
Package ‘DoubleML’
June 14, 2022

Type Package

Title Double Machine Learning in R

Version 0.5.0

Description Implementation of the double/debiased machine learning framework of
Chernozhukov et al. (2018) <doi:10.1111/ectj.12097> for partially linear
regression models, partially linear instrumental variable regression models,
interactive regression models and interactive instrumental variable
regression models. 'DoubleML' allows estimation of the nuisance parts in
these models by machine learning methods and computation of the Neyman
orthogonal score functions. 'DoubleML' is built on top of 'mlr3' and the
'mlr3' ecosystem. The object-oriented implementation of 'DoubleML' based on
the 'R6' package is very flexible.

License MIT + file LICENSE

URL https://docs.doubleml.org/stable/index.html,

https://github.com/DoubleML/doubleml-for-r/

BugReports https://github.com/DoubleML/doubleml-for-r/issues

Encoding UTF-8

Depends R (>= 3.5.0)

Imports R6 (>= 2.4.1), data.table (>= 1.12.8), stats, checkmate, mlr3
(>= 0.5.0), mlr3tuning (>= 0.3.0), mvtnorm, utils,
clusterGeneration, readstata13, mlr3learners (>= 0.3.0),
mlr3misc

RoxygenNote 7.1.1

Suggests knitr, rmarkdown, testthat, covr, patrick (>= 0.1.0), paradox
(>= 0.4.0), dplyr, glmnet, lgr, ranger, sandwich, AER, rpart,
bbotk, mlr3pipelines

VignetteBuilder knitr

Collate 'double_ml.R' 'double_ml_data.R' 'double_ml_iivm.R'
'double_ml_irm.R' 'double_ml_pliv.R' 'double_ml_plr.R'
'helper.R' 'datasets.R' 'zzz.R'

NeedsCompilation no

1

https://doi.org/10.1111/ectj.12097
https://docs.doubleml.org/stable/index.html
https://github.com/DoubleML/doubleml-for-r/
https://github.com/DoubleML/doubleml-for-r/issues

2 DoubleML

Author Philipp Bach [aut],
Victor Chernozhukov [aut],
Malte S. Kurz [aut, cre],
Martin Spindler [aut]

Maintainer Malte S. Kurz <malte.simon.kurz@uni-hamburg.de>

Repository CRAN

Date/Publication 2022-06-14 10:00:02 UTC

R topics documented:

DoubleML . 2
DoubleMLClusterData . 10
DoubleMLData . 12
DoubleMLIIVM . 14
DoubleMLIRM . 18
DoubleMLPLIV . 21
DoubleMLPLR . 27
double_ml_data_from_data_frame . 31
double_ml_data_from_matrix . 33
fetch_401k . 34
fetch_bonus . 35
make_iivm_data . 37
make_irm_data . 38
make_pliv_CHS2015 . 39
make_pliv_multiway_cluster_CKMS2021 . 41
make_plr_CCDDHNR2018 . 42
make_plr_turrell2018 . 43

Index 45

DoubleML Abstract class DoubleML

Description

Abstract base class that can’t be initialized.

Format

R6::R6Class object.

DoubleML 3

Active bindings

all_coef (matrix())
Estimates of the causal parameter(s) for the n_rep different sample splits after calling fit().

all_dml1_coef (array())
Estimates of the causal parameter(s) for the n_rep different sample splits after calling fit()
with dml_procedure = "dml1".

all_se (matrix())
Standard errors of the causal parameter(s) for the n_rep different sample splits after calling
fit().

apply_cross_fitting (logical(1))
Indicates whether cross-fitting should be applied. Default is TRUE.

boot_coef (matrix())
Bootstrapped coefficients for the causal parameter(s) after calling fit() and bootstrap().

boot_t_stat (matrix())
Bootstrapped t-statistics for the causal parameter(s) after calling fit() and bootstrap().

coef (numeric())
Estimates for the causal parameter(s) after calling fit().

data (data.table)
Data object.

dml_procedure (character(1))
A character() ("dml1" or "dml2") specifying the double machine learning algorithm. De-
fault is "dml2".

draw_sample_splitting (logical(1))
Indicates whether the sample splitting should be drawn during initialization of the object.
Default is TRUE.

learner (named list())
The machine learners for the nuisance functions.

n_folds (integer(1))
Number of folds. Default is 5.

n_rep (integer(1))
Number of repetitions for the sample splitting. Default is 1.

params (named list())
The hyperparameters of the learners.

psi (array())
Value of the score function ψ(W ; θ, η) = ψa(W ; η)θ + ψb(W ; η) after calling fit().

psi_a (array())
Value of the score function component ψa(W ; η) after calling fit().

psi_b (array())
Value of the score function component ψb(W ; η) after calling fit().

predictions (array())
Predictions of the nuisance models after calling fit(store_predictions=TRUE).

pval (numeric())
p-values for the causal parameter(s) after calling fit().

4 DoubleML

score (character(1), function())
A character(1) or function() specifying the score function.

se (numeric())
Standard errors for the causal parameter(s) after calling fit().

smpls (list())
The partition used for cross-fitting.

smpls_cluster (list())
The partition of clusters used for cross-fitting.

t_stat (numeric())
t-statistics for the causal parameter(s) after calling fit().

tuning_res (named list())
Results from hyperparameter tuning.

Methods

Public methods:
• DoubleML$new()

• DoubleML$print()

• DoubleML$fit()

• DoubleML$bootstrap()

• DoubleML$split_samples()

• DoubleML$set_sample_splitting()

• DoubleML$tune()

• DoubleML$summary()

• DoubleML$confint()

• DoubleML$learner_names()

• DoubleML$params_names()

• DoubleML$set_ml_nuisance_params()

• DoubleML$p_adjust()

• DoubleML$get_params()

• DoubleML$clone()

Method new(): DoubleML is an abstract class that can’t be initialized.

Usage:
DoubleML$new()

Method print(): Print DoubleML objects.

Usage:
DoubleML$print()

Method fit(): Estimate DoubleML models.

Usage:
DoubleML$fit(store_predictions = FALSE)

Arguments:

DoubleML 5

store_predictions (logical(1))
Indicates whether the predictions for the nuisance functions should be stored in field predictions.
Default is FALSE.

Returns: self

Method bootstrap(): Multiplier bootstrap for DoubleML models.

Usage:
DoubleML$bootstrap(method = "normal", n_rep_boot = 500)

Arguments:
method (character(1))

A character(1) ("Bayes", "normal" or "wild") specifying the multiplier bootstrap method.
n_rep_boot (integer(1))

The number of bootstrap replications.

Returns: self

Method split_samples(): Draw sample splitting for DoubleML models.
The samples are drawn according to the attributes n_folds, n_rep and apply_cross_fitting.

Usage:
DoubleML$split_samples()

Returns: self

Method set_sample_splitting(): Set the sample splitting for DoubleML models.
The attributes n_folds and n_rep are derived from the provided partition.

Usage:
DoubleML$set_sample_splitting(smpls)

Arguments:
smpls (list())

A nested list(). The outer lists needs to provide an entry per repeated sample splitting
(length of the list is set as n_rep). The inner list is a named list() with names train_ids
and test_ids. The entries in train_ids and test_ids must be partitions per fold (length
of train_ids and test_ids is set as n_folds).

Returns: self

Examples:
library(DoubleML)
library(mlr3)
set.seed(2)
obj_dml_data = make_plr_CCDDHNR2018(n_obs=10)
dml_plr_obj = DoubleMLPLR$new(obj_dml_data,

lrn("regr.rpart"), lrn("regr.rpart"))

simple sample splitting with two folds and without cross-fitting
smpls = list(list(train_ids = list(c(1, 2, 3, 4, 5)),

test_ids = list(c(6, 7, 8, 9, 10))))
dml_plr_obj$set_sample_splitting(smpls)

6 DoubleML

sample splitting with two folds and cross-fitting but no repeated cross-fitting
smpls = list(list(train_ids = list(c(1, 2, 3, 4, 5), c(6, 7, 8, 9, 10)),

test_ids = list(c(6, 7, 8, 9, 10), c(1, 2, 3, 4, 5))))
dml_plr_obj$set_sample_splitting(smpls)

sample splitting with two folds and repeated cross-fitting with n_rep = 2
smpls = list(list(train_ids = list(c(1, 2, 3, 4, 5), c(6, 7, 8, 9, 10)),

test_ids = list(c(6, 7, 8, 9, 10), c(1, 2, 3, 4, 5))),
list(train_ids = list(c(1, 3, 5, 7, 9), c(2, 4, 6, 8, 10)),

test_ids = list(c(2, 4, 6, 8, 10), c(1, 3, 5, 7, 9))))
dml_plr_obj$set_sample_splitting(smpls)

Method tune(): Hyperparameter-tuning for DoubleML models.
The hyperparameter-tuning is performed using the tuning methods provided in the mlr3tuning
package. For more information on tuning in mlr3, we refer to the section on parameter tuning in
the mlr3 book.

Usage:
DoubleML$tune(
param_set,
tune_settings = list(n_folds_tune = 5, rsmp_tune = mlr3::rsmp("cv", folds = 5),
measure = NULL, terminator = mlr3tuning::trm("evals", n_evals = 20), algorithm =
mlr3tuning::tnr("grid_search"), resolution = 5),

tune_on_folds = FALSE
)

Arguments:

param_set (named list())
A named list with a parameter grid for each nuisance model/learner (see method learner_names()).
The parameter grid must be an object of class ParamSet.

tune_settings (named list())
A named list() with arguments passed to the hyperparameter-tuning with mlr3tuning to
set up TuningInstance objects. tune_settings has entries
• terminator (Terminator)

A Terminator object. Specification of terminator is required to perform tuning.
• algorithm (Tuner or character(1))

A Tuner object (recommended) or key passed to the respective dictionary to specify the
tuning algorithm used in tnr(). algorithm is passed as an argument to tnr(). If algorithm
is not specified by the users, default is set to "grid_search". If set to "grid_search",
then additional argument "resolution" is required.

