Package 'DistributionUtils'

November 27, 2018
Version 0.6-0
Date 2018-11-26
Title Distribution Utilities
Author David Scott d.scott@auckland.ac.nz
Maintainer David Scott d.scott@auckland.ac.nz
Depends R (>=3.0.1)
Suggests GeneralizedHyperbolic, VarianceGamma, SkewHyperbolic, RUnit
Encoding latin1
Description Utilities are provided which are of use in thepackages I have developed for dealing withdistributions. Currently these packages are GeneralizedHyperbolic,VarianceGamma, and SkewHyperbolic and NormalLaplace. Each of thesepackages requires DistributionUtils. Functionality includes sampleskewness and kurtosis, log-histogram, tail plots, moments byintegration, changing the point about which a moment iscalculated, functions for testing distributions using inversiontests and the Massart inequality. Also includes an implementationof the incomplete Bessel K function.
License GPL (>= 2)
NeedsCompilation yes
Repository CRAN
Date/Publication 2018-11-27 10:40:06 UTC
R topics documented:
DistributionUtils-package 2
Bessel K Ratio 3
distCalcRange 4
distIneqMassart 5
distIneqMassartPlot 7
distMode 8
distStepSize 9
incompleteBesselK 10
integrateDens 13
inversionTests 14
is.wholenumber 16
logHist 17
momChangeAbout 19
momIntegrated 20
momSE 22
moranTest 23
pDist 25
safeIntegrate 27
Sample Moments 28
tailPlot 29
tsHessian 32
Index 34

DistributionUtils-package
Utility functions useful for all distributions in packages following the standard approach developed in Scott, Wuertz and Dong.

Description

Functionality includes sample skewness and kurtosis, log-histogram, tail plots, moments by integration, changing the point about which a moment is calculated, functions for testing distributions using inversion tests and the Massart inequality. Also includes an implementation of the incomplete Bessel K function.

Details

Package:	DistributionUtils
Type:	Package
Version:	$0.5-1$
Date:	$2012-01-05$
License:	GPL (>=2)
LazyLoad:	yes

Contains functions which are useful for packages implementing distributions. Designed to work with my packages GeneralizedHyperbolic, VarianceGamma, SkewHyperbolic and NormalLaplace.

Author(s)

David Scott d.scott@auckland.ac.nz
Maintainer: David Scott d.scott@auckland.ac.nz

References

Scott, David J. and Würtz, Diethelm and Dong, Christine (2009) Software for Distributions in R. UseR: The R User Conference 2009 https://www.r-project.org/conferences/useR-2009/ slides/Scott+Wuertz+Dong.pdf

See Also

GeneralizedHyperbolicDistribution

Bessel K Ratio Ratio of Bessel K Functions

Description

Calculates the ratio of Bessel K functions of different orders, but the same value of the argument.

Usage

besselRatio(x, nu, orderDiff, useExpScaled = 700)

Arguments

$x \quad$ Numeric,≥ 0. Value at which the numerator and denominator Bessel functions are evaluated.
nu Numeric. The order of the Bessel function in the denominator.
orderDiff Numeric. The order of the numerator Bessel function minus the order of the denominator Bessel function.
useExpScaled Numeric, ≥ 0. The smallest value of x for which the ratio is calculated using the exponentially-scaled Bessel function values.

Details

Uses the function besselK to calculate the ratio of two modified Bessel function of the third kind whose orders are different. The calculation of Bessel functions will underflow if the value of x is greater than around 740. To avoid underflow the exponentially-scaled Bessel functions can be returned by besselK. The ratio is actually unaffected by exponential scaling since the scaling cancels across numerator and denominator.
The Bessel function ratio is useful in calculating moments of the generalized inverse Gaussian distribution, and hence also for the moments of the hyperbolic and generalized hyperbolic distributions.

Value

The ratio

$$
\frac{K_{\nu+k}(x)}{K_{\nu}(x)}
$$

of two modified Bessel functions of the third kind whose orders differ by k.

Author(s)

David Scott d.scott@auckland.ac.nz

See Also

besselK, gigMom

Examples

```
nus <- c(0:5, 10, 20)
x<- seq(1, 4, length.out = 11)
k <- 3
raw <- matrix(nrow = length(nus), ncol = length(x))
scaled <- matrix(nrow = length(nus), ncol = length(x))
compare <- matrix(nrow = length(nus), ncol = length(x))
for (i in 1:length(nus)){
        for (j in 1:length(x)) {
            raw[i,j] <- besselRatio(x[j], nus[i],
                    orderDiff = k)
        scaled[i,j] <- besselRatio(x[j], nus[i],
                            orderDiff = k, useExpScaled = 1)
        compare[i,j] <- raw[i,j]/scaled[i,j]
    }
}
raw
scaled
compare
```

distCalcRange

Description

Given the parameters of a unimodal distribution and the root of the density function name, this function determines the range outside of which the density function is negligible, to a specified tolerance.

Usage

distCalcRange(densFn, param $=$ NULL, tol $=10^{\wedge}(-5), \ldots$)

Arguments

densFn Character. The name of the density function for which range calculation is required.
tol Tolerance.
param Numeric. A vector giving the parameter values for the distribution specified by densFn. If no param values are specified, then the default parameter values of each distribution are used instead.
... Passes arguments to uniroot.In particular, the parameters of the distribution.

Details

The name of the unimodal density function must be supplied as the characters of the root for that density (e.g. norm, ghyp). The particular unimodal distribution being considered is specified by the values of the parameters or of the param vector.
The function gives a range, outside of which the density is less than the given tolerance. It is used in determining break points for the separate sections over which numerical integration is used to determine the distribution function. The points are found by using uniroot on the density function.

Value

A two-component vector giving the lower and upper ends of the range.

Author(s)

David Scottd.scott@auckland.ac.nz, Joyce Li xli053@aucklanduni.ac.nz

See Also

qDist

Examples

```
normRange <- distCalcRange("norm", tol = 10^(-7), mean = 4, sd = 1)
normRange
tRange <- distCalcRange("t", tol = 10^(-5), df = 4)
tRange
```

distIneqMassart Massart Inequality for Distributions

Description

This function implements a test of the random number generator and distribution function based on an inequality due to Massart (1990).

Usage

distIneqMassart(densFn = "norm", $\mathrm{n}=10000$, probBound $=0.001, \ldots$)

Arguments

densFn Character. The root name of the distribution to be tested.
$\mathrm{n} \quad$ Numeric. The size of the sample to be used.
probBound \quad Numeric. The value of the bound on the right hand side of the Massart inequality. See Details.
... Additional arguments to allow specification of the parameters of the distribution.

