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EFA.dimensions-package

EFA.dimensions

Description

This package provides exploratory factor analysis-related functions for assessing dimensionality.

There are 11 functions for determining the number of factors (DIMTESTS, EMPKC, HULL, MAP,
NEVALSGT1, PARALLEL, RAWPAR, ROOTFIT, SALIENT, SCREE_PLOT, SESCREE, and SMT).
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There are also functions for conducting principal components analysis (PCA), principal axis fac-
tor analysis (PA_FA), maximum likelihood factor analysis (MAXLIKE_FA), image factor analysis
(IMAGE_FA), and extension factor analysis (EXTENSION_FA),

Varimax rotation (VARIMAX), promax rotation (PROMAX), and Procrustes rotations (PROCRUSTES)
can be performed.

The analyses can be conducted using raw data or correlation matrices as input.

The analyses can be conducted using Pearson correlations, Kendall correlations, Spearman correla-
tions, Goodman-Kruskal gamma correlations (Thompson, 2006), or polychoric correlations (using
the psych and polychor packages).

Additional functions focus on the factorability of a correlation matrix (FACTORABILITY), the
congruences between factors from different datasets (CONGRUENCE), the assessment of local
independence (LOCALDEP), the assessment of factor solution complexity (COMPLEXITY), and
internal consistency (INTERNAL.CONSISTENCY).

References

Auerswald, M., & Moshagen, M. (2019). How to determine the number of factors to retain in
exploratory factor analysis: A comparison of extraction methods under realistic conditions. Psy-
chological Methods, 24(4), 468-491.

Fabrigar, L. R., & Wegener, D. T. (2012). Exploratory factor analysis. New York, NY: Oxford
UNiversity Press. ISBN:978-0-19-973417-7

Field, A., Miles, J., & Field, Z. (2012). Discovering statistics using R. Los Angeles, CA: Sage.
ISBN:978-1-4462-0045-2

O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components
using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instrumentation, and
Computers, 32, 396-402.

O’Connor, B. P. (2001). EXTENSION: SAS, SPSS, and MATLAB programs for extension analy-
sis. Applied Psychological Measurement, 25, p. 88. doi:10.1177/01466216010251011.

Thompson, L. A. 2007. R (and S-PLUS) Manual to Accompany Agresti’s Categorical Data Analy-
sis (2002) 2nd edition.

COMPLEXITY Factor solution complexity

Description

Provides Hoffman’s (1978) complexity coefficient for each item and (optionally) the percent com-
plexity in the factor solution using the procedure and code provided by Pettersson and Turkheimer
(2014).
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Usage

COMPLEXITY(loadings, percent=TRUE, degree.change=100, averaging.value=100, verbose=TRUE)

Arguments

loadings The factor loading matrix.

percent (logical) Should the percent complexity be computed? The default = TRUE.

degree.change If percent=TRUE, the number of incremental changes toward simple structure.
The default = 100.

averaging.value

If percent=TRUE, the number of repeats per unit of degree change. The default
= 100.

verbose (logical) Should detailed results be displayed in console? The default = TRUE.

Details

This function provides Hoffman’s (1978) complexity coefficient for each item and (optionally) the
percent complexity in the factor solution using the procedure and code provided by Pettersson and
Turkheimer (2014). For the percent complexity coefficient, values closer to zero indicate greater
consistency with simple structure.

Value

A list with the following elements:

comp_rows The complexity coefficient for each item

percent The percent complexity in the factor solution

Author(s)

Brian P. O’Connor

References

Hofmann, R. J. (1978). Complexity and simplicity as objective indices descriptive of factor solu-
tions. Multivariate Behavioral Research, 13, 247-250.

Pettersson E, Turkheimer E. (2010) Item selection, evaluation, and simple structure in personal-
ity data. Journal of research in personality, 44(4), 407-420.

Pettersson, E., & Turkheimer, E. (2014). Self-reported personality pathology has complex struc-
ture and imposing simple structure degrades test information. Multivariate Behavioral Research,
49(4), 372-389.
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Examples

# the Harman (1967) correlation matrix
PCAoutput <- PCA(data_Harman, Nfactors = 2, Ncases = 305, rotate='PROMAX', verbose=FALSE)
COMPLEXITY(loadings=PCAoutput$structure, verbose=TRUE)

# Rosenberg Self-Esteem scale items
PCAoutput <- PCA(data_RSE, Nfactors = 2, rotate='PROMAX', verbose=FALSE)
COMPLEXITY(loadings=PCAoutput$structure, verbose=TRUE)

# NEO-PI-R scales
PCAoutput <- PCA(data_NEOPIR, Nfactors = 5, rotate='PROMAX', verbose=FALSE)
COMPLEXITY(loadings=PCAoutput$structure, verbose=TRUE)

CONGRUENCE Factor solution congruence

Description

Aligns two factor loading matrices and computes the factor solution congruence and the root mean
square residual.

Usage

CONGRUENCE(target, loadings, verbose)

Arguments

target The target loading matrix.

loadings The loading matrix that will be aligned with the target.

verbose Should detailed results be displayed in console? TRUE (default) or FALSE

Details

The function first searches for the alignment of the factors from the two loading matrices that has
the highest factor solution congruence. It then aligns the factors in "loadings" with the factors
in "target" without changing the loadings. The alignment is based solely on the positions and
directions of the factors. The function then produces the Tucker-Wrigley-Neuhaus factor solution
congruence coefficient as an index of the degree of similarity between between the aligned loading
matrices (see Guadagnoli & Velicer, 1991; and ten Berge, 1986, for reviews).

Value

A list with the following elements:

rcBefore The factor solution congruence before factor alignment

rcAfter The factor solution congruence after factor alignment
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rcFactors The congruence for each factor

rmsr The root mean square residual

residmat The residual matrix

loadingsNew The aligned loading matrix

Author(s)

Brian P. O’Connor

References

Guadagnoli, E., & Velicer, W. (1991). A comparison of pattern matching indices. Multivariate
Behavior Research, 26, 323-343.

ten Berge, J. M. F. (1986). Some relationships between descriptive comparisons of components
from different studies. Multivariate Behavioral Research, 21, 29-40.

Examples

# Rosenberg Self-Esteem scale items
loadings <- PCA(data_RSE[1:150,], corkind='pearson', Nfactors = 3,

rotate='VARIMAX', verbose=FALSE)

target <- PCA(data_RSE[151:300,], corkind='pearson', Nfactors = 3,
rotate='VARIMAX', verbose=FALSE)

CONGRUENCE(target = target$loadingsV, loadings = loadings$loadingsV, verbose=TRUE)

# NEO-PI-R scales
loadings <- PCA(data_NEOPIR[1:500,], corkind='pearson', Nfactors = 3,

rotate='VARIMAX', verbose=FALSE)

target <- PCA(data_NEOPIR[501:1000,], corkind='pearson', Nfactors = 3,
rotate='VARIMAX', verbose=FALSE)

CONGRUENCE(target$loadingsV, loadings$loadingsV, verbose=TRUE)

data_Field data_Field

Description

A data frame with scores on 23 variables for 2571 cases. This is a simulated dataset that has the
exact same correlational structure as the "R Anxiety Questionnaire" data used by Field et al. (2012)
in their chapter on Exploratory Factor Analysis.



data_Harman 7

Usage

data(data_Field)

Source

Field, A., Miles, J., & Field, Z. (2012). Discovering statistics using R. Los Angeles, CA: Sage.

Examples

# MAP test
MAP(data_Field, corkind='pearson', verbose=TRUE)

# DIMTESTS
DIMTESTS(data_Field, corkind='pearson',

tests = c('CD','EMPKC','HULL','RAWPAR','NEVALSGT1'), display=2)

# principal components analysis
PCA(data_Field, corkind='pearson', Nfactors=4, rotate='none', verbose=TRUE)

data_Harman Correlation matrix from Harman (1967, p. 80).

Description

The correlation matrix for eight physical variables for 305 cases from Harman (1967, p. 80).

Usage

data(data_Harman)

References

Harman, H. H. (1967). Modern factor analysis (2nd. ed.). Chicago: University of Chicago Press.

Examples

# MAP test on the Harman correlation matrix
MAP(data_Harman, verbose=TRUE)

# DIMTESTS on the Harman correlation matrix
DIMTESTS(data_Harman, tests = c('EMPKC','HULL','RAWPAR','NEVALSGT1'), Ncases=305, display=2)

# parallel analysis of the Harman correlation matrix
RAWPAR(data_Harman, factormodel='PCA', Ndatasets=100, percentile=95,

Ncases=305, verbose=TRUE)
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data_NEOPIR data_NEOPIR

Description

A data frame with scores for 1000 cases on 30 variables that have the same intercorrelations as
those for the Big 5 facets on pp. 100-101 of the NEO-PI-R manual (Costa & McCrae, 1992).

Usage

data(data_NEOPIR)

References

Costa, P. T., & McCrae, R. R. (1992). Revised NEO personality inventory (NEO-PIR) and NEO
five-factor inventory (NEO-FFI): Professional manual. Odessa, FL: Psychological Assessment Re-
sources.

Examples

# MAP test on the data_NEOPIR data
MAP(data_NEOPIR, corkind='pearson', verbose=TRUE)

# DIMTESTS on the data_NEOPIR data
DIMTESTS(data_NEOPIR, tests = c('EMPKC','HULL','RAWPAR','NEVALSGT1'), Ncases=1000, display=2)

# parallel analysis of the data_NEOPIR data
RAWPAR(data_NEOPIR, factormodel='PCA', Ndatasets=100, percentile=95,

corkind='pearson', verbose=TRUE)

data_RSE Item-level dataset for the Rosenberg Self-Esteem scale

Description

A data frame with 300 observations on the 10 items from the Rosenberg Self-Esteem scale.

Usage

data(data_RSE)

References

Rosenberg, M. (1965). Society and the adolescent self-image. Princeton University Press.
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Examples

# MAP test on the Rosenberg Self-Esteem Scale (RSE) item data
MAP(data_RSE, corkind='polychoric', verbose=TRUE)

# DIMTESTS on the Rosenberg Self-Esteem Scale (RSE) item data
DIMTESTS(data_RSE, tests = c('CD','EMPKC','HULL','RAWPAR','NEVALSGT1'), Ncases=1000, display=2)

# parallel analysis of the Rosenberg Self-Esteem Scale (RSE) item data
RAWPAR(data_RSE, factormodel='PCA', Ndatasets=100, percentile=95,

corkind='pearson', verbose=TRUE)

data_TabFid data_TabFid

Description

A data frame with scores for 340 cases on 44 Bem Sex Role Inventory items, used by Tabacknick
& Fidell (2013, p. 656) in their chapter on exploratory factor analysis.

Usage

data(data_TabFid)

References

Tabachnik, B. G., & Fidell, L. S. (2013). Using multivariate statistics. New York, NY: Pearson.

