Package 'FREEtree'

June 25, 2020

Type Package

Title Tree Method for High Dimensional Longitudinal Data

Version 0.1.0

Description This tree-based method deals with high dimensional longitudinal data with correlated features through the use of a piecewise random effect model. FREE tree also exploits the network structure of the features, by first clustering them using Weighted Gene Co-expression Network Analysis ('WGCNA'). It then conducts a screening step within each cluster of features and a selecting step among the surviving features, which provides a relatively unbiased way to do feature selection. By using dominant principle components as regression variables at each leaf and the original features as splitting variables at splitting nodes, FREE tree delivers easily interpretable results while improving computational efficiency.

Depends R (>= 3.5.0)

License GPL-3

Encoding UTF-8

LazyData true

Imports glmertree, pre, WGCNA, MASS

RoxygenNote 7.1.0

Suggests knitr, rmarkdown, testthat (>= 2.1.0)

NeedsCompilation no

Author Yuancheng Xu [aut],
Athanasse Zafirov [cre],
Christina Ramirez [aut],
Dan Kojis [aut],
Min Tan [aut],

Maintainer Athanasse Zafirov <zafirov@gmail.com>

Repository CRAN

Mike Alvarez [aut]

Date/Publication 2020-06-25 15:00:03 UTC

R topics documented:

	data						 	 	 			 			13 15
	FREEtree_time . get_split_names .														
Index															20
data		A da six co	olumi	is co	ntain	out			0						

Description

A dataset containing simulated feature long and wide data. The last six columns contain outcome variable, patient ID, treatment, time and time squared features.

Usage

data

Format

A data frame with 100 rows and 406 variables:

rand_int control variable (not used)

time time trend variable (1 to 6)

time2 squared time trend variable

treatment binary treatment feature

patient patient ID for 20 patients

y outcome variable

V1 simulated feature correlated to varrying degrees

V2 simulated feature correlated to varrying degrees

V3 simulated feature correlated to varrying degrees

V4 simulated feature correlated to varrying degrees

V5 simulated feature correlated to varrying degrees

V6 simulated feature correlated to varrying degrees

V7 simulated feature correlated to varrying degrees

V8 simulated feature correlated to varrying degrees

V9 simulated feature correlated to varrying degrees

V10 simulated feature correlated to varrying degrees

V 11	simulated feature correlated to varrying degrees
V12	simulated feature correlated to varrying degrees
V13	simulated feature correlated to varrying degrees
V14	simulated feature correlated to varrying degrees
V15	simulated feature correlated to varrying degrees
V16	simulated feature correlated to varrying degrees
V17	simulated feature correlated to varrying degrees
V18	simulated feature correlated to varrying degrees
V19	simulated feature correlated to varrying degrees
V20	simulated feature correlated to varrying degrees
V21	simulated feature correlated to varrying degrees
V22	simulated feature correlated to varrying degrees
V23	simulated feature correlated to varrying degrees
V24	simulated feature correlated to varrying degrees
V25	simulated feature correlated to varrying degrees
V26	simulated feature correlated to varrying degrees
V27	simulated feature correlated to varrying degrees
V28	simulated feature correlated to varrying degrees
V29	simulated feature correlated to varrying degrees
V30	simulated feature correlated to varrying degrees
V31	simulated feature correlated to varrying degrees
V32	simulated feature correlated to varrying degrees
V33	simulated feature correlated to varrying degrees
V34	simulated feature correlated to varrying degrees
V35	simulated feature correlated to varrying degrees
V36	simulated feature correlated to varrying degrees
V37	simulated feature correlated to varrying degrees
V38	simulated feature correlated to varrying degrees
V39	simulated feature correlated to varrying degrees
V40	simulated feature correlated to varrying degrees
V41	simulated feature correlated to varrying degrees
V42	simulated feature correlated to varrying degrees
V43	simulated feature correlated to varrying degrees
V44	simulated feature correlated to varrying degrees
V45	simulated feature correlated to varrying degrees
V46	simulated feature correlated to varrying degrees
V47	simulated feature correlated to varrying degrees