Details

Massart (1990) gave a version of the Dvoretsky-Kiefer-Wolfowitz inequality with the best possible constant:

$$
P\left(\sup _{x}\left|\hat{F}_{n}(x)-F(x)\right|>t\right) \leq 2 \exp \left(-2 n t^{2}\right)
$$

where \hat{F}_{n} is the empirical distribution function for a sample of n independent and identically distributed random variables with distribution function F. This inequality is true for all distribution functions, for all n and t.

This test is used in base R to check the standard distribution functions. The code may be found in the file $p-r$-random.tests. R in the tests directory.

Value

sup \quad Numeric. The supremum of the absolute difference between the empirical distribution and the true distribution function.
probBound \quad Numeric. The value of the bound on the right hand side of the Massart inequality.
$t \quad$ Numeric. The lower bound which the supremum of the absolute difference between the empirical distribution and the true distribution function must exceed.
pVal Numeric. The probability that the absolute difference between the empirical distribution and the true distribution function exceeds t.
check Logical. Indicates whether the inequality is satisfied or not.

Author(s)

David Scott d.scott@auckland.ac.nz, Christine Yang Dong c.dong@auckland.ac.nz

References

Massart P. (1990) The tight constant in the Dvoretsky-Kiefer-Wolfovitz inequality. Ann. Probab., 18, 1269-1283.

Examples

```
## Normal distribution is the default
distIneqMassart()
## Specify parameter values
distIneqMassart(mean = 1, sd = 2)
## Gamma distribution has no default value for shape
distIneqMassart("gamma", shape = 1)
```

```
distIneqMassartPlot Massart Inequality Plot Function
```


Description

Creates a Massart inequality plot for testing the empirical distribution and distribution function based on an inequality due to Massart (1990).

Usage

distIneqMassartPlot(densFn = "norm", param = NULL, nSamp $=50, \mathrm{n}=100, \ldots$)

Arguments

densFn Character. The root name of the distribution to be tested.
$\mathrm{n} \quad$ Numeric. The size of the sample to be used.
nSamp Numeric. The number of samples used to approximate the LHS probability of the inequality.
param Numeric. A vector giving the parameter values for the distribution specified by densFn. If no param values are specified, then the default parameter values of each distribution are used instead.
... Passes the parameters of the distribution other than specified by param.

Details

Massart (1990) gave a version of the Dvoretsky-Kiefer-Wolfowitz inequality with the best possible constant:

$$
P\left(\sup _{x}\left|\hat{F}_{n}(x)-F(x)\right|>t\right) \leq 2 \exp \left(-2 n t^{2}\right)
$$

where \hat{F}_{n} is the empirical distribution function for a sample of n independent and identically distributed random variables with distribution function F. This inequality is true for all distribution functions, for all n and t.
The red curve in the plot shows the LHS probabilities and the black curve gives the RHS bound. The red curve should lie below the black curve in order that the empirical distribution represents a sample from the theoretical distribution.

Value

Returns NULL invisibly.

Author(s)

David Scott d.scott@auckland.ac.nz, Xinxing Li xli053@aucklanduni.ac.nz

References

Massart P. (1990) The tight constant in the Dvoretsky-Kiefer-Wolfovitz inequality. Ann. Probab., 18, 1269-1283.

Examples

```
## Not run:
### Not run because of timing requirements of CRAN
### The Massart Inequality plot for standard Normal Distribution
distIneqMassartPlot()
### The Massart Inequality plot for Gamma Distribution
distIneqMassartPlot("gamma", shape = 1)
## End(Not run)
```

distMode Mode of a Unimodal Distribution

Description

Function to calculate the mode of a unimodal distribution which is specified by the root of the density function name and the corresponding parameters.

Usage

distMode(densFn, param = NULL, ...)

Arguments

densFn Character. The name of the density function for which the mode is required.
param Numeric. A vector giving the parameter values for the distribution specified by densFn. If no param values are specified, then the default parameter values of each distribution are used instead.
... Passes arguments to optimize. In particular, the parameters of the distribution.

Details

The name of the unimodal density function must be supplied as the characters of the root for that density (e.g. norm, ghyp). The particular unimodal distribution being considered is specified by the value of the argument param, or for base R distributions by specification in the ... arguments.

Value

The mode is found by a numerical optimization using optimize.

Author(s)

David Scott d.scott@auckland.ac.nz, Joyce Li xli053@aucklanduni.ac.nz

See Also

distStepSize, qDist.

Examples

```
normRange <- distCalcRange("norm", tol = 10^(-7), mean = 4, sd = 1)
curve(dnorm(x, mean = 4, sd = 1), normRange[1], normRange[2])
abline(v = distMode("norm", mean = 4, sd = 1), col = "blue")
```

```
distStepSize Step Size for Calculating the Range of a Unimodal Distribution
```


Description

Given the parameters of a unimodal distribution and the root of the density function name, this function determines the step size when calculating the range of the specified unimodal distribution. The parameterization used is the one for the corresponding density function calculation.

Usage

distStepSize(densFn, dist, param $=$ NULL, side $=c(" r i g h t ", " l e f t "), \ldots)$

Arguments

densFn Character. The name of the density function for which the step size needs to be calculated.
dist Numeric. Current distance value, for skew hyperbolic distribution only
param Numeric. A vector giving the parameter values for the distribution specified by densFn. If no param values are specified, then the default parameter values of each distribution are used instead.
side Character. "right" for a step to the right, "left" for a step to the right.
Passes arguments in particular the parameters of the distribution to random sample generation function.

Details

This function is used for stepping to the right or the left to obtain an enclosing interval so uniroot can be used to search. The step size for the right tail is the absolute difference between the median and upper quantile and for the left tail is the absolute difference between the median and lower quantile. The skew hyperbolic distribution however needs a special step size. When the tail is declining exponentially the step is just a linear function of the current distance from the mode. If the tail is declining only as a power of x, an exponential step is used.
distStepSize is for internal use and is not expected to be called by users. It is documented here for completeness.

Value

The size of the step.

Author(s)

David Scottd.scott@auckland.ac.nz, Joyce Li xli053@aucklanduni.ac.nz

See Also

distCalcRange

Examples

```
normRange <- distCalcRange("norm", tol = 10^(-7), mean = 4, sd = 1)
normRange
tRange <- distCalcRange("t", tol = 10^(-5), df = 4)
tRange
```

incompleteBesselK The Incomplete Bessel K Function

Description

Calculates the incomplete Bessel K function using the algorithm and code provided by Slavinsky and Safouhi (2009).