Examples

# MAP test on the data_TabFid data
MAP(data_TabFid, corkind='pearson', verbose=TRUE)

# parallel analysis of the data_TabFid data
RAWPAR(data_TabFid, factormodel='PCA', Ndatasets=100, percentile=95,

corkind='pearson', verbose=TRUE)

# DIMTESTS on the data_TabFid data
DIMTESTS(data_TabFid, tests = c('EMPKC','HULL','RAWPAR'), corkind='pearson', display=1)

# principal axis factor analysis of the data_TabFid data
PA_FA(data_TabFid, corkind='pearson', Nfactors = 5, iterpaf = 50,

rotate='PROMAX', ppower = 4, verbose=TRUE)
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DIMTESTS Tests for the number of factors

Description

Conducts multiple tests for the number of factors

Usage

DIMTESTS(data, tests, corkind, Ncases, HULL_method, HULL_gof, HULL_cor_method,
CD_cor_method, display)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal. The function internally
determines whether the data are a correlation matrix.

tests A vector of the names of the tests for the number of factors that should be
conducted. The possibilities are CD, EMPKC, HULL, MAP, NEVALSGT1,
RAWPAR, SALIENT, SESCREE, SMT. If tests is not specified, then tests =
c(’EMPKC’, ’HULL’, ’RAWPAR’) is used as the default.

corkind The kind of correlation matrix to be used if data is not a correlation matrix.
The options are ’pearson’, ’kendall’, ’spearman’, ’gamma’, and ’polychoric’.
Required only if the entered data is not a correlation matrix.

Ncases The number of cases. Required only if data is a correlation matrix.

HULL_method From EFAtools: The estimation method to use. One of "PAF" (default), "ULS",
or "ML", for principal axis factoring, unweighted least squares, and maximum
likelihood

HULL_gof From EFAtools: The goodness of fit index to use. Either "CAF" (default), "CFI",
or "RMSEA", or any combination of them. If method = "PAF" is used, only the
CAF can be used as goodness of fit index. For details on the CAF, see Lorenzo-
Seva, Timmerman, and Kiers (2011).

HULL_cor_method

From EFAtools: The kind of correlation matrix to be used for the Hull method
analyses. The options are ’pearson’, ’kendall’, and ’spearman’

CD_cor_method From EFAtools: The kind of correlation matrix to be used for the CD method
analyses. The options are ’pearson’, ’kendall’, and ’spearman’

display The results to be displayed in the console: 0 = nothing; 1 = only the # of factors
for each test; 2 (default) = detailed output for each test

Details

This is a convenience function for tests for the number of factors.

The HULL method option uses the HULL function (and its defaults) in the EFAtools package.
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From Auerswald & Moshagen (2019):

"The Hull method (Lorenzo-Seva et al., 2011) is an approach based on the Hull heuristic used in
other areas of model selection (e.g., Ceulemans & Kiers, 2006). Similar to nongraphical variants
of Cattell’s scree plot, the Hull method attempts to find an elbow as justification for the number
of common factors. However, instead of using the eigenvalues relative to the number of factors,
the Hull method relies on goodness-of-fit indices relative to the model degrees of freedom of the
proposed model."

The CD (comparison data) method option uses the CD function (and its defaults) in the EFAtools
package. The CD method can only be conducted on raw data and not on correlation matrices.

From Auerswald & Moshagen (2019):

"Ruscio and Roche (2012) suggested an approach that finds the number of factors by determin-
ing the solution that reproduces the pattern of eigenvalues best (comparison data, CD). CD takes
previous factors into account by generating comparison data of a known factorial structure in an
iterative procedure. Initially, CD compares whether the simulated comparison data with one un-
derlying factor (j = 1) reproduce the pattern of empirical eigenvalues significantly worse compared
with a two-factor solution (j + 1). If this is the case, CD increases j until further improvements are
nonsignificant or a preset maximum of factors is reached."

"No single extraction criterion performed best for every factor model. In unidimensional and or-
thogonal models, traditional PA, EKC, and Hull consistently displayed high hit rates even in small
samples. Models with correlated factors were more challenging, where CD and SMT outperformed
other methods, especially for shorter scales. Whereas the presence of cross-loadings generally in-
creased accuracy, non-normality had virtually no effect on most criteria. We suggest researchers
use a combination of SMT and either Hull, the EKC, or traditional PA, because the number of fac-
tors was almost always correctly retrieved if those methods converged. When the results of this
combination rule are inconclusive, traditional PA, CD, and the EKC performed comparatively well.
However, disagreement also suggests that factors will be harder to detect, increasing sample size
requirements to N >= 500."

The recommended tests for the number of factors are: EMPKC, HULL, and RAWPAR. The MAP
test is also recommended for principal components analyses. Other possible methods (e.g., NEVALSGT1,
SALIENT, SESCREE) are less well-validated and are included for research purposes.

Value

A list with the following elements:

dimtests A matrix with the DIMTESTS results
NfactorsDIMTESTS

The number of factors according to the first test method specified in the "tests"
vector

Author(s)

Brian P. O’Connor

References

Auerswald, M., & Moshagen, M. (2019). How to determine the number of factors to retain in
exploratory factor analysis: A comparison of extraction methods under realistic conditions. Psy-
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chological Methods, 24(4), 468-491.

Lorenzo-Seva, U., Timmerman, M. E., & Kiers, H. A. (2011). The Hull method for selecting
the number of common factors. Multivariate Behavioral Research, 46(2), 340-364.

O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components
using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instrumentation, and
Computers, 32, 396-402.

Ruscio, J., & Roche, B. (2012). Determining the number of factors to retain in an exploratory
factor analysis using comparison data of known factorial structure. Psychological Assessment, 24,
282292. doi: 10.1037/a0025697

Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of
components to retain. Psychological Bulletin, 99, 432-442.

Examples

# the Harman (1967) correlation matrix
DIMTESTS(data_Harman, tests = c('EMPKC','HULL','RAWPAR'), corkind='pearson',

Ncases = 305, display=2)

# Rosenberg Self-Esteem scale items, all possible DIMTESTS
DIMTESTS(data_RSE,

tests = c('CD','EMPKC','HULL','MAP','NEVALSGT1','RAWPAR','SALIENT','SESCREE','SMT'),
corkind='pearson', display=2)

# Rosenberg Self-Esteem scale items, using polychoric correlations
DIMTESTS(data_RSE, corkind='polychoric', display=2)

# NEO-PI-R scales
DIMTESTS(data_NEOPIR, tests = c('EMPKC','HULL','RAWPAR','NEVALSGT1'), display=2)

EMPKC The empirical Kaiser criterion method

Description

A test for the number of common factors using the Empirical Kaiser Criterion method (Braeken &
van Assen, 2017).

Usage

EMPKC(data, corkind='pearson', Ncases=NULL, verbose=TRUE)
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Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal. The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix.
The options are ’pearson’, ’kendall’, ’spearman’, ’gamma’, and ’polychoric’.
Required only if the entered data is not a correlation matrix.

Ncases The number of cases. Required only if data is a correlation matrix.

verbose Should detailed results be displayed in console? TRUE (default) or FALSE

Details

The code for this function was adapted from the code provided by Auerswald & Moshagen (2019).

From Braeken & van Assen (2017):

"We developed a new factor retention method, the Empirical Kaiser Criterion, which is directly
linked to statistical theory on eigenvalues and to researchers’ goals to obtain reliable scales. EKC
is easily visualized, and easy to compute and apply (no specialized software or simulations are
needed). EKC can be seen as a sample-variant of the original Kaiser criterion (which is only ef-
fective at the population level), yet with a built-in empirical correction factor that is a function of
the variables-to-sample-size ratio and the prior observed eigenvalues in the series. The links with
statistical theory and practically relevant scales allowed us to derive conditions under which EKC
accurately retrieves the number of acceptable scales, that is, sufficiently reliable scales and strong
enough items.

"Our simulations verified our derivations, and showed that (a) EKC performs about as well as par-
allel analysis for data arising from the null, 1-factor, or orthogonal factors model; and (b) clearly
outperforms parallel analysis for the specific case of oblique factors, particularly whenever inter-
factor correlation is moderate to high and the number of variables per factor is small, which is
characteristic of many applications these days. Moreover, additional simulations suggest that our
method for predicting conditions of accurate factor retention also work for the more computer- in-
tensive methods ... The ease-of-use and effectiveness of EKC make this method a prime candidate
for replacing parallel analysis, and the original Kaiser criterion that, although it empirically does
not perform too well, is still the number one method taught in introductory multivariate statistics
courses and the default in many commercial software packages. Furthermore, the link to statistical
theory opens up possibilities for generic power curves and sample size planning for exploratory
factor analysis studies.

"Generally, the EKC accurately retrieved the number of factors in conditions whenever it was pre-
dicted to work well, and its performance was worse when it was not predicted to work well. More
precisely, hit rate or power exceeded .8 in accordance with predictions under the null model, 1-factor
model, the orthogonal factor model, and the oblique factor model with more than three variables
per scale. Only in the case of minimal scales, that is, with three items per scale, did EKC sometimes
not accurately retrieve the number of factors as predicted; dropping the restriction that eigenvalues
should exceed 1 then mended EKC’s performance. A general guideline for application that can
be derived from our results (and would not need a study-specific power study), is that EKC will
accurately retrieve the number of factors in samples of at least 100 persons, when there is no factor,
one practically relevant scale, or up to five practically relevant uncorrelated scales with a reliability
of at least .8." (pp. 463-464)
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From Auerswald & Moshagen (2019):

"The Empirical Kaiser Criterion (EKC; Braeken & van Assen, 2017) is an approach that incorpo-
rates random sample variations of the eigenvalues in Kaiser’s criterion. On a population level, the
criterion is equivalent to Kaiser’s criterion and extracts all factors with associated eigenvalues of the
correlation matrix greater than one. However, on a sample level, the criterion takes the distribution
of eigenvalues for normally distributed data into account." (p. 474)

Value

The number of factors according to the EMPKC test.

Author(s)

Brian P. O’Connor

References

Auerswald, M., & Moshagen, M. (2019). How to determine the number of factors to retain in
exploratory factor analysis: A comparison of extraction methods under realistic conditions. Psy-
chological Methods, 24(4), 468-491.

Braeken, J., & van Assen, M. A. (2017). An empirical Kaiser criterion. Psychological Methods, 22,
450 - 466.

Examples

# the Harman (1967) correlation matrix
EMPKC(data_Harman, Ncases = 305)

# Rosenberg Self-Esteem scale items, using polychoric correlations
EMPKC(data_RSE, corkind='polychoric')

# NEO-PI-R scales
EMPKC(data_NEOPIR)

EXTENSION_FA Extension factor analysis

Description

Extension factor analysis, which provides correlations between nonfactored items and the factors
that exist in a set of core items. The extension item correlations are then used to decide which factor,
if any, a prospective item belongs to.
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Usage

EXTENSION_FA(data, Ncore, Next, higherorder, roottest,
corkind,
factormodel, rotate,
Nfactors, NfactorsHO,
Ndatasets, percentile,
salvalue, numsals,
iterpaf, ppower,
verbose)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables.

Ncore An integer indicating the number of core variables. The function will run the
factor analysis on the data that appear in column #1 to column #Ncore of the
data matrix.

