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1 Introduction

This vignette describes the algorithm “EMVS”, the EM approach to Bayesian Variable Selection
(Rockova and George, 2014) and its usage in the R package EMVS. This R package implementation of
EMVS has two options for prior specification:

1. A “conjugate” or “scale-invariant” prior on the regression coefficients, as detailed in Rockova and
George (2014);

2. An “independent” prior where the regression coefficients and error variance are treated as indepen-
dent a priori, which is recommended by Moran, Rockova and George (2018).

This vignette details the EMVS algorithm where the second, independent prior formulation is used,
and provides an example of its usage in the package.

2 Model

Consider the classical linear regression model

Y = Xβ + ε, ε ∼ Nn(0, σ2In) (1)

where Y ∈ Rn is a vector of responses, X = [X1, . . . ,Xp] ∈ Rn×p is a fixed regression matrix of p
potential predictors, β = (β1, . . . , βp)

T ∈ Rp is a vector of unknown regression coefficients and ε ∈ Rn
is the noise vector of independent normal random variables with σ2 as their unknown common variance.

The goal of EMVS is to find which predictors xi should be included in the model. In the Bayesian
paradigm, this is facilitated by the introduction of binary latent variables γ = (γ1, . . . , γp)

T , γi ∈ {0, 1},
where γi = 1 indicates that xi is to be included in the model.

The hierarchical model is given by:

π(β|γ, v0, v1) = Np(0,Dγ) (2)

where D = diag(d1, . . . , dp) with di = (1 − γi)v0 + γiv1 for 0 ≤ v0 < v1. Following George and
McCulloch (1997), Rockova and George (2014) recommend setting the hyperparameters v0 and v1 to
be small and large fixed values respectively; this yields the canonical “spike” and “slab” of Bayesian
variable selection. Note that the above prior does not depend on the error variance σ2, unlike the
original formulation in Rockova and George (2014).

The prior on the error variance is an inverse gamma:

π(σ2) = IG(ν/2, νλ/2). (3)
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To incorporate uncertainty regarding which variables should be included in the model, EMVS addi-
tionally specifies a prior for the latent indicator variables γ. This prior is iid Bernoulli:

π(γ|θ) = θ|γ|(1− θ)p−|γ| (4)

where θ ∈ [0, 1] and |γ| =
∑p
i=1 γi. The proportion of non-zero regression coefficients, θ, is unknown:

this parameter is assigned a beta prior:

π(θ) ∝ θa−1(1− θ)b−1, a, b > 0. (5)

3 Algorithm

The EMVS algorithm treats the latent indicators γ as “missing data” and indirectly maximizes the
posterior π(β, θ, σ2|Y) by iteratively maximizing the following objective function:

Q(β, θ, σ|β(k), θ(k), σ2(k)) = Eγ|·[log π(β, θ, σ2,γ|Y)|β(k), θ(k), σ2(k),Y] (6)

where Eγ|·(·) denotes the conditional expectation Eγ|β(k),θ(k),σ2(k),Y(·). At the kth iteration, given

(β(k), θ(k), σ2(k)), an E-step is first applied, which computes the expectation of the right side of (6)
to obtain Q. This is followed by an M-step, which maximizes Q over (β, θ, σ2) to yield the values of
(γ(k+1), θ(k+1), σ2(k+1)).

The objective function is of the form:

Q(β, θ, σ2|β(k), θ(k), σ2(k)) = C +Q1(β, σ2|β(k), θ(k), σ2(k)) +Q2(θ|β(k), θ(k), σ2(k)) (7)

where

Q1(β, σ2|β(k), θ(k), σ2(k)) = − 1

2σ2
‖Y −Xβ‖2 − n+ ν + 2

2
log(σ2)− νλ

2σ2
(8)

− 1

2

p∑
i=1

β2
iEγ|·

[
1

v0(1− γi) + v1γi

]
, (9)

and

Q2(θ|β(k), θ(k), σ2(k)) =

p∑
i=1

log

(
θ

1− θ

)
Eγ|·γi + (a− 1) log(θ) + (p+ b− 1) log(1− θ). (10)

3.1 E-Step

We have:

Eγ|·γi = P (γi = 1|β(k), θ(k)) = p∗i (11)

where

p∗i =
θ(k)φv1(β

(k)
i )

θ(k)φv1(β
(k)
i ) + (1− θ(k))φv0(β

(k)
i )

(12)

where φv(x) = 1√
2πv

exp(−x2/2v) is the normal density with zero mean and variance, v.
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To complete the E-step, we have

Eγ|·

[
1

v0(1− γi) + v1γi

]
=
Eγ|·(1− γi)

v0
+
Eγ|·γi

v1
(13)

=
1− p∗i
v0

+
p∗i
v1

(14)

≡ d∗i . (15)

We denote the matrix D∗ = diag(d∗1, . . . , d
∗
p).