Usage

incompleteBesselK(x, y, nu, tol = (.Machine\$double.eps)^(0.85), nmax = 120)
incompleteBesselKR(x, y, nu, tol = (.Machine\$double.eps)^(0.85), nmax = 120)
SSFcoef(nmax, nu)
combinatorial(nu)
$\operatorname{GDENOM}(n, x, y, n u, A n, n m a x, C n p)$
GNUM(n, x, y, nu, Am, An, nmax, Cnp, GM, GN)

Arguments

x	Numeric. Value of the first argument of the incomplete Bessel K function.
y	Numeric. Value of the second argument of the incomplete Bessel K function.
nu	Numeric. The order of the incomplete Bessel K function.
tol	Numeric. The tolerance for the difference between successive approximations of the incomplete Bessel K function.
nmax	Integer. The maximum order allowed for the approximation of the incomplete Bessel K function.
n	Integer. Current order of the approximation. Not required to be specified by users.
An	Matrix of coefficients. Not required to be specified by users.
Am	Matrix of coefficients. Not required to be specified by users.
Cnp	Vector of elements of Pascal's triangle. Not required to be specified by users.
GN	Vector of denominators used for approximation. Not required to be specified by users.
GM	Vector of numerators used for approximation. Not required to be specified by users.

Details

The function incompleteBesselK implements the algorithm proposed by Slavinsky and Safouhi (2010) and uses code provided by them.

The incomplete Bessel K function is defined by

$$
K_{\nu}(x, y)=\int_{1}^{\infty} t^{-n u-1} \exp (-x t-y / t) d t
$$

see Slavinsky and Safouhi (2010), or Harris (2008).
incompleteBesselK calls a Fortran routine to carry out the calculations. incompleteBesselKR is a pure R version of the routine for computing the incomplete Bessel K function.
The functions SSFcoef, combinatorial, GDENOM, and GNUM are subroutines used in the function incompleteBesselKR. They are not expected to be called by the user and the user is not required to specify input values for these functions.
The approximation to the incomplete Bessel K function returned by incompleteBesselK is highly accurate. The default value of tol is about $10^{\wedge}(-14)$ on a 32 -bit computer. It appears that even higher accuracy is possible when $x>y$. Then the tolerance can be taken as. Machine\$double.eps and the number of correct figures essentially coincides with the number of figures representable in the machine being used.
incompleteBesselKR is very slow compared to the Fortran version and is only included for those who wish to see the algorithm in R rather than Fortran.

Value

incompleteBesselK and incompleteBesselKR both return an approximation to the incomplete Bessel K function as defined above.

Note
The problem of calculation of the incomplete Bessel K function is equivalent to the problem of calculation of the cumulative distribution function of the generalized inverse Gaussian distribution. See Generalized Inverse Gaussian.

Author(s)

David Scott d.scott@auckland.ac.nz, Thomas Tran, Richard Slevinsky, Hassan Safouhi.

References

Harris, Frank E. (2008) Incomplete Bessel, generalized incomplete gamma, or leaky aquifer functions. J. Comp. Appl. Math., 215, 260-269.
Slevinsky, Richard M., and Safouhi, Hassan (2009) New formulae for higher order derivatives and applications. J. Comp. Appl. Math. 233, 405-419.

Slevinsky, Richard M., and Safouhi, Hassan (2010) A recursive algorithm for the G transformation and accurate computation of incomplete Bessel functions. Appl. Numer. Math., In press.

See Also

besselk

Examples

```
### Harris (2008) gives accurate values (16 figures) for
### x = 0.01, y = 4, and nu = 0:9
### nu = 0, Harris value is 2.225310761266469
options(digits = 16)
incompleteBesselK(0.01, 4, 0)
### nu = 9, Harris value is 0.00324 67980 03149
incompleteBesselK(0.01, 4, 9)
### Other values given in Harris (2008)
### x = 4.95, y = 5.00, nu = 2
incompleteBesselK(4.95, 5, 2) ## 0.00001 2249987981
### x = 10, y = 2, nu = 6
### Slevinsky and Safouhi (2010) suggest Harris (2008) value
### is incorrect, give value 0.00000 04150 01064 21228
incompleteBesselK(10, 2, 6)
### x = 3.1, y = 2.6, nu = 5
incompleteBesselK(3.1, 2.6, 5) ## 0.00052 85043 25244
### Check values when x > y using numeric integration
(numIBF <- sapply(0:9, incompleteBesselK, x = 4, y = 0.01))
besselFn <- function(t, x, y, nu) {
        (t^(-nu - 1))*exp(-x*t - y/t)
}
(intIBF <- sapply(0:9, integrate, f = besselFn, lower = 1, upper = Inf,
```

```
            x = 4, y = 0.01))
    intIBF <- as.numeric(intIBF[1, ])
    numIBF - intIBF
    max(abs(numIBF - intIBF)) ## 1.256649992398273e-11
    options(digits = 7)
```

 integrateDens Integrates a Density Function

Description

Given a density function specified by the root of the density function name, returns the integral over a specified range, usually the whole real line. Used for checking that the integral over the whole real line is 1 .

Usage

```
integrateDens(densFn = "norm", lower = -Inf, upper = Inf,
    subdivisions = 100, ...)
```


Arguments

densFn	Character. The name of the density function to be integrated.
lower	Numeric. The lower limit of the integration. Defaulty is -Inf.
upper	Numeric. The upper limit of the integration. Defaulty is Inf.
subdivisions	Numeric. The number of subdivisions to be passed to integrate. \ldots
Additional arguments to be passed to integrate. In particular, the parameters of the distribution.	

Details

The name of the density function to be integrated must be supplied as the characters of the root for that density (e.g. norm, gamma). The density function specified is integrated numerically over the range specified via a call to integrate. The parameters of the distribution can be specified, otherwise the default parameters will be used.

Value

A list of class integrate with components:

value	The final estimate of the integral.
abs.error	Estimate of the modulus of the absolute error.
subdivisions	The number of subintervals produced in the subdivision process.
message	OK or a character string giving the error message.
call	The matched call to the integrate function.

Author(s)

David Scott d.scott@auckland.ac.nz

See Also

momIntegrated

Examples

```
integrateDens("norm", mean = 1, sd = 1)
integrateDens("t", df = 4)
integrateDens("exp", rate = 2)
integrateDens("weibull", shape = 1)
```

inversionTests Inversion Tests for Distributions

Description

Functions to check performance of distribution and quantile functions. Applying the distribution function followed by the quantile function to a set of numbers should reproduce the original set of numbers. Likewise applying the quantile function followed by the distribution function to numbers in the range $(0,1)$ should produce the original numbers.

Usage

```
inversionTestpq(densFn = "norm", n = 10,
    intTol = .Machine$double.eps^0.25,
    uniTol = intTol, x = NULL, method = "spline", ...)
    inversionTestqp(densFn = "norm",
    qs = c(0.001, 0.01, 0.025, 0.05, 0.1, 0.2, 0.4, 0.5,
            0.6, 0.8, 0.9, 0.95, 0.975, 0.99, 0.999),
    uniTol = .Machine$double.eps^0.25,
    intTol = uniTol, method = "spline", ...)
```


Arguments

densFn Character. The root name of the distribution to be tested.
qs \quad Numeric. Set of quantiles to which quantile function then distribution function will be applied. See Details.
$\mathrm{n} \quad$ Numeric. Number of values to be sampled from the distribution. See Details.
$x \quad$ Numeric. Values at which the distribution function is to be evaluated. If NULL values are drawn at random from the distribution.
intTol Value of rel.tol and hence abs.tol in calls to integrate. See integrate.
uniTol Value of tol in calls to uniroot. See uniroot.
method Character. If "spline" quantiles are found from a spline approximation to the distribution function. If "integrate", the distribution function used is always obtained by integration.
... Additional arguments to allow specification of the parameters of the distribution.

