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Abstract

Maximum likelihood (ML) method is preferred among others because it produces con-
sistent and efficient estimators. However, likelihood optimization processes frequently
involve unwieldy mathematical expressions and it is necessary in some cases to implement
distributions and constantly build (log-)likelihood functions in computing languages in
order to get numerical solutions. We present maxlogL, a function contained in the Esti-
mationTools package for ML parameter estimation of any probability function loaded in
R with no need of special structures, given a data set. We show via simulation that the
routine has good performance in estimating the parameters of three distributions (normal,
ZIP and user-defined). Finally, we present two application examples with real data.

Keywords: Maximum likelihood estimation, parameter estimation, R, EstimationTools.

1. Introduction

Parameter estimation for probability density functions or probability mass functions is a
central problem in statistical analysis and applied sciences because it allows to build pre-
dictive models and make inferences. Traditionally this problem has been tackled by means
of likelihood maximization, as it was introduced by Fisher (1912). The method consists on
performing an optimization through first derivative of the log-likelihood function and solve
the outcoming system of equations. Despite its validity for any probability distribution, there
exist a vast variety of them with cumbersome derivatives which produce non-linear systems
of equations, therefore it is necessary to implement numerical methods and develop compu-
tational algorithms to find a solution.

R (R Core Team 2019) is a free language developed for statistical computing and equipped
with unconstrained and box-constrained general-purpose optimization tools in base package:
Fox, Hall, and Schryer (1978) developed the function nlminb for optimization using PORT
(portable Fortran programs for numerical computation) routines; Nash (1979) implemented
optim, a function that performs optimization based on three algorithms: (1) Nelder and Mead
(1965), (2) quasi-Newton (BFGS) and (3) conjugate-gradient (CG). Either the former or the
latter is implemented, users must take a distribution included in any package or create their
own function otherwise and then write the likelihood.

On the other hand, R posses an extensive number of libraries (add-ons) in order to enhance its
capabilities, e.g gamlss package (Stasinopoulos and Rigby 2007) for fitting generalized additive
models for location, scale and shape. It is possible to carry out parameter estimation with
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an empty regression model of any distribution implemented as a gamlss.family structure.
Visit Stasinopoulos, Rigby, Heller, Voudouris, and De Bastiani (2017) for more details.

In this paper, we introduce the function maxlogL, which is capable of applying maximum like-
lihood estimation based on optimization through optim or nlminb only with the density/mass
function defined as usual in R. The user could define its own distribution or use whichever
existing in any package. The remainder of the article defines the maximization problem
mathematically and computationally. Then, we present a simulation study to evaluate the
performance of maxlogL with data generated from normal, ZIP and user-defined distributions.
Finally, we give an application with a real data set and present some conclusions.

2. Maximum Likelihood estimation

Let be y" = (y1,¥2,..., %) a random sample with n observations drawn from a population
with distribution f(-|@), with 6 a vector of parameters. The likelihood function of 8 is

L(6ly) = ] f(uil6). (1)
i=1

The method of ML finds the parameter values that makes data more probable. It is achieved
by computing a vector 8 such that

A

0 = argmax L(0|y). (2)
6co
It is usual to perform maximization of log-likelihood function, i.e. I(0|y) = log L(8|y). The
variance-covariance matrix of ML estimators is given by

Var(0) = 171(0) = C(0), (3)

A

where 1(0) is the Fisher Information Matrix. The standard errors can be calculated as the
square root of the diagonal elements of matrix C' (Pawitan 2013)

S.E(0) =\/C;;(8). (4)

The R function presented here calculates [(8|y) computationally, and computes standard
errors from Hessian matrix.

3. Basic usage and features

Our maxlogL function is a S3 object of class maxlogL. It is included in EstimationTools,
a package available from the Comprehensive R Archive Network (CRAN) https://cran.
r-project.org/package=EstimationTools. It can be downloaded and loaded in global
environment typing the following instructions in the console:

R> install.packages("EstimationTools")
R> library(EstimationTools)


https://cran.r-project.org/package=EstimationTools
https://cran.r-project.org/package=EstimationTools
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With maxlogL we provide a flexible implementation of ML estimation. It cab be executed
stating its most important arguments

R> maxlogL(x, dist, optimizer, lower = NULL, upper = NULL)

where the argument x is a vector with data to be fitted, dist corresponds to the probabil-
ity density/mass function of the working distribution, whereas upper and lower are limits
used when user selects box-constrained algorithms. maxlogL is a wrapper function specifi-
cally developed for ML estimation, which allows to implement any of optim algorithms for
optimization or nlminb routine for unconstrained or box-constrained optimization through
the argument optimizer.

