
Live births in Germany: density-on-scalar regression

Eva-Maria Maier *

Wirtschaftswissenschaftliche Fakultät,
Humboldt-Universität zu Berlin,

Unter den Linden 6, D-10099 Berlin, Germany.

This vignette illustrates how to use FDboost, which was designed for functional regression (Brockhaus et
al., 2015), for density-on-scalar regression. Despite being a special case of function-on-scalar regression (at
least for densities defined on a nontrivial interval with respect to the Lebesgue measure, which we refer to as
continuous case), it has to be treated differently due to the special properties of probability density functions,
namely nonnegativity and integration to one. Our vignette is based on the approach by Maier et al. (2021).

1 Load and plot data

We use the data set birthDistribution from the package FDboost, containing densities of live births in
Germany over the months per year (1950-2019) and sex (male and female), resulting in 140 densities. It is a
list with the following elements:

� birth_densities: A 140 x 12 matrix containing the birth densities in its rows. The first 70 rows
correspond to male newborns, the second 70 rows to female ones. Within both of these, the years are
ordered increasingly (1950-2019).

� birth_densities_clr: A 140 x 12 matrix containing the clr transformed densities in its rows. Same
structure as birth_densities.

� sex: A factor vector of length 140 with levels "m" (male) and "f" (female), corresponding to the sex of
the newborns for the rows of birth_densities and birth_densities_clr. The first 70 elements are
"m", the second 70 "f".

� year: A vector of length 140 containing the integers 1950, . . . , 2019, 1950, . . . , 2019, corresponding to
the years for the rows of birth_densities and birth_densities_clr.

� month: A vector containing the integers from 1 to 12, corresponding to the months for the columns of
birth_densities and birth_densities_clr (domain T of the (clr-)densities).

This list already is in the format needed to pass it to FDboost. Note that to compensate for the different
lengths of the months, the average number of births per day for each month (by sex and year) was used to
compute the birth shares from the absolute birth counts. The 12 shares corresponding to one year and sex
form one density in the Bayes Hilbert space B2(δ) = B2 (T ,A, δ), where T = {1, . . . , 12} corresponds to the

set of the 12 months, A := P(T) corresponds to the power set of T , and the reference measure δ :=
∑12

t=1 δt
corresponds to the sum of dirac measures at t ∈ T . Thus, our analysis is an example for the discrete case
and the integral of a density is simply the sum of all 12 share values. We indicate how to proceed in the
continuous case, whenever it is distinct from the discrete one over the course of this vignette. We denote the
density contained in the i-th row of birth_densities with fi = fsexi,yeari , where sexi and yeari denote the
i-th elements of sex and year, respectively, i = 1, . . . , 140. We load the package and the data and plot the
densities:

*E-mail: eva-maria.maier@hu-berlin.de

1

load FDboost package

library(FDboost)

load birth_densities

data("birthDistribution", package = "FDboost")

function to plot a matrix or vector containing functions in B^2(delta) or L^2_0(delta);

Is used for densities, effects, predictions (also clr transformed)

plot_function <- function(plot_matrix, ...) {

funplot(1:12, plot_matrix, xlab = "month", xaxp = c(1, 12, 11), pch = 20, ...)

abline(h = 0, col = "grey", lwd = 0.5)

}

function to create two plots (by sex) from a matrix containing densities or predictions

(also clr transformed) for males in first half of rows and females in second half

plot_birth_densities <- function(birth_matrix, ylim = range(birth_matrix), ...) {

par(mfrow = c(1, 2))

for (k in 1:2) {

n_obs <- nrow(birth_matrix) / 2

obs <- 1:n_obs + (k - 1) * n_obs

plot_function(birth_matrix[obs,], main = c("Male", "Female")[k],

ylim = ylim, col = rainbow(n_obs, start = 0.5, end = 1),

lty = c(1, 2, 4, 5), ...)

}

}

Plot densities

plot_birth_densities(birthDistribution$birth_densities, ylab = "densities")

1 2 3 4 5 6 7 8 9 10 11 12

0.
07

5
0.

08
5

Male

month

de
ns

iti
es

1 2 3 4 5 6 7 8 9 10 11 12

0.
07

5
0.

