Package 'ELMSO'

January 18, 2020

Type Package

Title Implementation of the Efficient Large-Scale Online Display Advertising Algorithm

Version 1.0.1
Date 2020-1-17
Maintainer Courtney Paulson courtneypaulson@suu.edu
Description An implementation of the algorithm described in "Efficient LargeScale Internet Media Selection Optimization for Online Display Advertising" by Paulson, Luo, and James (Journal of Marketing Research 2018; see URL below for journal text/citation and http://faculty.marshall.usc.edu/gareth-james/Research/ELMSO.pdf for a full-text version of the paper). The algorithm here is designed to allocate budget across a set of online advertising opportunities using a coordinate-descent approach, but it can be used in any resource-allocation problem with a matrix of visitation (in the case of the paper, website pageviews) and channels (in the paper, websites). The package contains allocation functions both in the presence of bidding, when allocation is dependent on channel-specific cost curves, and when advertising costs are fixed at each channel.
Depends R (>=3.4.0)
License GPL-3
URL https://journals.sagepub.com/doi/abs/10.1509/jmr.15.0307
Repository CRAN
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no
Author Courtney Paulson [aut, cre],
Lan Luo [ctb],
Gareth James [ctb]
Date/Publication 2020-01-18 08:00:02 UTC

R topics documented:

ELMSO 2
ELMSO.fixed 3
reach.ELMSO 4
reach.ELMSO.fixed 5
Index 7
ELMSO Main ELMSO Function

Description

This function allows you to allocate budget to a set of websites based on the cost curve of the websites and a matrix of pageviews for those sites.

```
Usage
    ELMSO(z, CPM = NULL, a = NULL, tau = NULL, step = 0.05,
        size = 100, tol = 10^-3, iters = 200)
```


Arguments

z An n by p matrix of pageviews
CPM A p-dimensional vector of the average CPM values at each website. This is used to calculate the cost curve from a shifted logistic function. You may instead enter values for a p-dimensional "a" vector to define your own shifted logistic cost curve.
a
A p-dimensional vector of values controlling the steepness of the shifted logistic cost curve. You may instead enter values for a p-dimensional vector of average CPM values to have the curve calculated for you.
tau A p-dimensional vector of total pageviews (in thousands) for each website. Defaults to the total pageviews in the matrix for each website (i.e., assumes z matrix represents all website pageviews) divided by 1000.
step A value to control the step size of the lambda grid (distance between budget points). Default is 0.05 .
size A value to control the number of lambda values tried (number of budget points). Default is 100 .
tol A value to control the convergence tolerance of the coordinate descent procedure. Default is $10^{\wedge}-3$.
iters A value to control the number of iterations until algorithm should exit if convergence tolerance is not reached. Default is 200.

Value

bid: A matrix of bid values by website at each budget
spend: a matrix of total spend by website at each budget
budget: a vector of budget values
lambda: a vector of lambda values
a: a vector of a values (used to calculate shifted logistic curves and reach in reach.ELMSO function)

References

Courtney Paulson, Lan Luo, and Gareth M. James (2018) Efficient Large-Scale Internet Media Selection Optimization for Online Display Advertising. Journal of Marketing Research: August 2018, Vol. 55, No. 4, pp. 489-506.

Examples

```
z=matrix(round(abs(rnorm(5000,0,0.7))),1000,5)
CPM.avg=c(3,4,5,6,7)
tau.values=rep(1000,5) #Note tau here is in thousands of pageviews
allocation=ELMSO(z=z,CPM=CPM.avg,tau=tau.values)
allocation$bid
allocation$spend
allocation$budget
allocation$lambda
allocation$a
```

```
ELMSO.fixed
Fixed ELMSO Function (fixed advertising costs, no cost curve)
```


Description

This function allows you to allocate budget to a set of websites when cost is fixed at each website based on a matrix of pageviews for those sites.