EstimationTools package provides a summary method for class maxlogL, which displays AIC
(Akaike Information Criterion), BIC (Bayesian Information Criterion), ML estimates and its
standard error. The method also reports the optimization routine selected by the user and the
method used for computation of standard error. There are three methods available: hessian
function from numDeriv package, calculation with optim (setting the argument hessian =
TRUE and bootstrap calculation, with boot function of boot package (Davison and Hinkley
1997; Canty and Ripley 2017).

Hence, for non-censorship fitting the user must pass a vector with data and specify a prob-
ability distribution function available in R. For example, fitting a sample generated from a
normal distribution, Z ~ NO(u = 10, 02 = 1), could be done with the next command lines:

R> set.seed(1000)

R> z <- rnorm(n = 1000, mean = 10, sd = 1)

R> fitl <- maxlogL(x = z, dist = ’dnorm’, start=c(2, 3),
+ lower=c(-15, 0), upper=c(15, 10))

R> summary(fit1)

Optimization routine: nlminb
Standard Error calculation: Hessian from optim

Estimate Std. Error Z value Pr(>|z]|)
mean 9.98752 0.03103 321.87 <2e-16 ***
sd 0.98126 0.02194 44 .72 <2e-16 ***

Signif. codes: O ’x*x’ 0.001 ’*%’ 0.01 ’x’ 0.05 ’>.” 0.1’ ’ 1

The link argument is a list with entries fun and over, which specify the link functions applied
and the name of linked parameters in probability function implemented in R respectively. The
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estimation performed above can be carried out applying logarithm link function to o, avoiding
problems of estimation in the boundary of parametric space. The usage is illustrated in the
following code snippet:

R> fit2 <- maxlogL(x = z, dist = ’dnorm’,
+ link = list(over = "sd", fun = "log_link"))
R> summary (fit2)

Optimization routine: nlminb
Standard Error calculation: Hessian from optim

Estimate Std. Error Z value Pr(>|zl|)
mean 9.98752 0.03103 321.87 <2e-16 ***
sd 0.98126 0.02194 44,72 <2e-16 ***

Signif. codes: O ’x*x’ 0.001 ’*%’ 0.01 ’x’ 0.05 ’>.” 0.1’ ’ 1

Note: p-values valid under asymptotic normality of estimators

The user can apply link functions to more than one parameter of the distribution:

R> fit3 <- maxlogL(x = z, dist = ’dnorm’,

+ link = list(over = c("mean", "sd"),

+ fun = c("log_link", "log_link")))
R> summary(fit3)

Optimization routine: nlminb
Standard Error calculation: Hessian from optim

Estimate Std. Error Z value Pr(>|z])
mean 9.98752 0.03103 321.87 <2e-16 ***
sd 0.98126 0.02194 44 .72 <2e-16 *xx*xx

Signif. codes: O ’**xx’ 0.001 ’**x> 0.01 ’x> 0.05 ’.” 0.1 ’ ’> 1

Note: p-values valid under asymptotic normality of estimators
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Other link functions available are logit and negative inverse, which must be specified as
"logit_link" and "NegInv_link". On the other hand, maxlogL allows to define fixed known
parameters, e.g., the sample size n in estimation of success proportion in a binomial distribu-
tion N ~ BI(p = 0.3, n = 10). This parameters can be specified with fixed argument, which
is a list that stores the fixed parameters value specified by their names

R> set.seed(100)

R> N <- rbinom(n = 100, size = 10, prob = 0.3)

R> phat <- maxlogL(x = N, dist = ’dbinom’, fixed = list(size = 10),
+ link = list(over = "prob", fun = "logit_link"))
R> summary (phat)

Optimization routine: nlminb
Standard Error calculation: Hessian from optim

Estimate Std. Error Z value Pr(>|zl|)
prob 0.31200 0.01465 21.3 <2e-16 *xx*xx

Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’x> 0.056 ’.” 0.1’ ’> 1

As can be seen, the procedure applies the inverse of the link function to return the parameter
to the original scale.