• rsmp_tune (Resampling or character(1))
A Resampling object (recommended) or option passed to rsmp() to initialize a Resam-
pling for parameter tuning in mlr3. If not specified by the user, default is set to "cv"
(cross-validation).

• n_folds_tune (integer(1), optional)
If rsmp_tune = "cv", number of folds used for cross-validation. If not specified by the
user, default is set to 5.

https://mlr3tuning.mlr-org.com/
https://mlr3.mlr-org.com/
https://mlr3book.mlr-org.com/optimization.html#tuning
https://mlr3tuning.mlr-org.com/

DoubleML 7

• measure (NULL, named list(), optional)
Named list containing the measures used for parameter tuning. Entries in list must either
be Measure objects or keys to be passed to passed to msr(). The names of the entries must
match the learner names (see method learner_names()). If set to NULL, default mea-
sures are used, i.e., "regr.mse" for continuous outcome variables and "classif.ce"
for binary outcomes.

• resolution (character(1))
The key passed to the respective dictionary to specify the tuning algorithm used in tnr().
resolution is passed as an argument to tnr().

tune_on_folds (logical(1))
Indicates whether the tuning should be done fold-specific or globally. Default is FALSE.

Returns: self

Method summary(): Summary for DoubleML models after calling fit().

Usage:
DoubleML$summary(digits = max(3L, getOption("digits") - 3L))

Arguments:

digits (integer(1))
The number of significant digits to use when printing.

Method confint(): Confidence intervals for DoubleML models.

Usage:
DoubleML$confint(parm, joint = FALSE, level = 0.95)

Arguments:

parm (numeric() or character())
A specification of which parameters are to be given confidence intervals among the variables
for which inference was done, either a vector of numbers or a vector of names. If missing,
all parameters are considered (default).

joint (logical(1))
Indicates whether joint confidence intervals are computed. Default is FALSE.

level (numeric(1))
The confidence level. Default is 0.95.

Returns: A matrix() with the confidence interval(s).

Method learner_names(): Returns the names of the learners.

Usage:
DoubleML$learner_names()

Returns: character() with names of learners.

Method params_names(): Returns the names of the nuisance models with hyperparameters.

Usage:
DoubleML$params_names()

Returns: character() with names of nuisance models with hyperparameters.

8 DoubleML

Method set_ml_nuisance_params(): Set hyperparameters for the nuisance models of Dou-
bleML models.
Note that in the current implementation, either all parameters have to be set globally or all param-
eters have to be provided fold-specific.

Usage:
DoubleML$set_ml_nuisance_params(
learner = NULL,
treat_var = NULL,
params,
set_fold_specific = FALSE

)

Arguments:
learner (character(1))

The nuisance model/learner (see method params_names).
treat_var (character(1))

The treatment varaible (hyperparameters can be set treatment-variable specific).
params (named list())

A named list() with estimator parameters. Parameters are used for all folds by default.
Alternatively, parameters can be passed in a fold-specific way if option fold_specificis
TRUE. In this case, the outer list needs to be of length n_rep and the inner list of length
n_folds.

set_fold_specific (logical(1))
Indicates if the parameters passed in params should be passed in fold-specific way. Default
is FALSE. If TRUE, the outer list needs to be of length n_rep and the inner list of length
n_folds. Note that in the current implementation, either all parameters have to be set
globally or all parameters have to be provided fold-specific.

Returns: self

Method p_adjust(): Multiple testing adjustment for DoubleML models.

Usage:
DoubleML$p_adjust(method = "romano-wolf", return_matrix = TRUE)

Arguments:
method (character(1))

A character(1)("romano-wolf", "bonferroni", "holm", etc) specifying the adjustment
method. In addition to "romano-wolf", all methods implemented in p.adjust() can be ap-
plied. Default is "romano-wolf".

return_matrix (logical(1))
Indicates if the output is returned as a matrix with corresponding coefficient names.

Returns: numeric() with adjusted p-values. If return_matrix = TRUE, a matrix() with
adjusted p_values.

Method get_params(): Get hyperparameters for the nuisance model of DoubleML models.

Usage:
DoubleML$get_params(learner)

Arguments:

DoubleML 9

learner (character(1))
The nuisance model/learner (see method params_names())

Returns: named list()with paramers for the nuisance model/learner.

Method clone(): The objects of this class are cloneable with this method.

Usage:

DoubleML$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other DoubleML: DoubleMLIIVM, DoubleMLIRM, DoubleMLPLIV, DoubleMLPLR

Examples

--
Method `DoubleML$set_sample_splitting`
--

library(DoubleML)
library(mlr3)
set.seed(2)
obj_dml_data = make_plr_CCDDHNR2018(n_obs=10)
dml_plr_obj = DoubleMLPLR$new(obj_dml_data,

lrn("regr.rpart"), lrn("regr.rpart"))

simple sample splitting with two folds and without cross-fitting
smpls = list(list(train_ids = list(c(1, 2, 3, 4, 5)),

test_ids = list(c(6, 7, 8, 9, 10))))
dml_plr_obj$set_sample_splitting(smpls)

sample splitting with two folds and cross-fitting but no repeated cross-fitting
smpls = list(list(train_ids = list(c(1, 2, 3, 4, 5), c(6, 7, 8, 9, 10)),

test_ids = list(c(6, 7, 8, 9, 10), c(1, 2, 3, 4, 5))))
dml_plr_obj$set_sample_splitting(smpls)

sample splitting with two folds and repeated cross-fitting with n_rep = 2
smpls = list(list(train_ids = list(c(1, 2, 3, 4, 5), c(6, 7, 8, 9, 10)),

test_ids = list(c(6, 7, 8, 9, 10), c(1, 2, 3, 4, 5))),
list(train_ids = list(c(1, 3, 5, 7, 9), c(2, 4, 6, 8, 10)),

test_ids = list(c(2, 4, 6, 8, 10), c(1, 3, 5, 7, 9))))
dml_plr_obj$set_sample_splitting(smpls)

10 DoubleMLClusterData

DoubleMLClusterData Double machine learning data-backend for data with cluster variables

Description

Double machine learning data-backend for data with cluster variables.

DoubleMLClusterData objects can be initialized from a data.table. Alternatively DoubleML pro-
vides functions to initialize from a collection of matrix objects or a data.frame. The following
functions can be used to create a new instance of DoubleMLClusterData.

• DoubleMLClusterData$new() for initialization from a data.table.

• double_ml_data_from_matrix() for initialization from matrix objects,

• double_ml_data_from_data_frame() for initialization from a data.frame.

Super class

DoubleML::DoubleMLData -> DoubleMLClusterData

Active bindings

cluster_cols (character())
The cluster variable(s).

x_cols (NULL, character())
The covariates. If NULL, all variables (columns of data) which are neither specified as outcome
variable y_col, nor as treatment variables d_cols, nor as instrumental variables z_cols, nor
as cluster variables cluster_cols are used as covariates. Default is NULL.

n_cluster_vars (integer(1))
The number of cluster variables.

Methods

Public methods:
• DoubleMLClusterData$new()

• DoubleMLClusterData$print()

• DoubleMLClusterData$set_data_model()

• DoubleMLClusterData$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
DoubleMLClusterData$new(
data = NULL,
x_cols = NULL,
y_col = NULL,
d_cols = NULL,
cluster_cols = NULL,

DoubleMLClusterData 11

z_cols = NULL,
use_other_treat_as_covariate = TRUE

)

Arguments:

data (data.table, data.frame())
Data object.

x_cols (NULL, character())
The covariates. If NULL, all variables (columns of data) which are neither specified as
outcome variable y_col, nor as treatment variables d_cols, nor as instrumental variables
z_cols are used as covariates. Default is NULL.

y_col (character(1))
The outcome variable.

d_cols (character())
The treatment variable(s).

cluster_cols (character())
The cluster variable(s).

z_cols (NULL, character())
The instrumental variables. Default is NULL.

use_other_treat_as_covariate (logical(1))
Indicates whether in the multiple-treatment case the other treatment variables should be
added as covariates. Default is TRUE.

Method print(): Print DoubleMLClusterData objects.

Usage:
DoubleMLClusterData$print()

Method set_data_model(): Setter function for data_model. The function implements the
causal model as specified by the user via y_col, d_cols, x_cols, z_cols and cluster_cols and
assigns the role for the treatment variables in the multiple-treatment case.

Usage:
DoubleMLClusterData$set_data_model(treatment_var)

Arguments:

treatment_var (character())
Active treatment variable that will be set to treat_col.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DoubleMLClusterData$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

library(DoubleML)
dt = make_pliv_multiway_cluster_CKMS2021(return_type = "data.table")

12 DoubleMLData

obj_dml_data = DoubleMLClusterData$new(dt,
y_col = "Y",
d_cols = "D",
z_cols = "Z",
cluster_cols = c("cluster_var_i", "cluster_var_j"))

DoubleMLData Double machine learning data-backend

Description

Double machine learning data-backend.

DoubleMLData objects can be initialized from a data.table. Alternatively DoubleML provides func-
tions to initialize from a collection of matrix objects or a data.frame. The following functions
can be used to create a new instance of DoubleMLData.

• DoubleMLData$new() for initialization from a data.table.

• double_ml_data_from_matrix() for initialization from matrix objects,

• double_ml_data_from_data_frame() for initialization from a data.frame.

Active bindings

all_variables (character())
All variables available in the dataset.

d_cols (character())
The treatment variable(s).

data (data.table)
Data object.

data_model (data.table)
Internal data object that implements the causal model as specified by the user via y_col,
d_cols, x_cols and z_cols.

n_instr (NULL, integer(1))
The number of instruments.

n_obs (integer(1))
The number of observations.

n_treat (integer(1))
The number of treatment variables.

other_treat_cols (NULL, character())
If use_other_treat_as_covariate is TRUE, other_treat_cols are the treatment variables
that are not "active" in the multiple-treatment case. These variables then are internally added to
the covariates x_cols during the fitting stage. If use_other_treat_as_covariate is FALSE,
other_treat_cols is NULL.

treat_col (character(1))
"Active" treatment variable in the multiple-treatment case.