V48	simulated feature correlated to varrying degrees
V49	simulated feature correlated to varrying degrees
V50	simulated feature correlated to varrying degrees
V51	simulated feature correlated to varrying degrees
V52	simulated feature correlated to varrying degrees
V53	simulated feature correlated to varrying degrees
V54	simulated feature correlated to varrying degrees
V55	simulated feature correlated to varrying degrees
V56	simulated feature correlated to varrying degrees
V57	simulated feature correlated to varrying degrees
V58	simulated feature correlated to varrying degrees
V59	simulated feature correlated to varrying degrees
V60	simulated feature correlated to varrying degrees
V61	simulated feature correlated to varrying degrees
V62	simulated feature correlated to varrying degrees
V63	simulated feature correlated to varrying degrees
V64	simulated feature correlated to varrying degrees
V65	simulated feature correlated to varrying degrees
V66	simulated feature correlated to varrying degrees
V67	simulated feature correlated to varrying degrees
V68	simulated feature correlated to varrying degrees
V69	simulated feature correlated to varrying degrees
V70	simulated feature correlated to varrying degrees
V71	simulated feature correlated to varrying degrees
V72	simulated feature correlated to varrying degrees
V73	simulated feature correlated to varrying degrees
V74	simulated feature correlated to varrying degrees
V75	simulated feature correlated to varrying degrees
V76	simulated feature correlated to varrying degrees
V77	simulated feature correlated to varrying degrees
V78	simulated feature correlated to varrying degrees
V79	simulated feature correlated to varrying degrees
V80	simulated feature correlated to varrying degrees
	simulated feature correlated to varrying degrees
V82	simulated feature correlated to varrying degrees
V83	simulated feature correlated to varrying degrees
V84	simulated feature correlated to varrying degrees

v 65 simulated realtife correlated to variying degrees
V86 simulated feature correlated to varrying degrees
V87 simulated feature correlated to varrying degrees
V88 simulated feature correlated to varrying degrees
V89 simulated feature correlated to varrying degrees
V90 simulated feature correlated to varrying degrees
V91 simulated feature correlated to varrying degrees
V92 simulated feature correlated to varrying degrees
V93 simulated feature correlated to varrying degrees
V94 simulated feature correlated to varrying degrees
V95 simulated feature correlated to varrying degrees
V96 simulated feature correlated to varrying degrees
V97 simulated feature correlated to varrying degrees
$\boldsymbol{V98} \hspace{0.1cm} \textbf{simulated feature correlated to varrying degrees} \\$
V99 simulated feature correlated to varrying degrees
V100 simulated feature correlated to varrying degree
V101 simulated feature correlated to varrying degree
V102 simulated feature correlated to varrying degree
V103 simulated feature correlated to varrying degree
V104 simulated feature correlated to varrying degree
V105 simulated feature correlated to varrying degree
V106 simulated feature correlated to varrying degree
V107 simulated feature correlated to varrying degree
V108 simulated feature correlated to varrying degree
V109 simulated feature correlated to varrying degree
V110 simulated feature correlated to varrying degree
V111 simulated feature correlated to varrying degree
V112 simulated feature correlated to varrying degree
V113 simulated feature correlated to varrying degree
V114 simulated feature correlated to varrying degree
V115 simulated feature correlated to varrying degree
V116 simulated feature correlated to varrying degree
V117 simulated feature correlated to varrying degree
V118 simulated feature correlated to varrying degree
V119 simulated feature correlated to varrying degree
V120 simulated feature correlated to varrying degree
V121 simulated feature correlated to varrying degree

V 122	simulated feature correlated to varrying degrees
V123	simulated feature correlated to varrying degrees
V124	simulated feature correlated to varrying degrees
V125	simulated feature correlated to varrying degrees
V126	simulated feature correlated to varrying degrees
V127	simulated feature correlated to varrying degrees
V128	simulated feature correlated to varrying degrees
V129	simulated feature correlated to varrying degrees
V130	simulated feature correlated to varrying degrees
V131	simulated feature correlated to varrying degrees
V132	simulated feature correlated to varrying degrees
V133	simulated feature correlated to varrying degrees
V134	simulated feature correlated to varrying degrees
V135	simulated feature correlated to varrying degrees
V136	simulated feature correlated to varrying degrees
V137	simulated feature correlated to varrying degrees
V138	simulated feature correlated to varrying degrees
V139	simulated feature correlated to varrying degrees
V140	simulated feature correlated to varrying degrees
V141	simulated feature correlated to varrying degrees
V142	simulated feature correlated to varrying degrees
V143	simulated feature correlated to varrying degrees
V144	simulated feature correlated to varrying degrees
V145	simulated feature correlated to varrying degrees
V146	simulated feature correlated to varrying degrees
V147	simulated feature correlated to varrying degrees
V148	simulated feature correlated to varrying degrees
	simulated feature correlated to varrying degrees
V150	simulated feature correlated to varrying degrees
V151	simulated feature correlated to varrying degrees
V152	simulated feature correlated to varrying degrees
V153	simulated feature correlated to varrying degrees
	simulated feature correlated to varrying degrees
V155	simulated feature correlated to varrying degrees
	simulated feature correlated to varrying degrees
	simulated feature correlated to varrying degrees
V158	simulated feature correlated to varrying degrees