Details

inversionTestpq takes a sample from the specified distribution of size n then applies the distribution function, followed by the quantile function. inversionTestqp applies the quantile function, followed by the distribution function to the set of quantiles specified by qs.
In both cases the starting and ending values should be the same.
These tests are used in base R to check the standard distribution functions. The code may be found in the file $d-p-q-r$. tests. R in the tests directory.

Value

inversionTestpq returns a list with components:
qpx \quad Numeric. The result of applying the distribution function (' p ' function) then the quantile function (' q ' function) to the randomly generated set of x values.
$\mathrm{x} \quad$ Numeric. The set of x values generated by the ' r ' function.
diffs \quad Numeric. The differences qpx minus x.
$n \quad$ Numeric. Number of values sampled from the distribution.
inversionTestqp returns a list with components:
pqqs Numeric. The result of applying the quantile function ('q' function) then the distribution function (' p ' function) to the quantiles q s.
qs \quad Numeric. The set of quantiles.
diffs Numeric. The differences pqqs minus qs.

Author(s)

David Scott d.scott@auckland.ac.nz, Christine Yang Dong c.dong@auckland.ac.nz

Examples

```
## Default distribution is normal
inversionTestpq()
inversionTestqp()
## Supply parameters
inversionTestpq(mean = 1, sd = 2)
inversionTestqp(mean = 1, sd = 2)
## Gamma distribution, must specify shape
inversionTestpq("gamma", shape = 1)
inversionTestqp("gamma", shape = 1)
```

is.wholenumber Is Object Numeric and Whole Numbers

Description

Checks whether an object is numeric and if so, are all the elements whole numbers, to a given tolerance.

Usage

is.wholenumber (x, tolerance $=$.Machine\$double.eps^0.5)

Arguments

$\begin{array}{ll}x & \text { The object to be tested. } \\ \text { tolerance } & \begin{array}{l}\text { Numeric } \geq 0 . \text { Absolute differences greater than tolerance are treated as real } \\ \text { differences. }\end{array}\end{array}$

Details

The object x is first tested to see if it is numeric. If not the function returns 'FALSE '. Then if all the elements of x are whole numbers to within the tolerance given by tolerance the function returns 'TRUE'. If not it returns 'FALSE'.

Value

Either 'TRUE' or 'FALSE ' depending on the result of the test.

Author(s)

David Scottd.scott@auckland.ac.nz.

References

Based on a post by Tony Plate <tplate @acm.org> on R-help.

Examples

is.wholenumber (-3:5)	true
is.wholenumber (c ($0,0.1,1.3,5)$)	FALSE
is.wholenumber (-3:5 + .Machine\$double.eps)	\# TRUE
is.wholenumber (-3:5 + .Machine\$double.eps^0.5)	FALSE
is.wholenumber (c(2L, 3L))	TRUE
is.wholenumber (c("2L", "3L"))	FALSE
is.wholenumber(0i ^ (-3:3))	FALSE
is.wholenumber(matrix (1:6, nrow = 3))	TRUE
is.wholenumber(list (-1:3,2:6))	FALSE
is.numeric(list($-1: 3,2: 6)$)	\# FALSE
is.wholenumber(unlist(list(-1:3,2:6)))	TRUE

logHist Plot Log-Histogram

Description

Plots a log-histogram, as in for example Feiller, Flenley and Olbricht (1992).
The intended use of the log-histogram is to examine the fit of a particular density to a set of data, as an alternative to a histogram with a density curve. For this reason, only the log-density histogram is implemented, and it is not possible to obtain a log-frequency histogram.
The log-histogram can be plotted with histogram-like dashed vertical bars, or as points marking the tops of the log-histogram bars, or with both bars and points.

Usage

```
logHist(x, breaks = "Sturges",
    include.lowest = TRUE, right = TRUE,
    main = paste("Log-Histogram of", xName),
    xlim = range(breaks), ylim = NULL, xlab = xName,
    ylab = "Log-density", nclass = NULL, htype = "b", ...)
```


Arguments

$x \quad$ A vector of values for which the log-histogram is desired.
breaks One of:

- a vector giving the breakpoints between log-histogram cells;
- a single number giving the number of cells for the log-histogram;
- a character string naming an algorithm to compute the number of cells (see Details);
- a function to compute the number of cells.

In the last three cases the number is a suggestion only.
include. lowest Logical. If TRUE, an 'x[i]' equal to the 'breaks' value will be included in the first (or last, for right = FALSE) bar.
right Logical. If TRUE, the log-histograms cells are right-closed (left open) intervals.
main, xlab, ylab
These arguments to title have useful defaults here.
$x \lim \quad$ Sensible default for the range of x values.
ylim Calculated by logHist, see Details.
nclass Numeric (integer). For compatibility with hist only, nclass is equivalent to breaks for a scalar or character argument.
htype Type of histogram. Possible types are:

- '"h"' for a *h*istogram only;
- '"p"' for *p*oints marking the top of the histogram bars only;
- ’"b"' for *b*oth.
... Further graphical parameters for calls to plot and points.

Details

Uses hist. default to determine the cells or classes and calculate counts.
To calculate ylim the following procedure is used. The upper end of the range is given by the maximum value of the log-density, plus 25% of the absolute value of the maximum. The lower end of the range is given by the smallest (finite) value of the log-density, less 25% of the difference between the largest and smallest (finite) values of the log-density.

A log-histogram in the form used by Feiller, Flenley and Olbricht (1992) is plotted. See also Barndorff-Nielsen (1977) for use of log-histograms.

Value

Returns a list with components:
breaks The $n+1$ cell boundaries (= breaks if that was a vector).
counts $\quad n$ integers; for each cell, the number of $\times[]$ inside.
logDensity \quad Log of $\hat{f}\left(x_{i}\right)$, which are estimated density values.
If all (diff(breaks) ==1), estimated density values are the relative frequencies counts/n and in general satisfy $\sum_{i} \hat{f}\left(x_{i}\right)\left(b_{i+1}-b_{i}\right)=1$, where $b_{i}=$ breaks[i].
mids The n cell midpoints.
x Name A character string with the actual x argument name.
heights The location of the tops of the vertical segments used in drawing the log-histogram.
ylim The value of ylim calculated by logHist.

Author(s)

David Scott d.scott@auckland.ac.nz, Richard Trendall, Thomas Tran

References

Barndorff-Nielsen, O. (1977) Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401-419.