08
5

Female

month

de
ns

iti
es

Figure 1: Densities of births in Germany per year and sex in B2(δ). Years are coded by different colors and
line types, see Figure 2.

legend (also for later plots)

year_col <- rainbow(70, start = 0.5, end = 1)

year_lty <- c(1, 2, 4, 5)

par(mar = c(0, 0, 0, 0) + 0.1)

plot(NULL, xaxt = "n", yaxt = "n", bty = "n", ylab = "", xlab = "", xlim = 0:1, ylim = 0:1)

legend("top", xpd = TRUE, legend = 1950:2019, lty = year_lty, ncol = 10, bty = "n",

text.col = year_col, col = year_col, cex = 0.7)

2

1950
1951
1952
1953
1954
1955
1956

1957
1958
1959
1960
1961
1962
1963

1964
1965
1966
1967
1968
1969
1970

1971
1972
1973
1974
1975
1976
1977

1978
1979
1980
1981
1982
1983
1984

1985
1986
1987
1988
1989
1990
1991

1992
1993
1994
1995
1996
1997
1998

1999
2000
2001
2002
2003
2004
2005

2006
2007
2008
2009
2010
2011
2012

2013
2014
2015
2016
2017
2018
2019

Figure 2: Coding of the years.

Overall, the range of the density values is quite small (from 0.071 to 0.094). While there is hardly a visible
difference between the two sexes, we see a trend over the years: In the early months of the years the density
values tend to decrease, in the later ones it is vice versa.

2 Model equation and clr transformation

We consider the model

fi =β0 ⊕ I(sexi = sex)⊙ βsex ⊕ g(yeari)⊕ εi, i = 1, . . . , 140, (1)

with a group-specific intercept βsex for sex ∈ {male, female}, a flexible effect g(year) for year ∈ [1950, 2019],
and functional error terms εi ∈ B2(δ) with E(εi) = 0 the additive neutral element of B2(δ), corresponding
to a constant density. Equivalently, we can consider the centered log-ratio (clr) transformed model

clr [fi] = clr [β0] + I(sexi = sex) · clr [βsex] + clr [g(yeari)] + clr [εi] i = 1, . . . , 140, (2)

for estimation, which is part of L2
0(δ) = L2

0 (T ,A, δ) =
{
f ∈ L2 (δ) |

∫
T f dδ = 0

}
, a closed subspace of

L2(δ) = L2 (T ,A, δ). FDboost was desiged for functions in L2(R,B, λ), where B denotes the Borel σ-algebra
and λ the Legesgue measure. However, with some unfamiliar specifications, FDboost can be used to estimate
model (2). Thus, our first step towards estimation is to apply the clr transformation on our densities, which
is given by

clr [f] := log f − 1

δ(T)

∫
T
log f dδ = log f−

1

12

12∑
t=1

log f(t). (3)

We call the resulting clr transformed densities clr-densities in the following. The data set birthDistribution
already contains the clr-densities. Whenever that’s not the case, one can use the function clr() to compute
the clr-densities, which we include here for the sake of completeness. Note that the choice of appropriate
integration weights w for the corresponding Bayes Hilbert space is crucial to get a reasonable result. In our
discrete case, equal weights w = 1 are appropriate. In the continuous case, the choice of the weights depends
on the grid on which the function was evaluated. The weight for each function value must correspond to the
length of the subinterval it represents. E.g., for a function defined on T = [a, b] evaluated on a grid with
equidistant distance d, where the boundary grid values are a+ d

2 and b− d
2 (i.e., the grid points are centers

of subintervals of size d), equal weights d should be chosen for w.

The function clr() can be used to compute the clr-densities; Our reference measure delta

corresponds to equal integration weights w = 1 for all density values

birth_densities_clr_test <- t(apply(birthDistribution$birth_densities, 1, clr, w = 1))

Compare with clr-densities contained in data set

sum(birth_densities_clr_test != birthDistribution$birth_densities_clr)

[1] 1

Plot clr-densities

plot_birth_densities(birthDistribution$birth_densities_clr, ylab = "clr-densities")

3

1 2 3 4 5 6 7 8 9 10 11 12

−
0.