V159	simulated feature correlated to varrying degrees
V160	simulated feature correlated to varrying degrees
V161	simulated feature correlated to varrying degrees
V162	simulated feature correlated to varrying degrees
V163	simulated feature correlated to varrying degrees
V164	simulated feature correlated to varrying degrees
V165	simulated feature correlated to varrying degrees
V166	simulated feature correlated to varrying degrees
V167	simulated feature correlated to varrying degrees
V168	simulated feature correlated to varrying degrees
V169	simulated feature correlated to varrying degrees
V170	simulated feature correlated to varrying degrees
V171	simulated feature correlated to varrying degrees
V172	simulated feature correlated to varrying degrees
V173	simulated feature correlated to varrying degrees
V174	simulated feature correlated to varrying degrees
V175	simulated feature correlated to varrying degrees
V176	simulated feature correlated to varrying degrees
V177	simulated feature correlated to varrying degrees
V178	simulated feature correlated to varrying degrees
V179	simulated feature correlated to varrying degrees
V180	simulated feature correlated to varrying degrees
V181	simulated feature correlated to varrying degrees
V182	simulated feature correlated to varrying degrees
V183	simulated feature correlated to varrying degrees
V184	simulated feature correlated to varrying degrees
V185	simulated feature correlated to varrying degrees
V186	simulated feature correlated to varrying degrees
V187	simulated feature correlated to varrying degrees
V188	simulated feature correlated to varrying degrees
V189	simulated feature correlated to varrying degrees
V190	simulated feature correlated to varrying degrees
	simulated feature correlated to varrying degrees
V192	simulated feature correlated to varrying degrees
	simulated feature correlated to varrying degrees
V194	simulated feature correlated to varrying degrees
V195	simulated feature correlated to varrying degrees

V196	simulated feature correlated to varrying degrees
V197	simulated feature correlated to varrying degrees
V198	simulated feature correlated to varrying degrees
V199	simulated feature correlated to varrying degrees
V200	simulated feature correlated to varrying degrees
V201	simulated feature correlated to varrying degrees
V202	simulated feature correlated to varrying degrees
V203	simulated feature correlated to varrying degrees
V204	simulated feature correlated to varrying degrees
V205	simulated feature correlated to varrying degrees
V206	simulated feature correlated to varrying degrees
V207	simulated feature correlated to varrying degrees
V208	simulated feature correlated to varrying degrees
V209	simulated feature correlated to varrying degrees
V210	simulated feature correlated to varrying degrees
V211	simulated feature correlated to varrying degrees
V212	simulated feature correlated to varrying degrees
V213	simulated feature correlated to varrying degrees
V214	simulated feature correlated to varrying degrees
V215	simulated feature correlated to varrying degrees
V216	simulated feature correlated to varrying degrees
V217	simulated feature correlated to varrying degrees
V218	simulated feature correlated to varrying degrees
V219	simulated feature correlated to varrying degrees
V220	simulated feature correlated to varrying degrees
V221	simulated feature correlated to varrying degrees
V222	simulated feature correlated to varrying degrees
V223	simulated feature correlated to varrying degrees
V224	simulated feature correlated to varrying degrees
V225	simulated feature correlated to varrying degrees
V226	simulated feature correlated to varrying degrees
V227	simulated feature correlated to varrying degrees
V228	simulated feature correlated to varrying degrees
V229	simulated feature correlated to varrying degrees
V230	simulated feature correlated to varrying degrees
V231	simulated feature correlated to varrying degrees
V232	simulated feature correlated to varrying degrees