Next An integer indicting the number of extension variables, if any. The function
will run extension factor analyses on the remaining columns in data, i.e., using
column #Ncore+1 to the last column in data. Enter zero if there are no extension
variables.

higherorder Should a higher-order factor analysis be conducted? The options are TRUE or
FALSE.

roottest The method for determining the number of factors. The options are: ’Nsalient’
for number of salient loadings (see salvalue & numsals below); ’parallel’ for
parallel analysis (see Ndatasets & percentile below); ’MAP’ for Velicer’s mini-
mum average partial test; ’SEscree’ for the standard error scree test; ’nevals>1’
for the number of eigenvalues > 1; and ’user’ for a user-specified number of
factors (see Nfactors & NfactorsHO below).

corkind The kind of correlation matrix to be used. The options are ’pearson’, ’kendall’,
’spearman’, ’gamma’, and ’polychoric’.

factormodel The factor extraction method. The options are: ’PAF’ for principal axis / com-
mon factor analysis; ’PCA’ for principal components analysis; ’ML’ for maxi-
mum likelihood.

rotate The factor rotation method. The options are: ’PROMAX’, , and ’none’.

Nfactors An integer indicating the user-determined number of factors (required only if
roottest = ’user’).

NfactorsHO An integer indicating the user-determined number of higher order factors (re-
quired only if roottest = ’user’ and higherorder = TRUE).

Ndatasets An integer indicating the # of random data sets for parallel analyses (required
only if roottest = ’parallel’).

percentile An integer indicating the percentile from the distribution of parallel analysis
random eigenvalues to be used in determining the # of factors (required only if
roottest = ’parallel’). Suggested value: 95
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salvalue The minimum value for a loading to be considered salient (required only if
roottest = ’Nsalient’). Suggested value: .40

numsals The number of salient loadings required for the existence of a factor i.e., the
number of loadings > or = to salvalue (see above) for the function to identify a
factor. Required only if roottest = ’Nsalient’. Gorsuch (1995a, p. 545) suggests:
3

iterpaf The maximum # of iterations for a principal axis / common factor analysis (re-
quired only if factormodel = ’PAF’). Suggested value: 100

ppower The power value to be used in a promax rotation (required only if rotate = ’PRO-
MAX’). Suggested value: 3

verbose Should detailed results be displayed in console? TRUE (default) or FALSE

Details

Traditional scale development statistics can produce results that are baffling or misunderstood by
many users, which can lead to inappropriate substantive interpretations and item selection deci-
sions. High internal consistencies do not indicate unidimensionality; item-total correlations are
inflated because each item is correlated with its own error as well as the common variance among
items; and the default number-of-eigenvalues-greater-than-one rule, followed by principal com-
ponents analysis and varimax rotation, produces inflated loadings and the possible appearance of
numerous uncorrelated factors for items that measure the same construct (Gorsuch, 1997a, 1997b).
Concerned investigators may then neglect the higher order general factor in their data as they use
misleading statistical output to trim items and fashion unidimensional scales.

These problems can be circumvented in exploratory factor analysis by using more appropriate fac-
tor analytic procedures and by using extension analysis as the basis for adding items to scales.
Extension analysis provides correlations between nonfactored items and the factors that exist in a
set of core items. The extension item correlations are then used to decide which factor, if any, a
prospective item belongs to. The decisions are unbiased because factors are defined without being
influenced by the extension items. One can also examine correlations between extension items and
any higher order factor(s) in the core items. The end result is a comprehensive, undisturbed, and
informative picture of the correlational structure that exists in a set of core items and of the potential
contribution and location of additional items to the structure.

Extension analysis is rarely used, at least partly because of limited software availability. Further-
more, when it is used, both traditional extension analysis and its variants (e.g., correlations between
estimated factor scores and extension items) are prone to the same problems as the procedures
mentioned above (Gorsuch, 1997a, 1997b). However, Gorusch (1997b) described how diagonal
component analysis can be used to bypass the problems and uncover the noninflated and unbiased
extension variable correlations – all without computing factor scores.

Value

A list with the following elements:

fits1 eigenvalues & fit coefficients for the first set of core variables

rff factor intercorrelations

corelding core variable loadings on the factors

extcorrel extension variable correlations with the factors
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fits2 eigenvalues & fit coefficients for the higher order factor analysis

rfflding factor intercorrelations from the first factor analysis and the loadings on the
higher order factor(s)

ldingsef variable loadings on the lower order factors and their correlations with the higher
order factor(s)

extsef extension variable correlations with the lower order factor(s) and their correla-
tions with the higher order factor(s)

Author(s)

Brian P. O’Connor

References

Dwyer, P. S. (1937) The determination of the factor loadings of a given test from the known factor
loadings of other tests. Psychometrika, 3, 173-178.

Gorsuch, R. L. (1997a). Exploratory factor analysis: Its role in item analysis. Journal of Per-
sonality Assessment, 68, 532-560.

Gorsuch, R. L. (1997b). New procedure for extension analysis in exploratory factor analysis. Edu-
cational and Psychological Measurement, 57, 725-740.

Horn, J. L. (1973) On extension analysis and its relation to correlations between variables and
factor scores. Multivariate Behavioral Research, 8(4), 477-489.

O’Connor, B. P. (2001). EXTENSION: SAS, SPSS, and MATLAB programs for extension analysis.
Applied Psychological Measurement, 25, p. 88.

Examples

EXTENSION_FA(data_RSE, Ncore=7, Next=3, higherorder=TRUE,
roottest='MAP',
corkind='pearson',
factormodel='PCA', rotate='PROMAX',
Nfactors=2, NfactorsHO=1,
Ndatasets=100, percentile=95,
salvalue=.40, numsals=3,
iterpaf=200,
ppower=4,
verbose=TRUE)

EXTENSION_FA(data_NEOPIR, Ncore=12, Next=6, higherorder=TRUE,
roottest='MAP',
corkind='pearson',
factormodel='PCA', rotate='PROMAX',
Nfactors=4, NfactorsHO=1,
Ndatasets=100, percentile=95,
salvalue=.40, numsals=3,
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iterpaf=200,
ppower=4,
verbose=TRUE)

FACTORABILITY Factorability of a correlation matrix

Description

Three methods for assessing the factorability of a correlation matrix

Usage

FACTORABILITY(data, corkind='pearson', Ncases=NULL, verbose=TRUE)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal. The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix.
The options are ’pearson’, ’kendall’, ’spearman’, ’gamma’, and ’polychoric’.
Required only if the entered data is not a correlation matrix.

Ncases The number of cases for a correlation matrix. Required only if the entered data
is a correlation matrix.

verbose Should detailed results be displayed in console? TRUE (default) or FALSE

Details

This function provides results from three methods of assessing whether a dataset or correlation
matrix is suitable for factor analysis:

1 – whether the determinant of the correlation matrix is > 0.00001;

2 – Bartlett’s test of whether a correlation matrix is significantly different an identity matrix; and

3 – the Kaiser-Meyer-Olkin measure of sampling adequacy.

Value

A list with the following elements:

chisq The chi-squared value for Bartlett,s test

df The degrees of freedom for Bartlett,s test

pvalue The significance level for Bartlett,s test

Rimage The image correlation matrix

KMO The overall KMO value

KMOvars The KMO values for the variables
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Author(s)

Brian P. O’Connor

References

Bartlett, M. S. (1951). The effect of standardization on a chi square approximation in factor analy-
sis, Biometrika, 38, 337-344.

Cerny, C. A., & Kaiser, H. F. (1977). A study of a measure of sampling adequacy for factor-
analytic correlation matrices. Multivariate Behavioral Research, 12(1), 43-47.

Dziuban, C. D., & Shirkey, E. C. (1974). When is a correlation matrix appropriate for factor analy-
sis? Psychological Bulletin, 81, 358-361.

Kaiser, H. F., & Rice, J. (1974). Little Jiffy, Mark IV. Educational and Psychological Measure-
ment, 34, 111-117.

Examples

FACTORABILITY(data_RSE, corkind='pearson')

FACTORABILITY(data_Field, corkind='pearson')

IMAGE_FA Image factor analysis

Description

Image factor analysis

Usage

IMAGE_FA(data, corkind, Nfactors=NULL, Ncases=NULL, rotate, ppower, verbose)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal.The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix.
The options are ’pearson’, ’kendall’, ’spearman’, ’gamma’, and ’polychoric’.
Required only if the entered data is not a correlation matrix.

Nfactors The number of factors to extract.

Ncases The number of cases. Required only if data is a correlation matrix.
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rotate The factor rotation method. The options are: ’PROMAX’, , and ’none’.

ppower The power value to be used in a promax rotation (required only if rotate = ’PRO-
MAX’). Suggested value: 3

verbose Should detailed results be displayed in console? TRUE (default) or FALSE

Details

"Image analysis is a principal factor variant in its usual application. As in the case of the principal
axes with estimated communalities procedure, it is a principal factor variant in the sense that, after
appropriate alterations are made to the correlation matrix, that matrix can be submitted to a principal
factor program to find the desired factors. The program will then minimize the residuals of the
particular matrix submitted. The differences in image analysis and other principal factor variants lie
primarily in the alterations of the correlation matrix before the factors are extracted. Image factors
can also be extracted by maximum likelihood procedures (Joreskog, 1969b)." (Gorsuch, 1974, p.
103)

Image analysis is a common factor analysis of the predictable variance of a set of variables. Each
variable, Xi, is regressed on all other variables to obtain the predicted Xi values. The covariance
matrix of the predicted Xis is then factored to produce an image analysis. The image of a variable
is the portion of a variable which is predicted from other variables.

The present function is an implementation of the Harris (1962) variant of this procedure (see also
Velicer, 1974), which is a noniterative approximation to canonical component analysis. The results
are identical to the image factor analysis results that are produced by SAS and SPSS.

Value

A list with the following elements:

totvarexplNOROT

The eigenvalues and total variance explained

totvarexplROT The rotation sums of squared loadings and total variance explained for the ro-
tated loadings

loadingsNOROT The unrotated factor loadings

loadingsROT The rotated factor loadings (for varimax rotation)

structure The structure matrix (for promax rotation)

pattern The pattern matrix (for promax rotation)

correls The correlations between the factors (for promax rotation)

cormat_reproduced

The reproduced correlation matrix, based on the rotated loadings

Author(s)

Brian P. O’Connor
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References

Gorsuch, R. L. (1983). Factor analysis ( 2nd ed. ). Hillsdale, N.J.: Erlbaum, 1983.

Guttman, L. (1953). Image theory for the structure of quantitative variates. Psychometrika 18,
277-296.

Harris, C. W. (1962). Some Rao-Guttman relationships. Psychometrika, 27, 247-63.

Velicer, W. F. (1974). A comparison of the stability of factor analysis, principal component analysis,
and rescaled image analysis. Educational and Psychological Measurement, 34(3), 563-572.