(o< HEAD =

4. Simulation Study

In this section we simulated ML estimation with some distributions with maxlogL.

4.1. Existing distributions

We simulated the following two types of random variables: X ~ NO(u = 5, 02 = 4) with
sample sizes n € {3,...,400} and Y ~ ZIP(A = 6, # = 0.08) with n € {3,...,500}. We
performed 1000 replications of each sample size.

4.2. User-defined distribution

Additionally, we simulated W ~ EEB(u = 0.5, 0 = 1,v = 1.5, m = 10) with n € {3, ...,1000}
(an exponentiated exponential binomial distribution, proposed by Bakouch, Risti¢, Asgharzadeh,
Esmaily, and Al-Zahrani (2012)). As the previous case, we performed 1000 replications of
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each sample size. Probability density function of EEB distribution is given by the following
expression:

ovum

f(wlp, o,v,m) “ioa—pm

with w > 0, u € (0,1), o,v > 0 and m an integer such that m > 1. We took this distribution
as the user-defined by implementing it as an R function, as is customary. Note that argument
size corresponds to parameter m in equation (5):

R> dEEB <- function(x, mu = 0.5, sigma = 1, nu = 1.5, size = 10,
log = FALSE){
if (any(x<0))
stop(paste("x must greater than zero", "\n", ""))
if (any(mu < 0) | any(mu > 1))
stop(paste("mu must be between 0 and 1", "\n", ""))
if (any(sigma<=0 ))
stop(paste("sigma must be greater than zero", "\n", ""))
if (any(nu<=0 ))
stop(paste("nu must be greater than zero”, "\n", ""))

loglik <- log(sigma * nu * size * mu) - sigma * x +
(nu - 1) * log(1 - exp(-sigma * x)) -
log(1 - (1 - mu) size) +
(size - 1) * log(l - mu * (1 - exp(-sigma * x)) nu)
if (log == FALSE)
density <- exp(loglik) else density <- loglik
return(density)

+ + + + 4+ + + 4+ +F++FFF A+ T
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Figure 1: Mean value for (a) location parameter fi and (b) scale parameter & versus sample

size n in normal distribution based on 1000 replications.

value of the parameters.

5. Results

Horizontal red lines are the true

The results of Monte Carlo study for the three distributions mentioned are presented in
Figure 1 above, and Figures 2 and 3 below. All the plots show that the mean estimates tend
to the true value of the parameter as the sample size increases, as is expected under regularity

conditions.
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Figure 2: Mean value for (a) proportion of successes fi, (b) scale parameter & and (c) shape
parameter 7 versus sample size n in EEB distribution based on 1000 replications. Horizontal
red lines are the true value of the parameters.

Variance of estimated parameters decreases as sample size increases, according to the efficiency
property of ML estimators (Gurland 1954; Daniels 1961). This results are presented in figures
77,77 and 7?7 of Appendix ?77.
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Figure 3: Mean value for (a) rate parameter X and (b) extra zeros proportion 7 versus sample
size n in ZIP distribution based on 1000 replications. Horizontal red lines are the true value
of the parameters.

6. Illustrative examples

In the following examples we replicate maximum likelihood method with maxlogL in two
applications: fitting of a power Lindley distribution to model tensile strength of carbon fibers
and parameter estimation in two stage hierarchical model of retention proportions in memory
tests.