Barndorff-Nielsen, O. and Blæsild, P (1983). Hyperbolic distributions. In Encyclopedia of Statistical Sciences, eds., Johnson, N. L., Kotz, S. and Read, C. B., Vol. 3, pp. 700-707. New York: Wiley.

Fieller, N. J., Flenley, E. C. and Olbricht, W. (1992) Statistics of particle size data. Appl. Statist., 41, 127-146.

See Also

hist

Examples

```
x <- rnorm(200)
hist(x)
### default
logHist(x)
### log histogram only
logHist(x, htype = "h")
### points only, some options
logHist(x, htype = "p", pch = 20, cex = 2, col = "steelblue")
```


Description

Using the moments up to a given order about one location, this function either returns the moments up to that given order about a new location as a vector or it returns a moment of a specific order defined by users (order $<=$ maximum order of the given moments) about a new location as a single number. A generalization of using raw moments to obtain a central moment or using central moments to obtain a raw moment.

Usage

```
momChangeAbout(order = "all", oldMom, oldAbout, newAbout)
```


Arguments

order

One of:

- the character string "all", the default;
- a positive integer less than the maximum order of oldMom.
oldMom Numeric. Moments of orders 1, 2, ..., about the point oldAbout.
oldAbout Numeric. The point about which the moments oldMom have been calculated.
newAbout Numeric. The point about which the desired moment or moments are to be obtained.

Details

Suppose m_{k} denotes the k-th moment of a random variable X about a point a, and m_{k}^{*} denotes the k-th moment about b. Then m_{k}^{*} may be determined from the moments $m_{1}, m_{2}, \ldots, m_{k}$ according to the formula

$$
m_{k}^{*}=\sum_{i=0}^{k}(a-b)^{i} m^{k-i}
$$

This is the formula implemented by the function momChangeAbout. It is a generalization of the wellknown formulae used to change raw moments to central moments or to change central moments to raw moments. See for example Kendall and Stuart (1989), Chapter 3.

Value

The moment of order order about the location newAbout when order is specified. The vector of moments about the location newAbout from first order up to the maximum order of the oldMom when order takes the value "all" or is not specified.

Author(s)

David Scott d.scott@auckland.ac.nz, Christine Yang Dong c.dong@auckland.ac.nz

References

Kendall, M. G. and Stuart, A. (1969). The Advanced Theory of Statistics, Volume 1, 3rd Edition. London: Charles Griffin \& Company.

Examples

```
    ### Gamma distribution
```

 k <- 4
 shape <- 2
 old <- 0
 new <- 1
 sampSize <- 1000000
 \#\#\# Calculate 1st to 4th raw moments
 m <- numeric(k)
 for (i in 1:k)\{
 m[i] <- gamma(shape + i)/gamma(shape)
 \}
 m
 \#\#\# Calculate 4th moment about new
 momChangeAbout (k, m, old, new)
 \#\#\# Calculate 3rd about new
 momChangeAbout (3, m, old, new)
 \#\#\# Calculate 1st to 4th moments about new
 momChangeAbout(oldMom \(=\mathrm{m}\), oldAbout \(=\) old, newAbout \(=\) new)
 momChangeAbout(order = "all", m, old, new)
 \#\#\# Approximate kth moment about new using sampling
 \(x\) <- rgamma(sampSize, shape)
 mean \(\left((x-n e w)^{\wedge} k\right)\)
 momIntegrated Moments Using Integration

Description

Calculates moments and absolute moments about a given location for any given distribution.

Usage

```
momIntegrated(densFn = "ghyp", param = NULL, order, about = 0,
                        absolute = FALSE, ...)
```


Arguments

densFn Character. The name of the density function whose moments are to be calculated. See Details.
param Numeric. A vector giving the parameter values for the distribution specified by densFn. If no param values are specified, then the default parameter values of the distribution are used instead.
order Numeric. The order of the moment or absolute moment to be calculated.
about Numeric. The point about which the moment is to be calculated.
absolute Logical. Whether absolute moments or ordinary moments are to be calculated. Default is FALSE.
... Passes arguments to integrate. In particular, the parameters of the distribution.

Details

Denote the density function by f. Then if order $=k$ and about $=a$, momIntegrated calculates

$$
\int_{-\infty}^{\infty}(x-a)^{k} f(x) d x
$$

when absolute $=$ FALSE and

$$
\int_{-\infty}^{\infty}|x-a|^{k} f(x) d x
$$

when absolute = TRUE.
The name of the density function must be supplied as the characters of the root for that density (e.g. norm, ghyp).
When densFn="ghyp", densFn="hyperb", densFn="gig" or densFn = "vg", the relevant package must be loaded or an error will result.
When densFn="invgamma" or "inverse gamma" the density used is the density of the inverse gamma distribution given by

$$
f(x)=\frac{u^{\alpha} e^{-u}}{x \Gamma(\alpha)}, \quad u=\theta / x
$$

for $x>0, \alpha>0$ and $\theta>0$. The parameter vector param $=\mathrm{c}$ (shape, rate) where shape $=\alpha$ and rate $=1 / \theta$. The default value for param is $c(-1,1)$.

Value

The value of the integral as specified in Details.

Author(s)

David Scott<d. scott@auckland.ac.nz>, Christine Yang Dong <c.dong@auckland. ac.nz>, Xinxing Li xli053@aucklanduni.ac.nz

See Also

dghyp, dhyperb, dgamma, dgig, VarianceGamma

Examples

```
require(GeneralizedHyperbolic)
### Calculate the mean of a generalized hyperbolic distribution
### Compare the use of integration and the formula for the mean
m1 <- momIntegrated("ghyp", param = c(0, 1, 3, 1, 1/2), order = 1, about = 0)
m1
ghypMean(param = c(0, 1, 3, 1, 1 / 2))
### The first moment about the mean should be zero
momIntegrated("ghyp", order = 1, param = c(0, 1, 3, 1, 1 / 2), about = m1)
### The variance can be calculated from the raw moments
m2 <- momIntegrated("ghyp", order = 2, param = c(0, 1, 3, 1, 1 / 2), about = 0)
m2
m2 - m1^2
### Compare with direct calculation using integration
momIntegrated("ghyp", order = 2, param = c(0, 1, 3, 1, 1 / 2), about = m1)
momIntegrated("ghyp", param = c(0, 1, 3, 1, 1 / 2), order = 2,
    about = m1)
### Compare with use of the formula for the variance
ghyp\operatorname{Var}(param = c(0, 1, 3, 1, 1 / 2))
```

momSE Standard Errors of Sample Moments

Description

Calculates the approximate standard error of the sample variance, sample central third moment and sample central fourth moment.