DoubleMLData 13

use_other_treat_as_covariate (logical(1))
Indicates whether in the multiple-treatment case the other treatment variables should be added
as covariates. Default is TRUE.

x_cols (NULL, character())
The covariates. If NULL, all variables (columns of data) which are neither specified as outcome
variable y_col, nor as treatment variables d_cols, nor as instrumental variables z_cols are
used as covariates. Default is NULL.

y_col (character(1))
The outcome variable.

z_cols (NULL, character())
The instrumental variables. Default is NULL.

Methods

Public methods:
• DoubleMLData$new()

• DoubleMLData$print()

• DoubleMLData$set_data_model()

• DoubleMLData$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
DoubleMLData$new(
data = NULL,
x_cols = NULL,
y_col = NULL,
d_cols = NULL,
z_cols = NULL,
use_other_treat_as_covariate = TRUE

)

Arguments:
data (data.table, data.frame())

Data object.
x_cols (NULL, character())

The covariates. If NULL, all variables (columns of data) which are neither specified as
outcome variable y_col, nor as treatment variables d_cols, nor as instrumental variables
z_cols are used as covariates. Default is NULL.

y_col (character(1))
The outcome variable.

d_cols (character())
The treatment variable(s).

z_cols (NULL, character())
The instrumental variables. Default is NULL.

use_other_treat_as_covariate (logical(1))
Indicates whether in the multiple-treatment case the other treatment variables should be
added as covariates. Default is TRUE.

14 DoubleMLIIVM

Method print(): Print DoubleMLData objects.

Usage:
DoubleMLData$print()

Method set_data_model(): Setter function for data_model. The function implements the
causal model as specified by the user via y_col, d_cols, x_cols and z_cols and assigns the role
for the treatment variables in the multiple-treatment case.

Usage:
DoubleMLData$set_data_model(treatment_var)

Arguments:
treatment_var (character())

Active treatment variable that will be set to treat_col.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DoubleMLData$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

library(DoubleML)
df = make_plr_CCDDHNR2018(return_type = "data.table")
obj_dml_data = DoubleMLData$new(df,

y_col = "y",
d_cols = "d")

DoubleMLIIVM Double machine learning for interactive IV regression models

Description

Double machine learning for interactive IV regression models.

Format

R6::R6Class object inheriting from DoubleML.

Details

Interactive IV regression (IIVM) models take the form

Y = `0(D,X) + ζ,

Z = m0(X) + V ,

with E[ζ|X,Z] = 0 and E[V |X] = 0. Y is the outcome variable, D ∈ {0, 1} is the binary
treatment variable and Z ∈ {0, 1} is a binary instrumental variable. Consider the functions g0, r0

DoubleMLIIVM 15

and m0, where g0 maps the support of (Z,X) to R and r0 and m0, respectively, map the support of
(Z,X) and X to (ε, 1− ε) for some ε ∈ (1, 1/2), such that

Y = g0(Z,X) + ν,

D = r0(Z,X) + U,

Z = m0(X) + V,

with E[ν|Z,X] = 0, E[U |Z,X] = 0 and E[V |X] = 0. The target parameter of interest in this
model is the local average treatment effect (LATE),

θ0 = E[g0(1,X)]−E[g0(0,X)]
E[r0(1,X)]−E[r0(0,X)] .

Super class

DoubleML::DoubleML -> DoubleMLIIVM

Active bindings

subgroups (named list(2))
Named list(2) with options to adapt to cases with and without the subgroups of always-
takers and never-takes. The entry always_takers(logical(1)) speficies whether there are
always takers in the sample. The entry never_takers (logical(1)) speficies whether there
are never takers in the sample.

trimming_rule (character(1))
A character(1) specifying the trimming approach.

trimming_threshold (numeric(1))
The threshold used for timming.

Methods

Public methods:
• DoubleMLIIVM$new()

• DoubleMLIIVM$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
DoubleMLIIVM$new(
data,
ml_g,
ml_m,
ml_r,
n_folds = 5,
n_rep = 1,
score = "LATE",
subgroups = list(always_takers = TRUE, never_takers = TRUE),
dml_procedure = "dml2",
trimming_rule = "truncate",
trimming_threshold = 1e-12,
draw_sample_splitting = TRUE,

16 DoubleMLIIVM

apply_cross_fitting = TRUE
)

Arguments:

data (DoubleMLData)
The DoubleMLData object providing the data and specifying the variables of the causal
model.

ml_g (LearnerRegr, LearnerClassif, Learner, character(1))
A learner of the class LearnerRegr, which is available from mlr3 or its extension packages
mlr3learners or mlr3extralearners. For binary treatment outcomes, an object of the class
LearnerClassif can be passed, for example lrn("classif.cv_glmnet", s = "lambda.min").
Alternatively, a Learner object with public field task_type = "regr" or task_type =
"classif" can be passed, respectively, for example of class GraphLearner.
ml_g refers to the nuisance function g0(Z,X) = E[Y |X,Z].

ml_m (LearnerClassif, Learner, character(1))
A learner of the class LearnerClassif, which is available from mlr3 or its extension pack-
ages mlr3learners or mlr3extralearners. Alternatively, a Learner object with public field
task_type = "classif" can be passed, for example of class GraphLearner. The learner
can possibly be passed with specified parameters, for example lrn("classif.cv_glmnet",
s = "lambda.min").
ml_m refers to the nuisance function m0(X) = E[Z|X].

ml_r (LearnerClassif, Learner, character(1))
A learner of the class LearnerClassif, which is available from mlr3 or its extension pack-
ages mlr3learners or mlr3extralearners. Alternatively, a Learner object with public field
task_type = "classif" can be passed, for example of class GraphLearner. The learner
can possibly be passed with specified parameters, for example lrn("classif.cv_glmnet",
s = "lambda.min").
ml_r refers to the nuisance function r0(Z,X) = E[D|X,Z].

n_folds (integer(1))
Number of folds. Default is 5.

n_rep (integer(1))
Number of repetitions for the sample splitting. Default is 1.

score (character(1), function())
A character(1) ("LATE" is the only choice) specifying the score function. If a function()
is provided, it must be of the form function(y, z, d, g0_hat, g1_hat, m_hat, r0_hat, r1_hat, smpls)
and the returned output must be a named list() with elements psi_a and psi_b. Default
is "LATE".

subgroups (named list(2))
Named list(2) with options to adapt to cases with and without the subgroups of always-
takers and never-takes. The entry always_takers(logical(1)) speficies whether there are
always takers in the sample. The entry never_takers (logical(1)) speficies whether there
are never takers in the sample. Default is list(always_takers = TRUE, never_takers =
TRUE).

dml_procedure (character(1))
A character(1) ("dml1" or "dml2") specifying the double machine learning algorithm.
Default is "dml2".

trimming_rule (character(1))

https://mlr3.mlr-org.com/index.html
https://mlr3learners.mlr-org.com/
https://mlr3extralearners.mlr-org.com/
https://mlr3.mlr-org.com/index.html
https://mlr3learners.mlr-org.com/
https://mlr3extralearners.mlr-org.com/
https://mlr3.mlr-org.com/index.html
https://mlr3learners.mlr-org.com/
https://mlr3extralearners.mlr-org.com/

DoubleMLIIVM 17

A character(1) ("truncate" is the only choice) specifying the trimming approach. De-
fault is "truncate".

trimming_threshold (numeric(1))
The threshold used for timming. Default is 1e-12.

draw_sample_splitting (logical(1))
Indicates whether the sample splitting should be drawn during initialization of the object.
Default is TRUE.

apply_cross_fitting (logical(1))
Indicates whether cross-fitting should be applied. Default is TRUE.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DoubleMLIIVM$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other DoubleML: DoubleMLIRM, DoubleMLPLIV, DoubleMLPLR, DoubleML

Examples

library(DoubleML)
library(mlr3)
library(mlr3learners)
library(data.table)
set.seed(2)
ml_g = lrn("regr.ranger",

num.trees = 100, mtry = 20,
min.node.size = 2, max.depth = 5)

ml_m = lrn("classif.ranger",
num.trees = 100, mtry = 20,
min.node.size = 2, max.depth = 5)

ml_r = ml_m$clone()
obj_dml_data = make_iivm_data(

theta = 0.5, n_obs = 1000,
alpha_x = 1, dim_x = 20)

dml_iivm_obj = DoubleMLIIVM$new(obj_dml_data, ml_g, ml_m, ml_r)
dml_iivm_obj$fit()
dml_iivm_obj$summary()

Not run:
library(DoubleML)
library(mlr3)
library(mlr3learners)
library(mlr3tuning)
library(data.table)
set.seed(2)

18 DoubleMLIRM

ml_g = lrn("regr.rpart")
ml_m = lrn("classif.rpart")
ml_r = ml_m$clone()
obj_dml_data = make_iivm_data(

theta = 0.5, n_obs = 1000,
alpha_x = 1, dim_x = 20)

dml_iivm_obj = DoubleMLIIVM$new(obj_dml_data, ml_g, ml_m, ml_r)
param_grid = list(

"ml_g" = paradox::ParamSet$new(list(
paradox::ParamDbl$new("cp", lower = 0.01, upper = 0.02),
paradox::ParamInt$new("minsplit", lower = 1, upper = 2))),

"ml_m" = paradox::ParamSet$new(list(
paradox::ParamDbl$new("cp", lower = 0.01, upper = 0.02),
paradox::ParamInt$new("minsplit", lower = 1, upper = 2))),

"ml_r" = paradox::ParamSet$new(list(
paradox::ParamDbl$new("cp", lower = 0.01, upper = 0.02),
paradox::ParamInt$new("minsplit", lower = 1, upper = 2))))

minimum requirements for tune_settings
tune_settings = list(

terminator = mlr3tuning::trm("evals", n_evals = 5),
algorithm = mlr3tuning::tnr("grid_search", resolution = 5))

dml_iivm_obj$tune(param_set = param_grid, tune_settings = tune_settings)
dml_iivm_obj$fit()
dml_iivm_obj$summary()

End(Not run)

DoubleMLIRM Double machine learning for interactive regression models

Description

Double machine learning for interactive regression models.