Examples

# the Harman (1967) correlation matrix
IMAGE_FA(data_Harman, Nfactors=2, Ncases=305, rotate='PROMAX', ppower = 4, verbose=TRUE)

# Rosenberg Self-Esteem scale items
IMAGE_FA(data_RSE, corkind='gamma', Nfactors=2, rotate='PROMAX', ppower = 4, verbose=TRUE)

# NEO-PI-R scales
IMAGE_FA(data_NEOPIR, corkind='pearson', Nfactors=5, rotate='PROMAX', ppower = 4, verbose=TRUE)

INTERNAL.CONSISTENCY Internal consistency reliability coefficients

Description

Internal consistency reliability coefficients

Usage

INTERNAL.CONSISTENCY(data, factormodel = 'ML', verbose)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables.

factormodel The factor extraction method to be used in the omega computations. The options
are: ’ML’ for maximum likelihood (the default); and ’PAF’ for principal axis /
common factor analysis.

verbose Should detailed results be displayed in console? TRUE (default) or FALSE
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Details

The following helpful descriptions of Cronbach’s alpha and of omega total are direct quotes from
McNeish (2017, pp. 414-417):

Cronbach’s Alpha
"One can interpret the value of Cronbach’s alpha in one of many different ways:

1. Cronbach’s alpha is the correlation of the scale of interest with another scale of the same length
that intends to measure the same construct, with different items, taken from the same hypothetical
pool of items (Kline, 1986).

2. The square root of Cronbach’s alpha is an estimate of the correlation between observed scores
and true scores (Nunnally & Bernstein, 1994).

3. Cronbach’s alpha is the proportion of the variance of the scale that can be attributed to a common
source (DeVellis, 1991).

4. Cronbach’s alpha is the average of all possible split-half reliabilities from the set of items (Ped-
hazur & Schmelkin, 1991). (It is important to note the correlation between the two parts is not
the split half reliability, but is used to find the split half reliability found by the Spearman-Brown
prophecy formula.)

Under certain assumptions, Cronbach’s alpha is a consistent estimate of the population internal
consistency; however, these assumptions are quite rigid and are precisely why methodologists have
argued against the use of Cronbach’s alpha.

The assumptions of Cronbach’s alpha are:

1. The scale adheres to tau equivalence, i.e., that each item on a scale contributes equally to the total
scale score. Tau equivalence tends to be unlikely for most scales that are used in empirical research
some items strongly relate to the construct while some are more weakly related.

2. Scale items are on a continuous scale and normally distributed. Cronbach’s alpha is largely based
on the observed covariances (or correlations) between items. In most software implementations
of Cronbach’s alpha (such as in SAS and SPSS), these item covariances are calculated using a
Pearson covariance matrix. A well-known assumption of Pearson covariance matrices is that all
variables are continuous in nature. Otherwise, the elements of the matrix can be substantially biased
downward. However, it is particularly common for psychological scales to contain items that are
discrete (e.g., Likert or binary response scales), which violates this assumption. If discrete items
are treated as continuous, the covariance estimates will be attenuated, which ultimately results in
underestimation of Cronbach’s alpha because the relations between items will appear smaller than
they actually are. To accommodate items that are not on a continuous scale, the covariances between
items can instead be estimated with a polychoric covariance (or correlation) matrix rather than with
a Pearson covariance matrix. Polychoric covariance matrices assume that there is an underlying
normal distribution to discrete responses.

3. The errors of the items do not covary. Correlated errors occur when sources other than the
construct being measured cause item responses to be related to one another.

4. The scale is unidimensional. Though Cronbach’s alpha is sometimes thought to be a measure of
unidimensionality because its colloquial definition is that it measures how well items stick together,
unidimensionality is an assumption that needs to be verified prior to calculating Cronbach’s alpha
rather than being the focus of what Cronbach’s alpha measures. Internal consistency is necessary
for unidimensionality but that internal consistency is not sufficient for demonstrating unidimension-
ality. That is, items that measure different things can still have a high degree of interrelatedness,



INTERNAL.CONSISTENCY 23

so a large Cronbach’s alpha value does not necessarily guarantee that the scale measures a single
construct. As a result, violations of unidimensionality do not necessarily bias estimates of Cron-
bach’s alpha. In the presence of a multidimensional scale, Cronbach’s alpha may still estimate the
interrelatedness of the items accurately and the interrelatedness of multidimensional items can in
fact be quite high."

Omega total
"Omega total is an internal consistency coefficient that assumes that the scale is unidimensional.
Omega estimates the reliability for the composite of items on the scale (which is conceptually sim-
ilar to Cronbach’s alpha). Under the assumption that the construct variance is constrained to 1 and
that there are no error covariances, omega total is calculated from factor analysis output (loadings
and error/uniqueness values). Tau equivalence is no longer assumed and the potentially differential
contribution of each item to the scale must be assessed. Omega total is a more general version of
Cronbach’s alpha and actually subsumes Cronbach’s alpha as a special case. More simply, if tau
equivalence is met, omega total will yield the same result as Cronbach’s alpha but omega total has
the flexibility to accommodate congeneric scales, unlike Cronbach’s alpha."

Root Mean Square Residual (rmsr)
rmsr is an index of the overall badness-of-fit. It is the square root of the mean of the squared resid-
uals (the residuals being the simple differences between original correlations and the correlations
implied by the N-factor model). rmsr is 0 when there is perfect model fit. A value less than .08 is
generally considered a good fit. The rmsr coefficient is included in the internal consistency output
as an index of the degree of fit of a one-factor model to the item data.

Standardized Cronbach’s Alpha
Standardized alpha should be used when items have different scale ranges, e.g., some items are
1-to-7, and other items are 1-to-4, or 1-to-100. Regular alpha is based on covariances, whereas
standardized alpha is based on correlations, wherein the items have identical standard deviations.
Items in different metrics should be standardized before computing scale scores.

Value

A list with the following elements:

int.consist_scale

A vector with the scale omega, Cronbach’s alpha, standardized Cronbach’s al-
pha, the mean of the off-diagonal correlations, the median of the off-diagonal
correlations, and the rmsr fit coefficient for a 1-factor model

int.consist_dropped

A matrix of the int.consist_scale values for when each item, in turn, is int.consist_dropped
from the analyses

item_stats The item means, standard deviations, and item-total correlations

resp_opt_freqs The response option frequencies

resp_opt_props The response option proportions

Author(s)

Brian P. O’Connor



24 LOCALDEP

References

Flora, D. B. (2020). Your coefficient alpha is probably wrong, but which coefficient omega is right?
A tutorial on using R to obtain better reliability estimates. Advances in Methods and Practices in
Psychological Science, 3(4), 484501.

McNeish, D. (2018). Thanks coefficient alpha, we’ll take it from here. Psychological Methods,
23(3), 412433.

Revelle, W., & Condon, D. M. (2019). Reliability from to : A tutorial. Psychological Assessment,
31(12), 13951411.

Examples

# Rosenberg Self-Esteem scale items
INTERNAL.CONSISTENCY(data_RSE, factormodel = 'PAF', verbose=TRUE)

LOCALDEP Local dependence

Description

Provides the residual correlations after partialling the first component out of a correlation matrix as
a method of assessing local dependence (independence) between variables.

Usage

LOCALDEP(data, corkind, Ncases, verbose)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal. The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix.
The options are ’pearson’, ’kendall’, ’spearman’, ’gamma’, and ’polychoric’.
Required only if the entered data is not a correlation matrix.

Ncases The number of cases. Required only if data is a correlation matrix.

verbose Should detailed results be displayed in console? TRUE (default) or FALSE

Details

Item response theory models are based on the assumption that the items display local independence.
The latent trait is presumed to be responsible for the associations between the items. Once the latent
trait is partialled out, the residual correlations between pairs of items should be negligible. Local
dependence exists when there is additional systematic covariance among the items. It can occur
when pairs of items have highly similar content or between sequentially presented items in a test.
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Local dependence distorts IRT parameter estimates, it can artificially increase scale information, and
it distorts the latent trait, which becomes too heavily defined by the locally dependent items. The
LOCALDEP function partials out the first component (not the IRT latent trait) from a correlation
matrix. Examining the residual correlations is a preliminary, exploratory method of determining
whether local dependence exists. The function also displays the number of residual correlations
that are >= a range of values.

Value

A list with the following elements:

correlations The correlation matrix

residcor The residualized correlation matrix

Author(s)

Brian P. O’Connor

Examples

# the Harman (1967) correlation matrix
LOCALDEP(data_Harman, Ncases = 305, verbose=TRUE)

# Rosenberg Self-Esteem scale items
LOCALDEP(data_RSE, corkind = 'polychoric', verbose=TRUE)

# NEO-PI-R scales
LOCALDEP(data_NEOPIR, verbose=TRUE)

MAP Velicer’s minimum average partial (MAP) test

Description

Velicer’s minimum average partial (MAP) test for determining the number of components, which
focuses on the common variance in a correlation matrix.

Usage

MAP(data, corkind, Ncases, verbose)
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Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal. The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix.
The options are ’pearson’, ’kendall’, ’spearman’, ’gamma’, and ’polychoric’.
Required only if the entered data is not a correlation matrix.

Ncases The number of cases. Required only if data is a correlation matrix.

verbose Should detailed results be displayed in console? TRUE (default) or FALSE

Details

This method for determining the number of components focuses on the common variance in a cor-
relation matrix. It involves a complete principal components analysis followed by the examination
of a series of matrices of partial correlations. Specifically, on the first step, the first principal com-
ponent is partialled out of the correlations between the variables of interest, and the average squared
coefficient in the off-diagonals of the resulting partial correlation matrix is computed. On the sec-
ond step, the first two principal components are partialled out of the original correlation matrix and
the average squared partial correlation is again computed. These computations are conducted for k
(the number of variables) minus one steps. The average squared partial correlations from these steps
are then lined up, and the number of components is determined by the step number in the analyses
that resulted in the lowest average squared partial correlation. The average squared coefficient in
the original correlation matrix is also computed, and if this coefficient happens to be lower than the
lowest average squared partial correlation, then no components should be extracted from the corre-
lation matrix. Statistically, components are retained as long as the variance in the correlation matrix
represents systematic variance. Components are no longer retained when there is proportionately
more unsystematic variance than systematic variance (see O’Connor, 2000, p. 397).

Value

A list with the following elements:

totvarexplNOROT

The eigenvalues and total variance explained

avgsqrs Velicers average squared correlations

NfactorsMAP The number of components according to the original (1976) MAP test

NfactorsMAP4 The number of components according to the revised (2000) MAP test

Author(s)

Brian P. O’Connor

References

O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using
parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instrumentation, and Com-
puters, 32, 396-402.
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Velicer, W. F. (1976). Determining the number of components from the matrix of partial corre-
lations. Psychometrika, 41, 321-327.

Velicer, W. F., Eaton, C. A., and Fava, J. L. (2000). Construct explication through factor or com-
ponent analysis: A review and evaluation of alternative procedures for determining the number
of factors or components. In R. D. Goffin & E. Helmes, eds., Problems and solutions in human
assessment (p.p. 41-71). Boston: Kluwer.