Usage

momSE(order $=4, \mathrm{n}$, mom)

Arguments

order \quad Integer: either 2,3 , or 4 .
$\mathrm{n} \quad$ Integer: the sample size.
mom Numeric: The central moments of order 1 to $2 n$ of the distribution being sampled from.

Details

Implements the approximate standard error given in Kendall and Stuart (1969), p.243.

Value

The approximate standard error of the sample moment specified.

Author(s)

David Scottd.scott@auckland.ac.nz

References

Kendall, M. G. and Stuart, A. (1969). The Advanced Theory of Statistics, Volume 1, 3rd Edition. London: Charles Griffin \& Company.

See Also

momChangeAbout

Examples

```
### Moments of the normal distribution, mean 1, variance 4
mu <- 1
sigma <- 2
mom <- c(0,sigma^2,0,3*sigma^4,0,15*sigma^6,0,105*sigma^8)
### standard error of sample variance
momSE(2, 100, mom[1:4])
### should be
sqrt(2*sigma^4)/10
### standard error of sample central third moment
momSE(3, 100, mom[1:6])
### should be
sqrt(6*sigma^6)/10
### standard error of sample central fourth moment
momSE(4, 100, mom)
### should be
sqrt(96*sigma^8)/10
```

moranTest Moran's Log Spacings Test

Description

This function implements a goodness-of-fit test using Moran's log spacings statistic.

Usage

moranTest(x, densFn, param = NULL, ...)

Arguments

densFn Character. The root name of the distribution to be tested.
X
Numeric. Vector of data to be tested.
param Numeric. A vector giving the parameter values for the distribution specified by densFn. If no param values are specified, then the default parameter values of the distribution are used instead.
... Additional arguments to allow specification of the parameters of the distribution other than specified by param.

Details

Moran(1951) gave a statistic for testing the goodness-of-fit of a random sample of x-values to a continuous univariate distribution with cumulative distribution function $F(x, \theta)$, where θ is a vector of known parameters. This function implements the Cheng and Stephens(1989) extended Moran test for unknown parameters.
The test statistic is

$$
T(\hat{\theta})=\left(M(\hat{\theta})+1 / 2 k-C_{1}\right) / C_{2}
$$

Where $M(\hat{\theta})$, the Moran statistic, is

$$
M(\theta)=-\left(\log \left(y_{1}-y_{0}\right)+\log \left(y_{2}-y_{1}\right)+\ldots+\log \left(y_{m}-y_{m-1}\right)\right)
$$

M (theta) $=-\left(\log \left(\mathrm{y} _1-\mathrm{y} _0\right)+\log \left(\mathrm{y} _2-\mathrm{y} _1\right)+\ldots+\log \left(\mathrm{y} _\mathrm{m}-\mathrm{y} _\mathrm{m}-1\right)\right)$
This test has null hypothesis: H_{0} : a random sample of n values of x comes from distribution $F(x, \theta)$, where θ is the vector of parameters. Here θ is expected to be the maximum likelihood estimate $\hat{\theta}$, an efficient estimate. The test rejects H_{0} at significance level α if $T(\hat{\theta})>\chi_{n}^{2}(\alpha)$.

Value

statistic Numeric. The value of the Moran test statistic.
estimate Numeric. A vector of parameter estimates for the tested distribution.
parameter Numeric. The degrees of freedom for the Moran statistic.
p.value \quad Numeric. The p-value for the test
data. name Character. A character string giving the name(s) of the data.
method Character. Type of test performed.

Author(s)

David Scott d.scott@auckland.ac.nz, Xinxing Lixli053@aucklanduni.ac.nz

References

Cheng, R. C. \& Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters. Biometrika, 76, 385-92.
Moran, P. (1951). The random division of an interval—PartII. J. Roy. Statist. Soc. B, 13, 147-50.

Examples

```
### Normal Distribution
x <- rnorm(100, mean = 0, sd = 1)
muhat <- mean(x)
sigmahat <- sqrt(var(x)*(100 - 1)/100)
result <- moranTest(x, "norm", mean = muhat, sd = sigmahat)
result
### Exponential Distribution
y <- rexp(200, rate = 3)
lambdahat <- 1/mean(y)
result <- moranTest(y, "exp", rate = lambdahat)
result
```

```
pDist Distribution and Quantile Functions for Unimodal Distributions
```


Description

Given the density function of a unimodal distribution specified by the root of the density function name, returns the distribution function and quantile function of the specified distribution.

Usage

```
pDist(densFn = "norm", q, param = NULL, subdivisions = 100,
            lower.tail = TRUE, intTol = .Machine$double.eps^0.25,
            valueOnly = TRUE, ...)
qDist(densFn = "norm", p, param = NULL,
            lower.tail = TRUE, method = "spline", nInterpol = 501,
            uniTol = .Machine$double.eps^0.25,
            subdivisions = 100, intTol = uniTol, ...)
```


Arguments

densFn	Character. The name of the density function for which the distribution function or quantile function is required.
q	Vector of quantiles.
p	Vector of probabilities.

subdivisions	The maximum number of subdivisions used to integrate the density and deter- mine the accuracy of the distribution function calculation.
intTol	Value of rel.tol and hence abs. tol in calls to integrate. See integrate.
valueOnly	Logical. If valueOnly = TRUE calls to pDist only return the value obtained for the integral. If valueOnly = FALSE an estimate of the accuracy of the numerical integration is also returned.
nInterpol	Number of points used in qDist for cubic spline interpolation of the distribution function.
uniTol	Value of tol in calls to uniroot. See uniroot.
\ldots	Passes additional arguments to integrate, distMode or distCalcRange. In particular, the parameters of the distribution.

Details

The name of the unimodal density function must be supplied as the characters of the root for that density (e.g. norm, ghyp).
pDist uses the function integrate to numerically integrate the density function specified. The integration is from -Inf to x if x is to the left of the mode, and from x to Inf if x is to the right of the mode. The probability calculated this way is subtracted from 1 if required. Integration in this manner appears to make calculation of the quantile function more stable in extreme cases.
qDist provides two methods to calculate quantiles both of which use uniroot to find the value of x for which a given q is equal to $F(x)$ where $F($.$) denotes the distribution function. The difference is$ in how the numerical approximation to F is obtained. The more accurate method, which is specified as "integrate", is to calculate the value of $F(x)$ whenever it is required using a call to pDist. It is clear that the time required for this approach is roughly linear in the number of quantiles being calculated. The alternative (and default) method is that for the major part of the distribution a spline approximation to $F(x)$ is calculated and quantiles found using uniroot with this approximation. For extreme values of some heavy-tailed distributions (where the tail probability is less than $10^{(}-$ 7)), the integration method is still used even when the method specified as "spline".

If accurate probabilities or quantiles are required, tolerances (intTol and uniTol) should be set to small values, i.e 10^{-10} or 10^{-12} with method = "integrate". Generally then accuracy might be expected to be at least 10^{-9}. If the default values of the functions are used, accuracy can only be expected to be around 10^{-4}. Note that on 32 -bit systems . Machine $\$$ double. eps $^{\wedge} 0.25=0.0001220703$ is a typical value.