Format

R6::R6Class object inheriting from DoubleML.

Details

Interactive regression (IRM) models take the form

Y = g0(D,X) + U ,

D = m0(X) + V ,

with E[U |X,D] = 0 and E[V |X] = 0. Y is the outcome variable and D ∈ {0, 1} is the binary
treatment variable. We consider estimation of the average treamtent effects when treatment effects
are fully heterogeneous. Target parameters of interest in this model are the average treatment effect
(ATE),

DoubleMLIRM 19

θ0 = E[g0(1, X)− g0(0, X)]

and the average treament effect on the treated (ATTE),

θ0 = E[g0(1, X)− g0(0, X)|D = 1].

Super class

DoubleML::DoubleML -> DoubleMLIRM

Active bindings

trimming_rule (character(1))
A character(1) specifying the trimming approach.

trimming_threshold (numeric(1))
The threshold used for timming.

Methods

Public methods:
• DoubleMLIRM$new()

• DoubleMLIRM$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
DoubleMLIRM$new(
data,
ml_g,
ml_m,
n_folds = 5,
n_rep = 1,
score = "ATE",
trimming_rule = "truncate",
trimming_threshold = 1e-12,
dml_procedure = "dml2",
draw_sample_splitting = TRUE,
apply_cross_fitting = TRUE

)

Arguments:
data (DoubleMLData)

The DoubleMLData object providing the data and specifying the variables of the causal
model.

ml_g (LearnerRegr, LearnerClassif, Learner, character(1))
A learner of the class LearnerRegr, which is available from mlr3 or its extension packages
mlr3learners or mlr3extralearners. For binary treatment outcomes, an object of the class
LearnerClassif can be passed, for example lrn("classif.cv_glmnet", s = "lambda.min").
Alternatively, a Learner object with public field task_type = "regr" or task_type =
"classif" can be passed, respectively, for example of class GraphLearner.
ml_g refers to the nuisance function g0(X) = E[Y |X,D].

https://mlr3.mlr-org.com/index.html
https://mlr3learners.mlr-org.com/
https://mlr3extralearners.mlr-org.com/

20 DoubleMLIRM

ml_m (LearnerClassif, Learner, character(1))
A learner of the class LearnerClassif, which is available from mlr3 or its extension pack-
ages mlr3learners or mlr3extralearners. Alternatively, a Learner object with public field
task_type = "classif" can be passed, for example of class GraphLearner. The learner
can possibly be passed with specified parameters, for example lrn("classif.cv_glmnet",
s = "lambda.min").
ml_m refers to the nuisance function m0(X) = E[D|X].

n_folds (integer(1))
Number of folds. Default is 5.

n_rep (integer(1))
Number of repetitions for the sample splitting. Default is 1.

score (character(1), function())
A character(1) ("ATE" or ATTE) or a function() specifying the score function. If a
function() is provided, it must be of the form function(y, d, g0_hat, g1_hat, m_hat, smpls)
and the returned output must be a named list() with elements psi_a and psi_b. Default
is "ATE".

trimming_rule (character(1))
A character(1) ("truncate" is the only choice) specifying the trimming approach. De-
fault is "truncate".

trimming_threshold (numeric(1))
The threshold used for timming. Default is 1e-12.

dml_procedure (character(1))
A character(1) ("dml1" or "dml2") specifying the double machine learning algorithm.
Default is "dml2".

draw_sample_splitting (logical(1))
Indicates whether the sample splitting should be drawn during initialization of the object.
Default is TRUE.

apply_cross_fitting (logical(1))
Indicates whether cross-fitting should be applied. Default is TRUE.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DoubleMLIRM$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other DoubleML: DoubleMLIIVM, DoubleMLPLIV, DoubleMLPLR, DoubleML

Examples

library(DoubleML)
library(mlr3)
library(mlr3learners)
library(data.table)

https://mlr3.mlr-org.com/index.html
https://mlr3learners.mlr-org.com/
https://mlr3extralearners.mlr-org.com/

DoubleMLPLIV 21

set.seed(2)
ml_g = lrn("regr.ranger",

num.trees = 100, mtry = 20,
min.node.size = 2, max.depth = 5)

ml_m = lrn("classif.ranger",
num.trees = 100, mtry = 20,
min.node.size = 2, max.depth = 5)

obj_dml_data = make_irm_data(theta = 0.5)
dml_irm_obj = DoubleMLIRM$new(obj_dml_data, ml_g, ml_m)
dml_irm_obj$fit()
dml_irm_obj$summary()

Not run:
library(DoubleML)
library(mlr3)
library(mlr3learners)
library(mlr3uning)
library(data.table)
set.seed(2)
ml_g = lrn("regr.rpart")
ml_m = lrn("classif.rpart")
obj_dml_data = make_irm_data(theta = 0.5)
dml_irm_obj = DoubleMLIRM$new(obj_dml_data, ml_g, ml_m)

param_grid = list(
"ml_g" = paradox::ParamSet$new(list(
paradox::ParamDbl$new("cp", lower = 0.01, upper = 0.02),
paradox::ParamInt$new("minsplit", lower = 1, upper = 2))),

"ml_m" = paradox::ParamSet$new(list(
paradox::ParamDbl$new("cp", lower = 0.01, upper = 0.02),
paradox::ParamInt$new("minsplit", lower = 1, upper = 2))))

minimum requirements for tune_settings
tune_settings = list(

terminator = mlr3tuning::trm("evals", n_evals = 5),
algorithm = mlr3tuning::tnr("grid_search", resolution = 5))

dml_irm_obj$tune(param_set = param_grid, tune_settings = tune_settings)
dml_irm_obj$fit()
dml_irm_obj$summary()

End(Not run)

DoubleMLPLIV Double machine learning for partially linear IV regression models

Description

Double machine learning for partially linear IV regression models.

22 DoubleMLPLIV

Format

R6::R6Class object inheriting from DoubleML.

Details

Partially linear IV regression (PLIV) models take the form

Y −Dθ0 = g0(X) + ζ,

Z = m0(X) + V ,

with E[ζ|Z,X] = 0 and E[V |X] = 0. Y is the outcome variable variable, D is the policy variable
of interest and Z denotes one or multiple instrumental variables. The high-dimensional vector
X = (X1, . . . , Xp) consists of other confounding covariates, and ζ and V are stochastic errors.

Super class

DoubleML::DoubleML -> DoubleMLPLIV

Active bindings

partialX (logical(1))
Indicates whether covariates X should be partialled out.

partialZ (logical(1))
Indicates whether instruments Z should be partialled out.

Methods

Public methods:

• DoubleMLPLIV$new()

• DoubleMLPLIV$set_ml_nuisance_params()

• DoubleMLPLIV$tune()

• DoubleMLPLIV$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
DoubleMLPLIV$new(
data,
ml_l,
ml_m,
ml_r,
ml_g = NULL,
partialX = TRUE,
partialZ = FALSE,
n_folds = 5,
n_rep = 1,
score = "partialling out",
dml_procedure = "dml2",
draw_sample_splitting = TRUE,

DoubleMLPLIV 23

apply_cross_fitting = TRUE
)

Arguments:
data (DoubleMLData)

The DoubleMLData object providing the data and specifying the variables of the causal
model.

ml_l (LearnerRegr, Learner, character(1))
A learner of the class LearnerRegr, which is available from mlr3 or its extension pack-
ages mlr3learners or mlr3extralearners. Alternatively, a Learner object with public field
task_type = "regr" can be passed, for example of class GraphLearner. The learner can
possibly be passed with specified parameters, for example lrn("regr.cv_glmnet", s =
"lambda.min").
ml_l refers to the nuisance function l0(X) = E[Y |X].

ml_m (LearnerRegr, Learner, character(1))
A learner of the class LearnerRegr, which is available from mlr3 or its extension pack-
ages mlr3learners or mlr3extralearners. Alternatively, a Learner object with public field
task_type = "regr" can be passed, for example of class GraphLearner. The learner can
possibly be passed with specified parameters, for example lrn("regr.cv_glmnet", s =
"lambda.min").
ml_m refers to the nuisance function m0(X) = E[Z|X].

ml_r (LearnerRegr, Learner, character(1))
A learner of the class LearnerRegr, which is available from mlr3 or its extension pack-
ages mlr3learners or mlr3extralearners. Alternatively, a Learner object with public field
task_type = "regr" can be passed, for example of class GraphLearner. The learner can
possibly be passed with specified parameters, for example lrn("regr.cv_glmnet", s =
"lambda.min").
ml_r refers to the nuisance function r0(X) = E[D|X].

ml_g (LearnerRegr, Learner, character(1))
A learner of the class LearnerRegr, which is available from mlr3 or its extension pack-
ages mlr3learners or mlr3extralearners. Alternatively, a Learner object with public field
task_type = "regr" can be passed, for example of class GraphLearner. The learner can
possibly be passed with specified parameters, for example lrn("regr.cv_glmnet", s =
"lambda.min").
ml_g refers to the nuisance function g0(X) = E[Y − Dθ0|X]. Note: The learner ml_g
is only required for the score 'IV-type'. Optionally, it can be specified and estimated for
callable scores.

partialX (logical(1))
Indicates whether covariates X should be partialled out. Default is TRUE.

partialZ (logical(1))
Indicates whether instruments Z should be partialled out. Default is FALSE.

n_folds (integer(1))
Number of folds. Default is 5.

n_rep (integer(1))
Number of repetitions for the sample splitting. Default is 1.

score (character(1), function())
A character(1) ("partialling out" or "IV-type") or a function() specifying the
score function. If a function() is provided, it must be of the form function(y, z, d, l_hat, m_hat, r_hat, g_hat, smpls)

https://mlr3.mlr-org.com/index.html
https://mlr3learners.mlr-org.com/
https://mlr3extralearners.mlr-org.com/
https://mlr3.mlr-org.com/index.html
https://mlr3learners.mlr-org.com/
https://mlr3extralearners.mlr-org.com/
https://mlr3.mlr-org.com/index.html
https://mlr3learners.mlr-org.com/
https://mlr3extralearners.mlr-org.com/
https://mlr3.mlr-org.com/index.html
https://mlr3learners.mlr-org.com/
https://mlr3extralearners.mlr-org.com/

24 DoubleMLPLIV

and the returned output must be a named list() with elements psi_a and psi_b. Default
is "partialling out".

dml_procedure (character(1))
A character(1) ("dml1" or "dml2") specifying the double machine learning algorithm.
Default is "dml2".

draw_sample_splitting (logical(1))
Indicates whether the sample splitting should be drawn during initialization of the object.
Default is TRUE.

apply_cross_fitting (logical(1))
Indicates whether cross-fitting should be applied. Default is TRUE.