V233	simulated feature correlated to varrying degrees
V234	simulated feature correlated to varrying degrees
V235	simulated feature correlated to varrying degrees
V236	simulated feature correlated to varrying degrees
V237	simulated feature correlated to varrying degrees
V238	simulated feature correlated to varrying degrees
V239	simulated feature correlated to varrying degrees
V240	simulated feature correlated to varrying degrees
V241	simulated feature correlated to varrying degrees
V242	simulated feature correlated to varrying degrees
V243	simulated feature correlated to varrying degrees
V244	simulated feature correlated to varrying degrees
V245	simulated feature correlated to varrying degrees
V246	simulated feature correlated to varrying degrees
V247	simulated feature correlated to varrying degrees
V248	simulated feature correlated to varrying degrees
V249	simulated feature correlated to varrying degrees
V250	simulated feature correlated to varrying degrees
V251	simulated feature correlated to varrying degrees
V252	simulated feature correlated to varrying degrees
V253	simulated feature correlated to varrying degrees
V254	simulated feature correlated to varrying degrees
V255	simulated feature correlated to varrying degrees
V256	simulated feature correlated to varrying degrees
V257	simulated feature correlated to varrying degrees
V258	simulated feature correlated to varrying degrees
V259	simulated feature correlated to varrying degrees
V260	simulated feature correlated to varrying degrees
V261	simulated feature correlated to varrying degrees
V262	simulated feature correlated to varrying degrees
V263	simulated feature correlated to varrying degrees
V264	simulated feature correlated to varrying degrees
V265	simulated feature correlated to varrying degrees
V266	simulated feature correlated to varrying degrees
V267	simulated feature correlated to varrying degrees
V268	simulated feature correlated to varrying degrees
V269	simulated feature correlated to varrying degrees

V270	simulated feature correlated to varrying degrees
V271	simulated feature correlated to varrying degrees
V272	simulated feature correlated to varrying degrees
V273	simulated feature correlated to varrying degrees
V274	simulated feature correlated to varrying degrees
V275	simulated feature correlated to varrying degrees
V276	simulated feature correlated to varrying degrees
V277	simulated feature correlated to varrying degrees
V278	simulated feature correlated to varrying degrees
V279	simulated feature correlated to varrying degrees
V280	simulated feature correlated to varrying degrees
V281	simulated feature correlated to varrying degrees
V282	simulated feature correlated to varrying degrees
V283	simulated feature correlated to varrying degrees
V284	simulated feature correlated to varrying degrees
V285	simulated feature correlated to varrying degrees
V286	simulated feature correlated to varrying degrees
V287	simulated feature correlated to varrying degrees
V288	simulated feature correlated to varrying degrees
V289	simulated feature correlated to varrying degrees
V290	simulated feature correlated to varrying degrees
V291	simulated feature correlated to varrying degrees
V292	simulated feature correlated to varrying degrees
V293	simulated feature correlated to varrying degrees
V294	simulated feature correlated to varrying degrees
V295	simulated feature correlated to varrying degrees
V296	simulated feature correlated to varrying degrees
V297	simulated feature correlated to varrying degrees
V298	simulated feature correlated to varrying degrees
V299	simulated feature correlated to varrying degrees
V300	simulated feature correlated to varrying degrees
V301	simulated feature correlated to varrying degrees
V302	simulated feature correlated to varrying degrees
V303	simulated feature correlated to varrying degrees
V304	simulated feature correlated to varrying degrees
V305	simulated feature correlated to varrying degrees
V306	simulated feature correlated to varrying degrees