3.2 M-Step

The objective function (6) yields closed form updates for each of (β(k+1), θ(k+1), σ2(k+1)). These are:

β(k+1) = [XTX + σ2(k)D∗]−1XTY, (16)

σ2(k+1) =
‖Y −Xβ(k+1)‖2 + νλ

n+ ν + 2
, (17)

θ(k+1) =

∑p
i=1 p

∗
i + a− 1

a+ b− p− 2
. (18)

In problems where p� n, the calculation cost of (16) is substantially reduced by using the Sherman-
Morrison-Woodbury formula to obtain:

β(k+1) = σ2[D∗−1 −D∗−1XT (σ2In×n + XD∗−1XT )−1XD∗−1]XTY. (19)

The EMVS algorithm iterates between the above steps until convergence. The default convergence
criterion is: ‖β(k+1) − β(k)‖2 ≤ 10−5.

3.3 Thresholding the EM Output for Variable Selection

Once we have obtained our MAP estimates (β̂, θ̂, σ̂2), we can find the most probable γ given those
values. This is obtained by setting

γ̂i =

{
1 if P (γi = 1|β̂, θ̂, σ̂2) ≥ 0.5

0 otherwise.
(20)

This selection of γ̂ is equivalent to thresholding the β̂i (Rockova and George, 2014). This thresholding

occurs at the intersection points ±β∗i of the P (γi = 1|β̂, θ̂) weighted mixture of the spike-and-slab
priors, namely,

±β∗i (v0, v1, θ̂) = ±
√

2v0 log(ωic)c2/(c2 − 1) (21)

where c2 = v1/v0 and ωi = (1− θ̂)/θ̂. Then, the thresholding rule is

γ̂i =

{
1 if |β̂i| ≥ β∗i (v0, v1, θ̂).

0 otherwise.
(22)
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4 Dynamic Posterior Exploration

The speed of the EM algorithm allows for posterior modes to be found for multiple values of the spike
parameter v0. This facilitates a dynamic posterior exploration strategy where the slab parameter v1 is
held fixed and v0 is gradually decreased to approximate the ideal point mass spike prior. This is akin
to an annealing strategy; when v0 = v1, the posterior is convex (in this case, it is equivalent to ridge
regression) and as v0 is decreased, it becomes multimodal. By starting with large v0 and using the
resultant solution as a “warm start” for the next (smaller) value of v0, the procedure can more easily
find modes of the posterior. Decreasing v0 also serves to shrink smaller coefficients to zero and find a
sparse solution to the regression problem. The original paper (Rockova and George, 2014) illustrates
a “forward” strategy for EMVS by starting with small v0 and gradually increasing it. However, our
recommendation is to use a “backward” strategy wherein we start with large v0 and gradually decrease
it. In this “backward” strategy, the algorithm also stabilizes at a solution for small v0, in many cases
eliminating the need to choose a particular “best” spike parameter.

The EMVS function in the R package has three options for dynamic posterior exploration: direction

= c("backward", "foward", "null"). These are described below.

• direction = "backward" (default, recommended): this option starts with the largest value of
v0 and finds a solution to the EMVS algorithm. This solution is used as the inital value for the
algorithm with the second largest value of v0. This process is repeated until the smallest value
of v0.

• direction = "forward": this option is similar to the backward option, but starts with the
smallest value of v0 and then uses the resultant solution as the initial value for the next largest
value of v0, repeating the process until the largest value of v0.

• direction = "null": this option uses beta init as the initial value for each value of v0 and
as such is not a dynamic posterior exploration strategy.

5 Prior Specification

As mentioned in the introduction, the EMVS function in the R package has two options for the prior
specification: independent = c(TRUE, FALSE). These are described below.

• independent = TRUE (default, recommended): this option implements EMVS with the “inde-
pendent” prior detailed in Section 2 of this vignette.