Examples

# the Harman (1967) correlation matrix
MAP(data_Harman, corkind='pearson', Ncases = 305, verbose=TRUE)

# Rosenberg Self-Esteem scale items, using Pearson correlations
MAP(data_RSE, corkind='pearson', verbose=TRUE)

# Rosenberg Self-Esteem scale items, using polychoric correlations
MAP(data_RSE, corkind='polychoric', verbose=TRUE)

# NEO-PI-R scales
MAP(data_NEOPIR, verbose=TRUE)

MAXLIKE_FA Maximum likelihood factor analysis

Description

Maximum likelihood factor analysis

Usage

MAXLIKE_FA(data, corkind, Nfactors=NULL, Ncases=NULL, rotate, ppower, verbose)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal.The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix.
The options are ’pearson’, ’kendall’, ’spearman’, ’gamma’, and ’polychoric’.
Required only if the entered data is not a correlation matrix.

Nfactors The number of factors to extract.

Ncases The number of cases. Required only if data is a correlation matrix.

rotate The factor rotation method. The options are: ’PROMAX’, ’VARIMAX’, and
’none’.
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ppower The power value to be used in a promax rotation (required only if rotate = ’PRO-
MAX’). Suggested value: 3

verbose Should detailed results be displayed in console? TRUE (default) or FALSE

Details

This function relies heavily on the R factanal function, and it uses the fa from the psych package
when factanal produces an error.

Value

A list with the following elements:

totvarexplNOROT

The eigenvalues and total variance explained

totvarexplROT The rotation sums of squared loadings and total variance explained for the ro-
tated loadings

loadingsNOROT The unrotated factor loadings

loadingsROT The rotated factor loadings (for varimax rotation)

structure The structure matrix (for promax rotation)

pattern The pattern matrix (for promax rotation)

correls The correlations between the factors (for promax rotation)
cormat_reproduced

The reproduced correlation matrix, based on the rotated loadings

chisqMODEL The model chi square statistic

dfMODEL The model degrees of freedom

pvalue The model p-value
fit_coefficients

Model fit coefficients

Author(s)

Brian P. O’Connor

References

Reyment, R., Joreskog, K., & Marcus, L. F. (1996). Applied Factor Analysis in the Natural Sciences.
Cambridge, MA: Cambridge University Press.

Examples

# the Harman (1967) correlation matrix
MAXLIKE_FA(data_Harman, Nfactors = 2, Ncases = 305,

rotate='PROMAX', ppower = 4, verbose=TRUE)

# Rosenberg Self-Esteem scale items



NEVALSGT1 29

MAXLIKE_FA(data_RSE, corkind='gamma', Nfactors = 2,
rotate='PROMAX', ppower = 4, verbose=TRUE)

# NEO-PI-R scales
MAXLIKE_FA(data_NEOPIR, corkind='pearson', Nfactors = 5,

rotate='PROMAX', ppower = 4, verbose=TRUE)

NEVALSGT1 The number of eigenvalues greater than 1

Description

Returns the count of the number of eigenvalues greater than 1 in a correlation matrix. This value is
often referred to as the "Kaiser", "Kaiser-Guttman", or "Guttman-Kaiser" rule for determining the
number of components or factors in a correlation matrix.

Usage

NEVALSGT1(data, corkind, Ncases, verbose)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal. The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix.
The options are ’pearson’, ’kendall’, ’spearman’, ’gamma’, and ’polychoric’.
Required only if the entered data is not a correlation matrix.

Ncases The number of cases. Required only if data is a correlation matrix.
verbose Should detailed results be displayed in console? TRUE (default) or FALSE

Details

The rationale for this traditional procedure for determining the number of components or factors
is that a component with an eigenvalue of 1 accounts for as much variance as a single variable.
Extracting components with eigenvalues of 1 or less than 1 would defeat the usual purpose of com-
ponent and factor analyses. Furthermore, the reliability of a component will always be nonnegative
when its eigenvalue is greater than 1. This rule is the default retention criteria in SPSS and SAS.

There are a number of problems with this rule of thumb. Monte Carlo investigations have found that
its accuracy rate is not acceptably high (Zwick & Velicer, 1986)). The rule was originally intended
to be an upper bound for the number of components to be retained, but it is most often used as the
criterion to determine the exact number of components or factors. Guttman’s original proof applies
only to the population correlation matrix and the sampling error that occurs in specific samples
results in the rule often overestimating the number of components. The rule is also considered
overly mechanical, e.g., a component with an eigenvalue of 1.01 achieves factor status whereas a
component with an eigenvalue of .999 does not.

This function is included in this package for curiosity and research purposes.
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Value

A list with the following elements:

NfactorsNEVALSGT1

The number of eigenvalues greater than 1.

totvarexplNOROT

The eigenvalues and total variance explained

Author(s)

Brian P. O’Connor

References

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of
exploratory factor analysis in psychological research. Psychological Methods, 4, 272-299.

Guttman, L. (1954). Some necessary conditions for common factor analysis. Psychometrika, 19,
149-161.

Hayton, J. C., Allen, D. G., Scarpello, V. (2004). Factor retention decisions in exploratory fac-
tor analysis: A tutorial on parallel analysis. Organizational Research Methods, 7, 191-205.

Kaiser, H. F. (1960). The application of electronic computer to factor analysis. Educational and
Psychological Measurement, 20, 141-151.

Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of
components to retain. Psychological Bulletin, 99, 432-442.

Examples

# the Harman (1967) correlation matrix
NEVALSGT1(data_Harman, corkind='pearson', Ncases = 305, verbose=TRUE)

# Rosenberg Self-Esteem scale items, using Pearson correlations
NEVALSGT1(data_RSE, corkind='pearson', verbose=TRUE)

# Rosenberg Self-Esteem scale items, using polychoric correlations
NEVALSGT1(data_RSE, corkind='polychoric', verbose=TRUE)

# NEO-PI-R scales
NEVALSGT1(data_NEOPIR, corkind='pearson', verbose=TRUE)
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PARALLEL Parallel analysis of eigenvalues (random data only)

Description

Generates eigenvalues and corresponding percentile values for random data sets with specified num-
bers of variables and cases.

Usage

PARALLEL(Nvars, Ncases, Ndatasets=100, factormodel='PCA', percentile='95',
corkind='pearson', verbose=TRUE)

Arguments

Nvars The number of variables.

Ncases The number of cases.

Ndatasets An integer indicating the # of random data sets for parallel analyses.

factormodel The factor extraction method. The options are: ’PAF’ for principal axis / com-
mon factor analysis; ’PCA’ for principal components analysis. ’image’ for im-
age analysis.

percentile An integer indicating the percentile from the distribution of parallel analysis
random eigenvalues. Suggested value: 95

corkind The kind of correlation matrix to be used for the random data. The options are
’pearson’, ’kendall’, and ’spearman’.

verbose Should detailed results be displayed in console? TRUE (default) or FALSE

Details

This procedure for determining the number of components or factors involves comparing the eigen-
values derived from an actual data set to the eigenvalues derived from the random data. In Horn’s
original description of this procedure, the mean eigenvalues from the random data served as the
comparison baseline, whereas the more common current practice is to use the eigenvalues that cor-
respond to the desired percentile (typically the 95th) of the distribution of random data eigenvalues.
Factors or components are retained as long as the ith eigenvalue from the actual data is greater than
the ith eigenvalue from the random data. This function produces only random data eigenvalues and
it does not take real data as input. See the RAWPAR function in this package for parallel analyses
that also involve real data.

The PARALLEL function permits users to specify PCA or PAF or image as the factor extraction
method. Principal components eigenvalues are often used to determine the number of common fac-
tors. This is the default in most statistical software packages, and it is the primary practice in the
literature. It is also the method used by many factor analysis experts, including Cattell, who often
examined principal components eigenvalues in his scree plots to determine the number of common
factors. Principal components eigenvalues are based on all of the variance in correlation matrices,
including both the variance that is shared among variables and the variances that are unique to the
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variables. In contrast, principal axis eigenvalues are based solely on the shared variance among
the variables. The procedures are qualitatively different. Some therefore claim that the eigenval-
ues from one extraction method should not be used to determine the number of factors for another
extraction method. The PAF option in the extract argument for the PARALLEL function was in-
cluded solely for research purposes. It is best to use PCA as the extraction method for regular data
analyses.

Value

Random data eigenvalues

Author(s)

Brian P. O’Connor

References

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika,
30, 179-185.

O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components
using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instrumentation, and
Computers, 32, 396-402.

Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of
components to retain. Psychological Bulletin, 99, 432-442.

Examples

PARALLEL(Nvars=15, Ncases=250, Ndatasets=100, factormodel='PCA', percentile=95,
corkind='pearson', verbose=TRUE)

PA_FA Principal axis (common) factor analysis

Description

Principal axis (common) factor analysis with squared multiple correlations as the initial communal-
ity estimates

Usage

PA_FA(data, corkind, Nfactors=NULL, Ncases=NULL, iterpaf, rotate, ppower, verbose)
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Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal.The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix.
The options are ’pearson’, ’kendall’, ’spearman’, ’gamma’, and ’polychoric’.
Required only if the entered data is not a correlation matrix.

Nfactors The number of factors to extract.

Ncases The number of cases. Required only if data is a correlation matrix.

iterpaf The maximum number of iterations.

rotate The factor rotation method. The options are: ’PROMAX’, , and ’none’.

ppower The power value to be used in a promax rotation (required only if rotate = ’PRO-
MAX’). Suggested value: 3

verbose Should detailed results be displayed in console? TRUE (default) or FALSE

Value

A list with the following elements:

totvarexplNOROT

The eigenvalues and total variance explained

totvarexplROT The rotation sums of squared loadings and total variance explained for the ro-
tated loadings

loadingsNOROT The unrotated factor loadings

loadingsROT The rotated factor loadings (for varimax rotation)

structure The structure matrix (for promax rotation)

pattern The pattern matrix (for promax rotation)

correls The correlations between the factors (for promax rotation)
cormat_reproduced

The reproduced correlation matrix, based on the rotated loadings
fit_coefficients

Model fit coefficients

Author(s)

Brian P. O’Connor

Examples

# the Harman (1967) correlation matrix
PA_FA(data_Harman, corkind='pearson', Nfactors = 2, Ncases=305, iterpaf = 50,

rotate='PROMAX', ppower = 4, verbose=TRUE)

# Rosenberg Self-Esteem scale items
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PA_FA(data_RSE, corkind='polychoric', Nfactors = 2, iterpaf = 50,
rotate='PROMAX', ppower = 4, verbose=TRUE)

# NEO-PI-R scales
PA_FA(data_NEOPIR, corkind='pearson', Nfactors = 5, iterpaf = 50,

rotate='PROMAX', ppower = 4, verbose=TRUE)

PCA Principal components analysis

Description

Principal components analysis

Usage

PCA(data, corkind, Nfactors=NULL, Ncases=NULL, rotate, ppower, verbose)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal.The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix.
The options are ’pearson’, ’kendall’, ’spearman’, ’gamma’, and ’polychoric’.
Required only if the entered data is not a correlation matrix.

Nfactors The number of components to extract.