6.1. Tensile strength data: power Lindley distribution

Data presented in Table 1 correspond to the tensile strength 7' (in GPa) of 69 specimens of

1.312
1.997
2.270
2.478
2.642
2.848
3.585

1.314
2.006
2.272
2.490
2.648
2.88

3.585

1.479
2.027
2.274
2.511
2.684
2.954

1.552
2.055
2.301
2.514
2.697
3.012

1.700
2.063
2.301
2.535
2.726
3.067

1.803
2.098
2.359
2.554
2.770
3.084

1.861
2.14

2.382
2.566
2.773
3.090

1.865
2.179
2.382
2.57

2.800
3.096

1.944
2.224
2.426
2.586
2.809
3.128

1.958
2.240
2.434
2.629
2.818
3.233

1.966
2.253
2.435
2.633
2.821
3.433

Table 1: Tensile strength of 69 fibers (Devendra and Rangaswamy 2013).

carbon fiber tested under tension at gauge lengths of 20 mm.
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Ghitany, Al-Mutairi, Balakrishnan, and Al-Enezi (2013) fitted their power Lindley (PL) dis-
tribution:

2
fulp, o) = :;11(1 +utyut ey >0, po > 0. (6)

We implemented this density function in the R function dPL displayed below:

R> dPL <- function(x, mu, sigma, log=FALSE){
if (any(x < 0))
stop(paste("x must be positive", "\n", ""))
if (any(mu <= 0))
stop(paste("mu must be positive", "\mn", ""))
if (any(sigma <= 0))
stop(paste("sigma must be positive"”, "\n", ""))

loglik <- log(mu) + 2*log(sigma) - log(sigma+1l) +
log(1+(x"mu)) + (mu-1)*log(x) - sigma*(x"mu)

if (log == FALSE)
density <- exp(loglik)

else density <- loglik

return(density)

}

+ + + + 4+ + + + 4+ F++++ o+

Then, we estimate parameters with maxlogL taking the vector of strengths from data set
fibers, as follows:

R> # Fitting of tensile strenght data

R> st <- Fibers$Strenght

R> theta <- maxlogL(x = st, dist = "dPL",

+ link = list(over = c("mu", "sigma"),

+ fun = c("log_link", "log_link")))
R> summary (theta)

Optimization routine: nlminb
Standard Error calculation: Hessian from optim

Estimate Std. Error Z value Pr(>|zl)
mu 3.86778 0.31371 12.329 < 2e-16 ***
sigma  0.04967 0.01599 3.107 0.00189 *x*

Signif. codes: O ’x*x’ 0.001 ’*x’ 0.01 ’x’ 0.05 ’>.” 0.1’ > 1
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Note: p-values valid under asymptotic normality of estimators

Estimations are i = 3.8678 and 6 = 0.0497. Essentially, we get the same values computed
by Ghitany et al. (2013). In Figure 4 we showed the performance of parameter estimation
plotting corresponding density along with the histogram in the left panel and estimated
survival function along with Kaplan-Meier estimator in the right panel.
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Figure 4: Fitting of tensile strength data: (a) estimated density and histogram; (b) estimated
power Lindley survival function and Kaplan-Meier estimator.

6.2. Forgetting data: hierarchical binomial distribution

maxlogL is capable of fit hierarchical models with the proper function definition of input
variable. To illustrate the estimation, we replicated forgetting data example presented in
Myung (2003), which used data from Murdock, Bennet B. (1961).

The retention function is a probability function that models the proportion of correct recall
at time ¢; in each trial in memory tests. Myung (2003) studied the following two models in
their application example:

power model: p(a,b,t) = at™?,

. bt (7)
exponential model: p(a,b,t) =ae™™, a,b> 0.

Each observation in the data set corresponds to a proportion obtained as the quotient of
correct responses (z;) and the total number of independent trials (replications of each memory
test, represented by m). This kind of experiment can be modelled with a binomial distribution:
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m = 100 (number of trials)
Retention Interval (sec.) | 1 3 6 9 12 18
Observed proportion 0.94 0.77 0.40 0.26 0.24 0.16

Table 2: Observed proportion of recalls at each time.

m)!

f(zila,b,m) = +p(a,b,t) [ —p(a,b,t;)]" " (8)

(m — x;)! x;!

The usefulness of each retention equation is given by their goodness of fit.