Method set_ml_nuisance_params(): Set hyperparameters for the nuisance models of Dou-
bleML models.
Note that in the current implementation, either all parameters have to be set globally or all param-
eters have to be provided fold-specific.

Usage:
DoubleMLPLIV$set_ml_nuisance_params(
learner = NULL,
treat_var = NULL,
params,
set_fold_specific = FALSE

)

Arguments:
learner (character(1))

The nuisance model/learner (see method params_names).
treat_var (character(1))

The treatment varaible (hyperparameters can be set treatment-variable specific).
params (named list())

A named list() with estimator parameters. Parameters are used for all folds by default.
Alternatively, parameters can be passed in a fold-specific way if option fold_specificis
TRUE. In this case, the outer list needs to be of length n_rep and the inner list of length
n_folds.

set_fold_specific (logical(1))
Indicates if the parameters passed in params should be passed in fold-specific way. Default
is FALSE. If TRUE, the outer list needs to be of length n_rep and the inner list of length
n_folds. Note that in the current implementation, either all parameters have to be set
globally or all parameters have to be provided fold-specific.

Returns: self

Method tune(): Hyperparameter-tuning for DoubleML models.
The hyperparameter-tuning is performed using the tuning methods provided in the mlr3tuning
package. For more information on tuning in mlr3, we refer to the section on parameter tuning in
the mlr3 book.

Usage:
DoubleMLPLIV$tune(
param_set,

https://mlr3tuning.mlr-org.com/
https://mlr3.mlr-org.com/
https://mlr3book.mlr-org.com/optimization.html#tuning

DoubleMLPLIV 25

tune_settings = list(n_folds_tune = 5, rsmp_tune = mlr3::rsmp("cv", folds = 5),
measure = NULL, terminator = mlr3tuning::trm("evals", n_evals = 20), algorithm =
mlr3tuning::tnr("grid_search"), resolution = 5),

tune_on_folds = FALSE
)

Arguments:

param_set (named list())
A named list with a parameter grid for each nuisance model/learner (see method learner_names()).
The parameter grid must be an object of class ParamSet.

tune_settings (named list())
A named list() with arguments passed to the hyperparameter-tuning with mlr3tuning to
set up TuningInstance objects. tune_settings has entries
• terminator (Terminator)

A Terminator object. Specification of terminator is required to perform tuning.
• algorithm (Tuner or character(1))

A Tuner object (recommended) or key passed to the respective dictionary to specify the
tuning algorithm used in tnr(). algorithm is passed as an argument to tnr(). If algorithm
is not specified by the users, default is set to "grid_search". If set to "grid_search",
then additional argument "resolution" is required.

• rsmp_tune (Resampling or character(1))
A Resampling object (recommended) or option passed to rsmp() to initialize a Resam-
pling for parameter tuning in mlr3. If not specified by the user, default is set to "cv"
(cross-validation).

• n_folds_tune (integer(1), optional)
If rsmp_tune = "cv", number of folds used for cross-validation. If not specified by the
user, default is set to 5.

• measure (NULL, named list(), optional)
Named list containing the measures used for parameter tuning. Entries in list must either
be Measure objects or keys to be passed to passed to msr(). The names of the entries must
match the learner names (see method learner_names()). If set to NULL, default mea-
sures are used, i.e., "regr.mse" for continuous outcome variables and "classif.ce"
for binary outcomes.

• resolution (character(1))
The key passed to the respective dictionary to specify the tuning algorithm used in tnr().
resolution is passed as an argument to tnr().

tune_on_folds (logical(1))
Indicates whether the tuning should be done fold-specific or globally. Default is FALSE.

Returns: self

Method clone(): The objects of this class are cloneable with this method.

Usage:
DoubleMLPLIV$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

https://mlr3tuning.mlr-org.com/

26 DoubleMLPLIV

See Also

Other DoubleML: DoubleMLIIVM, DoubleMLIRM, DoubleMLPLR, DoubleML

Examples

library(DoubleML)
library(mlr3)
library(mlr3learners)
library(data.table)
set.seed(2)
ml_l = lrn("regr.ranger", num.trees = 100, mtry = 20, min.node.size = 2, max.depth = 5)
ml_m = ml_l$clone()
ml_r = ml_l$clone()
obj_dml_data = make_pliv_CHS2015(alpha = 1, n_obs = 500, dim_x = 20, dim_z = 1)
dml_pliv_obj = DoubleMLPLIV$new(obj_dml_data, ml_l, ml_m, ml_r)
dml_pliv_obj$fit()
dml_pliv_obj$summary()

Not run:
library(DoubleML)
library(mlr3)
library(mlr3learners)
library(mlr3tuning)
library(data.table)
set.seed(2)
ml_l = lrn("regr.rpart")
ml_m = ml_l$clone()
ml_r = ml_l$clone()
obj_dml_data = make_pliv_CHS2015(

alpha = 1, n_obs = 500, dim_x = 20,
dim_z = 1)

dml_pliv_obj = DoubleMLPLIV$new(obj_dml_data, ml_l, ml_m, ml_r)
param_grid = list(

"ml_l" = paradox::ParamSet$new(list(
paradox::ParamDbl$new("cp", lower = 0.01, upper = 0.02),
paradox::ParamInt$new("minsplit", lower = 1, upper = 2))),

"ml_m" = paradox::ParamSet$new(list(
paradox::ParamDbl$new("cp", lower = 0.01, upper = 0.02),
paradox::ParamInt$new("minsplit", lower = 1, upper = 2))),

"ml_r" = paradox::ParamSet$new(list(
paradox::ParamDbl$new("cp", lower = 0.01, upper = 0.02),
paradox::ParamInt$new("minsplit", lower = 1, upper = 2))))

minimum requirements for tune_settings
tune_settings = list(

terminator = mlr3tuning::trm("evals", n_evals = 5),
algorithm = mlr3tuning::tnr("grid_search", resolution = 5))

dml_pliv_obj$tune(param_set = param_grid, tune_settings = tune_settings)
dml_pliv_obj$fit()
dml_pliv_obj$summary()

DoubleMLPLR 27

End(Not run)

DoubleMLPLR Double machine learning for partially linear regression models

Description

Double machine learning for partially linear regression models.

Format

R6::R6Class object inheriting from DoubleML.

Details

Partially linear regression (PLR) models take the form

Y = Dθ0 + g0(X) + ζ,

D = m0(X) + V,

with E[ζ|D,X] = 0 and E[V |X] = 0. Y is the outcome variable variable and D is the policy
variable of interest. The high-dimensional vector X = (X1, . . . , Xp) consists of other confounding
covariates, and ζ and V are stochastic errors.

Super class

DoubleML::DoubleML -> DoubleMLPLR

Methods

Public methods:
• DoubleMLPLR$new()

• DoubleMLPLR$set_ml_nuisance_params()

• DoubleMLPLR$tune()

• DoubleMLPLR$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
DoubleMLPLR$new(
data,
ml_l,
ml_m,
ml_g = NULL,
n_folds = 5,
n_rep = 1,
score = "partialling out",
dml_procedure = "dml2",

28 DoubleMLPLR

draw_sample_splitting = TRUE,
apply_cross_fitting = TRUE

)

Arguments:
data (DoubleMLData)

The DoubleMLData object providing the data and specifying the variables of the causal
model.

ml_l (LearnerRegr, Learner, character(1))
A learner of the class LearnerRegr, which is available from mlr3 or its extension pack-
ages mlr3learners or mlr3extralearners. Alternatively, a Learner object with public field
task_type = "regr" can be passed, for example of class GraphLearner. The learner can
possibly be passed with specified parameters, for example lrn("regr.cv_glmnet", s =
"lambda.min").
ml_l refers to the nuisance function l0(X) = E[Y |X].

ml_m (LearnerRegr, LearnerClassif, Learner, character(1))
A learner of the class LearnerRegr, which is available from mlr3 or its extension packages
mlr3learners or mlr3extralearners. For binary treatment variables, an object of the class
LearnerClassif can be passed, for example lrn("classif.cv_glmnet", s = "lambda.min").
Alternatively, a Learner object with public field task_type = "regr" or task_type =
"classif" can be passed, respectively, for example of class GraphLearner.
ml_m refers to the nuisance function m0(X) = E[D|X].

ml_g (LearnerRegr, Learner, character(1))
A learner of the class LearnerRegr, which is available from mlr3 or its extension pack-
ages mlr3learners or mlr3extralearners. Alternatively, a Learner object with public field
task_type = "regr" can be passed, for example of class GraphLearner. The learner can
possibly be passed with specified parameters, for example lrn("regr.cv_glmnet", s =
"lambda.min").
ml_g refers to the nuisance function g0(X) = E[Y − Dθ0|X]. Note: The learner ml_g
is only required for the score 'IV-type'. Optionally, it can be specified and estimated for
callable scores.

n_folds (integer(1))
Number of folds. Default is 5.

n_rep (integer(1))
Number of repetitions for the sample splitting. Default is 1.

score (character(1), function())
A character(1) ("partialling out" or "IV-type") or a function() specifying the
score function. If a function() is provided, it must be of the form function(y, d, l_hat, m_hat, g_hat, smpls)
and the returned output must be a named list() with elements psi_a and psi_b. Default
is "partialling out".

dml_procedure (character(1))
A character(1) ("dml1" or "dml2") specifying the double machine learning algorithm.
Default is "dml2".

draw_sample_splitting (logical(1))
Indicates whether the sample splitting should be drawn during initialization of the object.
Default is TRUE.

apply_cross_fitting (logical(1))
Indicates whether cross-fitting should be applied. Default is TRUE.

https://mlr3.mlr-org.com/index.html
https://mlr3learners.mlr-org.com/
https://mlr3extralearners.mlr-org.com/
https://mlr3.mlr-org.com/index.html
https://mlr3learners.mlr-org.com/
https://mlr3extralearners.mlr-org.com/
https://mlr3.mlr-org.com/index.html
https://mlr3learners.mlr-org.com/
https://mlr3extralearners.mlr-org.com/

DoubleMLPLR 29

Method set_ml_nuisance_params(): Set hyperparameters for the nuisance models of Dou-
bleML models.
Note that in the current implementation, either all parameters have to be set globally or all param-
eters have to be provided fold-specific.