Ncases The number of cases. Required only if data is a correlation matrix.

rotate The factor rotation method. The options are: ’PROMAX’, , and ’none’.

ppower The power value to be used in a promax rotation (required only if rotate = ’PRO-
MAX’). Suggested value: 3

verbose Should detailed results be displayed in console? TRUE (default) or FALSE

Value

A list with the following elements:

totvarexplNOROT

The eigenvalues and total variance explained

totvarexplROT The rotation sums of squared loadings and total variance explained for the ro-
tated loadings

loadingsNOROT The unrotated factor loadings

loadingsROT The rotated factor loadings (for varimax rotation)

structure The structure matrix (for promax rotation)
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pattern The pattern matrix (for promax rotation)

correls The correlations between the factors (for promax rotation)

cormat_reproduced

The reproduced correlation matrix, based on the rotated loadings

fit_coefficients

Model fit coefficients

Author(s)

Brian P. O’Connor

Examples

# the Harman (1967) correlation matrix
PCA(data_Harman, Nfactors=2, Ncases=305, rotate='PROMAX', ppower = 4, verbose=TRUE)

# Rosenberg Self-Esteem scale items
PCA(data_RSE, corkind='polychoric', Nfactors=2, rotate='PROMAX', ppower = 4, verbose=TRUE)

# NEO-PI-R scales
PCA(data_NEOPIR, corkind='pearson', Nfactors=5, rotate='PROMAX', ppower = 4, verbose=TRUE)

POLYCHORIC_R Polychoric correlation matrix

Description

Produces a polychoric correlation matrix

Usage

POLYCHORIC_R(data, method, verbose)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables. All values should be integers, as in the values for Likert rating scales.

method (optional) The source package used to estimate the polychoric correlations: ’Rev-
elle’ for the psych package (the default); ’Fox’ for the polycor package.

verbose Should detailed results be displayed in console? TRUE (default) or FALSE
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Details

Applying familiar factor analysis procedures to item-level data can produce misleading or unin-
terpretable results. Common factor analysis, maximum likelihood factor analysis, and principal
components analysis produce meaningful results only if the data are continuous and multivariate
normal. Item-level data almost never meet these requirements.

The correlation between any two items is affected by both their substantive (content-based) simi-
larity and by the similarities of their statistical distributions. Items with similar distributions tend
to correlate more strongly with one another than do with items with dissimilar distributions. Easy
or commonly endorsed items tend to form factors that are distinct from difficult or less commonly
endorsed items, even when all of the items measure the same unidimensional latent variable. Item-
level factor analyses using traditional methods are almost guaranteed to produce at least some fac-
tors that are based solely on item distribution similarity. The items may appear multidimensional
when in fact they are not. Conceptual interpretations of the nature of item-based factors will often
be erroneous.

A common, expert recommendation is that factor analyses of item-level data (e.g., for binary re-
sponse options or for ordered response option categories) or should be conducted on matrices of
polychoric correlations. Factor analyses of polychoric correlation matrices are essentially factor
analyses of the relations among latent response variables that are assumed to underlie the data and
that are assumed to be continuous and normally distributed.

This is a cpu-intensive function. It is probably not necessary when there are > 8 item response
categories.

By default, the function uses the polychoric function from William Revelle’s’ psych package to
produce a full matrix of polychoric correlations. The function uses John Fox’s hetcor function from
the polycor package when requested or when the number of item response categories is > 8.

Value

The polychoric correlation matrix

Author(s)

Brian P. O’Connor

Examples

# Revelle polychoric correlation matrix for the Rosenberg Self-Esteem Scale (RSE)
POLYCHORIC_R(data_RSE, method = 'Revelle')

# Fox polychoric correlation matrix for the Rosenberg Self-Esteem Scale (RSE)
POLYCHORIC_R(data_RSE, method = 'Fox')
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PROCRUSTES Procrustes factor rotation

Description

Conducts Procrustes rotations of a factor loading matrix to a target factor matrix, and it computes
the factor solution congruence and the root mean square residual (based on comparisons of the
entered factor loading matrix with the Procrustes-rotated matrix).

Usage

PROCRUSTES(loadings, target, type, verbose)

Arguments

loadings The loading matrix that will be aligned with the target.

target The target loading matrix.

type The options are ’orthogonal’ or ’oblique’ rotation.

verbose Should detailed results be displayed in console? TRUE (default) or FALSE

Details

This function conducts Procrustes rotations of a factor loading matrix to a target factor matrix,
and it computes the factor solution congruence and the root mean square residual (based on com-
parisons of the entered factor loading matrix with the Procrustes-rotated matrix). The orthogonal
Procrustes rotation is based on Schonemann (1966; see also McCrae et al., 1996). The oblique
Procrustes rotation is based on Hurley and Cattell (1962). The factor solution congruence is the
Tucker-Wrigley-Neuhaus factor solution congruence coefficient (see Guadagnoli & Velicer, 1991;
and ten Berge, 1986, for reviews).

Value

A list with the following elements:

loadingsPROC The Procrustes-rotated loadings

congruence The factor solution congruence after factor Procrustes rotation

rmsr The root mean square residual

residmat The residual matrix after factor Procrustes rotation

Author(s)

Brian P. O’Connor
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References

Guadagnoli, E., & Velicer, W. (1991). A comparison of pattern matching indices. Multivariate
Behavior Research, 26, 323-343.

Hurley, J. R., & Cattell, R. B. (1962). The Procrustes program: Producing direct rotation to test a
hypothesized factor structure. Behavioral Science, 7, 258-262.

McCrae, R. R., Zonderman, A. B., Costa, P. T. Jr., Bond, M. H., & Paunonen, S. V. (1996). Evalu-
ating replicability of factors in the revised NEO personality inventory: Confirmatory factor analysis
versus Procrustes rotation. Journal of Personality and Social Psychology, 70, 552-566.

Schonemann, P. H. (1966). A generalized solution of the orthogonal Procrustes problem. Psy-
chometrika, 31, 1-10.

ten Berge, J. M. F. (1986). Some relationships between descriptive comparisons of components
from different studies. Multivariate Behavioral Research, 21, 29-40.

Examples

# RSE data
PCAoutput_1 <- PCA(data_RSE[1:150,], Nfactors = 2, rotate='PROMAX', verbose=FALSE)

PCAoutput_2 <- PCA(data_RSE[151:300,], Nfactors = 2, rotate='PROMAX', verbose=FALSE)

PROCRUSTES(target=PCAoutput_1$pattern, loadings=PCAoutput_2$pattern,
type = 'orthogonal', verbose=TRUE)

PROMAX promax rotation

Description

promax rotation

Usage

PROMAX(loadings, ppower, verbose)

Arguments

loadings A loading matrix.

ppower The exponent for the promax target matrix. ’ppower’ must be 1 or greater. ’4’
is a conventional value.

verbose Should detailed results be displayed in console? TRUE (default) or FALSE
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Details

This function uses the R built-in promax function and provides additional output.

Value

A list with the following elements:

loadingsNOROT The unrotated loadings

pattern The pattern matrix (for promax rotation)

structure The structure matrix (for promax rotation)

phi The correlations between the factors (for promax rotation)
cormat_reproduced

The reproduced correlation matrix, based on the rotated loadings

Author(s)

Brian P. O’Connor

Examples

# the Harman (1967) correlation matrix
PCAoutput <- PCA(data_Harman, Nfactors = 2, Ncases=305, rotate='none', verbose=TRUE)
PROMAX(PCAoutput$loadingsNOROT, ppower = 4, verbose=TRUE)

# Rosenberg Self-Esteem scale items
PCAoutput <- PCA(data_RSE, corkind='polychoric', Nfactors = 2, rotate='none', verbose=TRUE)
PROMAX(PCAoutput$loadingsNOROT, ppower = 4, verbose=TRUE)

# NEO-PI-R scales
PCAoutput <- PCA(data_NEOPIR, corkind='pearson', Nfactors = 5, rotate='none', verbose=TRUE)
PROMAX(PCAoutput$loadingsNOROT, ppower = 4, verbose=TRUE)

RAWPAR Parallel analysis of eigenvalues (for raw data)

Description

Parallel analysis of eigenvalues, with real data as input, for deciding on the number of components
or factors.

Usage

RAWPAR(data, randtype, factormodel, Ndatasets, percentile,
corkind, corkindRAND, Ncases=NULL, verbose)
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Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal. The function internally
determines whether the data are a correlation matrix.

randtype The kind of random data to be used in the parallel analysis: ’generated’ for
random normal data generation; ’permuted’ for permutations of the raw data
matrix.

factormodel The factor extraction method. The options are: ’PAF’ for principal axis / com-
mon factor analysis; ’PCA’ for principal components analysis. ’image’ for im-
age analysis.

Ndatasets An integer indicating the # of random data sets for parallel analyses.

percentile An integer indicating the percentile from the distribution of parallel analysis
random eigenvalues to be used in determining the # of factors. Suggested value:
95

corkind The kind of correlation matrix to be used if data is not a correlation matrix.
The options are ’pearson’, ’kendall’, ’spearman’, ’gamma’, and ’polychoric’.
Required only if the entered data is not a correlation matrix.

corkindRAND The kind of correlation matrix to be used for the random data analyses. The
options are ’pearson’, ’kendall’, ’spearman’, ’gamma’, and ’polychoric’. The
default is ’pearson’.

Ncases The number of cases upon which a correlation matrix is based. Required only if
data is a correlation matrix.

verbose Should detailed results be displayed in console? TRUE (default) or FALSE

Details

The parallel analysis procedure for deciding on the number of components or factors involves ex-
tracting eigenvalues from random data sets that parallel the actual data set with regard to the number
of cases and variables. For example, if the original data set consists of 305 observations for each
of 8 variables, then a series of random data matrices of this size (305 by 8) would be generated,
and eigenvalues would be computed for the correlation matrices for the original, real data and for
each of the random data sets. The eigenvalues derived from the actual data are then compared to
the eigenvalues derived from the random data. In Horn’s original description of this procedure, the
mean eigenvalues from the random data served as the comparison baseline, whereas the more com-
mon current practice is to use the eigenvalues that correspond to the desired percentile (typically
the 95th) of the distribution of random data eigenvalues. Factors or components are retained as long
as the ith eigenvalue from the actual data is greater than the ith eigenvalue from the random data.

The RAWPAR function permits users to specify PCA or PAF or image as the factor extraction
method. Principal components eigenvalues are often used to determine the number of common fac-
tors. This is the default in most statistical software packages, and it is the primary practice in the
literature. It is also the method used by many factor analysis experts, including Cattell, who often
examined principal components eigenvalues in his scree plots to determine the number of common
factors. Principal components eigenvalues are based on all of the variance in correlation matrices,
including both the variance that is shared among variables and the variances that are unique to the
variables. In contrast, principal axis eigenvalues are based solely on the shared variance among
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the variables. The procedures are qualitatively different. Some therefore claim that the eigenval-
ues from one extraction method should not be used to determine the number of factors for another
extraction method. The PAF option in the extract argument for the PARALLEL function was in-
cluded solely for research purposes. It is best to use PCA as the extraction method for regular data
analyses.