V 307	simulated feature correlated to varrying degrees
V308	simulated feature correlated to varrying degrees
V309	simulated feature correlated to varrying degrees
V310	simulated feature correlated to varrying degrees
V311	simulated feature correlated to varrying degrees
V312	simulated feature correlated to varrying degrees
V313	simulated feature correlated to varrying degrees
V314	simulated feature correlated to varrying degrees
V315	simulated feature correlated to varrying degrees
V316	simulated feature correlated to varrying degrees
V317	simulated feature correlated to varrying degrees
V318	simulated feature correlated to varrying degrees
V319	simulated feature correlated to varrying degrees
V320	simulated feature correlated to varrying degrees
V321	simulated feature correlated to varrying degrees
V322	simulated feature correlated to varrying degrees
V323	simulated feature correlated to varrying degrees
V324	simulated feature correlated to varrying degrees
V325	simulated feature correlated to varrying degrees
V326	simulated feature correlated to varrying degrees
V327	simulated feature correlated to varrying degrees
V328	simulated feature correlated to varrying degrees
V329	simulated feature correlated to varrying degrees
V330	simulated feature correlated to varrying degrees
V331	simulated feature correlated to varrying degrees
V332	simulated feature correlated to varrying degrees
V333	simulated feature correlated to varrying degrees
V334	simulated feature correlated to varrying degrees
V335	simulated feature correlated to varrying degrees
V336	simulated feature correlated to varrying degrees
V337	simulated feature correlated to varrying degrees
V338	simulated feature correlated to varrying degrees
V339	simulated feature correlated to varrying degrees
V340	simulated feature correlated to varrying degrees
V341	simulated feature correlated to varrying degrees
V342	simulated feature correlated to varrying degrees
V343	simulated feature correlated to varrying degrees

V344	simulated feature correlated to varrying degrees
V345	simulated feature correlated to varrying degrees
V346	simulated feature correlated to varrying degrees
V347	simulated feature correlated to varrying degrees
V348	simulated feature correlated to varrying degrees
V349	simulated feature correlated to varrying degrees
V350	simulated feature correlated to varrying degrees
V351	simulated feature correlated to varrying degrees
V352	simulated feature correlated to varrying degrees
V353	simulated feature correlated to varrying degrees
V354	simulated feature correlated to varrying degrees
V355	simulated feature correlated to varrying degrees
V356	simulated feature correlated to varrying degrees
V357	simulated feature correlated to varrying degrees
V358	simulated feature correlated to varrying degrees
V359	simulated feature correlated to varrying degrees
V360	simulated feature correlated to varrying degrees
V361	simulated feature correlated to varrying degrees
V362	simulated feature correlated to varrying degrees
V363	simulated feature correlated to varrying degrees
V364	simulated feature correlated to varrying degrees
V365	simulated feature correlated to varrying degrees
V366	simulated feature correlated to varrying degrees
V367	simulated feature correlated to varrying degrees
V368	simulated feature correlated to varrying degrees
V369	simulated feature correlated to varrying degrees
V370	simulated feature correlated to varrying degrees
	simulated feature correlated to varrying degrees
V372	simulated feature correlated to varrying degrees
V373	simulated feature correlated to varrying degrees
V374	simulated feature correlated to varrying degrees
V375	simulated feature correlated to varrying degrees
V376	simulated feature correlated to varrying degrees
V377	simulated feature correlated to varrying degrees
V378	simulated feature correlated to varrying degrees
V379	simulated feature correlated to varrying degrees
V380	simulated feature correlated to varrying degrees

FREEtree 13

```
V381 simulated feature correlated to varrying degrees
V382 simulated feature correlated to varrying degrees
V383 simulated feature correlated to varrying degrees
V384 simulated feature correlated to varrying degrees
V385 simulated feature correlated to varrying degrees
V386 simulated feature correlated to varrying degrees
V387 simulated feature correlated to varrying degrees
V388 simulated feature correlated to varrying degrees
V389 simulated feature correlated to varrying degrees
V390 simulated feature correlated to varrying degrees
V391 simulated feature correlated to varrying degrees
V392 simulated feature correlated to varrying degrees
V393 simulated feature correlated to varrying degrees
V394 simulated feature correlated to varrying degrees
V395 simulated feature correlated to varrying degrees
V396 simulated feature correlated to varrying degrees
V397 simulated feature correlated to varrying degrees
V398 simulated feature correlated to varrying degrees
V399 simulated feature correlated to varrying degrees
V400 simulated feature correlated to varrying degrees
```

FREEtree

Initial FREEtree call which then calls actual FREEtree methods depending on parameters being passed through.

Description

Initial FREEtree call which then calls actual FREEtree methods depending on parameters being passed through.