Usage:
DoubleMLPLR$set_ml_nuisance_params(
learner = NULL,
treat_var = NULL,
params,
set_fold_specific = FALSE

)

Arguments:

learner (character(1))
The nuisance model/learner (see method params_names).

treat_var (character(1))
The treatment varaible (hyperparameters can be set treatment-variable specific).

params (named list())
A named list() with estimator parameters. Parameters are used for all folds by default.
Alternatively, parameters can be passed in a fold-specific way if option fold_specificis
TRUE. In this case, the outer list needs to be of length n_rep and the inner list of length
n_folds.

set_fold_specific (logical(1))
Indicates if the parameters passed in params should be passed in fold-specific way. Default
is FALSE. If TRUE, the outer list needs to be of length n_rep and the inner list of length
n_folds. Note that in the current implementation, either all parameters have to be set
globally or all parameters have to be provided fold-specific.

Returns: self

Method tune(): Hyperparameter-tuning for DoubleML models.
The hyperparameter-tuning is performed using the tuning methods provided in the mlr3tuning
package. For more information on tuning in mlr3, we refer to the section on parameter tuning in
the mlr3 book.

Usage:
DoubleMLPLR$tune(
param_set,
tune_settings = list(n_folds_tune = 5, rsmp_tune = mlr3::rsmp("cv", folds = 5),
measure = NULL, terminator = mlr3tuning::trm("evals", n_evals = 20), algorithm =
mlr3tuning::tnr("grid_search"), resolution = 5),

tune_on_folds = FALSE
)

Arguments:

param_set (named list())
A named list with a parameter grid for each nuisance model/learner (see method learner_names()).
The parameter grid must be an object of class ParamSet.

https://mlr3tuning.mlr-org.com/
https://mlr3.mlr-org.com/
https://mlr3book.mlr-org.com/optimization.html#tuning

30 DoubleMLPLR

tune_settings (named list())
A named list() with arguments passed to the hyperparameter-tuning with mlr3tuning to
set up TuningInstance objects. tune_settings has entries
• terminator (Terminator)

A Terminator object. Specification of terminator is required to perform tuning.
• algorithm (Tuner or character(1))

A Tuner object (recommended) or key passed to the respective dictionary to specify the
tuning algorithm used in tnr(). algorithm is passed as an argument to tnr(). If algorithm
is not specified by the users, default is set to "grid_search". If set to "grid_search",
then additional argument "resolution" is required.

• rsmp_tune (Resampling or character(1))
A Resampling object (recommended) or option passed to rsmp() to initialize a Resam-
pling for parameter tuning in mlr3. If not specified by the user, default is set to "cv"
(cross-validation).

• n_folds_tune (integer(1), optional)
If rsmp_tune = "cv", number of folds used for cross-validation. If not specified by the
user, default is set to 5.

• measure (NULL, named list(), optional)
Named list containing the measures used for parameter tuning. Entries in list must either
be Measure objects or keys to be passed to passed to msr(). The names of the entries must
match the learner names (see method learner_names()). If set to NULL, default mea-
sures are used, i.e., "regr.mse" for continuous outcome variables and "classif.ce"
for binary outcomes.

• resolution (character(1))
The key passed to the respective dictionary to specify the tuning algorithm used in tnr().
resolution is passed as an argument to tnr().

tune_on_folds (logical(1))
Indicates whether the tuning should be done fold-specific or globally. Default is FALSE.

Returns: self

Method clone(): The objects of this class are cloneable with this method.

Usage:
DoubleMLPLR$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other DoubleML: DoubleMLIIVM, DoubleMLIRM, DoubleMLPLIV, DoubleML

Examples

library(DoubleML)
library(mlr3)
library(mlr3learners)
library(data.table)

https://mlr3tuning.mlr-org.com/

double_ml_data_from_data_frame 31

set.seed(2)
ml_g = lrn("regr.ranger", num.trees = 10, max.depth = 2)
ml_m = ml_g$clone()
obj_dml_data = make_plr_CCDDHNR2018(alpha = 0.5)
dml_plr_obj = DoubleMLPLR$new(obj_dml_data, ml_g, ml_m)
dml_plr_obj$fit()
dml_plr_obj$summary()

Not run:
library(DoubleML)
library(mlr3)
library(mlr3learners)
library(mlr3tuning)
library(data.table)
set.seed(2)
ml_l = lrn("regr.rpart")
ml_m = ml_l$clone()
obj_dml_data = make_plr_CCDDHNR2018(alpha = 0.5)
dml_plr_obj = DoubleMLPLR$new(obj_dml_data, ml_l, ml_m)

param_grid = list(
"ml_l" = paradox::ParamSet$new(list(
paradox::ParamDbl$new("cp", lower = 0.01, upper = 0.02),
paradox::ParamInt$new("minsplit", lower = 1, upper = 2))),

"ml_m" = paradox::ParamSet$new(list(
paradox::ParamDbl$new("cp", lower = 0.01, upper = 0.02),
paradox::ParamInt$new("minsplit", lower = 1, upper = 2))))

minimum requirements for tune_settings
tune_settings = list(

terminator = mlr3tuning::trm("evals", n_evals = 5),
algorithm = mlr3tuning::tnr("grid_search", resolution = 5))

dml_plr_obj$tune(param_set = param_grid, tune_settings = tune_settings)
dml_plr_obj$fit()
dml_plr_obj$summary()

End(Not run)

double_ml_data_from_data_frame

Wrapper for Double machine learning data-backend initialization
from data.frame.

Description

Initalization of DoubleMLData from data.frame.

32 double_ml_data_from_data_frame

Usage

double_ml_data_from_data_frame(
df,
x_cols = NULL,
y_col = NULL,
d_cols = NULL,
z_cols = NULL,
cluster_cols = NULL,
use_other_treat_as_covariate = TRUE

)

Arguments

df (data.frame())
Data object.

x_cols (NULL, character())
The covariates. If NULL, all variables (columns of data) which are neither spec-
ified as outcome variable y_col, nor as treatment variables d_cols, nor as in-
strumental variables z_cols are used as covariates. Default is NULL.

y_col (character(1))
The outcome variable.

d_cols (character())
The treatment variable(s).

z_cols (NULL, character())
The instrumental variables. Default is NULL.

cluster_cols (NULL, character())
The cluster variables. Default is NULL.

use_other_treat_as_covariate

(logical(1))
Indicates whether in the multiple-treatment case the other treatment variables
should be added as covariates. Default is TRUE.

Value

Creates a new instance of class DoubleMLData.

Examples

df = make_plr_CCDDHNR2018(return_type = "data.frame")
x_names = names(df)[grepl("X", names(df))]
obj_dml_data = double_ml_data_from_data_frame(

df = df, x_cols = x_names,
y_col = "y", d_cols = "d")

Input: Data frame, Output: DoubleMLData object

double_ml_data_from_matrix 33

double_ml_data_from_matrix

Wrapper for Double machine learning data-backend initialization
from matrix.

Description

Initalization of DoubleMLData from matrix() objects.

Usage

double_ml_data_from_matrix(
X = NULL,
y,
d,
z = NULL,
cluster_vars = NULL,
data_class = "DoubleMLData",
use_other_treat_as_covariate = TRUE

)

Arguments

X (matrix())
Matrix of covariates.

y (numeric())
Vector of outcome variable.

d (matrix())
Matrix of treatment variables.

z (matrix())
Matrix of instruments.

cluster_vars (matrix())
Matrix of cluster variables.

data_class (character(1))
Class of returned object. By default, an object of class DoubleMLData is re-
turned. Setting data_class = "data.table" returns an object of class data.table.

use_other_treat_as_covariate

(logical(1))
Indicates whether in the multiple-treatment case the other treatment variables
should be added as covariates. Default is TRUE.

Value

Creates a new instance of class DoubleMLData.

34 fetch_401k

Examples

matrix_list = make_plr_CCDDHNR2018(return_type = "matrix")
obj_dml_data = double_ml_data_from_matrix(

X = matrix_list$X,
y = matrix_list$y,
d = matrix_list$d)

fetch_401k Data set on financial wealth and 401(k) plan participation.

Description

Preprocessed data set on financial wealth and 401(k) plan participation. The raw data files are
preprocessed to reproduce the examples in Chernozhukov et al. (2020). An internet connection is
required to sucessfully download the data set.

Usage

fetch_401k(
return_type = "DoubleMLData",
polynomial_features = FALSE,
instrument = FALSE

)

Arguments

return_type (character(1))
If "DoubleMLData", returns a DoubleMLData object. If "data.frame" returns a
data.frame(). If "data.table" returns a data.table(). Default is "DoubleMLData".

polynomial_features

(logical(1))
If TRUE polynomial freatures are added (see replication file of Chernozhukov et
al. (2018)).

instrument (logical(1))
If TRUE, the returned data object contains the variables e401 and p401. If return_type
= "DoubleMLData", the variable e401 is used as an instrument for the endoge-
nous treatment variable p401. If FALSE, p401 is removed from the data set.