Polychoric correlations are time-consuming to compute. While polychoric correlations should prob-
ably be specified for the real data eigenvalues when data consists of item-level responses, polychoric
correlations probably should not be specified for the random data computations, even for item-level
data. The procedure would take much time and it is unnecessary. Polychoric correlations are esti-
mates of what the Pearson correlations would be had the real data been continuous. For item-level
data, specify polychoric correlations for the real data eigenvalues (corkind=’polychoric’) and use
the default for the random data eigenvalues (corkindRAND=’pearson’). The option for using poly-
choric correlations for the random data computations (corkindRAND=’polychoric’) was provided
solely for research purposes.

Value

A list with:

eigenvalues the eigenvalues for the real and random data

NfactorsPA the number of factors based on the parallel analysis

Author(s)

Brian P. O’Connor

References

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika,
30, 179-185.

O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components
using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instrumentation, and
Computers, 32, 396-402.

Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of
components to retain. Psychological Bulletin, 99, 432-442.

Examples

# WISC data
RAWPAR(data_TabFid, randtype='generated', factormodel='PCA', Ndatasets=100,

percentile=95, corkind='pearson', verbose=TRUE)

# the Harman (1967) correlation matrix
RAWPAR(data_Harman, randtype='generated', factormodel='PCA', Ndatasets=100,

percentile=95, corkind='pearson', Ncases=305, verbose=TRUE)

# Rosenberg Self-Esteem scale items, using Pearson correlations
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RAWPAR(data_RSE, randtype='permuted', factormodel='PCA', Ndatasets=100,
percentile=95, corkind='pearson', corkindRAND='pearson', verbose=TRUE)

# Rosenberg Self-Esteem scale items, using polychoric correlations
RAWPAR(data_RSE, randtype='generated', factormodel='PCA', Ndatasets=100,

percentile=95, corkind='polychoric', verbose=TRUE)

# NEO-PI-R scales
RAWPAR(data_NEOPIR, randtype='generated', factormodel='PCA', Ndatasets=100,

percentile=95, corkind='pearson', Ncases=305, verbose=TRUE)

ROOTFIT Factor fit coefficients

Description

A variety of fit coefficients for the possible N-factor solutions in exploratory factor analysis

Usage

ROOTFIT(data, corkind='pearson', Ncases=NULL, factormodel='PAF', verbose)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal.The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix.
The options are ’pearson’, ’kendall’, ’spearman’, ’gamma’, and ’polychoric’.
Required only if the entered data is not a correlation matrix.

Ncases The number of cases upon which a correlation matrix is based. Required only if
data is a correlation matrix.

factormodel The factor extraction method. The options are: ’PAF’ for principal axis / com-
mon factor analysis; ’PCA’ for principal components analysis. ’ML’ for maxi-
mum likelihood estimation.

verbose Should detailed results be displayed in console? TRUE (default) or FALSE

Details

Eigenvalue

An eigenvalue is the variance of the factor. More specifically, an eigenvalue is the the variance of
the linear combination of the variables for a factor. There are as many eigenvalues for a correlation
or covariance matrix as there are variables in the matrix. The sum of the eigenvalues is equal to the
number of variables. An eigenvalue of one means that a factor explains as much variance as one
variable.
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RMSR – Root Mean Square Residual (absolute fit)

RMSR (or perhaps more commonly, RMR) is an index of the overall badness-of-fit. It is the square
root of the mean of the squared residuals (the residuals being the simple differences between orig-
inal correlations and the correlations implied by the N-factor model). RMSR is 0 when there is
perfect model fit. A value less than .08 is generally considered a good fit. A standardized version
of the RMSR is often recommended over the RMSR in structural equation modeling analyses. This
is because the values in covariance matrices are scale-dependent. However, the RMSR coefficient
that is provided in this package is based on correlation coefficients (not covariances) and therefore
does not have this problem.

GFI (absolute fit)

The GFI (McDonald, 1999) is an index of how closely a correlation matrix is reproduced by the
factor solution. It is equal to 1.0 - mean-squared residual / mean-squared correlation, ignoring the
diagonals.

CAF (common part accounted for)

Lorenzo-Seva, Timmerman, & Kiers (2011): "We now propose an alternative goodness-of-fit index
that can be used with any extraction method. This index expresses the extent to which the common
variance in the data is captured in the common factor model. The index is denoted as CAF (common
part accounted for)."

"A measure that expresses the amount of common variance in a matrix is found in the KMO (Kaiser,
Meyer, Olkin) index (see Kaiser, 1970; Kaiser & Rice, 1974). The KMO index is commonly used
to assess whether a particular correlation matrix R is suitable for common factor analysis (i.e., if
there is enough common variance to justify a factor analysis)."

"Now, we propose to express the common part accounted for by a common factor model with q
common factors as 1 minus the KMO index of the estimated residual matrix."

"The values of CAF are in the range [0, 1] and if they are close to zero it means that a substan-
tial amount of common variance is still present in the residual matrix after the q factors have been
extracted (implying that more factors should be extracted). Values of CAF close to one mean that
the residual matrix is free of common variance after the q factors have been extracted (i.e., no more
factors should be extracted)."

RMSEA - Root Mean Square Error of Approximation (absolute fit)

Schermelleh-Engel (2003): "The Root Mean Square Error of Approximation (RMSEA; Steiger,
1990) is a measure of approximate fit in the population and is therefore concerned with the discrep-
ancy due to approximation. Steiger (1990) as well as Browne and Cudeck (1993) define a "close
fit" as a RMSEA value <= .05. According to Browne and Cudeck (1993), RMSEA values <= .05
can be considered as a good fit, values between .05 and .08 as an adequate fit, and values between
.08 and .10 as a mediocre fit, whereas values > .10 are not acceptable. Although there is general
agreement that the value of RMSEA for a good model should be less than .05, Hu and Bentler
(1999) suggested an RMSEA of less than .06 as a cutoff criterion."

Kenny (2020): "The measure is positively biased (i.e., tends to be too large) and the amount of the
bias depends on smallness of sample size and df, primarily the latter. The RMSEA is currently the
most popular measure of model fit. MacCallum, Browne and Sugawara (1996) have used 0.01, 0.05,
and 0.08 to indicate excellent, good, and mediocre fit respectively. However, others have suggested
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0.10 as the cutoff for poor fitting models. These are definitions for the population. That is, a given
model may have a population value of 0.05 (which would not be known), but in the sample it might
be greater than 0.10. There is greater sampling error for small df and low N models, especially for
the former. Thus, models with small df and low N can have artificially large values of the RMSEA.
For instance, a chi square of 2.098 (a value not statistically significant), with a df of 1 and N of 70
yields an RMSEA of 0.126. For this reason, Kenny, Kaniskan, and McCoach (2014) argue to not
even compute the RMSEA for low df models."

Hooper (2008): "In recent years it has become regarded as "one of the most informative fit indices"
(Diamantopoulos and Siguaw, 2000: 85) due to its sensitivity to the number of estimated parameters
in the model. In other words, the RMSEA favours parsimony in that it will choose the model with
the lesser number of parameters."

TLI – Tucker Lewis Index (incremental fit)

The Tucker-Lewis index, TLI, is also sometimes called the non-normed fit index, NNFI, or the
Bentler-Bonett non-normed fit index, or RHO2. The TLI penalizes for model complexity.

Schermelleh-Engel (2003): "The (TLI or) NNFI ranges in general from zero to one, but as this
index is not normed, values can sometimes leave this range, with higher (TLI or) NNFI values
indimessageing better fit. A rule of thumb for this index is that .97 is indimessageive of good
fit relative to the independence model, whereas values greater than .95 may be interpreted as an
acceptable fit. An advantage of the (TLI or) NNFI is that it is one of the fit indices less affected by
sample size (Bentler, 1990; Bollen, 1990; Hu & Bentler, 1995, 1998)."

Kenny (2020): "The TLI (and the CFI) depends on the average size of the correlations in the data.
If the average correlation between variables is not high, then the TLI will not be very high."

CFI - Comparative Fit Index (incremental fit)

Schermelleh-Engel (2003): "The CFI ranges from zero to one with higher values indimessageing
better fit. A rule of thumb for this index is that .97 is indicative of good fit relative to the indepen-
dence model, while values greater than .95 may be interpreted as an acceptable fit. Again a value
of .97 seems to be more reasonable as an indimessageion of a good model fit than the often stated
cutoff value of .95. Comparable to the NNFI, the CFI is one of the fit indices less affected by sample
size."

Hooper (2008): "A cut-off criterion of CFI >= 0.90 was initially advanced however, recent studies
have shown that a value greater than 0.90 is needed in order to ensure that misspecified models are
not accepted (Hu and Bentler, 1999). From this, a value of CFI >= 0.95 is presently recognised as
indicative of good fit (Hu and Bentler, 1999). Today this index is included in all SEM programs and
is one of the most popularly reported fit indices due to being one of the measures least effected by
sample size (Fan et al, 1999)."

Kenny (2020): "Because the TLI and CFI are highly correlated only one of the two should be re-
ported. The CFI is reported more often than the TLI, but I think the CFI,s penalty for complexity of
just 1 is too low and so I prefer the TLI even though the CFI is reported much more frequently than
the TLI."

MFI – (absolute fit)

An absolute fit index proposed by MacDonald and Marsh (1990) that does not depend on a com-
parison with another model.
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AIC – Akaike Information Criterion (degree of parsimony index)
Kenny (2020): "The AIC is a comparative measure of fit and so it is meaningful only when two
different models are estimated. Lower values indicate a better fit and so the model with the low-
est AIC is the best fitting model. There are somewhat different formulas given for the AIC in the
literature, but those differences are not really meaningful as it is the difference in AIC that really
matters. The AIC makes the researcher pay a penalty of two for every parameter that is estimated.
One advantage of the AIC, BIC, and SABIC measures is that they can be computed for models with
zero degrees of freedom, i.e., saturated or just-identified models."

CAIC – Consistent Akaike Information Criterion (degree of parsimony index)
A version of AIC that adjusts for sample size. Lower values indicate a better fit.

BIC – Bayesian Information Criterion (degree of parsimony index)
Lower values indicate a better fit.

Kenny (2020): "Whereas the AIC has a penalty of 2 for every parameter estimated, the BIC in-
creases the penalty as sample size increases. The BIC places a high value on parsimony (perhaps
too high)."

SABIC – Sample-Size Adjusted BIC (degree of parsimony index)
Kenny (2020): "Like the BIC, the sample-size adjusted BIC or SABIC places a penalty for adding
parameters based on sample size, but not as high a penalty as the BIC. Several recent simulation
studies (Enders & Tofighi, 2008; Tofighi, & Enders, 2007) have suggested that the SABIC is a
useful tool in comparing models.

Value

A list with eigenvalues & fit coefficients.

Author(s)

Brian P. O’Connor

References

Hooper, D., Coughlan, J., & Mullen, M. (2008). Structural Equation Modelling: Guidelines for
Determining Model Fit. Electronic Journal of Business Research Methods, 6(1), 53-60.