• independent = FALSE: this option implements EMVS with the “conjugate” or “scale-invariant”
prior on the regression coefficients detailed in the original paper (Rockova and George, 2014).

The reason we recommend the “independent” prior for EMVS is that it yields better error variance
estimates (Moran et al., 2018). Intuitively, the “conjugate” prior adds p “pseudo-observations” of the
error variance σ2, which can result in severe underestimation of the error variance. For more details,
see Moran et al. (2018).

6 Example

In this section, we demonstrate the basic usage of EMVS for both the independent and conjugate
prior implementations. We conclude with a comparison of the error variance estimates from the two,
highlighing the benefit of the independent prior formulation.
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We begin by loading the package:

library(EMVS)

We create a toy dataset with n = 100 and p = 1000:

set.seed(12022018)

n = 100

p = 1000

X = matrix(rnorm(n * p), n, p)

beta = c(1.5, 2, 2.5, rep(0,p-3))

Y = X[,1] * beta[1] + X[,2] * beta[2] + X[,3] * beta[3] + rnorm(n)

6.1 Independent Prior

We set the parameters for EMVS: the “ladder” of values of v0, the slab parameter v1, the initial β
and the hyperparameters of the beta distribution, a, b.

# independent prior on regression coefficients and variance

v0 = exp(seq(-10, -1, length.out = 20))

v1 = 1

beta_init = rep(1, p)

sigma_init = 1

a = b = 1

We then run EMVS using the independent prior formulation described in Section 2 of this vignette
(independent = TRUE). The output is stored in result ind.

# independent prior on regression coefficients and variance

result_ind = EMVS(Y = Y, X = X, v0 = v0, v1 = v1, type = "betabinomial",

independent = TRUE, beta_init = beta_init,

sigma_init = sigma_init,

a = a, b = b, log_v0 = TRUE)

The function EMVSplot plots the estimates of the regression coefficients, β̂, over all the values of v0

(i.e. the regularization plot). Here the v0 are plotted on the log scale - this is because we set the option
log v0 = TRUE when running EMVS.

EMVSplot(result_ind, "both", FALSE)
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Note that the default option direction = "backward" results in the EMVS algorithm stabilizing for
small v0. This eliminates the need to choose a v0; we take the coefficients at the smallest v0 as our
solution.

6.2 Conjugate Prior

We now run EMVS, using the conjugate prior formulation as outlined in the original paper (independent
= FALSE). The output is stored in result conj. We re-initialize both the slab parameter v1 and the
ladder of spike values v0 as the scale of the variance is different for the independent and conjugate
formulations.

v0 = seq(0.1, 2, length.out = 20)

v1 = 1000

result_conj = EMVS(Y, X, v0 = v0, v1 = v1, type = "betabinomial",

independent = FALSE, beta_init = beta_init,

sigma_init = sigma_init, a = a, b = b)

The function EMVSbest shows the maximum value of the log g function over all the v0 values (Rockova
and George, 2014) and the non-zero indices of the model with the highest value of log g (the marginal
posterior).

EMVSbest(result_conj)

## [1] "Best Model Found"

## $log_g_function

## [1] -276.5027

##

## $indices

## [1] 1 2 3

We plot both the regularization path and the values of the log g function.
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EMVSplot(result_conj, "both", FALSE)
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Note that the log g function is unavailable for the independent = TRUE implementation as the inde-
pendent prior formulation does not yield a closed form for the marginal posterior. An approximation
will be implemented in a future update to the EMVS package. As discussed earlier, however, the “back-
ward” strategy stabilizes for small values v0 and so we recommend taking the coefficients found at the
smallest value of v0 as the solution. In many cases this eliminates the need for the log g function as
a criterion.

6.3 Variance Estimation

We now compare the error variance estimates from the independent and conjugate prior implementa-
tions of EMVS.

The below plot shows the estimates of the standard deviation of the error (σ̂) for each value of v0
for both the independent and conjugate prior formulations, as well as the regularization plots for the
coefficients, β.
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We can see that the conjugate prior formulation severely underestimates the true error variance (σ = 1)
with the estimate σ̂conj = 0.0439. In contrast, the estimate of σ at v0 = exp(−10) for the independent
case is σ̂ind = 0.955, much closer to the true value.

7 Conclusion

In this vignette, we described the EMVS algorithm of Ročková and George (2014) with an independent
prior formulation. We demonstrated how this algorithm can be applied using the EMVS R package.
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