Value

pDist gives the distribution function, qDist gives the quantile function.
An estimate of the accuracy of the approximation to the distribution function can be found by setting valueOnly = FALSE in the call to pDist which returns a list with components value and error.

Author(s)

David Scott d.scott@auckland.ac.nz Joyce Li xli053@aucklanduni.ac.nz

Examples

```
pDist("norm", q = 2, mean = 1, sd = 1)
pDist("t", q = 0.5, df = 4)
require(GeneralizedHyperbolic)
pDist("ghyp", q = 0.1)
require(SkewHyperbolic)
qDist("skewhyp", p = 0.4, param = c(0, 1, 0, 10))
qDist("t", p = 0.2, df = 4)
```

safeIntegrate Safe Integration of One-Dimensional Functions

Description

Adaptive quadrature of functions of one variable over a finite or infinite interval.

Usage

```
safeIntegrate(f, lower, upper, subdivisions=100,
    rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,
    stop.on.error = TRUE, keep.xy = FALSE, aux = NULL, ...)
```


Arguments

$f \quad$ An R function taking a numeric first argument and returning a numeric vector of the same length. Returning a non-finite element will generate an error.
lower, upper The limits of integration. Can be infinite.
subdivisions The maximum number of subintervals.
rel.tol Relative accuracy requested.
abs.tol Absolute accuracy requested.
stop. on. error Logical. If true (the default) an error stops the function. If false some errors will give a result with a warning in the message component.
keep. xy Unused. For compatibility with S.
aux Unused. For compatibility with S.
... Additional arguments to be passed to f. Remember to use argument names not matching those of safeIntegrate(.)!

Details

This function is just a wrapper around integrate to check for equality of upper and lower. A check is made using all. equal. When numerical equality is detected, if lower (and hence upper) is infinite, the value of the integral and the absolute error are both set to 0 . When lower is finite, the value of the integral is set to 0 , and the absolute error to the average of the function values at upper and lower times the difference between upper and lower.
When upper and lower are determined to be different, the result is exactly as given by integrate.

Value

A list of class "integrate" with components:

value	The final estimate of the integral.
abs.error	Estimate of the modulus of the absolute error.
subdivisions	The number of subintervals produced in the subdivision process.
message	"OK" or a character string giving the error message.
call	The matched call.

See Also

The function integrate and all.equal.

Examples

```
integrate(dnorm, -1.96, 1.96)
safeIntegrate(dnorm, -1.96, 1.96) # Same as for integrate()
integrate(dnorm, -Inf, Inf)
safeIntegrate(dnorm, -Inf, Inf) # Same as for integrate()
integrate(dnorm, 1.96, 1.96) # OK here but can give an error
safeIntegrate(dnorm, 1.96, 1.96)
integrate(dnorm, -Inf, -Inf)
safeIntegrate(dnorm, -Inf, -Inf) # Avoids nonsense answer
integrate(dnorm, Inf, Inf)
safeIntegrate(dnorm, Inf, Inf) # Avoids nonsense answer
```

Sample Moments Sample Skewness and Kurtosis

Description

Computes the sample skewness and sample kurtosis.

Usage

skewness(x, na.rm = FALSE)
kurtosis(x, na.rm = FALSE)

Arguments

x
na.rm

A numeric vector containing the values whose skewness or kurtosis is to be computed.
A logical value indicating whether NA values should be stripped before the computation proceeds.

Details

If $N=$ length (x), then the skewness of x is defined as

$$
N^{-1} \operatorname{sd}(x)^{-3} \sum_{i}\left(x_{i}-\operatorname{mean}(x)\right)^{3} .
$$

If $N=\operatorname{length}(x)$, then the kurtosis of x is defined as

$$
N^{-1} \operatorname{sd}(x)^{-4} \sum_{i}\left(x_{i}-\operatorname{mean}(x)\right)^{4}-3
$$

Value

The skewness or kurtosis of x.

Note

These functions and the description of them are taken from the package e1071. They are included to avoid having to require an additional package.

Author(s)

Evgenia Dimitriadou, Kurt Hornik, Friedrich Leisch, David Meyer, and Andreas Weingessel

Examples

$x<-\operatorname{rnorm}(100)$
skewness(x)
kurtosis(x)
tailPlot Tail Plot Functions

Description

Create a left or right tail plot of a data set using tailPlot. Add a line for any distribution with parameters given by an argument named param, using tailPlotLine. Add normal, t, or gamma distribution lines to the plot using normTailPlotLine, tTailPlotLine, or gammaTailPlotLine

Usage

```
tailPlot(x, log = "y", side = c("right", "left"), main = NULL,
    xlab = NULL, ylab = NULL, ...)
    tailPlotLine(x, distrFn, param = NULL, side = c("right", "left"), ...)
    normTailPlotLine(x, mean = 0, sd = 1, side = c("right", "left"), ...)
    tTailPlotLine(x, df = Inf, side = c("right", "left"), ...)
    gammaTailPlotLine(x, shape = 1, rate = 1, scale = 1/rate,
    side = c("right", "left"), ...)
```


Arguments

X	A vector of values for which the tail plot is to be drawn.
log	A character string which contains " x " if the x-axis is to be logarithmic, " y " if the y-axis is to be logarithmic and "xy" or " $y x$ " if both axes are to be logarithmic.
side	Character. "right" (the default) for a tail plot of the right-hand tail, "left" for a tail plot of the left-hand tail.
main	A main title for the plot.
xlab	A label for the x axis, defaults to NULL.
ylab	A label for the y axis, defaults to NULL.
distrFn	Character. The name of the distribution function to be to be added to the tail plot.
param	Vector specifying the parameters of the distribution, defaults to NULL.
mean	The mean of the normal distribution.
sd	The standard deviation of the normal distribution. Must be positive.
df	The degrees of freedom of the t-distribution, (>0, may be non-integer). Defaults to Inf, corresponding to the standard normal distribution.
shape	The shape parameter of the gamma distribution. Must be positive.
scale	The scale parameter of the gamma distribution. Must be strictly positive, scale strictly.
rate	The rate parameter of the gamma distribution. An alternative way to specify the scale.
	Other graphical parameters (see par.

Details

tailplot draws either a left-hand or right-hand tail plot of the data x. See for example Resnick (2007), p.105. The left-hand tail plot plots the empirical distribution of the data against the order statistics, for order statistic values below the median. The right-hand tail plot plots one minus the empirical distribution of the data against the order statistics, for order statistic values above the median. The default is for the y-axis to be plotted on a log scale.
tailPlotLine adds a line for the specified distribution to an already drawn tail plot. The distribution can be any distribution which has default parameters, but if parameters need to be supplied the distribution must have an argument param which specifies the parameters. This is the case for all distributions in the form recommended in Scott et al (2009) and includes distributions from the packages GeneralizedHyperbolic, SkewHyperbolic, VarianceGamma and NormalLaplace (which is on R-Forge).
normTailPlotLine, tTailPlotLine and gammaTailPlotLine add the corresponding line derived respectively from the given normal, t, or gamma distribution to an already drawn tail plot.