15
−

0.
05

0.
05

Male

month

cl
r−

de
ns

iti
es

1 2 3 4 5 6 7 8 9 10 11 12

−
0.

15
−

0.
05

0.
05

Female

month

cl
r−

de
ns

iti
es

Figure 3: Clr transformed densities in L2
0(δ). Years are coded by different colors and line types, see Figure 2.

Due to the small range of the density values in this example, their shape is very similar to the original
densities, see Figure 1. In general, this is not the case.

3 Estimation

When fitting model (2) with the function FDboost, the specification of the timeformula needs some spe-
cial attention. First, we must respect the integrate-to-zero constraint of L2

0(δ). This is achieved by using
the constrained base-learner bbsc in the timeformula (instead of the unconstrained bbs as usual), which
transforms the basis such that it fulfills the sum-to-zero constraint. In our discrete case, this corresponds
to the integrate-to-zero constraint directly. In the continuous case, the sum is proportional to the integral
numerically, if the grid points where the function is evaluated are selected appropriately (e.g., centers of equal
sized subintervals). Thus, using bbsc is suitable in this case, as well. Second, we must specify the B-spline
basis in bbsc appropriately. The continuous case is straightforward, e.g., by using cubic B-splines. In our
discrete case, a suitable (unconstrained) basis is (1{1}, . . . ,1{12}) ∈ L2(δ)12, where 1A denotes the indicator
function of A ∈ A. This results in the identity matrix as design matrix. In bbs() (or bbsc(), which yields
the corresponding constrained basis), this can be achieved using degree = 1 with knots equal to T .

model <- FDboost(birth_densities_clr ~ 1 + bolsc(sex, df = 1) +

bbsc(year, df = 1, differences = 1),

use bbsc() in timeformula to ensure integrate-to-zero constraint

timeformula = ~bbsc(month, df = 4,

December is followed by January of subsequent year

cyclic = TRUE,

knots = {1, ..., 12} with additional boundary knot

0 (coinciding with 12) due to cyclic = TRUE

knots = 1:11, boundary.knots = c(0, 12),

degree = 1 with these knots yields identity matrix

as design matrix

degree = 1),

data = birthDistribution, offset = 0,

control = boost_control(mstop = 1000))

To determine the optimal stopping iteration we perform a 10-fold bootstrap. This is rather time-consuming
(especially in the continuous case, when the response densities are evaluated at many grid-values) and prefer-
ably should be executed parallelized on multiple cores. In order to avoid long compilation times for the
vignette, the following code is commented out, but it should be possible to obtain the same stopping itera-
tion within a few minutes.

4

set.seed(1708)

folds <- applyFolds(model, folds = cv(rep(1, model£ydim[1]), type = "bootstrap", B = 10))

ms <- mstop(folds) # = 999

ms <- 999

model <- model[ms]

Our final object model contains the fit of model (2), i.e., on clr-level.

Plotting 'model' yields the clr-transformed effects

par(mfrow = c(1, 3))

plot(model, n1 = 12, n2 = 12)

2 4 6 8 10 12

−
0.

06
−

0.
02

0.
02

0.
04

offset + bols(ONEx) %A0% bbsc(month)

month

co
ef

2 4 6 8 10 12

−
3e

−
04

−
1e

−
04

1e
−

04
3e

−
04

bolsc(sex) %O% bbsc(month)

month

co
ef

2 4 6 8 10 12

19
50

19
70

19
90

20
10

bbsc(year) %O% bbsc(month)

month

ye
ar

 −0.06

 −0.05

 −0.04

 −
0.

04

 −0.03

 −0.03

 −0.02

 −0.02

 −
0.

01

 −
0.

01

 −
0.

01

 0

 0

 0

 0.01
 0.01

 0.02

 0
.0

2

 0.02

 0.03

 0
.0

4

 0.04

 0.05

 0.05

Figure 4: Estimated effects in L2
0(δ). Years are coded by different colors and line types, see Figure 2.