Usage

```
FREEtree(
  data,
  fixed_regress = NULL,
  fixed_split = NULL,
  var_select = NULL,
  power = 6,
  minModuleSize = 1,
  cluster,
  maxdepth_factor_screen = 0.04,
```

14 **FREEtree**

```
maxdepth_factor_select = 0.5,
 Fuzzy = TRUE,
 minsize_multiplier = 5,
 alpha_screen = 0.2,
  alpha_select = 0.2,
 alpha_predict = 0.05
)
```

Arguments

data data to train or test FREEtree on.

user specified char vector of regressors that will never be screened out; if fixed_regress fixed_regress

= NULL, method uses PC as regressor at screening step.

user specified char vector of features to be used in splitting with certainty. fixed_split

a char vector containing features to be selected. These features will be clustered var_select

by WGCNA and the chosen ones will be used in regression and splitting.

soft thresholding power parameter of WGCNA. power

minModuleSize WGCNA's minimum module size parameter.

cluster the variable name of each cluster (in terms of random effect) using glmer's im-

plementation.

maxdepth_factor_screen

when selecting features from one module, the maxdepth of the glmertree is set to ceiling function of maxdepth_factor_screen*(features in that module). Default

is 0.04.

maxdepth_factor_select

Given screened features (from each modules, if Fuzzy=FALSE, that is the selected non-grey features from each non-grey modules), we want to select again from those screened features. The maxdepth of that glmertree is set to be ceiling of maxdepth_factor_select*(#screened features). Default is 0.6. for the maxdepth of the prediction tree (final tree), maxdepth is set to the length of

the split_var (fixed+chosen ones).

boolean to indicate desire to screen like Fuzzy Forest if Fuzzy = TRUE; if

Fuzzy= FALSE, first screen within non-grey modules and then select the final non-grey features within the selected ones from each non-grey module; Use this final non-grey features as regressors (plus fixed_regress) and use grey features as split_var to select grey features. Then use final non-grey features and selected grey features together in splitting and regression variables, to do the final prediction. Fuzzy=FALSE is used if there are so many non-grey features and you

want to protect grey features.

minsize_multiplier

At the final prediction tree, the minsize = minsize_multiplier times the length of final regressors. The default is 5. Note that we only set minsize for the final prediction tree instead of trees at the feature selection step since during feature selection, we don't have to be so careful. Note that when tuning the parameters, larger alpha and samller minsize_multiplier will result in deeper tree and therefore may cause overfitting problem. It is recommended to decrease alpha and decrease minsize_multiplier at the same time.

Fuzzy

FREEtree_PC 15

```
alpha_screen alpha used in screening step.
alpha_select alpha used in selection step.
alpha_predict alpha used in prediction step.
```

Value

```
a glmertree object (trained tree).
```

Examples

FREEtree_PC

Version of FREEtree called when fixed_regress is NULL, uses principal components (PC) as regressors for non-grey modules.

Description

Version of FREEtree called when fixed_regress is NULL, uses principal components (PC) as regressors for non-grey modules.

Usage

```
FREEtree_PC(
   data,
   fixed_split,
   var_select,
   power,
   minModuleSize,
   cluster,
   maxdepth_factor_screen,
   maxdepth_factor_select,
   Fuzzy,
   minsize_multiplier,
   alpha_screen,
   alpha_select,
   alpha_predict
)
```

16 FREEtree PC

Arguments

data data to train or test FREEtree on.

fixed_split user specified char vector of features to be used in splitting with certainty.

var_select a char vector containing features to be selected. These features will be clustered

by WGCNA and the chosen ones will be used in regression and splitting.

power soft thresholding power parameter of WGCNA.

minModuleSize WGCNA's minimum module size parameter.

cluster the variable name of each cluster (in terms of random effect) using glmer's im-

plementation.

maxdepth_factor_screen

when selecting features from one module, the maxdepth of the glmertree is set to ceiling function of maxdepth factor screen*(features in that module). Default

is 0.04.

maxdepth_factor_select

Given screened features (from each modules, if Fuzzy=FALSE, that is the selected non-grey features from each non-grey modules), we want to select again from those screened features. The maxdepth of that glmertree is set to be ceiling of maxdepth_factor_select*(#screened features). Default is 0.6. for the maxdepth of the prediction tree (final tree), maxdepth is set to the length of

the split_var (fixed+chosen ones).