Details

Variable description, based on the supplementary material of Chernozhukov et al. (2020):

• net_tfa: net total financial assets

• e401: = 1 if employer offers 401(k)

• p401: = 1 if individual participates in a 401(k) plan

• age: age

fetch_bonus 35

• inc: income

• fsize: family size

• educ: years of education

• db: = 1 if individual has defined benefit pension

• marr: = 1 if married

• twoearn: = 1 if two-earner household

• pira: = 1 if individual participates in IRA plan

• hown: = 1 if home owner

The supplementary data of the study by Chernozhukov et al. (2018) is available at https://
academic.oup.com/ectj/article/21/1/C1/5056401#supplementary-data.

Value

A data object according to the choice of return_type.

References

Abadie, A. (2003), Semiparametric instrumental variable estimation of treatment response models.
Journal of Econometrics, 113(2): 231-263.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W. and Robins, J.
(2018), Double/debiased machine learning for treatment and structural parameters. The Economet-
rics Journal, 21: C1-C68. doi:10.1111/ectj.12097.

fetch_bonus Data set on the Pennsylvania Reemployment Bonus experiment.

Description

Preprocessed data set on the Pennsylvania Reemploymnent Bonus experiment. The raw data files
are preprocessed to reproduce the examples in Chernozhukov et al. (2020). An internet connection
is required to sucessfully download the data set.

Usage

fetch_bonus(return_type = "DoubleMLData", polynomial_features = FALSE)

Arguments

return_type (character(1))
If "DoubleMLData", returns a DoubleMLData object. If "data.frame" returns a
data.frame(). If "data.table" returns a data.table(). Default is "DoubleMLData".

polynomial_features

(logical(1))
If TRUE polynomial freatures are added (see replication file of Chernozhukov et
al. (2018)).

https://academic.oup.com/ectj/article/21/1/C1/5056401#supplementary-data
https://academic.oup.com/ectj/article/21/1/C1/5056401#supplementary-data
https://doi.org/10.1111/ectj.12097

36 fetch_bonus

Details

Variable description, based on the supplementary material of Chernozhukov et al. (2020):

• abdt: chronological time of enrollment of each claimant in the Pennsylvania reemployment
bonus experiment.

• tg: indicates the treatment group (bonus amount - qualification period) of each claimant.

• inuidur1: a measure of length (in weeks) of the first spell of unemployment

• inuidur2: a second measure for the length (in weeks) of

• female: dummy variable; it indicates if the claimant’s sex is female (=1) or male (=0).

• black: dummy variable; it indicates a person of black race (=1).

• hispanic: dummy variable; it indicates a person of hispanic race (=1).

• othrace: dummy variable; it indicates a non-white, non-black, not-hispanic person (=1).

• dep1: dummy variable; indicates if the number of dependents of each claimant is equal to 1
(=1).

• dep2: dummy variable; indicates if the number of dependents of each claimant is equal to 2
(=1).

• q1-q6: six dummy variables indicating the quarter of experiment during which each claimant
enrolled.

• recall: takes the value of 1 if the claimant answered “yes” when was asked if he/she had any
expectation to be recalled

• agelt35: takes the value of 1 if the claimant’s age is less than 35 and 0 otherwise.

• agegt54: takes the value of 1 if the claimant’s age is more than 54 and 0 otherwise.

• durable: it takes the value of 1 if the occupation of the claimant was in the sector of durable
manufacturing and 0 otherwise.

• nondurable: it takes the value of 1 if the occupation of the claimant was in the sector of
nondurable manufacturing and 0 otherwise.

• lusd: it takes the value of 1 if the claimant filed in Coatesville, Reading, or Lancaster and 0
otherwise.

• These three sites were considered to be located in areas characterized by low unemployment
rate and short duration of unemployment.

• husd: it takes the value of 1 if the claimant filed in Lewistown, Pittston, or Scranton and 0
otherwise.

• These three sites were considered to be located in areas characterized by high unemployment
rate and short duration of unemployment.

• muld: it takes the value of 1 if the claimant filed in Philadelphia-North, Philadelphia-Uptown,
McKeesport, Erie, or Butler and 0 otherwise.

• These three sites were considered to be located in areas characterized by moderate unemploy-
ment rate and long duration of unemployment."

The supplementary data of the study by Chernozhukov et al. (2018) is available at https://
academic.oup.com/ectj/article/21/1/C1/5056401#supplementary-data.

The supplementary data of the study by Bilias (2000) is available at http://qed.econ.queensu.
ca/jae/2000-v15.6/bilias/.

https://academic.oup.com/ectj/article/21/1/C1/5056401#supplementary-data
https://academic.oup.com/ectj/article/21/1/C1/5056401#supplementary-data
http://qed.econ.queensu.ca/jae/2000-v15.6/bilias/
http://qed.econ.queensu.ca/jae/2000-v15.6/bilias/

make_iivm_data 37

Value

A data object according to the choice of return_type.

References

Bilias Y. (2000), Sequential Testing of Duration Data: The Case of Pennsylvania ‘Reemployment
Bonus’ Experiment. Journal of Applied Econometrics, 15(6): 575-594.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W. and Robins, J.
(2018), Double/debiased machine learning for treatment and structural parameters. The Economet-
rics Journal, 21: C1-C68. doi:10.1111/ectj.12097.

Examples

library(DoubleML)
df_bonus = fetch_bonus(return_type = "data.table")
obj_dml_data_bonus = DoubleMLData$new(df_bonus,

y_col = "inuidur1",
d_cols = "tg",
x_cols = c(
"female", "black", "othrace", "dep1", "dep2",
"q2", "q3", "q4", "q5", "q6", "agelt35", "agegt54",
"durable", "lusd", "husd"

)
)
obj_dml_data_bonus

make_iivm_data Generates data from a interactive IV regression (IIVM) model.

Description

Generates data from a interactive IV regression (IIVM) model. The data generating process is
defined as

di = 1 {αxZ + vi > 0} ,

yi = θdi + x′iβ + ui,

Z ∼ Bernoulli(0.5) and(
ui
vi

)
∼ N

(
0,

(
1 0.3

0.3 1

))
.

The covariates :xi ∼ N (0,Σ), where Σ is a matrix with entries Σkj = 0.5|j−k| and β is a dim_x-
vector with entries βj = 1

j2 .

The data generating process is inspired by a process used in the simulation experiment of Farb-
macher, Gruber and Klaaßen (2020).

https://doi.org/10.1111/ectj.12097

38 make_irm_data

Usage

make_iivm_data(
n_obs = 500,
dim_x = 20,
theta = 1,
alpha_x = 0.2,
return_type = "DoubleMLData"

)

Arguments

n_obs (integer(1))
The number of observations to simulate.

dim_x (integer(1))
The number of covariates.

theta (numeric(1))
The value of the causal parameter.

alpha_x (numeric(1))
The value of the parameter αx.

return_type (character(1))
If "DoubleMLData", returns a DoubleMLData object. If "data.frame" returns
a data.frame(). If "data.table" returns a data.table(). If "matrix" a
named list() with entries X, y, d and z is returned. Every entry in the list is a
matrix() object. Default is "DoubleMLData".

References

Farbmacher, H., Guber, R. and Klaaßen, S. (2020). Instrument Validity Tests with Causal Forests.
MEA Discussion Paper No. 13-2020. Available at SSRN:doi:10.2139/ssrn.3619201.

make_irm_data Generates data from a interactive regression (IRM) model.

Description

Generates data from a interactive regression (IRM) model. The data generating process is defined
as

di = 1
{

exp(cdx
′
iβ)

1+exp(cdx′
i
β) > vi

}
,

yi = θdi + cyx
′
iβdi + ζi,

with vi ∼ U(0, 1), ζi ∼ N (0, 1) and covariates xi ∼ N (0,Σ), where Σ is a matrix with entries
Σkj = 0.5|j−k|. β is a dim_x-vector with entries βj = 1

j2 and the constancts cy and cd are given by

cy =

√
R2

y

(1−R2
y)β′Σβ ,

https://doi.org/10.2139/ssrn.3619201

make_pliv_CHS2015 39

cd =

√
(π2/3)R2

d

(1−R2
d
)β′Σβ

.

The data generating process is inspired by a process used in the simulation experiment (see Ap-
pendix P) of Belloni et al. (2017).

Usage

make_irm_data(
n_obs = 500,
dim_x = 20,
theta = 0,
R2_d = 0.5,
R2_y = 0.5,
return_type = "DoubleMLData"

)

Arguments

n_obs (integer(1))
The number of observations to simulate.

dim_x (integer(1))
The number of covariates.

theta (numeric(1))
The value of the causal parameter.

R2_d (numeric(1))
The value of the parameter R2

d.

R2_y (numeric(1))
The value of the parameter R2

y .

return_type (character(1))
If "DoubleMLData", returns a DoubleMLData object. If "data.frame" returns
a data.frame(). If "data.table" returns a data.table(). If "matrix" a
named list() with entries X, y, d and z is returned. Every entry in the list is a
matrix() object. Default is "DoubleMLData".

References

Belloni, A., Chernozhukov, V., Fernández-Val, I. and Hansen, C. (2017). Program Evaluation and
Causal Inference With High-Dimensional Data. Econometrica, 85: 233-298.

make_pliv_CHS2015 Generates data from a partially linear IV regression model used in
Chernozhukov, Hansen and Spindler (2015).

40 make_pliv_CHS2015

Description

Generates data from a partially linear IV regression model used in Chernozhukov, Hansen and
Spindler (2015). The data generating process is defined as

zi = Πxi + ζi,

di = x′iγ + z′iδ + ui,

yi = αdi + x′iβ + εi,

with
εi
ui
ζi
xi

 ∼ N
0,

1 0.6 0 0

0.6 1 0 0
0 0 0.25Ipzn 0
0 0 0 Σ

where Σ is a pxn × pxn matrix with entries Σkj = 0.5|j−k| and Ipzn is the pzn × pzn identity matrix.
β = γ iis a pxn-vector with entries βj = 1

j2 , δ is a pzn-vector with entries δj = 1
j2 and Π =

(Ipzn , Opzn×(pxn−pzn)).