Since model (2) is equivalent to model (1) via the clr transformation, we have to use the inverse clr transfor-
mation to get densities of interest (like estimated effects or predictions) for model (1) in the Bayes Hilbert
space, after extracting them from model. The inverse clr transformation is given by

clr−1(f̃) :=
exp f̃∫

T exp f̃ dδ
=

exp f̃∑12
t=1 exp f̃(t)

.

for f̃ ∈ L2
0(δ) and can be computed using clr(..., inverse = TRUE), again specifying appropriate integra-

tion weights w. Note that in contrast to Maier et al. (2021), the definition above includes normalization to
obtain the probability density function (which is the representative of the equivalence class of proportional
functions in B2(δ)).

Get estimated clr transformed effects; we use predict(), which returns a matrix of the

same dimension as the response (140 x 12), i.e., we have to extract the respective rows;

Alternatively, one could use coef(), but has to specify n1 = 12, n2 = 12 to get the den-

sities at 1, ..., 12, which also only yields the year effect on a grid of 12 years

all rows contain intercept

intercept_clr <- predict(model, which = 1)[1,]

first 70 rows contain effect for sex = male, second 70 rows for sex = female

sex_clr <- predict(model, which = 2)[c(1, 71),]

first 70 rows contain effect for years from 1950 to 2019, second 70 rows are repetition

year_clr <- predict(model, which = 3)[1:70,]

sex_col <- c("blue", "red")

par(mfrow = c(1, 3), mar = c(5, 5, 4, 2) + 0.1)

Retransform to Bayes Hilbert space using clr(..., inverse = TRUE); Our reference measure

delta corresponds to equal integration weights w = 1 for all function values

intercept <- clr(intercept_clr, w = 1, inverse = TRUE)

5

sex <- t(apply(sex_clr, 1, clr, w = 1, inverse = TRUE))

year <- t(apply(year_clr, 1, clr, w = 1, inverse = TRUE))

Plot retransformed effects

plot_function(intercept, main = "Intercept", ylab = expression(hat(beta)[0]),

id = rep(1, 12)) # id is passed to funplot since intercept is a vector

plot_function(sex, main = "Effect of sex", col = sex_col,

ylab = expression(hat(beta)["sex"]))

legend("topleft", legend = c("sex = male", "sex = female"), text.col = sex_col, bty = "n")

plot_function(year, main = "Effect of year", col = year_col,

ylab = expression(hat(g)("year")), lty = year_lty)

1 2 3 4 5 6 7 8 9 10 11 12

0.
07

8
0.

08
0

0.
08

2
0.

08
4

0.
08

6

Intercept

month

β̂ 0

1 2 3 4 5 6 7 8 9 10 11 12

0.
08

33
1

0.
08

33
3

0.
08

33
5

Effect of sex

month

β̂ s
ex

sex = male
sex = female

1 2 3 4 5 6 7 8 9 10 11 12

0.
07

8
0.

08
2

0.
08

6

Effect of year

month

ĝ(
ye

ar
)

Figure 5: Estimated effects in B2(δ). Years are coded by different colors and line types, see Figure 2.

While all effects get selected by the algorithm, the effects of sex are very small. We plot the predictions using
the same range as in Figure 1 for better comparison:

predictions_clr <- predict(model)

predictions <- t(apply(predictions_clr, 1, clr, inverse = TRUE))

plot_birth_densities(predictions, ylim = range(birthDistribution$birth_densities),

ylab = "predictions")

1 2 3 4 5 6 7 8 9 10 11 12

0.
07

5
0.

08
5

Male

month

pr
ed

ic
tio

ns

1 2 3 4 5 6 7 8 9 10 11 12

0.
07

5
0.

08
5

Female

month

pr
ed

ic
tio

ns

Figure 6: Predicted densities in B2(δ). Years are coded by different colors and line types, see Figure 2.

References

Brockhaus, S., Scheipl, F., Hothorn, T., and Greven, S. (2015). The functional linear array model.
Statistical Modelling 15(3), 279–300.

6

Maier, E.-M., Stöcker, A., Fitzenberger, B., Greven, S. (2021). Additive Density-on-Scalar Regression
in Bayes Hilbert Spaces with an Application to Gender Economics. arXiv preprint arXiv:2110.11771.

7

	Load and plot data
	Model equation and clr transformation
	Estimation

