}
\text { Represents the number of nodes in graph } g_{-} A \text { which is the same as number of } \\
\text { nodes in graph } g_{-} B
\end{array} \\
\text { threshold } & \begin{array}{l}
\text { Threshold after which the "closed-form" and "fast-approx" techniques switch } \\
\text { to use a model selection criterion similar to the "original" approach to identify } \\
\text { statistically significant changes between two networks. By default its value is } \\
\\
\text { 1e-250 and a good range for this value is between 1e-50 to le-250. }
\end{array} \\
\text { approach } & \begin{array}{l}
\text { Either "closed-form"/"original"/"fast-approx". By default its "closed-form" }
\end{array}
\end{array}
$$

Value

An ordered vector representing the p-value for each node. Nodes whose p-values are less than 0.01 form the differential sub-networks in paired graphs $g_{-} A$ and $g_{-} B$.

Author(s)

Raghvendra Mall rmall@hbku.edu.qa

References

```
https://www.researchgate.net/publication/305355965_Detection_of_statistically_significant_
network_changes_in_complex_biological_networks
```


Examples

```
library("DiffNet")
# this step is optional, it helps speed up calculations, run in parallel on 2 processors
library(doParallel)
registerDoParallel(2)
# Run the differential network analysis tehonique on sample data
p <- diffnet()
```

DiffNet_GHD_Fast Fast Implementation for Generalized Hamming Distance Statistic

Description

Provides a very fast implementation for generalized hamming distance statistic.

Format

The format is: List of 4 \$ name : chr "DiffNet_GHD_Fast" \$ address :Class 'RegisteredNativeSymbol' <externalptr> \$ dll :List of 5 ..\$ name : chr "DiffNet" .. \$ path : chr "/home/rmall/R/x86_64-pc-linux-gnu-library/3.3/DiffNet/libs/DiffNet.so" ..\$ dynamicLookup: logi FALSE ..\$ handle :Class 'DLLHandle' <externalptr> ..\$ info :Class 'DLLInfoReference' <externalptr> ..- $\operatorname{attr}(*$, "class")= chr "DLLInfo" \$ numParameters: int $2-\operatorname{attr}(*$, "class")= chr [1:2] "CallRoutine" "NativeSymbolInfo"

Author(s)

Raghvendra Mall rmall@hbku.edu.qa

See Also

DiffNet_MU_Fast, DiffNet_STD_Fast

```
DiffNet_MU_Fast Fast Implementation of First Order Moment of Generalized Hamming
Distance Statistic
```


Description

Provides a very fast implementation for obtaining the asymptotic mean for GHD statistic

Format

The format is: List of 4 \$ name : chr "DiffNet_MU_Fast" \$ address :Class 'RegisteredNativeSymbol' <externalptr> \$ dll :List of 5 .. \$ name : chr "DiffNet" ..\$ path : chr "/home/rmall/R/x86_64-pc-linux-gnu-library/3.3/DiffNet/libs/DiffNet.so" ..\$ dynamicLookup: logi FALSE ..\$ handle :Class 'DLLHandle' <externalptr> ..\$ info :Class 'DLLInfoReference' <externalptr> ..- attr (*, "class")= chr "DLLInfo" \$ numParameters: int 2 - $\operatorname{attr}(*$, "class") $=$ chr [1:2] "CallRoutine" "NativeSymbolInfo"

Author(s)

Raghvendra Mall rmall@hbku.edu.qa

See Also

GHD_Fast, STD_Fast

DiffNet_STD_Fast Fast Implementation of Second Order Moment of Generalized Hamming Distance Statistic

Description

Provides a very fast implementation for obtaining the asymptotic standard deviation for GHD statistic

Format

The format is: List of $4 \$$ name : chr "DiffNet_STD_Fast" \$ address :Class 'RegisteredNativeSymbol' <externalptr> \$ dll :List of 5 ..\$ name : chr "DiffNet" ..\$ path : chr "/home/rmall/R/x86_64-pc-linux-gnu-library/3.3/DiffNet/libs/DiffNet.so" ..\$ dynamicLookup: logi FALSE ..\$ handle :Class 'DLLHandle' <externalptr> ..\$ info :Class 'DLLInfoReference' <externalptr> ..- attr (*, "class")= chr "DLLInfo" \$ numParameters: int 2 - $\operatorname{attr}(*$, "class")= chr [1:2] "CallRoutine" "NativeSymbolInfo"

Author(s)

Raghvendra Mall rmall@hbku.edu.qa

See Also

GHD_Fast, MU_Fast

GHD_Fast Fast Implementation for Generalized Hamming Distance Statistic

Description

Provides a very fast implementation for generalized hamming distance statistic.

Usage

GHD_Fast(A, B)

Arguments

A Topological matrix obtained from graph $g _A$.
B Topological matrix obtained from graph g_B.

Value

Returns the Generalized Hamming Distance between topological matrices of graphs g_A and g_B.

Author(s)

Raghvendra Mall rmall@hbku.edu.qa

See Also

MU_Fast, STD_Fast

$$
\begin{array}{ll}
\text { MU_Fast } & \text { Fast Implementation of First Order Moment of Generalized Hamming } \\
& \text { Distance Statistic }
\end{array}
$$

Description

Provides a very fast implementation for obtaining the asymptotic mean for GHD statistic

Usage

MU_Fast(A, B)

Arguments

A
Topological matrix obtained from graph g_A.
B
Topological matrix obtained from graph $g_{-} B$.

Value

Returns the asymptotic mean value for GHD statistic between permutations of topological matrices of graphs $\mathrm{g}_{-} \mathrm{A}$ and graph $\mathrm{g}_{-} \mathrm{B}$.

Author(s)

Raghvendra Mall rmall@hbku.edu.qa

See Also

GHD_Fast, STD_Fast

STD_Fast	Fast Implementation of Second Order Moment of Generalized Ham- ming Distance Statistic

Description

Provides a very fast implementation for obtaining the asymptotic standard deviation for GHD statistic

Usage

STD_Fast(A, B)

Arguments

A Topological matrix obtained from graph $g_{-} A$.
B Topological matrix obtained from graph $g_{-} B$.

Value

Returns the asymptotic standard deviation value for GHD statistic between permutations of topological matrices of graphs g_{-}A and graph $\mathrm{g}_{-} \mathrm{B}$.

Author(s)

Raghvendra Mall rmall@hbku.edu.qa

See Also

GHD_Fast, MU_Fast

Index

```
calculate_p_value, 2
differential_subnetwork_analysis_closedform,
    2, 5,6
differential_subnetwork_analysis_fastapprox,
    3,4,6
differential_subnetwork_analysis_original,
    3,5,5
diffnet,6
DiffNet_GHD_Fast, 7
DiffNet_MU_Fast, 7, 8
DiffNet_STD_Fast, 7, 8
GHD_Fast, 8, 9, 9, 10
MU_Fast, 9, 9, 10
STD_Fast, 8-10,10
```