Usage

make_pliv_CHS2015(
n_obs,
alpha = 1,
dim_x = 200,
dim_z = 150,
return_type = "DoubleMLData"

)

Arguments

n_obs (integer(1))
The number of observations to simulate.

alpha (numeric(1))
The value of the causal parameter.

dim_x (integer(1))
The number of covariates.

dim_z (integer(1))
The number of instruments.

return_type (character(1))
If "DoubleMLData", returns a DoubleMLData object. If "data.frame" returns
a data.frame(). If "data.table" returns a data.table(). If "matrix" a
named list() with entries X, y, d and z is returned. Every entry in the list is a
matrix() object. Default is "DoubleMLData".

Value

A data object according to the choice of return_type.

make_pliv_multiway_cluster_CKMS2021 41

References

Chernozhukov, V., Hansen, C. and Spindler, M. (2015), Post-Selection and Post-Regularization
Inference in Linear Models with Many Controls and Instruments. American Economic Review:
Papers and Proceedings, 105 (5): 486-90.

make_pliv_multiway_cluster_CKMS2021

Generates data from a partially linear IV regression model with mul-
tiway cluster sample used in Chiang et al. (2021).

Description

Generates data from a partially linear IV regression model with multiway cluster sample used in
Chiang et al. (2021). The data generating process is defined as

Zij = X ′ijξ0 + Vij ,

Dij = Z ′ijπ10 +X ′ijπ20 + vij ,

Yij = Dijθ +X ′ijζ0 + εij ,

with

Xij = (1− ωX1 − ωX2)αXij + ωX1 α
X
i + ωX2 α

X
j ,

εij = (1− ωε1 − ωε2)αεij + ωε1α
ε
i + ωε2α

ε
j ,

vij = (1− ωv1 − ωv2)αvij + ωv1α
v
i + ωv2α

v
j ,

Vij = (1− ωV1 − ωV2)αVij + ωV1 α
V
i + ωV2 α

V
j ,

and αXij , α
X
i , α

X
j ∼ N (0,Σ) where Σ is a px × px matrix with entries Σkj = s

|j−k|
X .

Further(
αεij
αvij

)
,

(
αεi
αvi

)
,

(
αεj
αvj

)
∼ N

(
0,

(
1 sεv
sεv 1

))
and αVij , α

V
i , α

V
j ∼ N (0, 1).

Usage

make_pliv_multiway_cluster_CKMS2021(
N = 25,
M = 25,
dim_X = 100,
theta = 1,
return_type = "DoubleMLClusterData",
...

)

42 make_plr_CCDDHNR2018

Arguments

N (integer(1))
The number of observations (first dimension).

M (integer(1))
The number of observations (second dimension).

dim_X (integer(1))
The number of covariates.

theta (numeric(1))
The value of the causal parameter.

return_type (character(1))
If "DoubleMLClusterData", returns a DoubleMLClusterData object. If "data.frame"
returns a data.frame(). If "data.table" returns a data.table(). If "matrix"
a named list() with entries X, y, d, z and cluster_vars is returned. Every
entry in the list is a matrix() object. Default is "DoubleMLClusterData".

... Additional keyword arguments to set non-default values for the parameters π10 =
1.0, ωX = ωε = ωV = ωv = (0.25, 0.25), sX = sεv = 0.25, or the px-vectors
ζ0 = π20 = ξ0 with default entries ζ0)j = 0.5j .

Value

A data object according to the choice of return_type.

References

Chiang, H. D., Kato K., Ma, Y. and Sasaki, Y. (2021), Multiway Cluster Robust Double/Debiased
Machine Learning, Journal of Business & Economic Statistics, doi:10.1080/07350015.2021.1895815,
https://arxiv.org/abs/1909.03489.

make_plr_CCDDHNR2018 Generates data from a partially linear regression model used in Cher-
nozhukov et al. (2018)

Description

Generates data from a partially linear regression model used in Chernozhukov et al. (2018) for
Figure 1. The data generating process is defined as

di = m0(xi) + s1vi,

yi = αdi + g0(xi) + s2ζi,

with vi ∼ N (0, 1) and ζi ∼ N (0, 1),. The covariates are distributed as xi ∼ N (0,Σ), where Σ is
a matrix with entries Σkj = 0.7|j−k|. The nuisance functions are given by

m0(xi) = a0xi,1 + a1
exp(xi,3)

1+exp(xi,3) ,

g0(xi) = b0
exp(xi,1)

1+exp(xi,1) + b1xi,3,

with a0 = 1, a1 = 0.25, s1 = 1, b0 = 1, b1 = 0.25, s2 = 1.

https://doi.org/10.1080/07350015.2021.1895815

make_plr_turrell2018 43

Usage

make_plr_CCDDHNR2018(
n_obs = 500,
dim_x = 20,
alpha = 0.5,
return_type = "DoubleMLData"

)

Arguments

n_obs (integer(1))
The number of observations to simulate.

dim_x (integer(1))
The number of covariates.

alpha (numeric(1))
The value of the causal parameter.

return_type (character(1))
If "DoubleMLData", returns a DoubleMLData object. If "data.frame" returns
a data.frame(). If "data.table" returns a data.table(). If "matrix" a
named list() with entries X, y and d is returned. Every entry in the list is a
matrix() object. Default is "DoubleMLData".

Value

A data object according to the choice of return_type.

References

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W. and Robins, J.
(2018), Double/debiased machine learning for treatment and structural parameters. The Economet-
rics Journal, 21: C1-C68. doi:10.1111/ectj.12097.

make_plr_turrell2018 Generates data from a partially linear regression model used in a blog
article by Turrell (2018).

Description

Generates data from a partially linear regression model used in a blog article by Turrell (2018). The
data generating process is defined as

di = m0(x′ib) + vi,

yi = θdi + g0(x′ib) + ui,

with vi ∼ N (0, 1), ui ∼ N (0, 1), and covariates xi ∼ N (0,Σ), where Σ is a random symmet-
ric, positive-definite matrix generated with clusterGeneration::genPositiveDefMat(). b is a
vector with entries bj = 1

j and the nuisance functions are given by

https://doi.org/10.1111/ectj.12097

44 make_plr_turrell2018

m0(xi) = 1
2π

sinh(γ)
cosh(γ)−cos(xi−ν) ,

g0(xi) = sin(xi)
2.

Usage

make_plr_turrell2018(
n_obs = 100,
dim_x = 20,
theta = 0.5,
return_type = "DoubleMLData",
nu = 0,
gamma = 1

)

Arguments

n_obs (integer(1))
The number of observations to simulate.

dim_x (integer(1))
The number of covariates.

theta (numeric(1))
The value of the causal parameter.

return_type (character(1))
If "DoubleMLData", returns a DoubleMLData object. If "data.frame" returns
a data.frame(). If "data.table" returns a data.table(). If "matrix" a
named list() with entries X, y and d is returned. Every entry in the list is a
matrix() object. Default is "DoubleMLData".

nu (numeric(1))
The value of the parameter ν. Default is 0.

gamma (numeric(1))
The value of the parameter γ. Default is 1.

Value

A data object according to the choice of return_type.

References

Turrell, A. (2018), Econometrics in Python part I - Double machine learning, Markov Wanderer: A
blog on economics, science, coding and data. http://aeturrell.com/2018/02/10/econometrics-in-python-partI-ML/.

http://aeturrell.com/2018/02/10/econometrics-in-python-partI-ML/

Index

∗ DoubleML
DoubleML, 2
DoubleMLIIVM, 14
DoubleMLIRM, 18
DoubleMLPLIV, 21
DoubleMLPLR, 27

clusterGeneration::genPositiveDefMat(),
43

data.table, 3, 10–13
double_ml_data_from_data_frame, 31
double_ml_data_from_data_frame(), 10,

12
double_ml_data_from_matrix, 33
double_ml_data_from_matrix(), 10, 12
DoubleML, 2, 14, 17, 18, 20, 22, 26, 27, 30
DoubleML::DoubleML, 15, 19, 22, 27
DoubleML::DoubleMLData, 10
DoubleMLClusterData, 10
DoubleMLData, 12
DoubleMLIIVM, 9, 14, 20, 26, 30
DoubleMLIRM, 9, 17, 18, 26, 30
DoubleMLPLIV, 9, 17, 20, 21, 30
DoubleMLPLR, 9, 17, 20, 26, 27

fetch_401k, 34
fetch_bonus, 35

GraphLearner, 16, 19, 20, 23, 28

Learner, 16, 19, 20, 23, 28
LearnerClassif, 16, 19, 20, 28
LearnerRegr, 16, 19, 23, 28

make_iivm_data, 37
make_irm_data, 38
make_pliv_CHS2015, 39
make_pliv_multiway_cluster_CKMS2021,

41
make_plr_CCDDHNR2018, 42

make_plr_turrell2018, 43
Measure, 7, 25, 30
msr(), 7, 25, 30

p.adjust(), 8
ParamSet, 6, 25, 29

R6, 10, 13
R6::R6Class, 2, 14, 18, 22, 27
Resampling, 6, 25, 30
rsmp(), 6, 25, 30

Terminator, 6, 25, 30
tnr(), 6, 7, 25, 30
Tuner, 6, 25, 30
TuningInstance, 6, 25, 30

45

	DoubleML
	DoubleMLClusterData
	DoubleMLData
	DoubleMLIIVM
	DoubleMLIRM
	DoubleMLPLIV
	DoubleMLPLR
	double_ml_data_from_data_frame
	double_ml_data_from_matrix
	fetch_401k
	fetch_bonus
	make_iivm_data
	make_irm_data
	make_pliv_CHS2015
	make_pliv_multiway_cluster_CKMS2021
	make_plr_CCDDHNR2018
	make_plr_turrell2018
	Index