Kenny, D. A. (2020). Measuring model fit. http://davidaKenny.net/cm/fit.htm

McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah, NJ: Lawrence Erlbaum Asso-
ciates, Publishers.

Lorenzo-Seva, U., Timmerman, M. E., & Kiers, H. A. (2011). The Hull method for selecting
the number of common factors. Multivariate Behavioral Research, 46, 340-364.

Schermelleh-Engel, K., & Moosbrugger, H. (2003). Evaluating the fit of structural equation models:
Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research
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Online, Vol.8(2), pp. 23-74.

Tabachnick, B. G., & Fidell, L. S. (2019). Using multivariate statistics (pp. 560-564). New York,
NY: Pearson.

Examples

# the Harman (1967) correlation matrix
ROOTFIT(data_Harman, Ncases = 305, factormodel='ML')
ROOTFIT(data_Harman, Ncases = 305, factormodel='PAF')
ROOTFIT(data_Harman, Ncases = 305, factormodel='PCA')

# RSE data
ROOTFIT(data_RSE, corkind='pearson', factormodel='ML')
ROOTFIT(data_RSE, corkind='pearson', factormodel='PAF')
ROOTFIT(data_RSE, corkind='pearson', factormodel='PCA')

# NEO-PI-R scales
ROOTFIT(data_NEOPIR, corkind='pearson', factormodel='ML')
ROOTFIT(data_NEOPIR, corkind='pearson', factormodel='PAF')
ROOTFIT(data_NEOPIR, corkind='pearson', factormodel='PCA')

SALIENT Salient loadings criterion for the number of factors

Description

Salient loadings criterion for determining the number of factors, as recommended by Gorsuch.
Factors are retained when they consist of a specified minimum number (or more) variables that
have a specified minimum (or higher) loading value.

Usage

SALIENT(data, salvalue, numsals, corkind, Ncases=NULL, verbose)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal. The function internally
determines whether the data are a correlation matrix.

salvalue The loading value that is considered salient. Default = .40
numsals The required number of salient loadings for a factor. Default = 3
corkind The kind of correlation matrix to be used if data is not a correlation matrix.

The options are ’pearson’, ’kendall’, ’spearman’, ’gamma’, and ’polychoric’.
Required only if the entered data is not a correlation matrix.

Ncases The number of cases. Required only if data is a correlation matrix.
verbose Should detailed results be displayed in console? TRUE (default) or FALSE
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Value

The number of factors according to the salient loadings criterion.

Author(s)

Brian P. O’Connor

References

Boyd, K. C. (2011). Factor analysis. In M. Stausberg & S. Engler (Eds.), The Routledge Handbook
of Research Methods in the Study of Religion (pp. 204-216). New York: Routledge.

Gorsuch, R. L. (1997a). Exploratory factor analysis: Its role in item analysis. Journal of Per-
sonality Assessment, 68, 532-560.

Examples

# the Harman (1967) correlation matrix
SALIENT(data_Harman, salvalue=.4, numsals=3, corkind='pearson', Ncases=305, verbose=TRUE)

# Rosenberg Self-Esteem scale items, using Pearson correlations
SALIENT(data_RSE, salvalue=.4, numsals=3, corkind='pearson', verbose=TRUE)

# Rosenberg Self-Esteem scale items, using polychoric correlations
SALIENT(data_RSE, salvalue=.4, numsals=3, corkind='polychoric', verbose=TRUE)

# NEO-PI-R scales
SALIENT(data_NEOPIR, salvalue=.4, numsals=3, verbose=TRUE)

SCREE_PLOT Scree plot of eigenvalues

Description

Produces a scree plot of eigenvalues for raw data or for a correlation matrix.

Usage

SCREE_PLOT(data, corkind, Ncases, verbose)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal.The function internally
determines whether the data are a correlation matrix.
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corkind The kind of correlation matrix to be used if data is not a correlation matrix.
The options are ’pearson’, ’kendall’, ’spearman’, ’gamma’, and ’polychoric’.
Required only if the entered data is not a correlation matrix.

Ncases The number of cases for a correlation matrix. Required only if the entered data
is a correlation matrix.

verbose Should detailed results be displayed in console? TRUE (default) or FALSE

Value

totvarexpl The eigenvalues and total variance explained

Author(s)

Brian P. O’Connor

Examples

# Field's RAQ factor analysis data
SCREE_PLOT(data_Field, corkind='pearson')

# the Harman (1967) correlation matrix
SCREE_PLOT(data_Harman)

# Rosenberg Self-Esteem scale items
SCREE_PLOT(data_RSE, corkind='polychoric')

# NEO-PI-R scales
SCREE_PLOT(data_RSE)

SESCREE Standard Error Scree test

Description

This is a linear regression operationalization of the scree test for determining the number of com-
ponents. The results are purportedly identical to those from the visual scree test. The test is based
on the standard error of estimate values that are computed for the set of eigenvalues in a scree plot.
The number of components to retain is the point where the standard error exceeds 1/m, where m is
the numbers of variables.

Usage

SESCREE(data, Ncases=NULL, corkind, verbose)
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Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal. The function internally
determines whether the data are a correlation matrix.

Ncases The number of cases. Required only if data is a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix.
The options are ’pearson’, ’kendall’, ’spearman’, ’gamma’, and ’polychoric’.
Required only if the entered data is not a correlation matrix.

verbose Should detailed results be displayed in console? TRUE (default) or FALSE

Value

The number of components according to the Standard Error Scree test.

Author(s)

Brian P. O’Connor

References

Zoski, K., & Jurs, S. (1996). An objective counterpart to the visual scree test for factor analysis:
the standard error scree test. Educational and Psychological Measurement, 56(3), 443-451.

Examples

# the Harman correlation matrix
SESCREE(data_Harman, Ncases=305, verbose=TRUE)

# the Rosenberg Self-Esteem Scale (RSE) using Pearson correlations
SESCREE(data_RSE, corkind='pearson', verbose=TRUE)

# the Rosenberg Self-Esteem Scale (RSE) using polychoric correlations
SESCREE(data_RSE, corkind='polychoric', verbose=TRUE)

# the NEO-PI-R scales
SESCREE(data_NEOPIR, verbose=TRUE)

SMT Sequential chi-square model tests

Description

A test for the number of common factors using the likelihood ratio test statistic values from maxi-
mum likelihood factor analysis estimations.
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Usage

SMT(data, corkind, Ncases=NULL, verbose)

Arguments

data An all-numeric dataframe where the rows are cases & the columns are the vari-
ables, or a correlation matrix with ones on the diagonal. The function internally
determines whether the data are a correlation matrix.

corkind The kind of correlation matrix to be used if data is not a correlation matrix.
The options are ’pearson’, ’kendall’, ’spearman’, ’gamma’, and ’polychoric’.
Required only if the entered data is not a correlation matrix.

Ncases The number of cases. Required only if data is a correlation matrix.

verbose Should detailed results be displayed in console? TRUE (default) or FALSE

Details

From Auerswald & Moshagen (2019):

"The fit of common factor models is often assessed with the likelihood ratio test statistic (Lawley,
1940) using maximum likelihood estimation (ML), which tests whether the model-implied covari-
ance matrix is equal to the population covariance matrix. The associated test statistic asymptotically
follows a Chi-Square distribution if the observed variables follow a multivariate normal distribution
and other assumptions are met (e.g., Bollen, 1989). This test can be sequentially applied to factor
models with increasing numbers of factors, starting with a zero-factor model. If the Chi-Square
test statistic is statistically significant (with e.g., p < .05), a model with one additional factor, in
this case a unidimensional factor model, is estimated and tested. The procedure continues until a
nonsignificant result is obtained, at which point the number of common factors is identified.

"Simulation studies investigating the performance of sequential Chi-Square model tests (SMT) as
an extraction criterion have shown conflicting results. Whereas some studies have shown that SMT
has a tendency to overextract (e.g., Linn, 1968; Ruscio & Roche, 2012; Schonemann & Wang,
1972), others have indicated that the SMT has a tendency to underextract (e.g., Green et al., 2015;
Hakstian et al., 1982; Humphreys & Montanelli, 1975; Zwick & Velicer, 1986). Hayashi, Bentler,
and Yuan (2007) demonstrated that overextraction tendencies are due to violations of regularity as-
sumptions if the number of factors for the test exceeds the true number of factors. For example,
if a test of three factors is applied to samples from a population with two underlying factors, the
likelihood ratio test statistic will no longer follow a Chi-Square distribution. Note that the tests are
applied sequentially, so a three-factor test is only employed if the two-factor test was incorrectly
significant. Therefore, this violation of regularity assumptions does not decrease the accuracy of
SMT, but leads to (further) overextractions if a previous test was erroneously significant. Addition-
ally, this overextraction tendency might be counteracted by the lack of power in simulation studies
with smaller sample sizes. The performance of SMT has not yet been assessed for non-normally
distributed data or in comparison to most of the other modern techniques presented thus far in a
larger simulation design." (p. 475)

Value

A list with the following elements:

NfactorsSMT number of factors according to the SMT
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pvalues eigenvalues, chi-square values, & pvalues

Author(s)

Brian P. O’Connor

References

Auerswald, M., & Moshagen, M. (2019). How to determine the number of factors to retain in
exploratory factor analysis: A comparison of extraction methods under realistic conditions. Psy-
chological Methods, 24(4), 468-491.

Examples

# the Harman (1967) correlation matrix
SMT(data_Harman, Ncases=305, verbose=TRUE)

# Rosenberg Self-Esteem scale items, using Pearson correlations
SMT(data_RSE, corkind='polychoric', verbose=TRUE)

# NEO-PI-R scales
SMT(data_NEOPIR, verbose=TRUE)

VARIMAX varimax rotation

Description

varimax rotation

Usage

VARIMAX(loadings, normalize = TRUE, verbose)

Arguments

loadings A loading matrix.

normalize Should Kaiser normalization be performed? If so the rows of x are re-scaled to
unit length before rotation, and scaled back afterwards. Default = TRUE.

verbose Should detailed results be displayed in console? TRUE (default) or FALSE

Details

This function uses the R built-in varimax function and provides additional output.



52 VARIMAX

Value

A list with the following elements:

loadingsNOROT The unrotated loadings

loadingsV The varimax-rotated loadings

rotmatV The rotation matrix
cormat_reproduced

The reproduced correlation matrix, based on the rotated loadings

Author(s)

Brian P. O’Connor

Examples

# the Harman (1967) correlation matrix
PCAoutput <- PCA(data_Harman, Nfactors = 2, Ncases=305, rotate='none', verbose=TRUE)
VARIMAX(PCAoutput$loadingsNOROT, verbose=TRUE)

# Rosenberg Self-Esteem scale items
PCAoutput <- PCA(data_RSE, corkind='polychoric', Nfactors = 2, rotate='none', verbose=TRUE)
VARIMAX(PCAoutput$loadingsNOROT, verbose=TRUE)

# NEO-PI-R scales
PCAoutput <- PCA(data_NEOPIR, Nfactors = 5, rotate='none', verbose=TRUE)
VARIMAX(PCAoutput$loadingsNOROT, verbose=TRUE)
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