Power model implementation
The hierarchical model with power retention function is implemented in an R function as

follows:

R> # Power model implementation
R> power_logL <- function(x, a, b, log = FALSE){

+ p <-a * x[,1]°(-b)

+ f <- dbinom(x = x[,2], size = m, prob = p)
+ if (log == TRUE)

+ density <- log(f) else density <- f

+ return(density)

+ }

Conditional density in equation (8) depends on x;, but proportion of successes depends on ¢,
as equation (7) shows. For this reason, the input argument x must be a n x 2 matrix, where
n is the sample size. In forgetting data, n = 6. Then, the estimation is performed as usual
with maxlogL. Note line six in the following chunk of code, which corresponds to the matrix
definition of the input data aforementioned:

R> # Power model estimation

R> m <- 100 # Independent trials

R> t <- ¢(1,3,6,9,12,18) # time intervals

R> p.ob <- ¢(0.94,0.77,0.40,0.26,0.24,0.16) # Observed proportion
R> x <- p.ob*m # Correct responses

R> x <- as.integer(x)

R> Xi <- matrix(c(t,x), ncol=2, nrow=6)

R> retention.pwr <- maxlogL(x = Xi, dist = "power_logL", lower = c(0.01,0.01),
+ upper = c(1,1), start = ¢(0.1,0.1))

R> summary(retention.pwr)

Optimization routine: nlminb
Standard Error calculation: Hessian from optim
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AIC BIC
57.4522 58.422
Estimate Std. Error Z value Pr(>|zl|)
a 0.95312 0.01860 51.25 <2e-16 **x
b 0.49793 0.03236 15.38 <2e-16 **x

Signif. codes: O ’x*x’ 0.001 ’*%’ 0.01 ’x’ 0.05 ’>.” 0.1’ ’ 1

In this application, convergence was achieved by solving a box-constrained likelihood opti-
mization, whose boundaries were specified in arguments lower and upper. Furthermore, tun-
ing initial values was necessary with argument start. Computed values are 8 = (Gpwrs Bpwr) =
(0.953,0.498), which are the same estimates of Myung (2003). Power fitting is illustrated in
Figure 5.

Exponential model implementation

Similarly as before, exponential retention function is implemented and input data is defined
as a matrix, in this fashion:

R> # Exponential model implementation

R> exp_logL <- function(x, a, b, log = FALSE){
+  p <-a * exp(-x[,1]*b)

+ f <- dbinom(x = x[,2], size = m, prob = p)
+ if (log == TRUE)

+ density <- log(f) else density <- f

+
+

return(density)
}
R> # Exponential model estimation
R> m <- 100 # Independent trials
R> t <- ¢(1,3,6,9,12,18) # time intervals
R> p.ob <- ¢(0.94,0.77,0.40,0.26,0.24,0.16) # Observed proportion
R> x <- p.ob*m # Correct responses

R> x <- as.integer(x)

R> Xi <- matrix(c(t,x), ncol=2, nrow=6)

R> retention.exp <- maxlogL(x = Xi, dist = ’exp_logL’, lower = c(0.1,0.1),
+ upper = c(2,2), start = c(0.1,0.2))

R> summary(retention.exp)

Optimization routine: nlminb
Standard Error calculation: Hessian from optim

13
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41.3329 42.3027

Estimate Std. Error Z value Pr(>|zl)
a 1.070112 0.031342 34.14 <2e-16 *x*x*
b 0.130826 0.009252 14.14 <2e-16 ***

Signif. codes: O ’**xx’ 0.001 ’*x> 0.01 ’x> 0.05 ’.” 0.1 ’ ’> 1

Again, we obtain the same estimates of Myung (2003): @ = (dexp, bexp) = (1.070,0.131).
Exponential fitting is shown in Figure 5. According to the Akaike information criterion, the
exponential model has better fitness (AICex, = 41.33 against AICyy, = 57.45).
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Figure 5: Observed proportion of recalls and models fitted.

7. Conclusions

We have implemented classic estimation via maximization of log-likelihood function through
basic optimization routines in R such as optim and nlminb. With maxlogL, we enable re-
searchers, developers and users in general to compute ML estimators of any distribution in
a fast and reliable way. With our summary method, it is possible to calculate standard error
of estimates through Hessian matrix or bootstrap algorithm. In some cases, it is possible to
implement estimation in hierarchical models, with appropriate tuning of initial values.
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In future revisions, we could implement evolutionary algorithms to perform estimation in dis-
tributions with regularity issues (Haupt and Haupt 2003). Furthermore, our routine could be
took to develop further work on log-likelihood estimation, such as developing new parametric
regression models.
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