Usage

ELMSO.fixed(z, CPM, tau $=$ NULL, step $=0.05$, size $=100$, tol $=10^{\wedge}-3$, iters $\left.=200\right)$

Arguments

z
CPM A p-dimensional vector of the (fixed) CPM values at each website
tau A p-dimensional vector of total pageviews (in thousands) for each website. Defaults to the total pageviews in the matrix for each website (i.e., assumes z matrix represents all website pageviews) divided by 1000 .

step	A value to control the step size of the lambda grid (distance between budget points). Default is 0.05.
size	A value to control the number of lambda values tried (number of budget points). Default is 100.
tol	A value to control the convergence tolerance of the coordinate descent proce- dure. Default is $10^{\wedge}-3$.
iters	A value to control the number of iterations until algorithm should exit if conver- gence tolerance is not reached. Default is 200.

Value

spend: a matrix of total spend by website at each budget
budget: a vector of budget values
lambda: a vector of lambda values

References

Courtney Paulson, Lan Luo, and Gareth M. James (2018) Efficient Large-Scale Internet Media Selection Optimization for Online Display Advertising. Journal of Marketing Research: August 2018, Vol. 55, No. 4, pp. 489-506.

Examples

z=matrix(round(abs(rnorm(5000, 0, 0.7))), 1000,5)
CPM.fixed=c (3,4,5,6,7)
tau.values=rep $(100,5)$ \#Note tau here is in thousands of pageviews
allocation=ELMSO.fixed(z=z, CPM=CPM.fixed, tau=tau.values)
allocation\$spend
allocation\$budget
allocation\$lambda
reach.ELMSO
Calculating Reach from Main ELMSO Function

Description

This function allows you to calculate reach achieved at a given budget value from the ELMSO output.

Usage

reach.ELMSO(bid, a, z)

Arguments

bid A p-dimensional vector of the bidded CPM at each website for a particular budget value
A p-dimensional vector of steepness values for the cost curves associated with each website

An n by p matrix of pageviews

Value

A value between 0 and 1 specifying the reach achieved with the given budget allocation.

References

Courtney Paulson, Lan Luo, and Gareth M. James (2018) Efficient Large-Scale Internet Media Selection Optimization for Online Display Advertising. Journal of Marketing Research: August 2018, Vol. 55, No. 4, pp. 489-506.

Examples

```
z=matrix(round(abs(rnorm(5000,0,0.7))),1000,5)
CPM.avg=c(3,4,5,6,7)
tau.values=rep(100,5) #Note tau here is in thousands of pageviews
allocation=ELMSO(z=z,CPM=CPM.avg,tau=tau.values)
reach.ELMSO(allocation$bid[,101],allocation$a,z)
```

```
reach.ELMSO.fixed Calculating Reach from Fixed ELMSO Function
```


Description

This function allows you to calculate reach achieved at a given budget value from the fixed ELMSO output.

Usage

reach.ELMSO.fixed(CPM, w, z, tau = NULL)

Arguments

CPM A p-dimensional vector of the fixed CPM at each website for a particular budget value
w
z
tau
A p-dimensional vector of amount spent at each website
An n by p matrix of pageviews
A p-dimensional vector of total pageviews (in thousands) for each website. Defaults to the total pageviews in the matrix for each website (i.e., assumes z matrix represents all website pageviews) divided by 1000 .

Value

A value between 0 and 1 specifying the reach achieved with the given budget allocation.

References

Courtney Paulson, Lan Luo, and Gareth M. James (2018) Efficient Large-Scale Internet Media Selection Optimization for Online Display Advertising. Journal of Marketing Research: August 2018, Vol. 55, No. 4, pp. 489-506.

Examples

```
z=matrix(round(abs(rnorm(5000,0,0.7))), 1000,5)
CPM.fixed=c(3,4,5,6,7)
tau.values=rep(100,5) #Note tau here is in thousands of pageviews
allocation=ELMSO.fixed(z=z,CPM=CPM.fixed,tau=tau.values)
reach.ELMSO.fixed(CPM.fixed,allocation$spend[,101],z,tau.values)
```


Index

ELMSO, 2
ELMSO.fixed, 3
reach.ELMSO, 4
reach.ELMSO.fixed, 5