Fuzzy boolean to indicate desire to screen like Fuzzy Forest if Fuzzy = TRUE; if

Fuzzy= FALSE, first screen within non-grey modules and then select the final non-grey features within the selected ones from each non-grey module; Use this final non-grey features as regressors (plus fixed_regress) and use grey features as split_var to select grey features. Then use final non-grey features and selected grey features together in splitting and regression variables, to do the final prediction. Fuzzy=FALSE is used if there are so many non-grey features and you

want to protect grey features.

minsize_multiplier

At the final prediction tree, the minsize = minsize_multiplier times the length of final regressors. The default is 5. Note that we only set minsize for the final prediction tree instead of trees at the feature selection step since during feature selection, we don't have to be so careful. Note that when tuning the parameters, larger alpha and samller minsize_multiplier will result in deeper tree and therefore may cause overfitting problem. It is recommended to decrease

alpha and decrease minsize multiplier at the same time.

alpha_screen alpha used in screening step.
alpha_select alpha used in selection step.
alpha_predict alpha used in prediction step.

Value

a glmertree object (trained tree). dictionary'with keys=name of color, values=names of features of that color

FREEtree_time 17

FREEtree_time Versi speci	on of FREEtree called when var_select and fixed_regress are fied,
---------------------------	---

Description

Version of FREEtree called when var_select and fixed_regress are specified,

Usage

```
FREEtree_time(
  data,
  fixed_regress,
  fixed_split,
  var_select,
  power,
 minModuleSize,
  cluster,
 maxdepth_factor_screen,
 maxdepth_factor_select,
 Fuzzy,
 minsize_multiplier,
  alpha_screen,
  alpha_select,
  alpha_predict
)
```

is 0.04.

Arguments

data	data to train or test FREEtree on.
fixed_regress	user specified char vector of regressors that will never be screened out; if fixed_regress = NULL, method uses PC as regressor at screening step.
fixed_split	user specified char vector of features to be used in splitting with certainty.
var_select	a char vector containing features to be selected. These features will be clustered by WGCNA and the chosen ones will be used in regression and splitting.
power	soft thresholding power parameter of WGCNA.
minModuleSize	minimum possible module size parameter of WGCNA.
cluster	the variable name of each cluster (in terms of random effect) using glmer's implementation.
maxdepth_factor_screen	
	when selecting features from one module, the maxdepth of the glmertree is set to ceiling function of maxdepth_factor_screen*(features in that module). Default

18 get_split_names

maxdepth_factor_select

Given screened features (from each modules, if Fuzzy=FALSE, that is the selected non-grey features from each non-grey modules), we want to select again from those screened features. The maxdepth of that glmertree is set to be ceiling of maxdepth_factor_select*(#screened features). Default is 0.6. for the maxdepth of the prediction tree (final tree), maxdepth is set to the length of the split_var (fixed+chosen ones).

Fuzzy

boolean to indicate desire to screen like Fuzzy Forest if Fuzzy = TRUE; if Fuzzy= FALSE, first screen within non-grey modules and then select the final non-grey features within the selected ones from each non-grey module; Use this final non-grey features as regressors (plus fixed_regress) and use grey features as split_var to select grey features. Then use final non-grey features and selected grey features together in splitting and regression variables, to do the final prediction. Fuzzy=FALSE is used if there are so many non-grey features and you want to protect grey features.

minsize_multiplier

At the final prediction tree, the minsize = minsize_multiplier times the length of final regressors. The default is 5. Note that we only set minsize for the final prediction tree instead of trees at the feature selection step since during feature selection, we don't have to be so careful. Note that when tuning the parameters, larger alpha and samller minsize_multiplier will result in deeper tree and therefore may cause overfitting problem. It is recommended to decrease alpha and decrease minsize multiplier at the same time.

alpha_screen alpha used in screening step.
alpha_select alpha used in selection step.
alpha_predict alpha used in prediction step.

Value

a glmertree object (trained tree). dictionary' with keys=name of color,values=names of features of that color

get_split_names

Method for extracting names of splitting features used in a tree.

Description

Method for extracting names of splitting features used in a tree.

Usage

```
get_split_names(tree, data)
```

Arguments

tree a tree object.
data train or test set.

get_split_names 19

Value

names of splitting features extracted from tree object.

Index

```
*Topic datasets
data, 2
data, 2
FREEtree, 13
FREEtree_PC, 15
FREEtree_time, 17
get_split_names, 18
```