Value

Returns NULL invisibly.

Author(s)

David Scottd.scott@auckland.ac.nz

References

Aas, Kjersti and Hobæk Haff, Ingrid (2006) The generalised hyperbolic skew Student's t-distribution. Journal of Financial Econometrics, 4, 275-309.
Resnick, S. (2007) Heavy-Tail Phenomena, New York: Springer.
Scott, David J. and Würtz, Diethelm and Dong, Christine (2009) Software for Distributions in R. UseR: The R User Conference 2009 https://www.r-project.org/conferences/useR-2009/ slides/Scott+Wuertz+Dong.pdf

Examples

```
### Draw tail plot of some data
x <- rnorm(100, 1, 2)
tailPlot(x)
### Add normal distribution line
normTailPlotLine(x, mean = 1, sd = 2)
### Add t distribution line
tTailPlotLine(x, df = 5, lty = 2)
### Use fitted values
normTailPlotLine(x, mean = mean(x), sd = sd(x), lty = 3)
### Gamma distribution
x <- rgamma(100, shape = 1, scale = 1)
tailPlot(x)
### Add gamma distribution line
gammaTailPlotLine(x, shape = 1, scale = 1)
### Left tail example
tailPlot(x, side = "l")
### Add gamma distribution line
gammaTailPlotLine(x, shape = 1, scale = 1, side = "l")
### Log scale on both axes
tailPlot(x, side = "l", log = "xy")
### Add gamma distribution line
gammaTailPlotLine(x, shape = 1, scale = 1, side = "l")
### Add line from a standard distribution with default parameters
x <- rlnorm(100)
tailPlot(x)
tailPlotLine(x, distrFn = "lnorm")
### Add line from a distribution with 'param' argument
require(VarianceGamma)
param <- c(0,0.5,0,0.5)
x <- rvg(100, param = param)
tailPlot(x)
tailPlotLine(x, distrFn = "vg", param = param)
```


Description

Calculates an approximation to the Hessian of a function. Used for obtaining an approximation to the information matrix for maximum likelihood estimation.

Usage

tsHessian(param, fun, ...)

Arguments

param Numeric. The Hessian is to be evaluated at this point.
fun A function of the parameters specified by param, and possibly other parameters.
... Values of other parameters of the function fun if required.

Details

As a typical statistical application, the function fun is the log-likelihood function, param specifies the maximum likelihood estimates of the parameters of the distribution, and the data constitutes the other parameter values required for determination of the log-likelihood function.

Value

The approximate Hessian matrix of the function fun where differentiation is with respect to the vector of parameters param at the point given by the vector param.

Note

This code was borrowed from the fBasics function, in the file 'utils-hessian. R ' with slight modification. This was in turn borrowed from Kevin Sheppard's Matlab garch toolbox as implemented by Alexios Ghalanos in his rgarch package.

Author(s)

David Scott d.scott@auckland.ac.nz, Christine Yang Dong c.dong@auckland.ac.nz

See Also

hyperbHessian and summary hyperbFit in GeneralizedHyperbolic.

Examples

```
### Consider Hessian of log(1 + x + 2y)
### Example from Lang: A Second Course in Calculus, p. }7
fun <- function(param){
    x <- param[1]
    y <- param[2]
    return(log(1 + x + 2*y))
}
### True value of Hessian at (0,0)
trueHessian <- matrix( c(-1,-2,
    -2,-4), byrow = 2, nrow = 2)
    trueHessian
    ### Value from tsHessian
    approxHessian <- tsHessian(c(0,0), fun = fun)
    approxHessian
    maxDiff <- max(abs(trueHessian - approxHessian))
    ### Should be approximately 0.045
    maxDiff
```


Index

*Topic classes
is.wholenumber, 16
*Topic distribution
distCalcRange, 4
distIneqMassart, 5
distIneqMassartPlot, 7
distMode, 8
distStepSize, 9
incompleteBesselK, 10
integrateDens, 13
inversionTests, 14
logHist, 17
momChangeAbout, 19
momIntegrated, 20
momSE, 22
moranTest, 23
pDist, 25
tailPlot, 29
*Topic hplot
logHist, 17
*Topic math
Bessel K Ratio, 3
incompleteBesselK, 10
safeIntegrate, 27
tsHessian, 32
$*$ Topic package
DistributionUtils-package, 2
$*$ Topic univariate
distIneqMassart, 5
inversionTests, 14
moranTest, 23
*Topic univar
distCalcRange, 4
distIneqMassartPlot, 7
distMode, 8
distStepSize, 9
integrateDens, 13
momChangeAbout, 19
momIntegrated, 20
momSE, 22
pDist, 25
Sample Moments, 28
tailPlot, 29
*Topic utilities
safeIntegrate, 27
all.equal, 27, 28
Bessel K Ratio, 3
besselK, 3, 4, 12
besselRatio (Bessel K Ratio), 3
combinatorial (incompleteBesselK), 10
dgamma, 22
dghyp, 22
dgig, 22
dhyperb, 22
distCalcRange, 4, 10, 26
distIneqMassart, 5
distIneqMassartPlot, 7
distMode, 8, 26
DistributionUtils (DistributionUtils-package), 2
DistributionUtils-package, 2
distStepSize, 9, 9

```
gammaTailPlotLine (tailPlot), 29
GDENOM (incompleteBesselK), 10
GeneralizedHyperbolicDistribution,3
gigMom,4
GNUM (incompleteBesselK), 10
hist,18
hist.default, 18
incompleteBesselK, 10
incompleteBesselKR(incompleteBesselK),
    1 0
integrate, 13, 14, 21, 26-28
```

```
integrateDens,13
inversionTestpq(inversionTests),14
inversionTestqp (inversionTests), 14
inversionTests,14
is.wholenumber,16
kurtosis(Sample Moments), 28
logHist,17
momChangeAbout, 19, 23
momIntegrated, 14, 20
momSE, 22
moranTest,23
normTailPlotLine(tailPlot), 29
optimize, 8, }
par, }3
pDist, 25
print.integrate(safeIntegrate), 27
qDist, 5, }
qDist (pDist), 25
safeIntegrate, 27
Sample Moments,28
skewness (Sample Moments), 28
SSFcoef (incompleteBesselK), 10
tailPlot,29
tailPlotLine(tailPlot), 29
tsHessian, 32
tTailPlotLine (tailPlot), 29
uniroot, 5, 14, 26
VarianceGamma, 22
```

